

 349

Вестник РУДН. Серия: Инженерные исследования

RUDN Journal of Engineering Research

2023;24(4):349–364

ISSN 2312�8143 (Print); ISSN 2312�8151 (Online)
journals.rudn.ru/engineering�researches

DOI: 10.22363/2312-8143-2023-24-4-349-364
UDC 519.1:519.681:519.683.8:519.685.1
EDN: HBEUFG

 Research article / Научная статья

The synthesis of structural diagrams of automatic

devices on formal neurons*

Natalia L. Malinina ✉

Moscow Aviation Institute (National Research University), Moscow, Russian Federation
✉ malinina806@gmail.com

Article history
Received: April 24, 2023
Revised: August 20, 2023
Accepted: September 22, 2023

 Abstract. The development of finite state machines and the synthesis of neural
networks come with enormous computational difficulties. The problems that are
faced both by the creators of control finite state machines and the creators of neural
networks are almost the same. In order for a control finite state machine to be
implemented, an algorithm for its operation must be created, and then a program must
be written, and finally this program must be implemented in hardware in the form of a
finite state machine. It is crucial to create a finite state machine, which will be
deterministic. As for neural networks, it is necessary either to set the weights on its
edges with the help of experts, or it must be trained to obtain optimal weights on its
edges. Both tasks, that is, the determination of finite state machines and the training
of neural networks, are currently most often performed using approximate
(exponential or genetic) algorithms. At the same time, few authors point out the fact
that, firstly these algorithms give an error of up to 15 %, and secondly the operating
time is quite long and requires large energy costs. The article has proven that control
finite state machines and neural networks are equivalent based on their structure,
which can be represented as a directed edge graph. Such equivalence makes it
possible to use methods of normalizing arbitrary graphs to determine finite automata
and synthesize neural networks. Methods of graph normalizing are extremely new,
they are based on a fundamentally new approach of the extension of graph theory and
will allow performing these operations using algorithms that have linear complexity
or can significantly reduce the number of options when using brute force.

Keywords: finite machine, determination, neural network, directed graph, normal
algorithm

Conflicts of interest
The author declares that there
is no conflict of interest.

For citation
Malinina NL. The synthesis of structural diagrams of automatic devices on formal neurons. RUDN Journal of Engineering
Research. 2023;24(4):349–364. http://doi.org/10.22363/2312-8143-2023-24-4-349-364

© Malinina N.L., 2023

This work is licensed under a Creative Commons Attribution 4.0 International License
https://creativecommons.org/licenses/by-nc/4.0/legalcode

https://orcid.org/0000-0003-0116-5889

Malinina N.L. RUDN Journal of Engineering Research. 2023;24(4):349–364

350

Синтез структурных схем автоматических устройств
на формальных нейронах

Н.Л. Малинина ✉

Московский авиационный институт (национальный исследовательский университет),
Москва, Российская Федерация
✉ malinina806@gmail.com

История статьи
Поступила в редакцию: 24 апреля 2023 г.
Доработана: 20 августа 2023 г.
Принята к публикации: 22 сентября 2023 г.

 Аннотация. Разработку конечных автоматов и синтез нейросетей
сопровождают огромные вычислительные трудности. Проблемы, с
которыми сталкиваются как создатели управляющих конечных ав-
томатов, так и создатели нейросетей, практически одинаковы. Для
того чтобы управляющий конечный автомат мог быть реализован,
надо сначала создать алгоритм его работы, потом написать про-
грамму, потом эту программу реализовать в «железе» в виде конеч-
ного автомата. Главное — надо создать, и это важно, детерминиро-
ванный конечный автомат. Что касается нейросетей, то, чтобы она
работала, необходимо либо задать с помощью экспертов веса на ее
ребрах, либо ее надо обучить, чтобы получить оптимальные веса на
ребрах. И то, и другое, то есть, детерминизация конечных автома-
тов и обучение нейронных сетей, в настоящее время производится
чаще всего с помощью приближенных (экспоненциальных или ге-
нетических) алгоритмов. При этом часто авторы не указывают на
тот факт, что, во-первых, эти алгоритмы дают ошибку до 15 %, а,
во-вторых, время работы подобных алгоритмов достаточно велико,
и требует больших энергетических затрат. В материале статьи дока-
зывается, что управляющие конечные автоматы и нейросети — эк-
вивалентны, если исходить из их структуры, которую можно пред-
ставить в виде ориентированного реберного графа. Подобная экви-
валентность позволяет применять для детерминизации конечных
автоматов и синтеза нейросетей методы нормализации произволь-
ных графов. Методы нормализации произвольных графов новые,
они основаны на расширении теории графов и позволят применять
алгоритмы линейной сложности или существенно уменьшать число
вариантов при переборе.

Ключевые слова: конечный автомат, детерминизация, нейросеть,
ориентированный граф, нормальный алгоритм

Заявление о конфликте интересов
Автор заявляет об отсутствии
конфликта интересов.

Для цитирования
Малинина Н.Л. Синтез структурных схем автоматических устройств на формальных нейронах // Вестник Российского
университета дружбы народов. Серия: Инженерные исследования. 2023. Т. 24. № 4. С. 349–364. http://doi.org/10.22363/
2312-8143-2023-24-4-349-364

Introduction

A finite state machine (FSM) is an extremely
simplified model of a computer, having a finite
number of states and sacrificing all the features of
computers, such as RAM, read-only memory, input-
output devices and processor cores in exchange for
ease of understanding, ease of reasoning and ease of
software or hardware implementation. It can be said
that FSM is an algorithmic component of a “data-

less” program that models “instinctive” behaviour
that is not adaptable to the sequence of environ-
mental influences. In other words, FSM are techno-
logies designed to facilitate the development of
other algorithms; they serve as a means of achieving
the ultimate goal — the implementation of the
algorithm. A neural network is a computational or
logical circuit built from homogeneous processing
elements, which are simplified functional models of
neurons. The transfer functions of all neurons in a

https://orcid.org/0000-0003-0116-5889

Малинина Н.Л. Вестник РУДН. Серия: Инженерные исследования. 2023. Т. 24. № 4. С. 349–364

 351

neural network are fixed, and the weights are para-
meters of the neural network and can be changed.
Neural networks are trained using genetic or other
exponential algorithms.

Such algorithms take a long time to work, take
up a lot of memory, and, moreover, are not abso-
lutely accurate. Any neural network is a finite state
machine and any finite state machine can be replaced
by a suitable neural network [1]. The equivalence of
the structures of finite state machines and neural
networks makes it possible to solve the problems of
their structural synthesis using the same methods.
The problem of structural synthesis, both of a
DFSM and a neural network, belongs to the area of ܰܲ — hard.

1. Finite State Machines:
the basic concepts and problems

Finite state machine (FSM) is a model of a
computing device with a fixed and finite amount of
memory. They read and process a chain of input
symbols belonging to a finite set. Among the first
researchers in the search of the simplest models of
finite state machines were McCulloch and Walter
Pitts, who proposed a concept similar to a finite
state machine in 1943 [2].

An autonomous FSM, starting from a certain
chart (diagram), can only generate a periodic
sequence of ݔ states. Such sequential execution of a
given cycle of operations is typical for many areas
of modern technology, therefore, the dynamic
systems, which in an acceptable idealization can be
considered as an autonomous FSM, are widely
applied particularly for the implementation of an
automaton approach to programming. The theory of
formal languages [3–7] may be used for their design.
And, finally, and most importantly, autonomous
FSM are used in the synthesis of logic control algo-
rithms [8-12].

The finite state machine transforms the input
character sequences into the state or the output
character sequences. Theoretically the deterministic
state machine (DFSM) can becreated from non-
deterministic state machine (NFSM) according to
reduction of DFSM to NFSM (Kleene's theorem
[13]). Since the number of states (output symbols)
is finite, the question is: what input sequences cause
each of the possible states (or each of the output
symbols) to occur? The answer was given by
Kleene's theorems [13], which established that only

the events of the regular sets can be represented in a
finite state machine. In this case, an algorithm for
constructing any regular sets can be established.

However, in practice, determination is not
always possible, since in the worst case the number
of states in an equivalent DFSM grows expo-
nentially with the increase in the number of states of
the original NFSM. This situation becomes the main
problem when creating algorithms for reducing the
NFSM to the form of a DFSM.

So, the main problem arises: how to make a set
regular? The set becomes regular if it can be
ordered. And there is no efficient way to understand
whether the set is regular or not. Limitations on the
capabilities of computers (Gödel’s theorem [14])
made it necessary to use technologies of genetic
(evolutionary) or other exponential algorithms in
order to create DFSM.

Thus, the finite state machines are classified as
the deterministic (DFSM) and the non-deterministic
(NFSM). The only and main difference between
NFSM (non-regular set) and DFSM (regular set) is
the existence of several transitions in one symbol
from one state. A deterministic finite automaton is
one in which, for any given sequence of input sym-
bols, there is only one state to which the automaton
can go from the current state.

If the class of the dynamical systems can be
extended in order to include infinite memory, then
for the dynamical systems of this wider class (Turing
machines) the answer to the question “what can
they do?” is much simpler — they can implement
any predefined algorithm. The concept of a Turing
machine underlies the definition of the concept of
an algorithm: an algorithm is any process that can
be carried out on a finite state machine supple-
mented with the infinite memory, that is, algo-
rithmically complete machines: on a Turing machine
[15], on a Post machine [16], etc.

According to the above definition, determi-
nistic finite automata are always complete — they
define a transition for each state and for each input
symbol. In addition, to ensure the uniqueness of the
algorithms, the synthesised finite automata must be
deterministic (ordered). When developing programs
that are characterised by complicated control logic,
one can use the automaton approach, which allows
making the program text more regular and compact.

Finite state machines (FSM) can be represented
as block diagrams; it is the traditional technology
for algorithms. The most convenient form of their

Malinina N.L. RUDN Journal of Engineering Research. 2023;24(4):349–364

352

representation for a person is a graphical one — a
state-transition-diagram, and for programming and
formal transformations — a tabular one. State
diagrams provide a graphical way to model how a
system responds to a disturbance, and is a graph. It
specifies how the system can move from one state
(vertex) to another one. A key characteristic of such

event-driven systems is that the behaviour of the
system often depends not only on the last or current
event, but also on the previous events, which is
expressed using a state diagram. So, a state diagram
for a finite state machine is an ordered graph in
which the vertices denote states, and the arcs show
transitions between two states (Figure 1).

a b

Figure 1. The graphical representation of the finite state machines: a — ଵܵ, 	ܵଶ — states.
The arces are labeled by input data; b — ܵ଴, ଵܵ, ܵଶ — states.

The arces are labeled as ݆/݇, where ݆ — input data, ݇ — output data
S o u r c e : made by the author

In terms of graph theory, the problem of cover-

ing all transitions of the automaton is formulated as
the task of graph traversal, that is, passing along a
route containing all the arcs of the graph. There are
two main problems associated with the graph
traversal for the automaton state machine: non-
determinism and too large size of the graph. A non-
deterministic automaton is an automaton in which
the transition function is ambiguous: one pair
corresponds to several arcs in the graph. Since the
choice of one or another of these arcs cannot be
determined by the test action, it is impossible to
guarantee the unambiguous traversal of the state
graph during testing. Although it should be noted
that the ambiguity of the exit function does not
create additional problems. It is only required that
some predicate from the state, input, and output
symbols be satisfied. [12]. The evaluation of the
DFSM generation algorithm is disappointing. The
process of generating a DFSM is a ܰܲ — hard
problem. But on the other hand, after the DFSM is
generated, it processes any symbol in constant time
and a string of length ܰ in ܱ(ܰ) time.

An NFSM in a state-transition diagram can
have two or more arcs as outputs from the same
state labeled with the same input symbol. Such a
NFSM does not have an adequate tabular
(functional) representation, but can be transformed
into a conventional DFSM. The lack of an internal

memory limits its ability to transform chains (simu-
lation ability). Although in the general case such
restrictions allow to solve many problems.

The are also controlling FSM. Their main diffe-
rence from other types of FSMs (transformers and
recognizers) is that they contain not separate input
actions, but Boolean formulas from them [18–21]
in the transition marks. However, the construction
of control FSM is even more difficult, and in some
cases, it is not possible to build such an automata
at all.

The ordering of control FSMs using the
exhaustive enumeration, even with small sizes of
FSM, is extremely time-consuming, and their
heuristic construction does not always give accept-
able results, although sometimes this is the only
way. The simulated annealing method does not
provide a significant improvement [20]; ant algo-
rithms are more suitable for problems where solution
is to find paths in a graph. Therefore the most of the
work in the field of software search engineering is
based on the use of evolutionary algorithms [21].
One of the most important adventages of genetic
(evolutionary) algorithms is the absence of the need
for information about the behaviour of the function
and the negligible impact of possible gaps on
optimisation processes.

Genetic algorithms are also used to increase the
efficiency of neural networks training. The explo-

S1 S2

1/1 1/0 0/0

0/1

S0
0/01/0

Малинина Н.Л. Вестник РУДН. Серия: Инженерные исследования. 2023. Т. 24. № 4. С. 349–364

 353

sive growth of interest in artificial intelligence (AI)
is mainly due to the growth of computing capa-
bilities with its help, and not to the emergence of
new algorithms.

The task of structural synthesis is to construct
an automaton diagram of minimal complexity. It
should be noted that the problem itself is ܰܲ	—	hard.
Gödel’s theorems [14] are directly related to the
limitation of the capabilities of computers, which
also were recognized by Turing, Church, Nagel and
others. Turing showed that the same restrictions
apply to humans [15]. In this regard, neural network
technologies began to be used to create FSM, that
is, researchers began to create FSM, using neural
networks or genetic (evolutionary) algorithms.

2. Neural network. The basic concepts.
Problems

Recently, more and more people began to
discuss neural networks, and great attention is being
paid to the creation of artificial intelligence based
on artificial neural networks. A lot of attention is
being paid to this scientific area. Let us briefly
review the principles that are embedded in auto-
matic neural networks.

A biological neuron has processes of nerve
fibers of two types: dendrites, through which
impulses are received, and an axon (it is the only
one), along which a neuron can transmit an impulse.
The axon contacts the dendrites of other neurons
through special formations — synapses, which
affect the strength of the impulse. It can be assumed
that during the passage of the synapse, the strength
of the impulse changes a certain number of times,
which is called the weight of the synapse. Impulses
received by the neuron simultaneously through
several dendrites are summed up. If the total
impulse exceeds a certain threshold, the neuron is
excited, generates its own impulse and transmits it
further along the axon. It is important to note that

the weights of synapses can change over time,
which means that the behaviour of the correspond-
ing neuron also changes.

Neural networks are artificial, multilayer, highly
parallel logical structures made up of formal neurons.
The foundation of the theory of neural networks and
neurocomputers was laid by the work of American
neurophysiologists [2]. The book [22] had a signi-
ficant influence on the further development of the
neural network theory. The theory of neural
networks continues to develop quite intensively at
the beginning of the 21st century. Potential areas of
application for artificial neural networks are those
where human intelligence is inefficient and tradi-
tional computations are time-consuming or physi-
cally inadequate. The relevance of the use of neural
networks increases many times when it becomes
necessary to solve poorly formalized problems. The
main areas of application of neural networks:
automation of the classification process, forecast-
ing, recognition process, decision-making process;
management, coding and decoding of information;
approximation of dependencies, etc. With the help
of neural networks, an important task in the field of
telecommunications is successfully solved — the
design and optimisation of communication net-
works, as well as the tasks of designing new tele-
communication networks.

Thus, the creation of automatic systems based
on a neural network consists of choosing the net-
work architecture and the selecting of the network
weights. The selection of weights is the process of
“training” the network. Neural networks turn out to
be something between a central processing unit and
a human brain. At this moment the selection of
weights is carried out using either genetic algo-
rithms or expert assessments. So, a neural network is a
computational or logical chart built from homo-
geneous processor elements, which are the simpli-
fied functional models of neurons (Figure 2).

a b

Figure 2. The graphical representations of the neural networks:
a — Traditional neural network; b — Dynamic neural network

S o u r c e : made by the author

Malinina N.L. RUDN Journal of Engineering Research. 2023;24(4):349–364

354

As a rule, the transfer functions of all neurons
in a neural network are fixed, and the weights are
the parameters of the neural network and can
change. Some inputs of neurons are labeled as
external inputs of the neural network, and some
outputs are labeled as external outputs.

The work of the neural network is to transform
the input signal into an output signal, and this
transformation is determined by the weights of the
neural network. A formal neuron in neural networks
is a processor element, which is a data converter
that receives input data and transforms it in
accordance with a given function and parameters. A
synapse in neural networks is a connection between
formal neurons. The output signal from a neuron
enters the synapse, which transmits it to another
neuron. Complicated synapses can have memory.
As a rule, there are quite a lot of synapses in a
neural network. An adder in neural networks is a
block that sums up the signals coming from neurons
through synapses. In a general case, an adder can
transform signals and transmit them to neurons or
adders also through synapses.

3. Graphical representation of the main
elements of a finite machine
on formal neurons

Let the functions of the finite automaton be
given. It is necessary to build its block diagram on
formal neurons. Thus, it is necessary to show the
connection between the structure of an ordinary
network model and the structure of an automaton
based on formal neurons (AFN). To solve this
problem, an ordinary normal network models can be
used [23], since they contain the vertices of only
well-defined types. Structural-optimal network
models are best suited since they do not have the
simplest vertices in which no logical functions are
implemented. It is known that the canonical edge
graph has four types of vertices [23]. These four
types of vertices are similar to the main types of
structural formations of the nervous system of
living beings, which includes:

• Receptors — nerve endings that transmit
external excitations to the nervous system (cells that
have only outputs);

• Neurons — are nerve cells with ݉௡ ≥ 1
inputs (dendrites) and only one output (axon) (a
formal neuron has the same structure [23];

• Branching of axons that transmit nerve
excitations to other neurons and tissues, that is, the

elements of the nervous system that have one input
and ݉௔ ≥ 1 outputs;

• Effectors (endings) that transmit nerve exci-
tations to the working organs, that is, cells that have
only inputs from the nervous system.

The obvious analogy between the structure of a
canonical edge graph and that of a neural network,
as well as between the structure of one of the types
of vertices of a canonical edge graph and that of a
formal neuron, leads to the reasonable assumption
that canonical edge graphs can be used in order to:

• Formalise the synthesis of the structure of
automatic devices and systems built on formal neu-
rons;

• Formalise the synthesis of mathematical
models that would enable studying individual
functions of the nervous system of a living
organism, implemented in accordance with a given
logic and a set of external excitations.

The stated assumption is quite consistent with
the theorem given in [24] that any finite automaton
can be replaced by a suitable network of formal
neurons.

The question arises: is it possible, using the
principle of normalizing, to transform the diagram
of a given finite machine into a network consisting
of formal neurons? Using the example of normal
algorithm synthesis [23], it was shown that operators
can be represented as arcs of a canonical edge
graph, connecting vertices of certain four types.
Thus, it turns out that there is a similarity between
the structure of the nervous system and the structure
of normal algorithms. This similarity allows us to
suggest that the basis of nervous activity, including
higher, apparently, is a process similar to a normal
algorithm, although, most likely, everything happens
the other way around: normal algorithms intuitively
reflect the internal activity of the nervous system.

Another consideration leads to these assump-
tions. Any change in the canonical system of binary
relations by introducing additional links (pairs ൫ݍ௜, ௝൯ of elements) violates the canonicity of theݍ
system of binary relations and requires its normali-
sation, which is associated with an increase in the
order of the matrix and a change in the structure of
the graph and the corresponding normal algorithm.
Probably something similar occurs in the process of
higher nervous activity. A new external stimulus or
new needs, which the body's response to these
stimuli must meet, is equivalent to establishing new
connections in the brain. This violates the “normal

Малинина Н.Л. Вестник РУДН. Серия: Инженерные исследования. 2023. Т. 24. № 4. С. 349–364

 355

algorithm” existing in the brain and requires its new
normalisation, which is because new brain cells are
involved. All this is similar to the ∆݊ —
transformation of the adjacency matrix until the
“algorithm” becomes normal again. One more
suggestion should be added. The structure of a
normalized matrix always depends on what new
links need to be normalised. The emergence of the
required new connections will determine the nature
and the result of the work of the new algorithm of
the nervous system model.

4. The formulation of the problem

From all that has been said above, it is clear
that any neural network is a finite state machine.
Likewise, any state machine can be replaced with a
suitable neural network. Therefore, the problems of
structural synthesis, both for the neural networks
and the finite machine, can be solved by the same
methods.

Consequently, one can try to build a model of
the nervous system that organises itself under the
influence of external stimuli and find expedient
external stimuli and methods of self-organisation.
The above assumptions may seem very bold, but
automatic devices based on formal neurons have a
very high reliability [24], so the solution of the

problem of their synthesis is certainly very impor-
tant and relevant.

Let us consider an example of synthesising a
block diagram of a finite machine on formal neurons.
In terms of network models, a formal neuron,
together with its output (axon), can be represented
as an arc of a directed graph, the initial vertex of
which must be of the second type, and the final
vertex must be of the third type. Let us give conven-
tional names to the types of vertices of the canoni-
cal edge graph (Figure 3, a) by analogy with neural
networks:

• Vertex of the first type is a receptor.
• Vertex of the second type is a neuron.
• Vertex of the third kind is an axon.
• Vertex of the fourth type is an effector.
Note that these vertices are considered together

with their inputs and outputs. Each of these vertices
can be connected by an arc with the other vertices
(Figure 3).

Possible connections of neural network vertices
are shown in the matrix in Figure 4, a. The same
figure shows the second matrix (Figure 4, b), where
the units are replaced by conventional signs that
determine the nature of the connections of the arc
connecting the nodes of the neural network with
other arcs.

a b c d
Figure 3. Types of the neural network vertices:

a — Receptor: ߩሺିሻሺрሻ = ሺାሻሺрሻߩ ;0 ≥ 1; b — Neuron: ߩሺିሻሺнሻ > ሺାሻሺнሻߩ ;1 = 1;
c — Axon: ߩሺିሻሺаሻ = ሺାሻሺаሻߩ ;1 ≥ 1; d — Effector: ߩሺିሻሺэሻ ≥ ሺାሻሺэሻߩ ;1 = 0

S o u r c e : made by the author

a b
Figure 4. Possible neural network connections:

a — Matrix of the connections of neural network vertices;
b — Matrix with conventional signs that determine the nature of the connections of the arcs,

and the table with conventional signs
S o u r c e : made by the author

1 1 1
1 1 1
1 1 1

0

0000
0
0

0 1≥ 1 > 1
−λ j

−μ j

Malinina N.L. RUDN Journal of Engineering Research. 2023;24(4):349–364

356

Let us introduce the following characteristics of
arc connections in a neural network:

 ௝ ୀ ௜ — is the specific “load” of the ݆-th arcߣ •
coming out of some vertex, from each of the arcs
entering the initial vertex of the ݆-th arc;

 ௜ ୀ ௝ — is the “participation share” of the ݅-th arc in the "load" of all arcs emerging from theߤ •
vertex, which is the end of the ݅-th arc.

The calculation of ߣ௝ ୀ ௜ and ߤ௜ ୀ ௝ is performed
as follows. For a normal adjacency matrix, the ma-

trix ฮ߱௜௝ฮଵ௡ of the “relative weights” of the ele-

ments of the adjacency matrix is calculated.
For each ݎ௜௝ = 1 the corresponding value of ߱௜௝

will be:

߱௜௝ = ݉݅݊ ቎ 1∑ ௜௝௡௜ୀଵݎ ௝ൗ ; 1∑ ௜௝௡௝ୀଵݎ ௜ൗ ቏.

Then: ߣ௝ୀ௜ = ෍ ߱௜௝௡
௜ୀଵ ௝ൗ ; ௜ୀ௝ߤ = ෍ ߱௜௝௡

௝ୀଵ ௜ൗ .
For example, let the matrix ฮݎ௜௝ฮଵ௡ be given

(see Figure 5, a). For this matrix let us calculate the

matrix ฮ߱௜௝ฮଵ௡ and the values ߣ௝ୀ௜ and ߤ௜ୀ௝

(Figure 5b). Values ߣ௝ୀ௜; ߤ௜ୀ௝, as well as ∑ ௜௝௡௜ୀଵݎ̅ ௝ൗ

and ∑ ௜௝௡௝ୀଵݎ̅ ௜ൗ are calculated for each row of the

matrix ฮݎ௜௝ฮଵ଼, completely determine the types of the

initial and final vertices of any arc of the edge graph
corresponding to one or another row of the matrix.
Since an axon can have one or more outputs, the
total number of options for arcs connecting the
vertices of the neural network is 16. All these
options are presented in a matrix and graphical form
in Figure 6 and in Tables 1 and 2.

a b

Figure 5. Matrixes rij1n ฮݎ௜௝ฮଵ௡ and ωij1n ฮ߱௜௝ฮଵ௡:

a — rij1n ฮݎ௜௝ฮଵ௡ — Matrix of connections of the neural network;

b — ωij1n ฮ߱௜௝ฮଵ௡ — Matrix of the relative weights of the neural network elements

S o u r c e : made by the author

Table 1
Boolean vertexes

Boolean vertex type AND�AND AND�OR AND�AND/OR OR�AND AND/OR�AND

Sub�item number I II III IV V

Table 2
Conventional symbols λ = 0 → μ = 0 → λ ≤ 1 → μ < 1 → λ = 1 → μ = 1 →

rij
1

8
=

rij
i

j



r
i

j


a

a
b

b

c

c

d

d

e

e

f

f

g

g

h

h

1 1
1

111
1
1

1
1
1 1

1
1
1
1
3
1
2

2 1 1 2 1 1 1 2

ω ij
1

8
=

λi j=

μi j=a
a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
3

1
3

1
3

1
2

1
21 1 11

3
1
3

1
3

1
2

1
2

1
2

1
2

1
2

1
2

1

1

Малинина Н.Л. Вестник РУДН. Серия: Инженерные исследования. 2023. Т. 24. № 4. С. 349–364

 357

Figure 6. Sub�options of arcs connecting neural network vertices

S o u r c e : made by the author.

The same options with the corresponding values ߣ௝ୀ௜; ߤ௜ୀ௝; ∑ ∑	;௜௝ݎ ௝ୀଵ/௜௜ୀଵ/௝	௜௝ݎ are presented in

Table 3. Table 3 shows the possible types of
Boolean vertices, the designation of which is in
Tables 1 and 2 and in Figure 7. Taking into account
the Boolean types of vertices, the total number of
sub-options for neural network arcs will be 110 (see
Table 3). The number of such sub-options can be
much more if, in addition to Boolean vertices,
certain types of vertices with restrictions, vertices
with negation, or vertices whose logical functions

are determined by Venn diagrams proposed for a
formal neuron [24] will be introduced. The proper-
ties of a formal neuron are described in the relevant
literature [24; 25], etc.

So, the main elements of neural network models
can be represented using the elements (vertices and
arcs) of the canonical edge graph.

Next it is necessary to consider an example of
constructing a structural diagram of an automaton
based on formal neurons (AFN) according to the
given functions of this automaton.

p н
c

e

g

f

d

b

λ μj i= ≤0 1; ;

a
a

b

b

c

c

d

d

e

e

f

f

g

g

1

1

1

e ij
i

j

 > 1

λ μj i= =0 1; ;

a
a

b

b

c

c

d

d

e

e

f

f

g

g

11 1

p

b

d

c
A

g

f
g

p

b

d

c
A

f

e ij
i

j

 = 1

2

3

λ μj i= =0 0; ;

a
a

b

b

c

c

d

d

e

e

f

f

g

g

p
b

d

c
e

g

э4

λ μj i= =1 1; ;

a
a

b

b

c

c

d

d

e

e

f

f

g

g

1

1

1
1

1

н5 a b

d

c
e

f

g

e ij
i

j

 = 1

н

b

λ μj i= =1 1; ;

6 н A
a c

d

fe

g
e ij

i
j

 > 1; e ji
j

i

 > 1

a
a

b

b

c

c

d

d

e

e

f

f

g

g

1

1
1

1
1 1

н A
a c

d

f

e ij
i

j

 > 1; e ji
j

i

 = 1

7

λ μj i= =1 0; ;

a
a

b

b

c

c

d

d

e

e

f

f

g

g

1
1

18 нa
b

d

c э

9 нA
a

b
c

d

e
f

g

g

λ j < 1

λ j = 1 λ μj i≤ <1 1; ;

a
a

b

b

c

c

d

d

e

e

f

f

g

g

1

11 1

1

1
нA

a c
e

f
10

λ μj i≤ =1 1; ;

15 A Э

e

g

c
b

d
λ j < 1

a

A Э

e

g

c

λ j = 1

a16

a
a

b

b

c

c

d

d

e

e

f

f

g

g

a
b

c

d

f
12

λ j < 1 e ij
i

j

 = 1

A A

λ μj i≤ =1 1; ;

a
b

c

d

e
f

g

11

λ j < 1
e ij

i
j

 > 1

A A

e ij
i

j

 > 1

a c
e

f

g

13
λ j < 1

A A

a c f
14

λ j < 1

A A

e ij
i

j

 = 1

a
a

b

b

c

c

d

d

e

e

f

f

g

g

11 1

11 1

Malinina N.L. RUDN Journal of Engineering Research. 2023;24(4):349–364

358

Table 3
Characteristics of arcs connections

Option number

Properties of the connections Initial vertex Final vertex

Number of options ߣ௝ୀ௜ ߤ௜ୀ௝ ෍݁௜௝௜/௝ ෍݁௜௝௝/௜ View Boolean type View Boolean type

1 0 0 < ௜ߤ < 1 (0) (1)

Р I,II,III

Н I,IV,V 9

2 0 1 (0) >1 А I,II,III 9

3 0 1 (0) 1 А I 3

4 0 0 (0) (0) Э I,IV,V 9

5 1 0 < ௜ߤ < 1 >1 (1)

Н I,IV,V

Н I,IV,V 9

6 1 1 >1 >1 А I,II,III 9

7 1 1 >1 1 А I 3

8 1 0 >1 (0) Э I,IV,V 9

9 0 < ௜ߣ < 1 0 < ௜ߤ < 1 (1) (1)

А

I,II,III Н I,IV,V 9

10 1 0 < ௜ߤ < 1 1 (1) I Н I,IV,V 3

11 0 < ௜ߣ < 1 1 (1) >1 I,II,III А I,II,III 9

12 0 < ௜ߣ < 1 1 (1) 1 I,II,III А I 3

13 1 1 1 >1 I А I,II,III 3

14 1 1 1 1 I А I 1

15 0 < ௜ߣ < 1 0 (1) (0) I,II,III Э I,IV,V 2

16 1 0 1 (0) I Э I,IV,V 3

5. An example of constructing a block diagram
of a finite automaton on formal neurons

As an example, let’s consider the simplest
cases when a neuron implements only such logical
functions as: “AND” or “OR” (Figure 7, a), which
are Boolean. They determine the ߠ value, the
threshold of the neuron. Let the finite machine be
given by a diagram (Figure 7, b) or Table 4. In
order to describe the states of the automaton, one
can apply the representation of the states of the
automaton using Boolean functions, depending on
the reasons that generate these states. You can then
replace each of the Boolean expressions containing
the same operations with a single character.

Let us compile a Table 5, in which we assign
the causes to each new state or output signal which
was generated by them in the form of strict
disjunctions of the intersections of input signals and
current states. For example, in order for the
automaton to transfer to the ܣ state, it is necessary

that the input of the machine in state ܤ be given a
signal ܽ, or that the input of the machine in state ܥ
be given signal ܾ. Next let us compose the initial
set, which includes all states, all input signals, as
well as all necessary combinations of current states
and input signals, a set of states, a set of input
signals, input and output blocks of the automaton.

a b

Figure 7.
a — The simplest cases when a neuron implements only

such logical functions as: “AND” or “OR”;
b — Graph implementation of the finite machine

=
ji

ijrB

1=B A

B

C

α/β

β/α

β/α

α/β

β/γ

α/γ

Neuron «OR»

Малинина Н.Л. Вестник РУДН. Серия: Инженерные исследования. 2023. Т. 24. № 4. С. 349–364

 359

Table 4
Diagram of the finite machine

Initial (current) state A B C

Initial symbol ܽ ܾ ܽ ܾ ܽ ܾ

Next state ܣ ܥ ܥ ܣ ܤ ܤ

Output symbol ߛ ߙ ߚ ߛ ߙ ߚ

Table 5
States and symbols of the finite machine

and their previous combinations

State and symbol
of the automata

Previous combination
of states and symbols ܽ — ܾ — ܥ⨁ܽ⋂ܤ ߛ ܽ⋂ܥ⨁ܽ⋂ܣ ߚ ܾ⋂ܤ⨁ܾ⋂ܣ ߙ ܽ⋂ܥ⨁ܾ⋂ܤ ܥ ܾ⋂ܣ⨁ܽ⋂ܣ ܤ ܾ⋂ܥ⨁ܽ⋂ܤ ܣ⋂ܾ

Table 6

Designation of both alphabetic and numeric
characters and their combinations

Elements of the initial set
Previous combinations

of elements
of initial states

Input device ܺ

The set of the initial states ଵܺ ܺ

The set of the input states ܺଶ ܺ

Input symbols
ܽ ܺଶ ܾ ܺଶ

The states of the automata

ଵܺ ܣ ⊕ ଵܺ ܤ ݁⨁݀ ⊕ ଵܺ ܥ ݃⨁݂ ⊕ ℎ⨁݇

Combinations of current
(initial) or next states
and input symbols

 ܽ⋂ܥ ݇ ܾ⋂ܤ ℎ ܾ⋂ܣ ݃ ܽ⋂ܣ ݂ ܾ⋂ܥ ݁ ܽ⋂ܤ ݀

Input symbols

⊕݃ ߙ ℎ ߚ ݂ ⊕ ݁⨁ܽ ߛ ݇

The output of the devices ܻ ߛ⨁ߚ⨁ߙ

Each of the elements of this set will be assigned
an alphabetic or numeric symbol (Table 6). For
each element of the second column of Table 6 in the
third column we shall indicate those elements that
precede the elements of the second column or gen-
erate them.

The diagram of the machine under consideration
includes six combinations of current states and
input signals. Let us designate these combinations
with letters: ݀, ݁, ݂, ݃, ℎ, ݇. Now we can
consider the current state of ܤ and the input signal
as causes that give rise to ݀ element, and so on. In
turn, the state ܤ is generated either by choosing this
state from the set ଵܺ of all initial states, or by the ݂
element, or by the ݃ element. Table 6 makes it
possible create a matrix of binary relations defined
on the original set or an adjacency matrix of
elements of the original set (Figure 8). The same
figure shows tables of logical functions of neurons
and axons.

Obviously, each neuron will be formed from a
column that has more than one ݈௜௝ = 1 element. In

turn, each row of the ฮ݈௜௝ฮଵ௡ matrix, which has more

than one ݈௜௝ = 1 element, will allow one axon to be
formed. Axons will also be formed from those rows
in which there will be one ݈௜௝ = 1 element, if this
element is not included in the column from which
the neuron will be formed.

The tables of neurons and axons also indicate
the logical functions they implement. The functions
of neurons are determined directly from Table 6. The
outputs of axons ܺ, 	 ଵܺ and ܺଶ are determined by the
fact that at the same time the machine can be in only
one of the three states, and only one of the two
signals can be applied to its input. In other cases,
axons (in the machine under consideration) transmit
the same signal generated by the corresponding
neuron through all outputs. For example, the axon
defined by the ݅ = ܽ string simultaneously transmits
a signal ܽ to ݀, ݂ and ݇ elements.

The matrix ฮ݈௜௝ฮଵ௡ is normalized. In this case, the

cyclomatic number of the graph remains unchanged.

In the ฮ݈௜௝ฮଵ௡ matrix, the ݈௜௝ = 1 elements that are

subjected to the ∆݊ — transformation are circled. Let
us denote these elements as መ݈௜௝. The condition of
conservation of the cyclomatic number allows us to
immediately calculate all the main characteristics of
canonical graphs (Figure 8):

Malinina N.L. RUDN Journal of Engineering Research. 2023;24(4):349–364

360

Figure 8. An adjacency matrix of the elements of the original ሺ݊଴ = 18ሻ set.
Logical functions of the neurons and the axons

S o u r c e : made by the author

• The order of the matrix:݊௞ = ݊଴ + ∆݊ = 18 + 27 = 45.
• The cyclomatic number:

௞ሻܪሺߥ = ሻܩሺߥ +෍෍݁௜௝ − ݊଴ + 1 =௝௜= 34 − 18 + 1 = 17.
• The number of arcs of the canonical edge

graph: ߥሺ തܳ௞ሻ = ݊௞ = 45.
• The number of the vertexes of the canonical

edge graph:ߥሺ ௞ܸሻ = ݊௞ − ௞ሻܪሺߥ + 1 = 45 − 17 + 1 = 29.
• The number of the arcs of the canonical edge

graph:

ሺΓ௞ሻߥ =෍෍݁௜௝ +෍෍݁̂௜௝௝௜ = 34 + 27 =௝௜ = 61.

• The number of the vertexes of the canonical
vertex graph: ߥሺܳ௞ሻ = ݊௞ = 45.

The normal matrix ฮ̅ݎ௜௝ฮଵ௡ of the finite machine

neural network is shown in Figure 9. Table 7 sum-
marizes the characteristics of the arcs of the
canonical edge graph with their initial and final
vertices as elements of a neural network of a finite
machine. The construction of a block diagram of a

finite automaton by the ฮ̅ݎ௜௝ฮଵ௡ matrix (Figure 9) and

Table 7 is easy. Scheme in the form of an edge
graph is shown in Figure 10. It is easy to verify that
this circuit exactly performs the functions of a given
finite state machine.

Let us set the automaton represented by the di-
agram in Figure 7, b, initial state ܣ and input signal
program ܾܾܾܽܽܽ…

Then the alternation of new states and output
signals will be as follows:

• Initial and current state of ܤܣܥܥܤܣ…;
• ܾܾܾܽܽܽ... inputs;
• Following states ܤܣܥܥܤ…;
• Output signals ߚߛߚߙߚ …

α β γ

α
β
γ


j

ije 
j

ijê

{ } { }baCBA ⊕⊕⊕ 
{ }CBA ⊕⊕

ba ⊕
a
b
A
B
C
d
e
f
g
h
k

e
d

X
⊕

⊕
1

g
f

X
⊕

⊕
1

k
h

X
⊕

⊕
1

a
b


b
c


a
A


b
A


b
B


a
C


h
g

⊕
k

f
⊕

e
d

⊕
γ

β
α

⊕
⊕

Малинина Н.Л. Вестник РУДН. Серия: Инженерные исследования. 2023. Т. 24. № 4. С. 349–364

 361

Figure 9. The normal matrix ฮ̅ݎ௜௝ฮଵ௡ of the finite machine

S o u r c e : made by the author

Figure 10. The graph of a finite automaton
S o u r c e : made by the author

ϕ ωψ

β

δ

δ
ε

ε κ

κ

ϑ

ϑ

η

η

λ μ

λ

ν ξ π ρ τ σ γ

ν
ξ
π
ρ
τ
σ

μ

ϕ

ω
ψ

γ
β

δ
ε
κ

ϑ
η

λ

ν
ξ
π
ρ
τ
σ

μ

ϕ

ω
ψ

γ

χ

φ

ς

ς

ς

βφ

φ

χ

χ

29
y

1 x
2

3

δ

ε

ς

A

B

C

11

10

12

2115 d

13 19f

l

m

ϕ

8

a

4

r

j

17 k 23

qs

14 20
g

16 h 22

18 24e

b

9

σ

ρ

ξ
ν

τ

φ

n

q

β

γ

α

r

ω

2

5

6

7

26

27

25

28

x a b1  ⊕()

Types of the neuron network vertices

Input
Output

OR

AND-
AND

AND-
OR

AND/OR

I I−

I

II I−

III I−III

I

II

II

I II−

III

I III−AND

OR

AND/
OR

AND/
OR/
AND

OR/
AND

AND

AND-
AND/OR

Malinina N.L. RUDN Journal of Engineering Research. 2023;24(4):349–364

362

Table 7
The characteristics of the arcs of the canonical edge graph with their initial

and final vertices as elements of a neural network of a finite machine

Elements of the finite machine
Initial vertex

Purpose of the finite state
machine element

Final vertex

Type Input function Type
Output

function

Input device.
Sensors of initial states

and input symbols

I START The task of start and the work of the program III ଵܺ⋂ܺଶ
III ଵܺ⋂ܺଶ

Setting initial states II ܣ⊕ ܥ⨁ܤ
Setting input symbol III ܽ ⊕ ܾ

Signal transmission operations II ଵܺ ⊕ܣ ⟹ ܥ⨁ܤ

Passing command to state ܣ IV ܣ

Passing command to state ܤ IV ܤ
Passing command to state ܥ IV ܥ

Neurons — Axons

II
ܺଶ ⟹ ܽ ⊕ ܾ

Passing input symbol ܽ I ⋃ܽ
Passing input symbol ܾ I ⋃ܾ

IV

⊕ܣ ݀⨁݁ State implementation ܣ I ⋃ܤ ܣ ⊕ ݂⨁݃ State implementation ܤ I ⋃ܥܤ ⊕ ݄⨁݇ State implementation ܥ⋃ I ܥ

Signal transmission
operations

I ܽ Passing input symbol ܽ I

݂݀
ܭ

I ܾ Passing input symbol ܾ I

݄݃
݁

I ܣ Passing command: current state	ܣ I
݂݀

I ܤ Passing command: current state ܤ I
ܭ݃

I ܥ Passing command: current state	ܥ I
݄݁

Neurons — Axons I

ܽ⋃ܣ The formation of ݂ signal

I

݃ The formation of ܾ⋃ܣ݂⋃ signal ݀ The formation of ܽ⋃ܤ ݃⋃ signal ܾ⋃ܤ ݀⋃ The formation of ݄ signal ܽ⋃ܥ݄⋃ The formation of ܭ signal ݁ The formation of ܾ⋃ܥܭ⋃ signal ⋃݂݁

Signal transmission operations

I ݂ Passing signal ݂

IV

 ߚ ߚ

I ݃ Passing signal ݃
 ݀ ܤ

I ݀ Passing signal ݀
 ߛ ܣ

I ݄ Passing signal ݄
 ߙ ܥ

I ܭ Passing signal ܭ
ߚܥ

I ݁ Passing signal ݁
ߛܣ

Neurons — Axons IV

݃ ⊕ ݄ The formation of the output symbol ߙ

IV ߙ ⊕ ݂ ߛ⨁ߚ ⊕ ݀ ߚ The formation of the output symbol ܭ ⊕ ݁ The formation of the output symbol ߛ

Output device IV ߙ ⊕ Passing of the output ߛ⨁ߚ symbol I ܻ

Малинина Н.Л. Вестник РУДН. Серия: Инженерные исследования. 2023. Т. 24. № 4. С. 349–364

 363

Let us check the operation of the neural
network according to the given program.

1. The input device ܺ sets the program of work
for the sensor of initial states ଵܺ and the sensor of
input ܺଶ signals.

2. The sensor of initial states ଵܺ generates a
command to transfer the automaton to ܣ state.

3. The input signal of sensor ܺଶ generates input
signals according to the program specified by the
input ܺ device.

4. The command to switch the automaton to
state ܣ is transmitted along the arc 3→5 to neuron
5, which implements the specified state on the arc ܣ	5) → 10) at the ݐ଴ moment. The signal about this,
equal to 1, is transmitted at the moment ݐ଴ + 1 to
vertices 13 and 14.

5. From vertex 4, the signal |ܽ| = 1 is trans-
mitted along arcs 4→8 and 8→13, 8→15 and
8→17 to vertices 13, 15 and 17.

6. Vertex 13 is the initial vertex of the neuron
"AND", the threshold of which is equal to: ߠ = 2.
Since two signals come to this vertex, neuron 13
generates a signal: ݂ = which is transmitted ,ܽ⋂ܣ
at the moment ݐ଴ + 2 to vertices 6 and 26.

7. When the signal |݂| = 1 enters vertex 6, this
neuron implements state ܤ, and at time ݐ଴ + 3 the
axon sends a single signal about this to vertices 15
and 16. At the same time, neuron 26 generates a ߚ
signal, which at time: ݐ଴ + 3 is transmitted to the
output ܻ device.

8. Since the input signal ܽ is implemented at
time: ݐ଴ + 2, then the element ܺଶ at time: ݐ଴ + 2
generates signal ܾ, which is transmitted to vertexes
14, 16 and 18.

9. At vertex 16, the sum of the input signals is
equal to the threshold, so neuron 16 generates an ℎ
signal, which at time: ݐ଴ + 3 is transmitted from
vertex 22 to vertices 7 and 25.

10. Neuron 7 implements ܥstate and neuron 25
generates ߙ signal.

Further operation of the machine is evident and
does not require explanation. It is clear that the
obtained scheme can be completely replaced by a
real construction, including certain physical models
of formal neurons. The above example shows the
synthesis of a very simple machine, but the same
general principles can be applied to synthesise
other, more complicated machine.

Conclusion

1. The structure of the basic elements of AFN
allows their convenient graphical representation in

the form of basic elements of canonical edge graphs.
At the same time, the representation of the AFN ele-
ments, in which logical functions are implemented, is
provided by means of those elements of the cano-
nical edge graph, in which logical functions are also
implemented.

2. The similarity of the structures of canonical
edge graphs and automation on formal neurons (AFN)
allows building block diagrams of AFN automa-
tically, provided that the sets of the states, the input
and output signals of the original finite machine are
specified in the form of a finite vertex graph.

3. The implementation of ∆݊	— transformation
and matrix normalization make it possible to arrange
the DFSM using a linear algorithm, and sometimes
polynomial in complexity.

4. The main advantage of this approach is that
in its implementation the representation of
complicated logical functions does not require the
use of polynomial algorithms for programming.

5. Abandoning polynomial algorithms for the
representation of logical functions will eventually
lead to a decrease in energy costs and an increase in
accuracy in their calculation. In terms of chip and
printed circuit board technologies, this can lead to a
reduction in chip size and thickness.

References

1. Minsky M. Computation. Finite and infinite
machines. Prentice Hall International, 1972.

2. McCallouch WS, Pitts W. A Logical Calculous
of the Ideas Immanent in Nervous Activity. Bulletin of
Mathematical Biophysics. 1943;5:115–133. https://doi.
org/10.1007/BF02478259

3. Barkalov A, Titarenko L. Logical synthesis for
FSM-based Control Units. Lecture Notes in Electrical
Engineering. Springer Sience& Business Media; 2009.
http://doi.org/10.1007/978-3-642-04309-3

4. Bordihn H, Holzer M, Kutrib M. Determination
of finite automata accepting subregular languages.
Giessen: Elsevier, 2009.

5. Lamberti G, Scandale M. Incremental determine-
zation and minimization of finite acyclic automata. IEEE
International Conference on Systems, Man, and Cyber-
netics. Manchester, UK, 2013;2250–2257. https://doi.
org/10.1109/SMC.2013.385

6. Gandhi A, Ke NR, Khoussainov B. Descriptional
complexity of determinization and complementation for
finite automata. Proceedings of the Seventeenth Comput-
ing: The Australasian Theory Symposium. Australia, 2011;
119:95–104.

7. Buchsbaum AL, Giancarlo R, Westbrook JR. On
the determination of weighted finite automata. Sosiety for

Malinina N.L. RUDN Journal of Engineering Research. 2023;24(4):349–364

364

Industrial and Applied Mathematics. 2000;30(5):1502–
1531.

8. Shalyto A. Logic Control and “Reactive” systems:
Algoritmization and programming. Automation and
Remote Control. 2001;1:1–29. (In Russ.)

9. Vinogradova M, Tkachev S, Kandaurova I. The
determining finite automata process. Mathematics and
Mathematical Modeling. 2017;4:1–17. (In Russ.) https://
doi.org/10.24108/mathm.0417.0000067

10. Gorachkin B. The development of the theory of
finite automataand its applications. Engineering bulletin.
2015;4:538–542. (In Russ.) EDN: TVWZNT

11. Verevkin A, Kiryushin O. The Synthesis of
Complex Logical Controllers with Variables of Boolean
and Fuzzy Logics. Proceedings of the 7th Scientific
Conference on Information Technologies for Intelligent
Decision Making Support (ITIDS 2019). Ufa: Atlantis
Press; 2019. https://doi.org/10.2991/itids-19.2019.9

12. Burdonov IB, Kosachev AS, Kulyamin VV. The
use of finite automata for testing programs. Programm-
ing. 2000;2:12–28. (In Russ.)

13. Kleene S. Introduction to metamathematics. Bull.
Math. Biophys. 1943;5:115–133.

14. Godel K. Über formal unentscheidbare Sätze
der Principia Mathematica und verwandter Systeme.
Monatshefte für Mathematik und Physik. 1931;I(38):
173–198. https://doi.org/10.1007/BF01700692

15. Turing A. Can a Machine Think? The World of
Mathematics Universal Turing Machine. The world of
Mathematics. 1956;4:2109.

16. Post E. Formal Reductions of General Com-
binatorics Desision Problem. American Journal of Mathe-
matic. 1943;65(2):197–215.

17. Mitchell M. An introduction to the genetic algo-
rithms. London: MIT Press Cambridge, Massachusetts;
1999.

18. Fogel L, Owens A, Walsh MJ. Artifisial Intelle-
gence through Simulated Evolution. NY: Wiley; 1966.

19. Bukatova I. Evolutionary Modelling and its
Applications. Moscow: Nauka Publ.; 1979. (In Russ.)

20. Zaikin AK. Development of finite automata
creation methods with annealing simulation algorithm
by the “War for resources” example. Scientific and tech-
nical journal of information technologies, mechanics and
optics. 2011;2(72):49–54. (In Russ.) EDN: NECKCX

21. Harman M, Mansouri A, Zhang Y. Search-Based
Software Engineering: A Comprehensive Analysis and
Review of Trends, Techniques, and Applications,” Dept.
of Computer Science. London: King’s, 2007.

22. Rosenblatt F. Principles of neurodynamics. Buffalo:
Cournell Neurotical Laboratory, 1965.

23. Malinin LI, Malinina NL. On the solution of
Graph Isomorphism. 2022. (In Russ.) Available from:
https://www.researchgate.net/publication/358570634_On
_the_solution_of_ the_Graph_Isomorphism_Problem.

24. Arbib МA. Brains, machines and mathematics.
McGraw-Hill, 1964.

25. Nechiporenko V. Structural analysis and methods
for building reliable systems. Moscow: Sovetskoe Radio,
1968. (In Russ.)

About the author

Natalia L. Malinina, Candidate of Physical and Mathematical Sciences, Associate Professor of the Department 604,
Aerospace Faculty, Moscow Aviation Institute (National Research University), Moscow, Russian Federation; ORCID: 0000-
0003-0116-5889; malinina806@gmail.com

