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 Abstract. The development of finite state machines and the synthesis of neural 
networks come with enormous computational difficulties. The problems that are 
faced both by the creators of control finite state machines and the creators of neural 
networks are almost the same. In order for a control finite state machine to be 
implemented, an algorithm for its operation must be created, and then a program must 
be written, and finally this program must be implemented in hardware in the form of a 
finite state machine. It is crucial to create a finite state machine, which will be 
deterministic. As for neural networks, it is necessary either to set the weights on its 
edges with the help of experts, or it must be trained to obtain optimal weights on its 
edges. Both tasks, that is, the determination of finite state machines and the training 
of neural networks, are currently most often performed using approximate 
(exponential or genetic) algorithms. At the same time, few authors point out the fact 
that, firstly these algorithms give an error of up to 15 %, and secondly the operating 
time is quite long and requires large energy costs. The article has proven that control 
finite state machines and neural networks are equivalent based on their structure, 
which can be represented as a directed edge graph. Such equivalence makes it 
possible to use methods of normalizing arbitrary graphs to determine finite automata 
and synthesize neural networks. Methods of graph normalizing are extremely new, 
they are based on a fundamentally new approach of the extension of graph theory and 
will allow performing these operations using algorithms that have linear complexity 
or can significantly reduce the number of options when using brute force. 
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 Аннотация. Разработку конечных автоматов и синтез нейросетей 
сопровождают огромные вычислительные трудности. Проблемы, с 
которыми сталкиваются как создатели управляющих конечных ав-
томатов, так и создатели нейросетей, практически одинаковы. Для 
того чтобы управляющий конечный автомат мог быть реализован, 
надо сначала создать алгоритм его работы, потом написать про-
грамму, потом эту программу реализовать в «железе» в виде конеч-
ного автомата. Главное — надо создать, и это важно, детерминиро-
ванный конечный автомат. Что касается нейросетей, то, чтобы она 
работала, необходимо либо задать с помощью экспертов веса на ее 
ребрах, либо ее надо обучить, чтобы получить оптимальные веса на 
ребрах. И то, и другое, то есть, детерминизация конечных автома-
тов и обучение нейронных сетей, в настоящее время производится 
чаще всего с помощью приближенных (экспоненциальных или ге-
нетических) алгоритмов. При этом часто авторы не указывают на 
тот факт, что, во-первых, эти алгоритмы дают ошибку до 15 %, а, 
во-вторых, время работы подобных алгоритмов достаточно велико, 
и требует больших энергетических затрат. В материале статьи дока-
зывается, что управляющие конечные автоматы и нейросети — эк-
вивалентны, если исходить из их структуры, которую можно пред-
ставить в виде ориентированного реберного графа. Подобная экви-
валентность позволяет применять для детерминизации конечных 
автоматов и синтеза нейросетей методы нормализации произволь-
ных графов. Методы нормализации произвольных графов новые, 
они основаны на расширении теории графов и позволят применять 
алгоритмы линейной сложности или существенно уменьшать число 
вариантов при переборе. 

Ключевые слова: конечный автомат, детерминизация, нейросеть, 
ориентированный граф, нормальный алгоритм 
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Introduction 
 

A finite state machine (FSM) is an extremely 
simplified model of a computer, having a finite 
number of states and sacrificing all the features of 
computers, such as RAM, read-only memory, input-
output devices and processor cores in exchange for 
ease of understanding, ease of reasoning and ease of 
software or hardware implementation. It can be said 
that FSM is an algorithmic component of a “data- 

less” program that models “instinctive” behaviour 
that is not adaptable to the sequence of environ- 
mental influences. In other words, FSM are techno- 
logies designed to facilitate the development of 
other algorithms; they serve as a means of achieving 
the ultimate goal — the implementation of the 
algorithm. A neural network is a computational or 
logical circuit built from homogeneous processing 
elements, which are simplified functional models of 
neurons. The transfer functions of all neurons in a 
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neural network are fixed, and the weights are para- 
meters of the neural network and can be changed. 
Neural networks are trained using genetic or other 
exponential algorithms. 

Such algorithms take a long time to work, take 
up a lot of memory, and, moreover, are not abso- 
lutely accurate. Any neural network is a finite state 
machine and any finite state machine can be replaced 
by a suitable neural network [1]. The equivalence of 
the structures of finite state machines and neural 
networks makes it possible to solve the problems of 
their structural synthesis using the same methods. 
The problem of structural synthesis, both of a 
DFSM and a neural network, belongs to the area of ܰܲ — hard. 

1. Finite State Machines: 
the basic concepts and problems 

Finite state machine (FSM) is a model of a 
computing device with a fixed and finite amount of 
memory. They read and process a chain of input 
symbols belonging to a finite set. Among the first 
researchers in the search of the simplest models of 
finite state machines were McCulloch and Walter 
Pitts, who proposed a concept similar to a finite 
state machine in 1943 [2]. 

An autonomous FSM, starting from a certain 
chart (diagram), can only generate a periodic 
sequence of ݔ states. Such sequential execution of a 
given cycle of operations is typical for many areas 
of modern technology, therefore, the dynamic 
systems, which in an acceptable idealization can be 
considered as an autonomous FSM, are widely 
applied particularly for the implementation of an 
automaton approach to programming. The theory of 
formal languages [3–7] may be used for their design. 
And, finally, and most importantly, autonomous 
FSM are used in the synthesis of logic control algo- 
rithms [8-12]. 

The finite state machine transforms the input 
character sequences into the state or the output 
character sequences. Theoretically the deterministic 
state machine (DFSM) can becreated from non-
deterministic state machine (NFSM) according to 
reduction of DFSM to NFSM (Kleene's theorem 
[13]). Since the number of states (output symbols) 
is finite, the question is: what input sequences cause 
each of the possible states (or each of the output 
symbols) to occur? The answer was given by 
Kleene's theorems [13], which established that only 

the events of the regular sets can be represented in a 
finite state machine. In this case, an algorithm for 
constructing any regular sets can be established.  

However, in practice, determination is not 
always possible, since in the worst case the number 
of states in an equivalent DFSM grows expo- 
nentially with the increase in the number of states of 
the original NFSM. This situation becomes the main 
problem when creating algorithms for reducing the 
NFSM to the form of a DFSM.  

So, the main problem arises: how to make a set 
regular? The set becomes regular if it can be 
ordered. And there is no efficient way to understand 
whether the set is regular or not. Limitations on the 
capabilities of computers (Gödel’s theorem [14]) 
made it necessary to use technologies of genetic 
(evolutionary) or other exponential algorithms in 
order to create DFSM. 

Thus, the finite state machines are classified as 
the deterministic (DFSM) and the non-deterministic 
(NFSM). The only and main difference between 
NFSM (non-regular set) and DFSM (regular set) is 
the existence of several transitions in one symbol 
from one state. A deterministic finite automaton is 
one in which, for any given sequence of input sym- 
bols, there is only one state to which the automaton 
can go from the current state. 

If the class of the dynamical systems can be 
extended in order to include infinite memory, then 
for the dynamical systems of this wider class (Turing 
machines) the answer to the question “what can 
they do?” is much simpler — they can implement 
any predefined algorithm. The concept of a Turing 
machine underlies the definition of the concept of 
an algorithm: an algorithm is any process that can 
be carried out on a finite state machine supple- 
mented with the infinite memory, that is, algo- 
rithmically complete machines: on a Turing machine 
[15], on a Post machine [16], etc. 

According to the above definition, determi- 
nistic finite automata are always complete — they 
define a transition for each state and for each input 
symbol. In addition, to ensure the uniqueness of the 
algorithms, the synthesised finite automata must be 
deterministic (ordered). When developing programs 
that are characterised by complicated control logic, 
one can use the automaton approach, which allows 
making the program text more regular and compact. 

Finite state machines (FSM) can be represented 
as block diagrams; it is the traditional technology 
for algorithms. The most convenient form of their 
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representation for a person is a graphical one — a 
state-transition-diagram, and for programming and 
formal transformations — a tabular one. State 
diagrams provide a graphical way to model how a 
system responds to a disturbance, and is a graph. It 
specifies how the system can move from one state 
(vertex) to another one. A key characteristic of such 

event-driven systems is that the behaviour of the 
system often depends not only on the last or current 
event, but also on the previous events, which is 
expressed using a state diagram. So, a state diagram 
for a finite state machine is an ordered graph in 
which the vertices denote states, and the arcs show 
transitions between two states (Figure 1). 

 

 

 

a b 
 

Figure 1. The graphical representation of the finite state machines: a — ଵܵ, 	ܵଶ — states. 
The arces are labeled by input data; b — ܵ଴, ଵܵ, ܵଶ — states. 

The arces are labeled as ݆/݇, where ݆ — input data, ݇ — output data 
S o u r c e :  made by the author 

 
In terms of graph theory, the problem of cover- 

ing all transitions of the automaton is formulated as 
the task of graph traversal, that is, passing along a 
route containing all the arcs of the graph. There are 
two main problems associated with the graph 
traversal for the automaton state machine: non-
determinism and too large size of the graph. A non-
deterministic automaton is an automaton in which 
the transition function is ambiguous: one pair 
corresponds to several arcs in the graph. Since the 
choice of one or another of these arcs cannot be 
determined by the test action, it is impossible to 
guarantee the unambiguous traversal of the state 
graph during testing. Although it should be noted 
that the ambiguity of the exit function does not 
create additional problems. It is only required that 
some predicate from the state, input, and output 
symbols be satisfied. [12]. The evaluation of the 
DFSM generation algorithm is disappointing. The 
process of generating a DFSM is a ܰܲ — hard 
problem. But on the other hand, after the DFSM is 
generated, it processes any symbol in constant time 
and a string of length ܰ in ܱ(ܰ) time. 

An NFSM in a state-transition diagram can 
have two or more arcs as outputs from the same 
state labeled with the same input symbol. Such a 
NFSM does not have an adequate tabular 
(functional) representation, but can be transformed 
into a conventional DFSM. The lack of an internal 

memory limits its ability to transform chains (simu- 
lation ability). Although in the general case such 
restrictions allow to solve many problems. 

The are also controlling FSM. Their main diffe-
rence from other types of FSMs (transformers and 
recognizers) is that they contain not separate input 
actions, but Boolean formulas from them [18–21] 
in the transition marks. However, the construction 
of control FSM is even more difficult, and in some 
cases, it is not possible to build such an automata 
at all. 

The ordering of control FSMs using the 
exhaustive enumeration, even with small sizes of 
FSM, is extremely time-consuming, and their 
heuristic construction does not always give accept- 
able results, although sometimes this is the only 
way. The simulated annealing method does not 
provide a significant improvement [20]; ant algo- 
rithms are more suitable for problems where solution 
is to find paths in a graph. Therefore the most of the 
work in the field of software search engineering is 
based on the use of evolutionary algorithms [21]. 
One of the most important adventages of genetic 
(evolutionary) algorithms is the absence of the need 
for information about the behaviour of the function 
and the negligible impact of possible gaps on 
optimisation processes. 

Genetic algorithms are also used to increase the 
efficiency of neural networks training. The explo- 

S1 S2

1/1 1/0 0/0

0/1
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sive growth of interest in artificial intelligence (AI) 
is mainly due to the growth of computing capa- 
bilities with its help, and not to the emergence of 
new algorithms. 

The task of structural synthesis is to construct 
an automaton diagram of minimal complexity. It 
should be noted that the problem itself is ܰܲ	—	hard. 
Gödel’s theorems [14] are directly related to the 
limitation of the capabilities of computers, which 
also were recognized by Turing, Church, Nagel and 
others. Turing showed that the same restrictions 
apply to humans [15]. In this regard, neural network 
technologies began to be used to create FSM, that 
is, researchers began to create FSM, using neural 
networks or genetic (evolutionary) algorithms. 

2. Neural network. The basic concepts. 
Problems 

Recently, more and more people began to 
discuss neural networks, and great attention is being 
paid to the creation of artificial intelligence based 
on artificial neural networks. A lot of attention is 
being paid to this scientific area. Let us briefly 
review the principles that are embedded in auto- 
matic neural networks.  

A biological neuron has processes of nerve 
fibers of two types: dendrites, through which 
impulses are received, and an axon (it is the only 
one), along which a neuron can transmit an impulse. 
The axon contacts the dendrites of other neurons 
through special formations — synapses, which 
affect the strength of the impulse. It can be assumed 
that during the passage of the synapse, the strength 
of the impulse changes a certain number of times, 
which is called the weight of the synapse. Impulses 
received by the neuron simultaneously through 
several dendrites are summed up. If the total 
impulse exceeds a certain threshold, the neuron is 
excited, generates its own impulse and transmits it 
further along the axon. It is important to note that 

the weights of synapses can change over time, 
which means that the behaviour of the correspond- 
ing neuron also changes. 

Neural networks are artificial, multilayer, highly 
parallel logical structures made up of formal neurons. 
The foundation of the theory of neural networks and 
neurocomputers was laid by the work of American 
neurophysiologists [2]. The book [22] had a signi- 
ficant influence on the further development of the 
neural network theory. The theory of neural 
networks continues to develop quite intensively at 
the beginning of the 21st century. Potential areas of 
application for artificial neural networks are those 
where human intelligence is inefficient and tradi- 
tional computations are time-consuming or physi- 
cally inadequate. The relevance of the use of neural 
networks increases many times when it becomes 
necessary to solve poorly formalized problems. The 
main areas of application of neural networks: 
automation of the classification process, forecast- 
ing, recognition process, decision-making process; 
management, coding and decoding of information; 
approximation of dependencies, etc. With the help 
of neural networks, an important task in the field of 
telecommunications is successfully solved — the 
design and optimisation of communication net- 
works, as well as the tasks of designing new tele- 
communication networks. 

Thus, the creation of automatic systems based 
on a neural network consists of choosing the net- 
work architecture and the selecting of the network 
weights. The selection of weights is the process of 
“training” the network. Neural networks turn out to 
be something between a central processing unit and 
a human brain. At this moment the selection of 
weights is carried out using either genetic algo- 
rithms or expert assessments. So, a neural network is a 
computational or logical chart built from homo- 
geneous processor elements, which are the simpli- 
fied functional models of neurons (Figure 2). 

 
 

a  b 
 

Figure 2. The graphical representations of the neural networks: 
a — Traditional neural network; b — Dynamic neural network 

S o u r c e :  made by the author
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As a rule, the transfer functions of all neurons 
in a neural network are fixed, and the weights are 
the parameters of the neural network and can 
change. Some inputs of neurons are labeled as 
external inputs of the neural network, and some 
outputs are labeled as external outputs. 

The work of the neural network is to transform 
the input signal into an output signal, and this 
transformation is determined by the weights of the 
neural network. A formal neuron in neural networks 
is a processor element, which is a data converter 
that receives input data and transforms it in 
accordance with a given function and parameters. A 
synapse in neural networks is a connection between 
formal neurons. The output signal from a neuron 
enters the synapse, which transmits it to another 
neuron. Complicated synapses can have memory. 
As a rule, there are quite a lot of synapses in a 
neural network. An adder in neural networks is a 
block that sums up the signals coming from neurons 
through synapses. In a general case, an adder can 
transform signals and transmit them to neurons or 
adders also through synapses. 

3. Graphical representation of the main 
elements of a finite machine 
on formal neurons 

Let the functions of the finite automaton be 
given. It is necessary to build its block diagram on 
formal neurons. Thus, it is necessary to show the 
connection between the structure of an ordinary 
network model and the structure of an automaton 
based on formal neurons (AFN). To solve this 
problem, an ordinary normal network models can be 
used [23], since they contain the vertices of only 
well-defined types. Structural-optimal network 
models are best suited since they do not have the 
simplest vertices in which no logical functions are 
implemented. It is known that the canonical edge 
graph has four types of vertices [23]. These four 
types of vertices are similar to the main types of 
structural formations of the nervous system of 
living beings, which includes: 

• Receptors — nerve endings that transmit 
external excitations to the nervous system (cells that 
have only outputs); 

• Neurons — are nerve cells with ݉௡ ≥ 1 
inputs (dendrites) and only one output (axon) (a 
formal neuron has the same structure [23]; 

• Branching of axons that transmit nerve 
excitations to other neurons and tissues, that is, the 

elements of the nervous system that have one input 
and ݉௔ ≥ 1 outputs; 

• Effectors (endings) that transmit nerve exci- 
tations to the working organs, that is, cells that have 
only inputs from the nervous system. 

The obvious analogy between the structure of a 
canonical edge graph and that of a neural network, 
as well as between the structure of one of the types 
of vertices of a canonical edge graph and that of a 
formal neuron, leads to the reasonable assumption 
that canonical edge graphs can be used  in order to: 

• Formalise the synthesis of the structure of 
automatic devices and systems built on formal neu- 
rons; 

• Formalise the synthesis of mathematical 
models that would enable studying individual 
functions of the nervous system of a living 
organism, implemented in accordance with a given 
logic and a set of external excitations. 

The stated assumption is quite consistent with 
the theorem given in [24] that any finite automaton 
can be replaced by a suitable network of formal 
neurons. 

The question arises: is it possible, using the 
principle of normalizing, to transform the diagram 
of a given finite machine into a network consisting 
of formal neurons? Using the example of normal 
algorithm synthesis [23], it was shown that operators 
can be represented as arcs of a canonical edge 
graph, connecting vertices of certain four types. 
Thus, it turns out that there is a similarity between 
the structure of the nervous system and the structure 
of normal algorithms. This similarity allows us to 
suggest that the basis of nervous activity, including 
higher, apparently, is a process similar to a normal 
algorithm, although, most likely, everything happens 
the other way around: normal algorithms intuitively 
reflect the internal activity of the nervous system. 

Another consideration leads to these assump- 
tions. Any change in the canonical system of binary 
relations by introducing additional links (pairs ൫ݍ௜,  ௝൯ of elements) violates the canonicity of theݍ
system of binary relations and requires its normali- 
sation, which is associated with an increase in the 
order of the matrix and a change in the structure of 
the graph and the corresponding normal algorithm. 
Probably something similar occurs in the process of 
higher nervous activity. A new external stimulus or 
new needs, which the body's response to these 
stimuli must meet, is equivalent to establishing new 
connections in the brain. This violates the “normal 
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algorithm” existing in the brain and requires its new 
normalisation, which is because new brain cells are 
involved. All this is similar to the ∆݊ — 
transformation of the adjacency matrix until the 
“algorithm” becomes normal again. One more 
suggestion should be added. The structure of a 
normalized matrix always depends on what new 
links need to be normalised. The emergence of the 
required new connections will determine the nature 
and the result of the work of the new algorithm of 
the nervous system model. 

4. The formulation of the problem 

From all that has been said above, it is clear 
that any neural network is a finite state machine. 
Likewise, any state machine can be replaced with a 
suitable neural network. Therefore, the problems of 
structural synthesis, both for the neural networks 
and the finite machine, can be solved by the same 
methods.  

Consequently, one can try to build a model of 
the nervous system that organises itself under the 
influence of external stimuli and find expedient 
external stimuli and methods of self-organisation. 
The above assumptions may seem very bold, but 
automatic devices based on formal neurons have a 
very high reliability [24], so the solution of the 

problem of their synthesis is certainly very impor- 
tant and relevant. 

Let us consider an example of synthesising a 
block diagram of a finite machine on formal neurons. 
In terms of network models, a formal neuron, 
together with its output (axon), can be represented 
as an arc of a directed graph, the initial vertex of 
which must be of the second type, and the final 
vertex must be of the third type. Let us give conven- 
tional names to the types of vertices of the canoni- 
cal edge graph (Figure 3, a) by analogy with neural 
networks: 

• Vertex of the first type is a receptor. 
• Vertex of the second type is a neuron. 
• Vertex of the third kind is an axon. 
• Vertex of the fourth type is an effector. 
Note that these vertices are considered together 

with their inputs and outputs. Each of these vertices 
can be connected by an arc with the other vertices 
(Figure 3). 

Possible connections of neural network vertices 
are shown in the matrix in Figure 4, a. The same 
figure shows the second matrix (Figure 4, b), where 
the units are replaced by conventional signs that 
determine the nature of the connections of the arc 
connecting the nodes of the neural network with 
other arcs. 

 

 

 

 

 

 

 

 

a  b  c  d 
Figure 3. Types of the neural network vertices: 

a — Receptor: ߩሺିሻሺрሻ = ሺାሻሺрሻߩ ;0 ≥ 1; b — Neuron: ߩሺିሻሺнሻ > ሺାሻሺнሻߩ ;1 = 1; 
c — Axon: ߩሺିሻሺаሻ = ሺାሻሺаሻߩ ;1 ≥ 1; d — Effector: ߩሺିሻሺэሻ ≥ ሺାሻሺэሻߩ ;1 = 0 

S o u r c e :  made by the author 

 

 

 

a b 
Figure 4. Possible neural network connections: 

a — Matrix of the connections of neural network vertices; 
b — Matrix with conventional signs that determine the nature of the connections of the arcs, 

and the table with conventional signs 
S o u r c e :  made by the author 

1 1 1
1 1 1
1 1 1

0

0000
0
0

0 1≥ 1 > 1
−λ j

−μ j
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Let us introduce the following characteristics of 
arc connections in a neural network: 

 ௝ ୀ ௜ — is the specific “load” of the ݆-th arcߣ •
coming out of some vertex, from each of the arcs 
entering the initial vertex of the ݆-th arc; 

 ௜ ୀ ௝ — is the “participation share” of the ݅-th arc in the "load" of all arcs emerging from theߤ •
vertex, which is the end of the ݅-th arc. 

The calculation of ߣ௝ ୀ ௜ and ߤ௜ ୀ ௝ is performed 
as follows. For a normal adjacency matrix, the ma-

trix ฮ߱௜௝ฮଵ௡ of the “relative weights” of the ele-

ments of the adjacency matrix is calculated. 
For each ݎ௜௝ = 1 the corresponding value of ߱௜௝ 

will be: 

߱௜௝ = ݉݅݊ ቎ 1∑ ௜௝௡௜ୀଵݎ ௝ൗ ; 1∑ ௜௝௡௝ୀଵݎ ௜ൗ ቏. 

Then: ߣ௝ୀ௜ = ෍ ߱௜௝௡
௜ୀଵ ௝ൗ ; ௜ୀ௝ߤ  = ෍ ߱௜௝௡

௝ୀଵ ௜ൗ . 
For example, let the matrix ฮݎ௜௝ฮଵ௡ be given 

(see Figure 5, a). For this matrix let us calculate the 

matrix ฮ߱௜௝ฮଵ௡ and the values ߣ௝ୀ௜ and ߤ௜ୀ௝ 

(Figure 5b). Values ߣ௝ୀ௜; ߤ௜ୀ௝, as well as ∑ ௜௝௡௜ୀଵݎ̅ ௝ൗ  

and ∑ ௜௝௡௝ୀଵݎ̅ ௜ൗ  are calculated for each row of the 

matrix ฮݎ௜௝ฮଵ଼, completely determine the types of the 

initial and final vertices of any arc of the edge graph 
corresponding to one or another row of the matrix. 
Since an axon can have one or more outputs, the 
total number of options for arcs connecting the 
vertices of the neural network is 16. All these 
options are presented in a matrix and graphical form 
in Figure 6 and in Tables 1 and 2. 

 
 

 
 

a  b 

Figure 5. Matrixes rij1n ฮݎ௜௝ฮଵ௡ and ωij1n ฮ߱௜௝ฮଵ௡: 

a  — rij1n ฮݎ௜௝ฮଵ௡ — Matrix of connections of the neural network; 

b — ωij1n ฮ߱௜௝ฮଵ௡ — Matrix of the relative weights of the neural network elements 

S o u r c e :  made by the author 

Table 1 
Boolean vertexes 

Boolean vertex type AND�AND AND�OR AND�AND/OR OR�AND AND/OR�AND 

Sub�item number I II III IV V 

Table 2 
Conventional symbols λ = 0 →  μ = 0 →  λ ≤ 1 →  μ < 1 →  λ = 1 →  μ = 1 →  
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Figure 6. Sub�options of arcs connecting neural network vertices 

S o u r c e :  made by the author. 
 

 
The same options with the corresponding values ߣ௝ୀ௜; ߤ௜ୀ௝; ∑ ∑	;௜௝ݎ ௝ୀଵ/௜௜ୀଵ/௝	௜௝ݎ  are presented in 

Table 3. Table 3 shows the possible types of 
Boolean vertices, the designation of which is in 
Tables 1 and 2 and in Figure 7. Taking into account 
the Boolean types of vertices, the total number of 
sub-options for neural network arcs will be 110 (see 
Table 3). The number of such sub-options can be 
much more if, in addition to Boolean vertices, 
certain types of vertices with restrictions, vertices 
with negation, or vertices whose logical functions 

are determined by Venn diagrams proposed for a 
formal neuron [24] will be introduced. The proper- 
ties of a formal neuron are described in the relevant 
literature [24; 25], etc. 

So, the main elements of neural network models 
can be represented using the elements (vertices and 
arcs) of the canonical edge graph. 

Next it is necessary to consider an example of 
constructing a structural diagram of an automaton 
based on formal neurons (AFN) according to the 
given functions of this automaton. 
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Table 3 
Characteristics of arcs connections 

Option number 

Properties of the connections Initial vertex Final vertex 

Number of options ߣ௝ୀ௜ ߤ௜ୀ௝ ෍݁௜௝௜/௝ ෍݁௜௝௝/௜ View Boolean type View Boolean type  

1 0 0 < ௜ߤ < 1 (0) (1)

Р I,II,III 

Н I,IV,V 9

2 0 1 (0) >1 А I,II,III 9

3 0 1 (0) 1 А I 3

4 0 0 (0) (0) Э I,IV,V 9

5 1 0 < ௜ߤ < 1 >1 (1)

Н I,IV,V 

Н I,IV,V 9

6 1 1 >1 >1 А I,II,III 9

7 1 1 >1 1 А I 3

8 1 0 >1 (0) Э I,IV,V 9

9 0 < ௜ߣ < 1 0 < ௜ߤ < 1 (1) (1)

А 

I,II,III Н I,IV,V 9

10 1 0 < ௜ߤ < 1 1 (1) I Н I,IV,V 3

11 0 < ௜ߣ < 1 1 (1) >1 I,II,III А I,II,III 9

12 0 < ௜ߣ < 1 1 (1) 1 I,II,III А I 3

13 1 1 1 >1 I А I,II,III 3

14 1 1 1 1 I А I 1

15 0 < ௜ߣ < 1 0 (1) (0) I,II,III Э I,IV,V 2

16 1 0 1 (0) I Э I,IV,V 3

 
 

5. An example of constructing a block diagram 
of a finite automaton on formal neurons 

As an example, let’s consider the simplest 
cases when a neuron implements only such logical 
functions as: “AND” or “OR” (Figure 7, a), which 
are Boolean. They determine the ߠ value, the 
threshold of the neuron. Let the finite machine be 
given by a diagram (Figure 7, b) or Table 4. In 
order to describe the states of the automaton, one 
can apply the representation of the states of the 
automaton using Boolean functions, depending on 
the reasons that generate these states. You can then 
replace each of the Boolean expressions containing 
the same operations with a single character. 

Let us compile a Table 5, in which we assign 
the causes to each new state or output signal which 
was generated by them in the form of strict 
disjunctions of the intersections of input signals and 
current states. For example, in order for the 
automaton to transfer to the ܣ state, it is necessary 

that the input of the machine in state ܤ be given a 
signal ܽ, or that the input of the machine in state ܥ 
be given signal ܾ. Next let us compose the initial 
set, which includes all states, all input signals, as 
well as all necessary combinations of current states 
and input signals, a set of states, a set of input 
signals, input and output blocks of the automaton.  

 

    

a                                              b 
 

Figure 7. 
a — The simplest cases when a neuron implements only 

such logical functions as: “AND” or “OR”; 
b — Graph implementation of the finite machine

=
ji

ijrB

1=B A

B

C

α/β 

β/α 

β/α

α/β

β/γ 

α/γ

Neuron «OR» 



Малинина Н.Л. Вестник РУДН. Серия: Инженерные исследования. 2023. Т. 24. № 4. С. 349–364 
 

 

 359 

Table 4 
Diagram of the finite machine 

 

Initial (current) state A B C 

Initial symbol ܽ ܾ ܽ ܾ ܽ ܾ 

Next state ܣ ܥ ܥ ܣ ܤ ܤ 

Output symbol ߛ ߙ ߚ ߛ ߙ ߚ 

 
 

Table 5 
States and symbols of the finite machine 

and their previous combinations 
 

State and symbol 
of the automata 

Previous combination 
of states and symbols ܽ — ܾ — ܥ⨁ܽ⋂ܤ ߛ ܽ⋂ܥ⨁ܽ⋂ܣ ߚ ܾ⋂ܤ⨁ܾ⋂ܣ ߙ ܽ⋂ܥ⨁ܾ⋂ܤ ܥ ܾ⋂ܣ⨁ܽ⋂ܣ ܤ ܾ⋂ܥ⨁ܽ⋂ܤ ܣ⋂ܾ 

 
Table 6 

Designation of both alphabetic and numeric 
characters and their combinations 

 

Elements of the initial set 
Previous combinations 

of elements 
of initial states 

Input device ܺ  

The set of the initial states ଵܺ ܺ 

The set of the input states ܺଶ ܺ 

Input symbols 
ܽ ܺଶ ܾ ܺଶ 

The states of the automata 

ଵܺ ܣ ⊕ ଵܺ ܤ ݁⨁݀ ⊕ ଵܺ ܥ ݃⨁݂ ⊕ ℎ⨁݇ 

Combinations of current 
(initial) or next states 
and input symbols  

 ܽ⋂ܥ ݇ ܾ⋂ܤ ℎ ܾ⋂ܣ ݃ ܽ⋂ܣ ݂ ܾ⋂ܥ ݁ ܽ⋂ܤ ݀

Input symbols 

⊕݃ ߙ ℎ ߚ ݂ ⊕  ݁⨁ܽ ߛ ݇

The output of the devices ܻ ߛ⨁ߚ⨁ߙ 

Each of the elements of this set will be assigned 
an alphabetic or numeric symbol (Table 6). For 
each element of the second column of Table 6 in the 
third column we shall indicate those elements that 
precede the elements of the second column or gen-
erate them. 

The diagram of the machine under consideration 
includes six combinations of current states and 
input signals. Let us designate these combinations 
with letters: ݀, ݁, ݂, ݃, ℎ, ݇. Now we can 
consider the current state of ܤ and the input signal 
as causes that give rise to ݀ element, and so on. In 
turn, the state ܤ is generated either by choosing this 
state from the set ଵܺ of all initial states, or by the ݂ 
element, or by the ݃ element. Table 6 makes it 
possible create a matrix of binary relations defined 
on the original set or an adjacency matrix of 
elements of the original set (Figure 8). The same 
figure shows tables of logical functions of neurons 
and axons. 

Obviously, each neuron will be formed from a 
column that has more than one ݈௜௝ = 1 element. In 

turn, each row of the ฮ݈௜௝ฮଵ௡ matrix, which has more 

than one ݈௜௝ = 1 element, will allow one axon to be 
formed. Axons will also be formed from those rows 
in which there will be one ݈௜௝ = 1 element, if this 
element is not included in the column from which 
the neuron will be formed. 

The tables of neurons and axons also indicate 
the logical functions they implement. The functions 
of neurons are determined directly from Table 6. The 
outputs of axons ܺ, 	 ଵܺ and ܺଶ are determined by the 
fact that at the same time the machine can be in only 
one of the three states, and only one of the two 
signals can be applied to its input. In other cases, 
axons (in the machine under consideration) transmit 
the same signal generated by the corresponding 
neuron through all outputs. For example, the axon 
defined by the ݅ = ܽ string simultaneously transmits 
a signal ܽ to ݀, ݂ and ݇ elements. 

The matrix ฮ݈௜௝ฮଵ௡ is normalized. In this case, the 

cyclomatic number of the graph remains unchanged. 

In the ฮ݈௜௝ฮଵ௡ matrix, the ݈௜௝ = 1 elements that are 

subjected to the ∆݊ — transformation are circled. Let 
us denote these elements as መ݈௜௝. The condition of 
conservation of the cyclomatic number allows us to 
immediately calculate all the main characteristics of 
canonical graphs (Figure 8): 
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Figure 8. An adjacency matrix of the elements of the original ሺ݊଴ = 18ሻ set.
Logical functions of the neurons and the axons 

S o u r c e :  made by the author 

• The order of the matrix:݊௞ = ݊଴ + ∆݊ = 18 + 27 = 45.
• The cyclomatic number:

௞ሻܪሺߥ = ሻܩሺߥ +෍෍݁௜௝ − ݊଴ + 1 =௝௜= 34 − 18 + 1 = 17. 
• The number of arcs of the canonical edge

graph: ߥሺ തܳ௞ሻ = ݊௞ = 45.
• The number of the vertexes of the canonical

edge graph:ߥሺ ௞ܸሻ = ݊௞ − ௞ሻܪሺߥ + 1 = 45 − 17 + 1 = 29. 
• The number of the arcs of the canonical edge

graph:

ሺΓ௞ሻߥ =෍෍݁௜௝ +෍෍݁̂௜௝௝௜ = 34 + 27 =௝௜ = 61. 

• The number of the vertexes of the canonical
vertex graph: ߥሺܳ௞ሻ = ݊௞ = 45.

The normal matrix ฮ̅ݎ௜௝ฮଵ௡ of the finite machine

neural network is shown in Figure 9. Table 7 sum- 
marizes the characteristics of the arcs of the 
canonical edge graph with their initial and final 
vertices as elements of a neural network of a finite 
machine. The construction of a block diagram of a 

finite automaton by the ฮ̅ݎ௜௝ฮଵ௡ matrix (Figure 9) and

Table 7 is easy. Scheme in the form of an edge 
graph is shown in Figure 10. It is easy to verify that 
this circuit exactly performs the functions of a given 
finite state machine.  

Let us set the automaton represented by the di-
agram in Figure 7, b, initial state ܣ and input signal 
program ܾܾܾܽܽܽ… 

Then the alternation of new states and output 
signals will be as follows: 

• Initial and current state of ܤܣܥܥܤܣ…;
• ܾܾܾܽܽܽ... inputs;
• Following states ܤܣܥܥܤ…;
• Output signals ߚߛߚߙߚ …
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Figure 9.  The normal matrix ฮ̅ݎ௜௝ฮଵ௡ of the finite machine 

S o u r c e :  made by the author 
 

 

 
 

Figure 10. The graph of a finite automaton 
S o u r c e :  made by the author 
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Table 7 
The characteristics of the arcs of the canonical edge graph with their initial 

and final vertices as elements of a neural network of a finite machine 
 

Elements of the finite machine
Initial vertex

Purpose of the finite state 
machine element 

Final vertex

Type Input function Type 
Output 

function

Input device. 
Sensors of initial states 

and input symbols 

I START The task of start and the work of the program III ଵܺ⋂ܺଶ
III ଵܺ⋂ܺଶ 

Setting initial states II ܣ⊕ ܥ⨁ܤ
Setting input symbol III ܽ ⊕ ܾ

Signal transmission operations II ଵܺ ⊕ܣ ⟹  ܥ⨁ܤ

Passing command to state ܣ IV ܣ 

Passing command to state ܤ IV ܤ
Passing command to state ܥ IV ܥ

Neurons — Axons 

II 
ܺଶ ⟹ ܽ ⊕ ܾ 

Passing input symbol ܽ I ⋃ܽ
Passing input symbol ܾ I ⋃ܾ 

IV 

⊕ܣ ݀⨁݁ State implementation ܣ I ⋃ܤ ܣ ⊕ ݂⨁݃ State implementation ܤ I ⋃ܥܤ ⊕ ݄⨁݇ State implementation  ܥ⋃ I ܥ

Signal transmission 
operations 

I ܽ Passing input symbol ܽ I 

݂݀
ܭ

I ܾ Passing input symbol ܾ I 

݄݃
݁

I ܣ Passing command: current state	ܣ I 
݂݀

I ܤ Passing command: current state ܤ I 
ܭ݃

I ܥ Passing command: current state	ܥ I 
݄݁

Neurons — Axons I 

ܽ⋃ܣ The formation of ݂ signal

I 

݃ The formation of ܾ⋃ܣ݂⋃ signal ݀ The formation of ܽ⋃ܤ ݃⋃ signal ܾ⋃ܤ ݀⋃ The formation of ݄ signal ܽ⋃ܥ݄⋃ The formation of ܭ signal ݁ The formation of ܾ⋃ܥܭ⋃ signal ⋃݂݁ 

Signal transmission operations 

I ݂ Passing signal ݂ 

IV 

 ߚ ߚ

I ݃ Passing signal ݃ 
 ݀ ܤ

I ݀ Passing signal ݀ 
 ߛ ܣ

I ݄ Passing signal ݄ 
 ߙ ܥ

I ܭ Passing signal ܭ 
ߚܥ

I ݁ Passing signal ݁ 
ߛܣ

Neurons — Axons IV 

݃ ⊕ ݄ The formation of the output symbol ߙ 

IV ߙ ⊕ ݂ ߛ⨁ߚ ⊕ ݀ ߚ The formation of the output symbol ܭ ⊕ ݁ The formation of the output symbol ߛ 

Output device IV ߙ ⊕ Passing of the output ߛ⨁ߚ symbol I ܻ 
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Let us check the operation of the neural 
network according to the given program. 

1. The input device ܺ sets the program of work 
for the sensor of initial states ଵܺ and the sensor of 
input ܺଶ signals. 

2. The sensor of initial states ଵܺ generates a 
command to transfer the automaton to ܣ state. 

3. The input signal of sensor ܺଶ generates input 
signals according to the program specified by the 
input ܺ device. 

4. The command to switch the automaton to 
state ܣ is transmitted along the arc 3→5 to neuron 
5, which implements the specified state on the arc ܣ	5) → 10) at the ݐ଴ moment. The signal about this, 
equal to 1, is transmitted at the moment ݐ଴ + 1 to 
vertices 13 and 14. 

5. From vertex 4, the signal |ܽ| = 1 is trans- 
mitted along arcs 4→8 and 8→13, 8→15 and 
8→17 to vertices 13, 15 and 17. 

6. Vertex 13 is the initial vertex of the neuron 
"AND", the threshold of which is equal to: ߠ = 2. 
Since two signals come to this vertex, neuron 13 
generates a signal: ݂ =  which is transmitted ,ܽ⋂ܣ
at the moment ݐ଴ + 2 to vertices 6 and 26. 

7. When the signal |݂| = 1 enters vertex 6, this 
neuron implements state ܤ, and at time ݐ଴ + 3 the 
axon sends a single signal about this to vertices 15 
and 16. At the same time, neuron 26 generates a ߚ 
signal, which at time: ݐ଴ + 3 is transmitted to the 
output ܻ device. 

8. Since the input signal ܽ is implemented at 
time: ݐ଴ + 2, then the element ܺଶ at time: ݐ଴ + 2 
generates signal ܾ, which is transmitted to vertexes 
14, 16 and 18. 

9. At vertex 16, the sum of the input signals is 
equal to the threshold, so neuron 16 generates an ℎ 
signal, which at time: ݐ଴ + 3 is transmitted from 
vertex 22 to vertices 7 and 25. 

10. Neuron 7 implements ܥstate and neuron 25 
generates ߙ signal. 

Further operation of the machine is evident and 
does not require explanation. It is clear that the 
obtained scheme can be completely replaced by a 
real construction, including certain physical models 
of formal neurons. The above example shows the 
synthesis of a very simple machine, but the same 
general principles can be applied to synthesise 
other, more complicated machine. 

Conclusion 

1. The structure of the basic elements of AFN 
allows their convenient graphical representation in 

the form of basic elements of canonical edge graphs. 
At the same time, the representation of the AFN ele- 
ments, in which logical functions are implemented, is 
provided by means of those elements of the cano- 
nical edge graph, in which logical functions are also 
implemented. 

2. The similarity of the structures of canonical 
edge graphs and automation on formal neurons (AFN) 
allows building block diagrams of AFN automa- 
tically, provided that the sets of the states, the input 
and output signals of the original finite machine are 
specified in the form of a finite vertex graph. 

3. The implementation of ∆݊	— transformation 
and matrix normalization make it possible to arrange 
the DFSM using a linear algorithm, and sometimes 
polynomial in complexity. 

4. The main advantage of this approach is that 
in its implementation the representation of 
complicated logical functions does not require the 
use of polynomial algorithms for programming. 

5. Abandoning polynomial algorithms for the 
representation of logical functions will eventually 
lead to a decrease in energy costs and an increase in 
accuracy in their calculation. In terms of chip and 
printed circuit board technologies, this can lead to a 
reduction in chip size and thickness. 
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