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2 UuctutyT npukiagHoi matematuku umenu M.B. Kengsiina PAH, Mockea, Poccus
b Poccuiickuil yHuBepcuteT Apysk0bl HapoaoB, Mockea, Poccus
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Hcrtopus cTaTbu Annoranus. [IpeacTaBieH METO, MO3BOJIIOIINIA BEIYUCIUTE ITapaMeTpPhI
MAaHEBPOB, BBIITOJHACMBIX Ha HECKOJIBKUX BUTKaX C IPUMCHCHUEM JIBUTaA-
TeJIsl MAJIOW TATH. DTH MaHEBPHI 00ECIICUNBAIOT MEpPeNeT aKTUBHOTO KOC-
MHUECKOTr0 ammnapaTa B Ipejelibl 33AaHHOM 00J1acTU 11e1eBOr0 KOCMHYe-
ckoro oobekTa. Ilepener ocymiecTBisieTcss B OKPECTHOCTH KPYTOBOHM Op-
Outhl. [ pemieHust NaHHOW 3aaqd IIPUMEHSIOTCS YIPOLICHHBIE MaTe-
MaTHYEeCKHE MOJICNIN ABWXEHUS. BiHsHUE HEUEHTPaJbHOCTU I'paBUTAIU-
OHHOTO IOJIA M aTMocdepsl B pacyeTax He yuuThiBaercs. IIponecc ompe-
JIeJIeHHsI TapaMeTPOB MaHEBPOB Pa3OMT HAa HECKOJIBKO ATAIOB: HA EPBOM
U TPeTheM dTallax MapaMeTphl UMITYIbCHOTO Mepexoaa U Iepexona, ocy-
LIECTBIIIEMOrO JBHUIaTeIeM MaJION TATH, BBIYMCISIIOTCSA C MCHOJIb30BaHU-
€M aHAIUTHYECKUX MeTonoB. Ha BTOpoM sTame pacmpeneseHre MaHEBpPH-
pOBaHUS MEXy BUTKaMH, 00eCIeYrBalolee yCIEeIHOe pellleHre 3a/1a4u
BCTPEUH, OMpEAeNsieTCs] MyTeM M3MEHEHUs] OJHOM mepeMeHHOW. JlaHHbII
METOJ OTJIMYAETCs IMPOCTOTOW U BBHICOKOH HAJEKHOCTHIO B OINPEIEIICHUH
[apaMeTpOB MaHEBPOB, UTO AENAET €ro MPUMEHHUMBIM Ha OOpTy KOcMHYe-
CKHX anmapaTtoB. B pamkax ucciieoBaHHs TakKe IPOBEJECH aHaINU3 3aBH-
CHMOCTH CYMMapHOH XapaKTEePUCTHYECKOH CKOPOCTH PEUIeHUs 3ajadn
BCTPEYM OT BEJIMYMHBI TArW JBUrateins. [lapameTpsl MaHEBpOB MOTYT
OBITH YTOYHEHBI C IIOMOILIBIO MTEPALMOHHOM MPOLEAYPHI, YTOOBI y4ecTh
OCHOBHbBIC BO3MYILICHUS.

IMoctynuna B penakuuto: 5 Hosopst 2023 .
Jopabotana: 9 ssuBaps 2024 r.
[punsita k mybnukamun: 14 saBaps 2024 r.
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Introduction Due to the great complexity of solving prob-

lems of spacecraft meeting with greater accuracy,

The problem of meeting in a near-circular orbit
using low-thrust engines is important in the practice
of spacecraft (SC) flights. Typical examples are the
problem of rendezvous and docking of spacecraft,
the implementation of a group flight of several
spacecraft, the formation of a given configuration
of satellite systems, during removal of space debris,
during servicing of spacecraft and other astro-
nautical missions involving more than one space-
craft.

8

over the past few years many authors have deve-
loped algorithms for solving the problem of space-
craft meeting [1-2].

Currently, three main approaches are widely
used in solving complex problems of multi-impulse
maneuvering of spacecraft. In the first case, the
problems of maneuvering in the orbital plane and
the problems of rotating the orbital plane are solved
independently. This scheme was used, for example,
when approaching the Shuttle spacecraft with an


https://orcid.org/0000-0003-1823-9354
https://orcid.org/0000-0001-5632-3747

bapaHos A.A., Omsuo A.11. BectHuk PYH. Cepusi: HxeHepHble nccnenosanus. 2024. T. 25. Ne 1. C. 7-20

orbital station, to control the movement of geo-
stationary satellites [3], satellites within satellite
systems [4-6], and so on. The advantage of this
scheme lies in its simplicity and reliability, and the
disadvantage is the excessive cost of characteristic
velocity for maneuvering.

In the second case, numerical methods are used
to find optimal solutions for the most complex
multi-impulse problems, taking into account a wide
range of restrictions [7-8]. The simplex method is
most often used [9-10].

In the third method, at the initial stage, the
solution to the Lambert problem is used to deter-
mine the parameters of the two-impulse solutions
to the meeting problem. Then the behavior of the
hodograph of the basis vector corresponding to the
found solution is analyzed, and, if necessary,
additional velocity impulses are added to obtain the
optimal solution. This approach was first used in the
works of Lion and Handelsman [11], Jezewski and
Rozendaal [12].

There are also methods that are at the inter-
section of different approaches. For example, in
[13—14] numerical and analytical methods for
solving the multi-impulse meeting problem are
proposed, combining the advantages of the first and
second of the previously listed approaches. They
make it possible to use the results obtained in the
early papers of T. Edelbaum [15], J.P. Marec [2],
when solving modern practical problems.

Since the 1960s, the process of using electric
rocket engines (ERM) on spacecraft began. Thanks
to their high specific impulse, electric propulsion
engines can significantly reduce fuel costs for
orbital maneuvering. However, the low (compared
to traditional liquid rocket engines) thrust of electric
propulsion engines leads to the need to take into
account their long-term operation.

Problems of this type take a special place a
special place among the problems of optimal
maneuvering of a spacecraft. A significant number
of articles have been devoted to them, and several
very interesting monographs have been published
[16; 17]. Particularly noteworthy are the papers
of V.G. Petukhov [18-20]. Due to the complexity
of the problems in which it is assumed that
maneuvering is carried out using a propulsion sys-
tem (PS), they have traditionally been solved
numerically and by methods using the Pontryagin
maximum principle or the continuation method. In
recent years, Yu.P. Ulybyshev has successfully used

the interior point method to solve problems with
long maneuvers [21].

In the method considered in this paper, the non-
coplanar meeting problem is solved both in the
impulse formulation and taking into account the
long-term operation of the low-thrust engine [22-24].

To analyze the relative motion of a spacecraft
in the vicinity of circular orbits, it is necessary to
use special mathematical models of motion. The
most popular mathematical model of the relative
motion of a spacecraft in the vicinity of circular
orbits is the Hill-Clohessy—Wiltshire (HCW) model.
Linearized differential equations for the relative
motion of a spacecraft in the vicinity of a circular
orbit for the problem of rendezvous and docking
were obtained by Clohessy—Wiltshire in 1960 [25],
but back in the 19th century similar equations were
used by Hill in his theory of lunar motion [26].

In this mathematical model, to obtain the
equations of relative motion, a rotating (orbital)
coordinate system and linearization of the
differential equations of relative motion are used,
based on the assumption that the distance between
the considered spacecraft is small compared to the
average orbital radius. This work uses linearized
equations obtained by P.E. Elyasberg [27]. They
were obtained using a cylindrical coordinate system
and are significantly more convenient for solving
the problem of long-duration encounters, in which
there are significant deviations along the orbit.

Due to the increase in the number of maneu-
vering spacecraft and the increase in the efficiency
of solving problems, there is currently a tendency to
transfer the process of calculating maneuvers on
board the spacecraft. This leads to the need to
simplify the process of calculating maneuver para-
meters and increase the reliability of this process.
The algorithm considered in this paper has precisely
these properties.

1. Formulation of the meeting problem

The problem of calculating the parameters of
transfer maneuvers between close near-circular orbits
is solved in an approximate impulse formulation,
within the framework of unperturbed Keplerian
motion.

The conditions for transferring with the help of
N velocity impulses in a fixed time from the initial
orbit to a given point of the final non-coplanar orbit
(meeting problem) in a linear approximation can be
written in the form Ilyin and Kuzmak [22]:
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N
D (AV,sing,+2AV, cos ¢,)=Ae,, (1)
i=1
N
D (-AV, cos @, +2AV, sing,)=Ae, 2)
i=1
N
Y 2AV,=Aa, 3)

i=1

N
Z (2AV,(1-cos @, )+AV,, (=3¢, +4sing,))=At, (4)
i=1

1 —AVsing; = Az, )

YL, AV, cos @; = AV, (6)

where
Aex = e/cosmy — epcosmo,
Ae,= esinwy — eosinwo,
Aa=(arao)/ro, At=ho(t-to),
Az= zo/ro, AV.=AV0/Vh,
AVisa v Vo, AVi=a v | Vo AV-2=AV,/ Vo,

Here «/», «0» — the indices corresponding to
the final and initial orbits, e, e — the eccentricities
of the orbits; a5, ap — semi-axes major of orbits;
®; ®9 — angles between the direction to the
pericenter of the corresponding orbit and the
direction to a point specified on the final orbit (the
Ox axis is directed to this point); ¢r — the required
time of arrival at a given point, fp — the time
at which, when moving along the initial orbit, the
projection of the radius vector onto the plane of the
final orbit hits the ray passing through the given
meeting point; zo — the deviation of the spacecraft
in the initial orbit from the plane of the final orbit

at time #o, Vzo — lateral relative velocity at this
moment; Vy, Ao — orbital and angular velocities
of movement along the reference circular orbit
of radius ry (ro = a); N — number of velocity

impulses; ¢; — the angle of application of the i-th
velocity impulse, measured from the direction to
a given meeting point in the direction of the SC
motion; Ay ,AV, AV}, — transversal, radial

and lateral components of the i-th velocity
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impulse, respectively. It is necessary to take into
account that the angles ¢; — negative, because it
was assumed that at a given point @,= 0.

The problem of searching for parameters of
optimal maneuvers can be formulated as follows:
it is necessary to determine AV, AV, AV., @i
(i=1, ..., N), at which the total characteristic
velocity of maneuvers AV is minimal.

N N
=Y av=> \/AVrzi +AV2 + AVZ,
i=1 i=1

under restrictions (1)—(6).

In this paper problem of the meeting is solved
in several stages. At the first stage, the problem of
impulses transfer between non-coplanar orbits is
solved (Section 2). The velocity impulses for solving
the transfer problem are then distributed among the
turns allowed for maneuvering to ensure that
equation (4) is satisfied (Section 3). In sections (4)
and (5), a solution to the low-thrust transfer problem
is sought.

The maneuver parameters can be refined using
an iterative procedure to take into account all dis-
turbances (the influence of compression of the Earth,
atmosphere, etc.).

2. Algorithm for solving the transfer problem

When solving the problem of transfer between
non-coplanar orbits, five equations of the system
(1)—(6) are used.

The angle ¢, (the angle of application of the
first velocity impulse) is searched and for each
successive value of the angle the values of the
velocity impulses and the angle ¢, are found:

Ae? — Aa?
AV = 4(Aey sin @15 + Aey cos @1 — Aa)’ )
Aa
AVy, = P AV, (8)
A% — AV sin@qf
tan @, = zo———— 9)

b
> AViicos@qf

and then from equations (5)—(6) the values of the
lateral components of the velocity impulses are
determined:

AV, = _(

Az cos @, + AV, sin (pz)
sin(@1-¢32) ’

(10)
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Az cos ¢, + AV, sin <p1)

AV = _( sin(@1-¢2)

(11)

From the entire set of solutions found, the one
that provides the minimum total characteristic
velocity is selected. Further, the parameters of this
solution are indicated by the index «m» AV,
AI/zlm, Q1m, AI/th, AI/ZZm, Q2m.

3. Algorithm for solving the meeting problem

When solving the meeting problem, the values
of the velocity impulses AVu, AVp, determined
when solving the transfer problem, are distributed
among N turns allowed for maneuvering:

Al/ltmzzAI/lt[ ’ (12)
i=1
N

AV, =D AV, (13)

Here N is the number of turns on which maneu-
vering is allowed.

The lateral components are distributed in pro-
portion to the transversal

__ AV 14l

AVlzi - |AVy ] A 1zm »
and
|AV 3¢l

The further goal is to select such a distribution
of the magnitudes of the velocity impulses along the
turns so that equation (4) is satisfied.

To significantly simplify the solution of the
problem, we assume that the magnitudes of the
velocity impulses along the turns change linearly:

AV, =AV,, +

1ti 1t1

AV, = AV )E=D /(N =D, (15

AV, =AV,, +
+(AV,, = AV, )(i-=1)/(N =1). (16)

Here AVia, AViw u AVan, AVay are the
magnitudes of the velocity impulses on the first and
last permitted turns of maneuvering, which are a
part of the first and second velocity impulses of
solving the transfer problem.

Substituting the values of velocity impulses
calculated using formulas (15), (16) into (12) and
(13) we obtain:

AVyem = 2ieq AVygi = 0.5N(AVyy + AVyey); (17)
AVorm = Xily AVoyi = 0.5N (AVyey + AVgey). (18)

Using (17) and (18), we obtain formulas for
determining Ay A :

1N > 2N

_ AVlt

AV = 05N AVigq s (19)
AV
AVyen = FZI; — AVy4q. (20)

Substituting the found values A Vi » AV, into
formulas (15) and (16), we obtain:

AV = )
=28V, (i - /NN - 1) + AV, [1 - 222 21

AV =

= 20V,(i — 1)/N(N — 1) + AVyqy [1 _2

I(Vij)]. (22)

Thus, we found the values of all velocity
impulses, expressed only in terms of AVi; and
AV>4. Substituting them into equation (3), we obtain
a linear equation with two unknowns A Vi AV, -

The coefficients for velocity impulses are known,
since their angles of application are known:

®,=0,, +2n(N, - N), (23)
¢, =¢,, +20(N,-N)- (24)

By sorting through the value of the variable
AV, within the specified limits, for each value
from equation (3) we find the value of the variable
AVZ:I'

Then, using (23) and (24), we find the values of
all velocity impulses. Adding the modules of all

11
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velocity impulses, we find the total characteristic
velocity of the next solution. The solution whose
total characteristic velocity is minimal is accepted
as a solution to the meeting problem. If the total
characteristic velocity of the found solution
coincides with the total characteristic velocity of the
solution to the transfer problem, then a solution
with the minimum possible total characteristic
velocity was found.

If the duration of the largest velocity impulse
does not exceed 20°, then the solution is close to an
impulse one and we consider that the problem has
already been solved. Taking into account all
disturbances (non-centrality of the gravitational
field, the influence of the atmosphere, etc.), the
operation of a real propulsion system can be carried
out using the iterative procedure described in
Section 5. If the duration of the maneuvers is
significant, then we proceed to solving the problem
taking into account low thrust PS.

4. Solving the problem with «low thrust»

It is assumed that the orientation of the
propulsion system during the execution of the
maneuver is fixed in the orbital coordinate system.

For each turn, we find what changes in
eccentricity and semi-major axis produce the found
velocity impulses determined at this turn

Aeyjx=2AVyy; €OS @q; + 24V, COS @p5,  (25)
Aeqy=2AV;¢; Sin @q; + 24V sin @y, (26)
Aa;=2AV ¢ + 2AV,4;. 27)

Similarly for changing the lateral parameters on

a turn
AVi;=AV14; COS @1; + AV3,; COS @y, (28)
AZi = AVlZi sin (OFT + AVZti sin (ODTE (29)

Then we determine the required duration of
low-thrust maneuvers that will produce the same
change in these elements [20]:

Ag; = 2arcsin w(;_val’ (30)
A, = 2 arcsin WCZ—QVZ. (31

12

Thus, turn by turn we find the duration of all
maneuvers. The low thrust problem has been
correctly solved. If the arcsine argument is greater
than 1, then there is no solution (with the existing
thrust and mass of the spacecraft, it is impossible to
solve the meeting problem for a given number of
turns).

The found solution with “low thrust” gives the
same change in the eccentricity vector and orienta-
tion of the orbital plane as the original impulse
solution, because the midpoints of long maneuvers
coincide with the moments of application of velo-
city impulses.

However, the difficulty is that the change in the
semi-major axis becomes larger than necessary,
since it changes with orbital orientation more
effectively than eccentricity. Therefore, as a result
of the maneuvers, an error remains in the formation
of the required value of the semi-major axis, and to
eliminate this error, you can use the iterative
procedure described in [20].

Let us assume that the initial deviation of the
semi-major axis was Aay = af — a, (for example,
Aay > 0), and the deviations Aa,, Aey, Aeyy,
Aiy, A9, (the angle between the line of intersection
of the orbital planes and the line of apses relative
orbits) were used in determining the parameters of
the maneuvers.

As a result of performing the -calculation
maneuvers, the semi-major axis a; will be formed
(ag > ay). In the next iteration, deviations Aa; =
Aay + ar — aq, Dey, Aeyg, Aiy, A9y will be used, at
the next iteration Aa, = Aa, + a5 — a,, etc., until
the semi-major axis is formed with the given
accuracy.

Since at each turn the same change in the semi-
major axis will be made as in the impulse solution,
the meeting problem will be solved with the same
accuracy.

5. Iterative procedure

In the formulated meeting problem, linearized
equations of motion are used, the non-centrality of
the gravitational field, the influence of the
atmosphere, etc. are not taken into account. This
leads to the fact that the actual accuracy of fulfilling
the terminal conditions in system (1)-(6) will be
insufficient. To solve a problem with a given
accuracy, you can use an iterative scheme [7-8§],
which consists of the following stages:



bapaHos A.A., Omsuo A.11. BectHuk PYH. Cepusi: HxeHepHble nccnenosanus. 2024. T. 25. Ne 1. C. 7-20

1. In the beginning of the next iteration, an
“approximate” problem is solved: under the pre-
viously accepted simplifying assumptions, the para-
meters of maneuvers that ensure the formation of a
“target” orbit are determined (at the first iteration,
the “target” orbit coincides with the final orbit).

2. Then, taking into account the calculated
maneuvers, using models of all necessary distur-
bances, an “accurate” prediction of the spacecraft
motion is carried out and the parameters of the
formed orbit are found.

3. The deviations of the parameters of the for-
med orbit from the corresponding parameters of the
final orbit are calculated.

4. If the deviations exceed the permissible
ones, then the parameters of the “target” orbit are
changed by the value of the calculated deviations,
and the next iteration is carried out.

5. The procedure ends when the terminal
conditions are met with the specified accuracy.

6. For “accurate” forecasting, as a rule, nume-
rical and/or high-precision numerical-analytical
integration are used. It is possible to use different
forecast methods at different iterations, but the
accuracy of the forecast should increase with the
number of the current iteration.

7. During numerical integration, the influence
of the non-centrality of the gravitational field,
atmosphere, light pressure, etc. is taken into account,
the operation of the spacecraft engines is carefully
modeled, therefore, despite the fact that the
maneuver parameters are found at each iteration
using the simplest motion model, but as a result of
an iterative procedure, they ensure access to the
final orbit with the required accuracy.

6. Example of solving the non-coplanar
meeting problem

Let us consider the motion of a spacecraft (SC)
relative to point O, moving in an undisturbed near
circular orbit with a radius of 6871 km. Let us take
the gravitational parameter of the Earth equal to
3.9860044:1014 m?/s>. Let us consider the flight
problem using N velocity impulses in a fixed time
from the initial orbit to a given point in the final
orbit from a point in phase space ro = (10, 100, -5)
km, vo = (1, —10, 3) m /¢ to the origin, that is, to the
point r¢ = (0, 0, 0) km, with a velocity v¢ = (0, 0, 0)
m/s. For the problem, we will take the initial mass
of the spacecraft equal to 1000 kg, the specific

impulse of the spacecraft propulsion system is 220
seconds (2157.463 m/s), and the thrust (7) will be
varied in the range from 1 to 100 N. The flight is
carried out in N = 15 turns.

Solution of the two-impulse transfer problem

Table 1 shows the results of calculations of the
parameters of the optimal two-impulse transfer
between non-coplanar orbits, that is, the values of
the transversal and lateral components of the
velocity impulses, the angles of application of the
first and second impulses are given as well. The
angle of application of the first velocity impulse
was varied from 0 to 360° with a step of 0.75°. It
can be seen that the minimum value of the
characteristic velocity that a spacecraft (SC) must
have for the transfer maneuver is 10.308 m/s.

Multi-impulse solution to the meeting problem

To obtain an impulse solution to the meeting
problem, the velocity impulses of the two-impulse
solution are distributed between 15 turns so that
condition (4) is satisfied. For this purpose, the
algorithm described in Section 3. The value of the
first velocity impulse is varied within the range
from -3.452 m/s to 0.5 m/s with a step of 0.023 m/s.

Table 2 shows parameters of the distributed
impulse solution

Table 3 shows the deviations of orbital elements
for each turn corresponding to the influence of
distributed velocity impulses.

This impulse solution can be transformed to
take into account the real thrust of the engine.

The process of obtaining a solution for 1IN
thrust is shown below.

At the first stage, the durations of the maneu-
vers are calculated, which for a real low thrust (1)
provide the changes in the orbital elements shown
in Table 3 at each orbit (except for the semi-major
axis). These durations are shown in Table 4.

Then the change in the semi-major axis
produced for a given duration of maneuvers is
calculated and a new target value of the semi-major
axis is formed for the next iteration. These data are
shown in Table 5.

The next iteration is performed and the para-
meters of the new impulse solution, the duration of
the maneuver and changes made of the semi-major
axis under the influence of low thrust and errors in
the correction of the semi-major axis are shown in
Tables 6, 7 and 8.

13
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Results of the calculation the parameters of the optimal non-coplanar impulse transfer problem ravie
@,° @;° AVy ,m/s | AV, ,m/s | AV,y,m/s | AV,, ,m/s | AV,,m/s | AV, ,m/s | AV,,m/s | AV, ,m/s | AV ,m/s
155 | 55.851 -3.452 2.367 -0.637 -6.372 5.819 7.01 3.51 6.798 10.308
Table 2
Distribution of the two-impulse solution by turns
N AVy ,m/s AV ,m/s AV, ,m/s AV,, ,m/s AV,,m/s AV, ,m/s AV, ,m/s AV, ,m/s AV ,m/s
1 -0.022 0.314 -0.004 -0.844 0.336 0.848 0.023 0.9 0.923
2 -0.052 0.291 -0.01 -0.784 0.343 0.794 0.053 0.837 0.89
3 -0.082 0.269 -0.015 -0.724 0.351 0.739 0.083 0.773 0.856
4 -0.111 0.247 -0.021 -0.664 0.358 0.685 0.113 0.709 0.822
5 -0.141 0.224 -0.026 -0.604 0.366 0.63 0.143 0.645 0.788
6 -0.171 0.202 -0.031 -0.545 0.373 0.576 0.174 0.581 0.755
7 -0.2 0.18 -0.037 -0.485 0.38 0.522 0.204 0.517 0.721
8 -0.23 0.158 -0.043 -0.425 0.388 0.467 0.234 0.453 0.687
9 -0.26 0.136 -0.048 -0.365 0.395 0.413 0.264 0.389 0.653
10 -0.29 0.113 -0.053 -0.305 0.403 0.358 0.294 0.325 0.619
11 -0.319 0.091 -0.059 -0.245 0.41 0.304 0.325 0.261 0.586
12 -0.349 0.069 -0.064 -0.185 0.418 0.249 0.349 0.198 0.547
13 -0.379 0.047 -0.07 -0.125 0.425 0.195 0.385 0.134 0.519
14 -0.408 0.024 -0.075 -0.066 0.433 0.141 0.415 0.07 0.485
15 -0.438 0.002 -0.081 -0.006 0.44 0.087 0.446 0.006 0.452
) -3.452 2.367 -0.637 -6.372 5.819 7.01 3.51 6.798 10.308
Table 3
Results of deviations of orbital elements by turns
N Aey;, x 1074 Aey;y, x 107* Ae; x 107* @i ° Aag; x 107* AV, x 107* Az; x 107* @;°
1 -0.41 -0.71 0.816 59.877 0.765 0.627 -0.915 55.578
2 -0.306 -0.691 0.755 66.096 0.629 0.589 -0.847 55.163
3 -0.203 -0.675 0.705 73.302 0.492 0.552 -0.779 54.68
4 -0.099 -0.66 0.667 81.466 0.356 0.514 -0.711 54.112
5 0.005 -0.644 0.644 -89.598 0.219 0.476 -0.642 53.435
6 0.108 -0.629 0.638 -80.254 0.083 0.439 -0.574 52.612
7 0.212 -0.614 0.649 -70.979 -0.053 0.401 -0.506 51.594
8 0.315 -0.598 0.676 -62.228 -0.19 0.364 -0.438 50.302
9 0.419 -0.583 0.718 -54.318 -0.326 0.326 -0.37 48.609
10 0.522 -0.568 0.771 -47.388 -0.463 0.288 -0.302 46.299
11 0.626 -0.552 0.835 -41.432 -0.599 0.251 -0.234 42.976
12 0.729 -0.537 0.906 -36.362 -0.736 0.213 -0.166 37.832
13 0.833 -0.521 0.983 -32.057 -0.872 0.176 -0.097 29.028
14 0.936 -0.506 1.064 -28.395 -1.009 0.138 -0.029 11.991
15 1.04 -0.491 1.15 -25.267 -1.145 0.1 0.039 -21.159

—
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Table 4
Duration of the maneuver for N= 15
N Agq;° Agy; ° Ag;°
1 1.427 59.874 61.301
2 3.347 55.244 58.591
3 5.268 50.71 55.978
4 7.19 46.259 53.449
5 9.115 41.881 50.996
6 11.041 37.567 48.608
7 12.971 33.306 46.277
8 14.905 29.093 43.998
9 16.843 24.92 41.763
10 18.786 20.78 39.566
11 20.734 16.667 37.401
12 22.689 12.575 35.264
13 24.65 8.5 33.15
14 26.618 4.436 31.054
15 28.595 0.377 28.972
Table 5
Changes made of the semi-major axis under the influence of low thrust and errors
in the correction of the semi-major axis
N Aay; x 107+ Aa; x 107+ 8a; x 1074 Aay; x 1074
1 0.765 0.804 -0.039 0.727
2 0.629 0.659 -0.0304 0.598
3 0.492 0.516 -0.0235 0.469
4 0.356 0.374 -0.018 0.338
5 0.219 0.232 -0.013 0.2065
6 0.083 0.092 -0.0089 0.074
7 -0.053 -0.048 -0.0056 -0.059
8 -0.19 -0.187 -0.00278 -0.193
9 -0.326 -0.326 -0.00036 -0.327
10 -0.463 -0.464 -0.0018 -0.461
11 -0.599 -0.603 0.00375 -0.596
12 -0.736 -0.741 0.00565 -0.73
13 -0.872 -0.88 0.0076 -0.865
14 -1.009 -1.018 0.0097 -0.999
15 -1.145 -1.157 0.01203 -1.133
Table 6
Parameters of the new impulse solution for N= 15
N | AVy,m/s | AV ,m/s | AV,y,m/s | AV,, ,m/s | AV, ,m/s | AV, ,m/s | AV, ,m/s | AV, ,m/s | AV,m/s
1 -0.04 0.317 0.045 0.843 0.357 0.888 0.060 0.901 0.961
2 -0.066 0.294 0.029 0.791 0.36 0.82 0.072 0.844 0.916
3 -0.092 0.271 0.014 0.73 0.363 0.744 0.093 0.779 0.872
13 -0.375 0.046 -0.079 0.124 0.421 0.203 0.383 0.132 0.515
14 -0.404 0.024 -0.086 0.065 0.428 0.151 0.413 0.069 0.482
15 -0.435 0.003 -0.089 -0.009 0.438 0.098 0.444 0.009 0.453
> -3.501 2.378 -0.501 5.402 5.879 7.073 3.585 6.82 10.405
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It can be seen that the accuracy of the semi-
major axis formation has increased.

It took four iterations to solve the problem. The
information about the fourth iteration is given below
(in Table 9).

Fourth iteration. In the next iteration, an im-
pulse solution is first sought for the deviations of
the orbital elements at each turn.

Then, the duration of the maneuvers is deter-
mined and shown in Table 10.

The change made in the semi-major axis is
determined and shown in Table 11.

The good accuracy of the semi-major axis
formation was obtained, so the iterative procedure is
completed.

The duration of maneuvers is converted into
impulse values. These results are shown in Table 12.

Maneuvers are calculated in a similar way for
various thrust values from a given range.

The results are shown in the summary Table 13.

Table 7
Duration of the maneuver for N=15
N Agy;° Ay ° Ag;°
1 3.82 60.588 64.408
2 4.57 55.777 60.347
3 5.944 51.103 57.047
13 24.551 8.425 32.976
14 26.499 4.379 30.878
15 28.498 0.636 29.134
Table 8
Changes made of the semi-major axis under the influence of low thrust and errors
in the correction of the semi-major axis
N Aagy; X 107* Aa; x 107* 8a; x 107* Aaqy; X 1074
1 0.765 0.717 0.00483 0.775
2 0.629 0.617 0.0116 0.61
3 0.492 0.494 -0.0017 0.467
4 0.356 0.3614 -0.0055 0.333
5 0.219 0.225 -0.00569 0.201
6 0.083 0.0876 -0.00461 0.0694
7 -0.053 -0.0503 -0.00314 -0.0622
8 -0.19 -0.188 -0.00164 -0.194
9 -0.326 -0.326 -0.00022 -0.327
10 -0.463 -0.454 0.0011 -0.46
11 -0.599 -0.602 0.00233 -0.593
12 -0.736 -0.7283 -0.0124 -0.7425
13 -0.872 -0.869 0.00466 -0.867
14 -1.009 -1.014 0.00566 -0.993
15 -1.145 -1.15 0.00437 -1.129
Table 9
Parameters of the next impulse solution for N=15
N AV, ,m/s AV ,m/s AV, ,m/s AV, ,m/s AV, ,m/s AV,,m/s AV, ,m/s AV, ,m/s AV ,m/s
1 -0.031 0.315 0.019 0.848 0.346 0.867 0.036 0.905 0.941
2 -0.061 0.293 0.015 0.788 0.354 0.803 0.063 0.841 0.904
3 -0.093 0.271 0.016 0.73 0.364 0.746 0.094 0.779 0.873
13 -0.373 0.046 -0.084 0.124 0.419 0.208 0.382 0.132 0.514
14 -0.401 0.024 -0.096 0.065 0.425 0.161 0.412 0.069 0.481
15 -0.434 0.005 -0.093 -0.012 0.439 0.105 0.444 0.013 0.457
> -3.496 2.381 -0.517 6.382 5.877 7.039 3.562 6.834 10.396
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Table 10
Duration of the maneuver for N= 15
N A@y;° A@y; ° Ag;°
1 2.273 60.18 62.453
2 3.991 55.573 59.564
3 5.999 51.128 57.127
13 24.499 8.401 32.9
14 26.406 4.437 30.843
15 28.463 0.832 29.295
Table 171
Changes made of the semi-major axis under the influence of low thrust and errors
in the correction of the semi-major axis
N Aay; X 1074 Aa; x 107* 8a; x 107 Aaqg; x 107*
1 0.765 0.774 -0.00872 0.738
2 0.629 0.638 -0.009 0.6
3 0.492 0.492 0.000198 0.468
4 0.356 0.356 0.0000162 0.333
5 0.219 0.219 -0.0000054 0.2
6 0.083 0.0831 -0.000121 0.0672
7 -0.053 -0.0532 -0.000263 -0.0646
8 -0.19 -0.19 -0.0002505 -0.385
9 -0.326 -0.326 -0.0000469 -0.327
10 -0.463 -0.463 0.000289 -0.458
11 -0.599 -0.6 0.000481 -0.589
12 -0.736 -0.734 -0.00196 -0.745
13 -0.872 -0.875 0.0029 -0.857
14 -1.009 -1.01 0.001031 -0.987
15 -1.145 -1.145 0.000124 -1.127
Table 12
Parameters of the solution with low thrust for N=15
N | AV, ,m/s | AV, ,m/s | AV,y,m/s | AV,, ,m/s | AV, ,m/s | AV,,m/s | AV,,m/s | AV, ,m/s | AV ,m/s
1 0.035 0.33 0.006 -0.888 0.365 0.894 0.036 0.947 0.983
2 0.062 0.305 0.011 -0.82 0.367 0.831 0.063 0.875 0.938
3 0.093 0.28 0.017 -0.755 0.373 0.772 0.095 0.805 0.900
4 0.12 0.256 0.022 -0.688 0.376 0.71 0.122 0.734 0.856
5 0.148 0.231 0.027 -0.623 0.379 0.650 0.150 0.664 0.815
6 0.176 0.207 0.032 -0.558 0.383 0.59 0.179 0.595 0.774
7 0.204 0.184 0.038 -0.494 0.388 0.532 0.208 0.527 0.735
8 0.232 0.16 0.043 -0.431 0.392 0.474 0.236 0.460 0.696
9 0.261 0.137 0.048 -0.368 0.398 0.416 0.265 0.393 0.658
10 0.29 0.114 0.054 -0.306 0.404 0.36 0.295 0.327 0.622
11 0.319 0.091 0.059 -0.245 0.41 0.304 0.324 0.261 0.586
12 0.349 0.07 0.064 -0.187 0.419 0.251 0.355 0.200 0.554
13 0.379 0.046 0.07 -0.124 0.425 0.194 0.385 0.132 0.518
14 0.409 0.024 0.075 -0.065 0.433 0.14 0.416 0.069 0.485
15 0.441 0.005 0.081 -0.012 0.446 0.093 0.448 0.013 0.461
> 3.518 2.44 0.647 -6.564 5.958 7.211 3.577 7.003 10.580
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Table 13
Parameters of the solution with respect to maximal thrust magnitude
N AV, m/s M, kg
1 10.580 4.892
2 10.377 4.798
5 10.32 4.772
10 10.318 4.771
100 10.308 4.766

Conclusion

The paper describes an algorithm for calcula-
ting the parameters of the multi-turn, multi-impulse
meeting. The main advantage of the proposed
algorithm is its simplicity and reliability, which
allows it to be used not only in ground control
centers, but also on board a spacecraft. In the same
time, this algorithm makes it possible to obtain an
optimal solution to the problem in the case when the
initial phase belongs to the optimal phase range and
the total characteristic velocity of solving the
meeting problem coincides with the total character-
ristic velocity of the optimal solution to the transfer
problem. The algorithm makes it possible to obtain
a solution even in the case when maneuvers are
performed by low-thrust engines. Each stage of the
algorithm is transparent for understanding and
control. The examples given in the article confirm
the performance of this algorithm and the high
quality of the resulting solution.
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