

2023;24(1):40-49

ISSN 2312-8143 (Print); ISSN 2312-8151 (Online) journals.rudn.ru/engineering-researches

DOI: 10.22363/2312-8143-2023-24-1-40-49 EDN: EOWDIE УДК 51-7

Научная статья / Research article

Иерархический подход к доказательству существования обобщенных плоских гнездовидных центральных конфигураций в некоторых вариантах общей задачи (*pn*+1)-тел

Ю.В. Перепелкина^а А.Н. Задиранов^ь

^аРоссийский государственный университет туризма и сервиса, *Черкизово, Российская Федерация* ^bАкадемия государственной противопожарной службы МЧС России, *Москва, Российская Федерация* amadeycity@yandex.ru

История статьи

Поступила в редакцию: 20 ноября 2022 г. Доработана: 26 января 2023 г. Принята к публикации: 5 февраля 2022 г.

Ключевые слова: небесная механика, задача *n*-тел, частные решения Аннотация. Продемонстрирован иерархический подход к процедуре доказательства существования в общей задаче (pn+1)-тел точных частных решений, так называемых обобщенных плоских центральных конфигураций небесных тел в форме последовательно вложенных один в другой выпуклых *n*-угольников, в вершинах которых расположены тела неравных масс, а в центре конфигурации находится несферическое тело. Рассматриваются плоские гнездовидные центральные конфигурации в форме вложенных один в другой выпуклых четырехугольников смешанных форм типа квадрат + ромб + дельтоид + трапеция + центральное тело в рамках общей задачи (4n+1)-тел небесной механики. Приведенные общие условия существования справедливы для любых гнездовидных плоских центральных конфигураций в рамках задачи (4n+1)-тел. Для решений системы уравнений используются символьные вычисления математического пакета Maple. Полученная система алгебраических уравнений имеет иерархическую структуру, подобную той, которая получается при реализации в системе алгебраических уравнений прямого хода преобразований в процессе решения систем линейных уравнений методом Гаусса. Рассматриваются случаи центрального тела в виде сферической (шар) и несферической (эллипсоид вращения или трехосный эллипсоид) структур. В каждом из случаев приведены соответствующие необходимые и достаточные условия существования центральных конфигураций различного вида.

Для цитирования

Перепелкина Ю.В., Задиранов А.Н. Иерархический подход к доказательству существования обобщенных плоских гнездовидных центральных конфигураций в некоторых вариантах общей задачи (*pn*+1)-тел // Вестник Российского университета дружбы народов. Серия: Инженерные исследования. 2023. Т. 24. № 1. С. 40–49. http://doi.org/10.22363/2312-8143-2023-24-1-40-49

© Перепелкина Ю.В., Задиранов А.Н., 2023

This work is licensed under a Creative Commons Attribution 4.0 International License https://creativecommons.org/licenses/by-nc/4.0/legalcode

The hierarchical approach to proving the existence of generalized planar nested central configurations on some versions of the general (*pn*+1)-body problem

Yulianna V. Perepelkina^a, Alexander N. Zadiranov^b

^aRussian State University of Tourism and Service, Cherkizovo, Russian Federation
 ^bState Fire Academy of EMERCOM of Russia, Moscow, Russian Federation
 amadeycity@yandex.ru

Article history

Received: November 20, 2022 Revised: January 26, 2023 Accepted: February 5, 2022

Keywords:

celestial mechanics, *n*-body problem, partial solutions, central configurations

Abstract. A hierarchical approach to proving of existence in the general (pn+1)-body exact partial solutions is presented, the so called generalized planar nested central configurations in a form of consequently nested in each other convex n-gons with nonequal in general masses in the vertices and a nonspherical body in the centre. Flat nest-shaped central configurations in the form of convex quadrilaterals of mixed shapes nested one into another of the type square + rhombus + deltoid + trapezoid + central body within the frame-work of the general problem of (4n+1)-bodies of celestial mechanics were measured. The given general conditions of existence are valid for any nest-shaped planar central configurations within the framework of the (4n+1)-bodies problem. Symbolic calculations of the Maple mathematical package are used to solve the system of equations. The system of algebraic equations has a hierarchical structure similar to the obtained direct transformations to the system of algebraic equations within the process of solving systems of linear equations by the Gauss method. The cases of a central body in the form of a spherical (a ball) and a non-spherical (an ellipsoid of rotation or a triaxial ellipsoid) structures are considered. In each of the cases, the corresponding necessary and sufficient conditions for the existence of central configurations of various types are given.

For citation

Perepelkina YuV, Zadiranov AN. The hierarchical approach to proving the existence of generalized planar nested central configurations on some versions of the general (pn+1)-body problem. *RUDN Journal of Engineering Research*. 2023;24(1):40–49. (In Russ.) http://doi.org/10.22363/2312-8143-2023-24-1-40-49

Введение

В последние десятилетия проблема существования обобщенных классических, главным образом плоских центральных конфигураций (ц.к.) небесной механики и звездной динамики развивается в нескольких направлениях. Первое состоит в рассмотрении действующих между телами сил, отличных от сил гравитационного притяжения (фотогравитационных, радиационных, электрических, магнитных и др.)¹ [1; 2]. Второе рассматривает фигуры, участвующие в конфигурации тел, в частности центральные тела конфигурации [3; 4], отличные от сферических (эллипсоид вращения сжатый или вытянутый, трехосный эллипсоид) [5–8]. Третье изучает гнездовидные (то есть «наращиваемые») плоские ц.к., а четвертое – гнездовидные пространственные ц.к. Как показали исследования, структура уравнений движения и, как следствие, необходимых и достаточных условий существования [9; 10] ц.к. зависит от вида (формы) рассматриваемых ц.к. В различных трудах еще начала XX в. [11; 12] рассматривались элементы обобщенных квадратных и трапецевидных плоских ц.к. с несферическими телами в центре,

¹ Емельянов Н.В. Основы теории возмущений в небесной механике: учебное пособие. М.: Физический факультет МГУ, 2015. 126 с.

а позднее – обобщенные плоские ц.к. смешанного вида [5; 6; 13]. Современное прикладное программное обеспечение позволяет с достаточно высокой точностью моделировать подобные системы [14; 15].

В данном исследовании рассматриваются плоские гнездовидные ц.к. в форме вложенных один в другой выпуклых четырехугольников смешанных форм, а именно типа квадрат – ромб – дельтоид – трапеция – центральное тело, то есть в рамках общей задачи (4n+1)-тел небесной механики (рис.). Для таких ц.к. предложен так называемый *иерархический* подход для поиска совокупностей значений геометрических и динамических параметров, определяющих их существование.

Гнездовидная плоская центральная конфигурация типа квадрат – ромб – дельтоид – трапеция Nest-shaped flat central configuration of the square – rhombus – deltoid – trapezoid type

1. Постановка задачи: общий вид уравнений движения (*pn*+1)-тел

Уравнения пространственного движения тел P_{lk} с массой m_{lk} , l = 1, ..., p; k = 1, ..., n (l – число вложенных один в другой выпуклых многоугольников, k – число вершин многоугольников) в относительной гелиоцентрической системе координат P_0xyz , вращающейся с постоянной угловой скоростью ω вокруг тела P_0 с массой M_0 , имеют вид [13]

$$\begin{split} \ddot{x}_{lk} &- 2\omega \dot{y}_{lk} - \omega^{2} x_{lk} = \\ &= -f\left(M_{0} + m_{lk}\right) \frac{x_{lk}}{r_{lk}^{3}} + \\ &+ f\sum_{\substack{j=1\\j\neq k}}^{n} m_{lj} \left(\frac{x_{lj} - x_{lk}}{\Delta_{ljlk}^{3}} - \frac{x_{lj}}{r_{lj}^{3}}\right) + \\ &+ f\sum_{\substack{1\leq o \leq p \\ o\neq l}} \sum_{s=1}^{n} m_{os} \left(\frac{x_{os} - x_{lk}}{\Delta_{oslk}^{3}} - \frac{x_{os}}{r_{os}^{3}}\right); \\ \ddot{y}_{lk} + 2\omega \dot{x}_{lk} - \omega^{2} y_{lk} = \\ &= -f\left(M_{0} + m_{lk}\right) \frac{y_{lk}}{r_{lk}^{3}} + \\ &+ f\sum_{\substack{j=1\\j\neq k}}^{n} m_{lj} \left(\frac{y_{lj} - y_{lk}}{\Delta_{ijlk}^{3}} - \frac{y_{lj}}{r_{lj}^{3}}\right) + \\ &+ f\sum_{\substack{1\leq o \leq p \\ o\neq l}} \sum_{s=1}^{n} m_{os} \left(\frac{y_{os} - y_{lk}}{\Delta_{oslk}^{3}} - \frac{y_{os}}{r_{os}^{3}}\right); \\ \ddot{z}_{lk} = -f\left(M_{0} + m_{lk}\right) \frac{z_{lk}}{r_{lk}^{3}} + \\ &+ f\sum_{\substack{1\leq o \leq p \\ o\neq l}} m_{lj} \left(\frac{z_{lj} - z_{lk}}{\Delta_{ijlk}^{3}} - \frac{z_{lj}}{r_{lj}^{3}}\right) + \\ &+ f\sum_{\substack{1\leq o \leq p \\ o\neq l}} m_{lj} \left(\frac{z_{lj} - z_{lk}}{\Delta_{oslk}^{3}} - \frac{z_{os}}{r_{os}^{3}}\right), \\ &+ f\sum_{\substack{1\leq o \leq p \\ o\neq l}} \sum_{s=1}^{n} m_{os} \left(\frac{z_{os} - z_{lk}}{\Delta_{oslk}^{3}} - \frac{z_{os}}{r_{os}^{3}}\right), \\ &+ f\sum_{\substack{1\leq o \leq p \\ o\neq l}} \sum_{s=1}^{n} m_{os} \left(\frac{z_{os} - z_{lk}}{\Delta_{oslk}^{3}} - \frac{z_{os}}{r_{os}^{3}}\right), \\ &+ f\sum_{\substack{1\leq o \leq p \\ o\neq l}} \sum_{s=1}^{n} m_{os} \left(\frac{z_{os} - z_{lk}}{\Delta_{oslk}^{3}} - \frac{z_{os}}{r_{os}^{3}}\right), \\ &+ f\sum_{\substack{1\leq o \leq p \\ o\neq l}} \sum_{s=1}^{n} m_{os} \left(\frac{z_{os} - z_{lk}}{\Delta_{oslk}^{3}} - \frac{z_{os}}{r_{os}^{3}}\right), \\ &+ f\sum_{\substack{1\leq o \leq p \\ o\neq l}} \sum_{s=1}^{n} m_{os} \left(\frac{z_{os} - z_{lk}}{\Delta_{oslk}^{3}} - \frac{z_{os}}{r_{os}^{3}}\right), \\ &+ f\sum_{\substack{1\leq o \leq p \\ o\neq l}} \sum_{s=1}^{n} m_{os} \left(\frac{z_{os} - z_{lk}}{\Delta_{oslk}^{3}} - \frac{z_{os}}{r_{os}^{3}}\right), \\ &+ f\sum_{\substack{1\leq o \leq p \\ o\neq l}} \sum_{s=1}^{n} m_{os} \left(\frac{z_{os} - z_{lk}}{\Delta_{oslk}^{3}} - \frac{z_{os}}{r_{os}^{3}}\right), \\ &+ f\sum_{\substack{1\leq o \leq p \\ o\neq l}} \sum_{s=1}^{n} m_{os} \left(\frac{z_{os} - z_{lk}}{\Delta_{oslk}^{3}} - \frac{z_{os}}{r_{os}^{3}}\right), \\ &+ f\sum_{\substack{1\leq o \leq p \\ o\neq l}} \sum_{s=1}^{n} m_{os} \left(\frac{z_{os} - z_{lk}}{\Delta_{oslk}^{3}} - \frac{z_{os}}{r_{os}^{3}}\right), \\ &+ f\sum_{\substack{1\leq o \leq p \\ o\neq l}} \sum_{s=1}^{n} m_{os} \left(\frac{z_{os} - z_{lk}}{\Delta_{oslk}^{3}} - \frac{z_{os}}{r_{os}^{3}}\right), \\ &+ f\sum_{\substack{1\leq o \leq p \\ o\neq l}} \sum_{s=1}^{n} m_{os} \left(\frac{z_{os} - z_{lk}}{\Delta_{oslk}^{3}} - \frac{$$

٦

При записи системы уравнений (1) предполагалось, что все тела P_{lk} , P_0 притягиваются по закону Ньютона, но в то же время взаимодействующие один с другим тела P_{lk} не оказывают влияния на движение центрального тела P_0 ввиду $m_{lk} \ll M_0$, то есть рассматривается ограниченный вариант задачи *N*-тел, или планетный случай.

Первая сумма в правой части системы уравнений (1) отражает гравитационное взаимодействие

тела P_{lk} с телами внутри «первого» многоугольника (l = 1), а вторая сумма учитывает гравитационное взаимодействие этого же тела P_{lk} с телами, расположенными в вершинах «второго» (l = 2) и последующих (l = 3, ..., p) многоугольников.

2. Общий вид необходимых и достаточных условий существования гнездовидных плоских центральных конфигураций в задаче (*pn*+1)-тел

Упомянутые условия легко получаются из приведенной выше системы дифференциальных уравнений (1), описывающей движение тел в рамках приведенной постановки задачи. Действительно, будем искать плоские ц.к. Для этого достаточно в уравнениях (1) положить $x_{lk} = \bar{x}_{lk} = \text{const}$, $y_{lk} = \bar{y}_{lk} = \text{const}$, $z_{lk} = \bar{z}_{lk} = \text{const} = 0$, координаты тел, которые вместе с массами (которые позднее будут найдены) m_{lk} , l = 1, ..., p; k = 1, ..., n, собственно, и определяют плоские центральные конфигурации. Поскольку в этом случае имеет место $\ddot{x}_{lk} = \dot{x}_{lk} = 0$, $\ddot{y}_{lk} = \dot{y}_{lk} = 0$, $\ddot{z}_{lk} = \dot{z}_{lk} = 0$, то необходимыми и достаточными условиями существования ц.к. будут (при $m_{lk} > 0, m_{os} > 0$):

$$\begin{split} \omega^{2} \overline{x}_{lk} &= f\left(M_{0} + m_{lk}\right) \frac{\overline{x}_{lk}}{\overline{r}_{lk}^{3}} - \\ &- f \sum_{\substack{j=1\\j \neq k}}^{n} m_{lj} \left(\frac{\overline{x}_{lj} - \overline{x}_{lk}}{\overline{\Delta}_{ljlk}^{3}} - \frac{\overline{x}_{lj}}{\overline{r}_{lj}^{3}}\right) - \\ &- f \sum_{\substack{1 \leq \sigma \leq p \\\sigma \neq l}}^{n} \sum_{s=1}^{n} m_{\sigma s} \left(\frac{\overline{x}_{\sigma s} - \overline{x}_{lk}}{\overline{\Delta}_{\sigma slk}^{3}} - \frac{\overline{x}_{\sigma s}}{\overline{r}_{\sigma s}^{3}}\right); \\ \omega^{2} \overline{y}_{lk} &= f\left(M_{0} + m_{lk}\right) \frac{\overline{y}_{lk}}{\overline{r}_{lk}^{3}} - \\ &- f \sum_{\substack{j=1\\j \neq k}}^{n} m_{lj} \left(\frac{\overline{y}_{lj} - \overline{y}_{lk}}{\overline{\Delta}_{ijlk}^{3}} - \frac{\overline{y}_{lj}}{\overline{r}_{lj}^{3}}\right) - \\ &- f \sum_{\substack{1 \leq \sigma \leq p \\\sigma \neq l}}^{n} \sum_{s=1}^{n} m_{\sigma s} \left(\frac{\overline{y}_{\sigma s} - \overline{y}_{lk}}{\overline{\Delta}_{\sigma slk}^{3}} - \frac{\overline{y}_{\sigma s}}{\overline{r}_{\sigma s}^{3}}\right). \end{split}$$

$$(2)$$

1. Необходимость. Пусть упомянутые ц.к существуют, то есть для известной конфигурации известны ее размеры ($\bar{x}_{lk}, ..., \bar{z}_{lk}, \bar{r}_{lk}, \Delta_{lk}$), величины масс m_{lk}, M_0 в ее вершинах и в центре и квадрат угловой скорости ω^2 вращения конфигурации

относительно центрального тела M_0 , тогда условия (2) выполняются, так как подстановка значений перечисленных переменных и параметров превращает условия (2) в числовые тождества.

2. Достаточность. Пусть условия (2) выполнены. Тогда после исключения квадрата угловой скорости ω^2 из этих уравнений, которое достигается делением этих уравнений на $\bar{x}_{lk} \neq 0, ..., \bar{y}_{lk} \neq 0$ и последующем их вычитании попарно, получается система линейных алгебраических уравнений относительно неизвестных m_{lk} . Масса M_0 может рассматриваться в качестве основного варьируемого параметра, а совокупности значений $\bar{x}_{lk}, ..., \bar{z}_{lk}, \bar{r}_{lk}$ выбираются в соответствии с формой рассматриваемой ц.к. и значением параметра M_0 , который часто выбирается равным единице. При этом оказывается, что дефект матрицы системы алгебраических уравнений $d \geq 1$, и, таким образом, система имеет множество решений относительно m_{lk}, ω^2 .

Используя возможности символьных вычислений математического пакета Maple [15; 16], запишем общий вид относительно угловых скоростей вращения ω_{lk} тел P_{lk} необходимых и достаточных условий существования плоских ц.к. в рамках задачи (4*n*+1)-тел. Для этого последовательно для случаев одного многоугольника, положив в условиях (1) l = 1, затем для двух вложенных один в другой многоугольников (l = 1, 2) и, наконец, для *p* вложенных один в другой многоугольников (l = 1, 2, ..., p - 1, p):

$$l = 1; k = 1, ..., 4;$$

$$\omega_{11}^{2} x_{11} = (M_{0} + m_{11}) \frac{x_{11}}{r_{11}^{3}} - m_{12} \left(\frac{x_{12} - x_{11}}{\Delta_{1211}^{3}} - \frac{x_{12}}{r_{12}^{3}} \right) - m_{13} \left(\frac{x_{13} - x_{11}}{\Delta_{1311}^{3}} - \frac{x_{13}}{r_{13}^{3}} \right) - m_{14} \left(\frac{x_{14} - x_{11}}{\Delta_{1411}^{3}} - \frac{x_{14}}{r_{14}^{3}} \right);$$

$$\omega_{14}^{2} x_{14} = (M_{0} + m_{14}) \frac{x_{14}}{r_{14}^{3}} - m_{11} \left(\frac{x_{11} - x_{14}}{\Delta_{1114}^{3}} - \frac{x_{11}}{r_{11}^{3}} \right) - m_{12} \left(\frac{x_{12} - x_{14}}{\Delta_{1214}^{3}} - \frac{x_{12}}{r_{12}^{3}} \right) - m_{13} \left(\frac{x_{13} - x_{14}}{\Delta_{1314}^{3}} - \frac{x_{13}}{r_{13}^{3}} \right);$$

$$(x \leftrightarrow y), \qquad (3)$$

.

 $-m_{12}$

при l = 1, 2; k = 1, ..., 4 к системе уравнений (3) добавляются

$$\omega_{21}^{2}x_{21} = (M_{0} + m_{21})\frac{x_{21}}{r_{21}^{3}} - m_{11}\left(\frac{x_{11} - x_{21}}{\Delta_{1121}^{3}} - \frac{x_{11}}{r_{11}^{3}}\right) - m_{12}\left(\frac{x_{12} - x_{21}}{\Delta_{1221}^{3}} - \frac{x_{12}}{r_{12}^{3}}\right) - m_{13}\left(\frac{x_{13} - x_{21}}{\Delta_{1321}^{3}} - \frac{x_{13}}{r_{13}^{3}}\right) - m_{14}\left(\frac{x_{14} - x_{21}}{\Delta_{1421}^{3}} - \frac{x_{14}}{r_{14}^{3}}\right) - m_{22}\left(\frac{x_{22} - x_{21}}{\Delta_{2221}^{3}} - \frac{x_{22}}{r_{22}^{3}}\right) - m_{23}\left(\frac{x_{23} - x_{21}}{\Delta_{2321}^{3}} - \frac{x_{23}}{r_{23}^{3}}\right) - m_{24}\left(\frac{x_{24} - x_{21}}{\Delta_{2421}^{3}} - \frac{x_{24}}{r_{24}^{3}}\right);$$

$$\omega_{24}^{2}x_{24} = (M_{0} + m_{24})\frac{x_{24}}{r_{24}^{3}} - m_{11}\left(\frac{x_{11} - x_{24}}{\Delta_{1124}^{3}} - \frac{x_{11}}{r_{11}^{3}}\right) - m_{22}\left(\frac{x_{12} - x_{24}}{\Delta_{1124}^{3}} - \frac{x_{12}}{r_{12}^{3}}\right) - m_{12}\left(\frac{x_{13} - x_{24}}{\Delta_{1124}^{3}} - \frac{x_{13}}{r_{13}^{3}}\right) - m_{12}\left(\frac{x_{13} - x_{24}}{\Delta_{1124}^{3}} - \frac{x_{13}}{r_{11}^{3}}\right) - m_{12}\left(\frac{x_{13} - x_{24}}{\Delta_{1124}^{3}} - \frac{x_{13}}{r_{12}^{3}}\right) - m_{12}\left(\frac{x_{13} - x_{14}}{r_{14}^{3}} - \frac{x_{14}}{r_{14}^{3}}\right) - m_{12}\left(\frac{x_{14} - x_{14}}{r_{14}^{3}} - \frac{x_{14}}{r_{14}^{3}}\right$$

$$-m_{12}\left(\frac{x_{12}-x_{24}}{\Delta_{1224}^{3}}-\frac{x_{12}}{r_{12}^{3}}\right)-m_{13}\left(\frac{x_{13}-x_{24}}{\Delta_{1324}^{3}}-\frac{x_{13}}{r_{13}^{3}}\right)-$$
$$-m_{14}\left(\frac{x_{14}-x_{24}}{\Delta_{1424}^{3}}-\frac{x_{14}}{r_{14}^{3}}\right)-m_{21}\left(\frac{x_{21}-x_{24}}{\Delta_{2124}^{3}}-\frac{x_{21}}{r_{21}^{3}}\right)-$$
$$-m_{22}\left(\frac{x_{22}-x_{24}}{\Delta_{2224}^{3}}-\frac{x_{22}}{r_{22}^{3}}\right)-m_{23}\left(\frac{x_{23}-x_{24}}{\Delta_{2324}^{3}}-\frac{x_{23}}{r_{23}^{3}}\right);$$
$$(x \leftrightarrow y), \qquad (4)$$

при *l* = 1, 2, ..., (*p* – 1), *p*; *k* = 1, ..., 4 к системам уравнений (3), (4) добавляются

$$\begin{split} \omega_{p1}^{2} x_{p1} &= \left(M_{0} + m_{p1}\right) \frac{x_{p1}}{r_{p1}^{3}} - m_{11} \left(\frac{x_{11} - x_{p1}}{\Delta_{11p1}^{3}} - \frac{x_{11}}{r_{11}^{3}}\right) - \\ &- m_{12} \left(\frac{x_{12} - x_{p1}}{\Delta_{12p1}^{3}} - \frac{x_{12}}{r_{12}^{3}}\right) - m_{13} \left(\frac{x_{13} - x_{p1}}{\Delta_{13p1}^{3}} - \frac{x_{13}}{r_{13}^{3}}\right) - \\ &- m_{14} \left(\frac{x_{14} - x_{p1}}{\Delta_{14p1}^{3}} - \frac{x_{14}}{r_{14}^{3}}\right) - m_{21} \left(\frac{x_{21} - x_{p1}}{\Delta_{21p1}^{3}} - \frac{x_{21}}{r_{21}^{3}}\right) - \\ &- m_{22} \left(\frac{x_{22} - x_{p1}}{\Delta_{22p1}^{3}} - \frac{x_{22}}{r_{22}^{3}}\right) - m_{23} \left(\frac{x_{23} - x_{p1}}{\Delta_{23p1}^{3}} - \frac{x_{23}}{r_{23}^{3}}\right) - \\ &- m_{24} \left(\frac{x_{24} - x_{p1}}{\Delta_{24p1}^{3}} - \frac{x_{24}}{r_{24}^{3}}\right) - \dots - \\ &- m_{(p-1)1} \left(\frac{x_{(p-1)1} - x_{p1}}{\Delta_{(p-1)1p1}^{3}} - \frac{x_{(p-1)1}}{r_{(p-1)1}^{3}}\right) - \end{split}$$

$$-m_{14}\left(\frac{\lambda_{12p4}}{\Delta_{14p4}^{3}}, r_{12}^{3}\right) = m_{21}\left(\frac{\lambda_{21}-x_{p4}}{\Delta_{21p4}^{3}}, r_{13}^{3}\right) - m_{21}\left(\frac{x_{21}-x_{p4}}{\Delta_{21p4}^{3}}, r_{21}^{3}\right) - m_{22}\left(\frac{x_{22}-x_{p4}}{\Delta_{22p4}^{3}}, r_{22}^{3}\right) - m_{23}\left(\frac{x_{23}-x_{p4}}{\Delta_{23p4}^{3}}, r_{23}^{3}\right) - m_{22}\left(\frac{x_{22}-x_{p4}}{\Delta_{22p4}^{3}}, r_{22}^{3}\right) - m_{23}\left(\frac{x_{23}-x_{p4}}{\Delta_{23p4}^{3}}, r_{23}^{3}\right) - m_{24}\left(\frac{x_{24}-x_{p4}}{\Delta_{24p4}^{3}}, r_{24}^{3}\right) - \dots - m_{24}\left(\frac{x_{(p-1)1}-x_{p4}}{\Delta_{(p-1)1p4}^{3}}, r_{(p-1)1}^{3}\right) - \dots - m_{(p-1)2}\left(\frac{x_{(p-1)2}-x_{p4}}{\Delta_{(p-1)2p4}^{3}}, -\frac{x_{(p-1)1}}{r_{(p-1)3}^{3}}\right) - m_{(p-1)3}\left(\frac{x_{(p-1)3}-x_{p4}}{\Delta_{(p-1)3p4}^{3}}, -\frac{x_{(p-1)3}}{r_{(p-1)3}^{3}}\right) - m_{(p-1)4}\left(\frac{x_{(p-1)4}-x_{p4}}{\Delta_{(p-1)4p4}^{3}}, -\frac{x_{(p-1)4}}{r_{(p-1)4}^{3}}\right) - m_{(p-1)4}\left(\frac{x_{(p-1)4}-x_{p4}}{\Gamma_{(p-1)4}^{3}}\right) - m$$

$$-m_{p1}\left(\frac{x_{p1}-x_{p4}}{\Delta_{p1p4}^{3}}-\frac{x_{p1}}{r_{p1}^{3}}\right)-m_{p2}\left(\frac{x_{p2}-x_{p4}}{\Delta_{p2p4}^{3}}-\frac{x_{p2}}{r_{p2}^{3}}\right)-m_{p3}\left(\frac{x_{p3}-x_{p4}}{\Delta_{p3p4}^{3}}-\frac{x_{p3}}{r_{p3}^{3}}\right);$$

$$(x \leftrightarrow y) \qquad (5)$$

Символ ($x \leftrightarrow y$) означает, что аналогичные системы уравнений имеют место и для переменных y. Отметим, что приведенные общие условия существования справедливы для любых гнездовидных плоских ц.к. в рамках задачи (4n+1)-тел, например для дельтообразных, трапецеобразных и др.

3. Необходимые и достаточные условия существования гнездовидных плоских центральных конфигураций смешанных форм при иерархической последовательности

Рассмотрим гнездовидные плоские ц.к. в виде последовательно вложенных один в другой p многоугольников разной формы (рис.), что позволяет говорить о ц.к. смешанных форм в классическом варианте. Для уменьшения объема алгебраических преобразований и частичного упрощения изложения алгоритма вычислений ограничимся случаем p = 4, n = 4.

Для удобства выпишем фактические значения координат (x_{lk} , y_{lk}) тел P_{kl} в соответствии с рисунком в виде таблицы.

Координаты тел гнездовидной конфигурации для различных типов четырехугольников Coordinates of nest-shaped bodies for different types of quadrilaterals

k	1	2	3	4
I=1 (квадрат/square)				
<i>X</i> _{1k}	α_{11}	0	$-\alpha_{11}$	0
y _{1k}	0	α ₁₁	0	-α ₁₁
<i>r</i> _{1k}	α ₁₁	α ₁₁	α ₁₁	α ₁₁
I=2 (ромб/rhombus)				
X _{2k}	α_{21}	0	$-\alpha_{21}$	0
y _{2k}	0	β ₂₂	0	-β ₂₂
<i>r</i> _{2k}	α_{21}	β ₂₂	α ₂₁	β ₂₂
I=3 (дельтоид/deltoid)				
X _{3k}	α_{31}	0	$-\alpha_{31}$	0
у _{3k}	0	β ₃₂	0	$-\beta_{34}$
<i>r</i> _{3k}	α_{31}	β ₃₂	α ₃₁	β ₃₄
I=4 (трапеция/trapezoid	(k			
X_{4k}	α_{41}	0	$-\alpha_{43}$	0
y _{4k}	0	α ₄₁	0	-α ₄₃
<i>r</i> _{4k}	α_{41}	α ₄₁	α_{43}	α ₄₃

Подстановка значений координат из таблицы последовательно в системы уравнений (3)–(5) [15] дает (l = 1; k = 1, ..., 4):

а) *первый уровень иерархии* – квадрат, центральное тело шар с массой *M*₀:

$$\omega_{11}^{2} = \omega_{12}^{2} = \omega_{13}^{2} = \omega_{14}^{2} = \omega^{2} = \begin{bmatrix} M_{0} + m \frac{(1 + 2\sqrt{2})}{4} \end{bmatrix} \frac{1}{\alpha^{3}}.$$
 (6)

Таким образом, при последовательной записи условий существования сначала квадратной ц.к. $m_{11} = m_{12} = m_{13} = m_{14} = m$ с центральным телом $M_0 \ l = 1$; k = 1, ..., 4 получается одно уравнение (6) с тремя неизвестными ω^2 , M, m, если считать геометрические размеры ц.к. заданными (α – размер полудиагонали квадрата). Далее учитываем следующее «кольцо» и записываем условия существования ц.к. типа квадрат – ромб – центральное тело – шар;

б) второй уровень иерархии – для двух вложенных один в другой четырехугольников (l = 1, 2; k = 1, ..., 4) к уравнению (6) добавляются два уравнения

$$\omega_{21}^{2} = \omega_{23}^{2} = \left(M_{0} + \frac{1}{4}m_{21}\right)\frac{1}{\alpha_{21}^{3}} + 2m_{22}\frac{1}{\left(\alpha_{21}^{2} + \beta_{22}^{2}\right)^{3/2}} + m_{11}\frac{1}{\alpha_{21}} \times \left(\frac{1}{\left(\alpha_{11} + \alpha_{21}\right)^{2}} - \frac{1}{\left(\alpha_{11} - \alpha_{21}\right)^{2}} + \frac{2\alpha_{21}}{\left(\alpha_{11}^{2} + \alpha_{21}^{2}\right)^{3/2}}\right);$$

$$\omega_{22}^{2} = \omega_{24}^{2} = \left(M_{0} + \frac{1}{4}m_{22}\right)\frac{1}{\beta_{22}^{3}} + 2m_{21}\frac{1}{\left(\alpha_{21}^{2} + b_{22}^{2}\right)^{3/2}} + m_{11}\frac{1}{\beta_{22}} \times \left(\frac{1}{\left(\alpha_{11} + \beta_{22}\right)^{2}} - \frac{1}{\left(\alpha_{11} - \beta_{22}\right)^{2}} + \frac{2\beta_{22}}{\left(\alpha_{11}^{2} + \beta_{22}^{2}\right)^{3/2}}\right); (7)$$

в) третий уровень иерархии – для трех вложенных один в другой четырехугольников (l = 1, 2, 3; k = 1, ..., 4) к уравнениям (6), (7) добавляются еще три уравнения:

$$\begin{split} \omega_{31}^{2} &= \omega_{33}^{2} = \left(M_{0} + \frac{1}{4}m_{31}\right)\frac{1}{\alpha_{31}^{3}} + \\ &2m_{22}\frac{1}{\left(\alpha_{31}^{2} + \beta_{22}^{2}\right)^{3/2}} + m_{11}\frac{1}{\alpha_{31}} \times \\ \left(\frac{1}{\left(\alpha_{11} + \alpha_{31}\right)^{2}} - \frac{1}{\left(\alpha_{11} - \alpha_{31}\right)^{2}} + \frac{2\alpha_{31}}{\left(\alpha_{21}^{2} + \alpha_{21}^{2}\right)^{3/2}}\right) + \\ &+ m_{21}\frac{1}{\alpha_{31}}\left(\frac{1}{\left(\alpha_{21} + \alpha_{31}\right)^{2}} - \frac{1}{\left(\alpha_{21} - \alpha_{31}\right)^{2}}\right) + \\ &+ m_{32}\frac{1}{\left(\beta_{22}^{2} + \alpha_{31}^{2}\right)^{3/2}} + m_{34}\frac{1}{\left(\beta_{34}^{2} + \alpha_{31}^{2}\right)^{3/2}}; \end{split}$$

$$\omega_{32}^{2} = (M_{0} + m_{32})\frac{1}{\beta_{32}^{3}} + \frac{1}{2m_{21}}\frac{1}{(\alpha_{21}^{2} + \beta_{32}^{2})^{3/2}} + m_{11}\frac{1}{\beta_{32}} \times \left(\frac{1}{(\alpha_{11} + \beta_{32})^{2}} - \frac{1}{(\alpha_{11} - \beta_{32})^{2}} + \frac{2\beta_{32}}{(\alpha_{11}^{2} + \beta_{32}^{2})^{3/2}}\right) + \frac{1}{2m_{32}} \times \left(\frac{1}{(\beta_{22} + \beta_{32})^{2}} - \frac{1}{(\beta_{22} - \beta_{32})^{2}}\right) + 2m_{31} \times \frac{1}{(\beta_{32}^{2} + \alpha_{31}^{2})^{3/2}} + m_{34}\frac{1}{\beta_{32}}\left(\frac{1}{(\beta_{32} + \beta_{34})^{2}} - \frac{1}{\beta_{34}^{2}}\right);$$
$$\omega_{34}^{2} = (M_{0} + m_{34})\frac{1}{\beta_{34}^{3}} + \frac{2m_{21}}{(\alpha_{21}^{2} + \beta_{34}^{2})^{3/2}} + m_{11}\frac{1}{\beta_{34}} \times \left(\frac{1}{(\alpha_{11} + \beta_{34})^{2}} + \frac{1}{(\beta_{34} - \alpha_{11})^{2}} + \frac{2\beta_{34}}{(\alpha_{11}^{2} + \beta_{34}^{2})^{3/2}}\right) + \frac{1}{m_{22}}\frac{1}{\beta_{34}}\left(\frac{1}{(\beta_{22} + \beta_{34})^{2}} - \frac{1}{(\beta_{22} - \beta_{34})^{2}}\right) + 2m_{31} \times \frac{1}{(\beta_{34}^{2} + \alpha_{31}^{2})^{3/2}} + m_{32}\frac{1}{\beta_{34}}\left(\frac{1}{(\beta_{32} + \beta_{34})^{2}} - \frac{1}{\beta_{32}^{2}}\right);$$
(8)

г) четвертый уровень иерархии – для четырех вложенных один в другой четырехугольников (l = 1, ..., 4; k = 1, ..., 4) к уравнениям (6)–(8) добавляются еще четыре уравнения:

$$\omega_{41}^{2} = \left(M_{0} + \frac{1}{8}m_{41}\right)\frac{1}{\alpha_{41}^{3}} + \frac{1}{2m_{22}}\frac{1}{\left(\alpha_{41}^{2} + \beta_{22}^{2}\right)^{3/2}} + m_{11}\frac{1}{\alpha_{41}} \times \frac{1}{2m_{41}^{2}} + \frac{1}{2m_{41$$

$$\times \left(\frac{1}{(\alpha_{11} + \alpha_{43})^{2}} - \frac{1}{(\alpha_{11} - \alpha_{43})^{2}} + \frac{2\alpha_{43}}{(\alpha_{11}^{2} + \alpha_{43}^{2})^{3/2}} \right) + \\ + m_{32} \frac{1}{(\beta_{32}^{2} + \alpha_{43}^{2})^{3/2}} + m_{21} \frac{1}{\alpha_{41}} \times \\ \times \left(\frac{1}{(\alpha_{21} + \alpha_{43})^{2}} - \frac{1}{(\alpha_{21} - \alpha_{43})^{2}} \right) + \\ + m_{31} \frac{1}{\alpha_{43}} \left(\frac{1}{(\alpha_{31}^{2} + \alpha_{43}^{2})^{2}} - \frac{1}{(\alpha_{31}^{2} - \alpha_{43})^{2}} \right) + \\ + m_{31} \frac{1}{\alpha_{43}} \left(\frac{1}{(\alpha_{41}^{2} + \alpha_{43}^{2})^{2}} - \frac{1}{\alpha_{41}^{2}} + \frac{\alpha_{43}}{(\alpha_{41}^{2} + \alpha_{43}^{2})^{3/2}} \right) + \\ + m_{34} \frac{1}{(\beta_{34}^{2} + \alpha_{43}^{2})^{3/2}}; \\ \omega_{44}^{2} = \left(M_{0} + \frac{1}{8} m_{43} \right) \frac{1}{\alpha_{43}^{3}} + m_{11} \frac{1}{\alpha_{41}} \times \\ \times \left(\frac{1}{(\alpha_{11}^{2} + \alpha_{43}^{2})^{2}} - \frac{1}{(\alpha_{11}^{2} - \alpha_{43}^{2})^{2}} + \frac{2\alpha_{43}}{(\alpha_{11}^{2} + \alpha_{43}^{2})^{3/2}} \right) \times \\ \times 2m_{21} \frac{1}{(\alpha_{21}^{2} + \alpha_{43}^{2})^{3/2}} + 2m_{31} \frac{1}{(\alpha_{31}^{2} + \alpha_{43}^{2})^{3/2}} + \\ + m_{32} \frac{1}{\alpha_{43}} \left(\frac{1}{(\beta_{32}^{2} + \alpha_{43}^{2})^{2}} - \frac{1}{\beta_{32}^{2}} \right) + m_{34} \frac{1}{\alpha_{43}} \times \\ \times \left(\frac{1}{(\beta_{34}^{2} - \frac{1}{(\beta_{34}^{2} - \alpha_{43}^{2})^{2}} - \frac{1}{\alpha_{41}^{2}} + \frac{\alpha_{43}}{(\alpha_{41}^{2} + \alpha_{43}^{2})^{3/2}} \right).$$
(9)

4. Алгоритм последовательных вычислений

Число выписанных уравнений на последнем четвертом уровне иерархии равно 10, однако они образуют систему из 42 уравнений, если записать их в виде попарных разностей вида $\omega_{11}^2 - \omega_{21}^2 = 0$, $\omega_{11}^2 - \omega_{22}^2 = 0$,..., $\omega_{43}^2 - \omega_{44}^2 = 0$, соответствующих исключению из системы уравне-

ний квадрата угловой скорости ω^2 и отражающих тот факт, что все 16 тел, расположенных в вершинах четырех многоугольников гнездовидной плоской ц.к., должны вращаться относительно их общего центра M_0 (который, строго говоря, не является центром масс системы тел) с одной и той же угловой скоростью, в то время как само тело с массой M_0 , которое на рисунке не отражено, каким-то образом движется относительно общего центра масс.

Отмечаем, что полученная выше система алгебраических уравнений имеет иерархическую структуру, подобную получаемой при реализации в системе алгебраических уравнений прямого хода преобразований в процессе решения систем линейных алгебраических уравнений методом исключения неизвестных Гаусса. Правда, полученная таким образом «трапецевидная» форма расширенной матрицы системы уравнений имеет «перевернутый» вид, поскольку строки с наименьшим числом неизвестных с ненулевыми коэффициентами оказываются вверху, а не внизу, как это бывает в классическом методе Гаусса.

Действительно, первое уравнение содержит лишь массу M и неизвестные ω_{11} , α_{11} , m_{11} и образует первый уровень иерархии. Далее добавляется второй уровень из трех уравнений, содержащих массу M и неизвестные α_{21} , α_{22} , m_{21} , m_{22} , так как неизвестные с индексом 11 уже оказываются найденными из решения уравнения предыдущего уровня. Следующий третий уровень иерархии образуется подсистемой из 12 уравнений, содержащих массу M и неизвестные α_{31} , α_{32} , α_{34} , $m_{31}, m_{32}, m_{34},$ так как неизвестные с индексами 11, 21, 22 уже найдены из решения уравнений предыдущего (второго) уровня. Наконец, четвертый уровень иерархии образуется подсистемой из 26 уравнений, содержащих массу М и неизвестные α₄₁, α₄₃, m₄₁, m₄₃, так как неизвестные с индексами 11, 21, 22, 31, 32 и 34 уже найдены из решения уравнений предыдущего уровня.

Считая геометрические размеры α_{lk} рассматриваемых в ц.к. многоугольников заданными, получим переопределенную систему линейных алгебраических уравнений относительно неизвестных масс m_{lk} , которых из-за наличия симметрий оказывается всего 8 (m_{11} – для квадрата; m_{21} , m_{22} – для ромба; m_{31} , m_{32} , m_{34} – для дельтоида; m_{31} , m_{33} – для трапеции). Используя возможности

Марle, выписав последовательно 42 упомянутые попарные разности $\omega_{11}^2 - \omega_{21}^2 = 0$, $\omega_{11}^2 - \omega_{22}^2 = 0$,..., $\omega_{43}^2 - \omega_{44}^2 = 0$, получим систему линейных алгебраических уравнений вида, которая имеет множество решений относительно масс при условии наличия переменных значений центральной массы и размеров многоугольников.

$$\sum_{i=1}^{42} (a_{i1}m_{11} + a_{i2}m_{21} + a_{i3}m_{22} + a_{i4}m_{31} + a_{i5}m_{32} + a_{i6}m_{33} + a_{i7}m_{41} + a_{i8}m_{42}) = a_{i9}M_0.$$
(10)

Заключение

Предложен и описан новый подход к доказательству существования обобщенных плоских центральных конфигураций в рамках общей задачи (pn+1)-тел, в которой p вложенных один в другой выпуклых n-угольников, в вершинах которых, в свою очередь, расположены n точечных, строго говоря, разных масс m_{lk} , вращаются с постоянной угловой скоростью вокруг центрального тела M_0 . Центральное тело может иметь сферическую (шар) или несферическую структуру (эллипсоид вращения или трехосный эллипсоид). В каждом из случаев соответствующие необходимые и достаточные условия существования ц.к. имеют различный вид.

Список литературы / References

1. Lei H, Huang X. Quadrupole and octupole order resonances in non-restricted hierarchical planetary systems. *Monthly Notices of the Royal Astronomical Society*. 2022; 515(1):1086–1103. https://doi.org/10.1093/mnras/stac1757

2. Tory M, Grishin E, Mandel I. Empirical stability boundary for hierarchical triples. *Publications of the Astronomical Society of Australia*. 2022;39:7. https://doi.org/10.1017/pasa.2022.57

3. Siddique MAR, Kashif AR. The restricted six-body problem with stable equilibrium points and a rhomboidal configuration. *Hindawi Advances in Astronomy*. 2022; 2022:8100523. https://doi.org/10.1155/2022/8100523

4. Han S, Lee H-W, Kim K-W. Orbital dynamics in centrosymmetric systems. *Physical Review Letters*. 2022;128: 176601. https://doi.org/10.1103/PhysRevLett.128.176601

5. Llibre J, Moeckel R, Sim C. Central configurations, periodic orbits, and hamiltonian systems. *Advanced Courses in Mathematics* (CRM). Barcelona, Basel: Springer; 2015. p. 105–167. https://doi.org/10.1007/978-3-0348-0933-7 6. Zhuravlev SG. Proof of the existence theorem of plane central configurations with an ellipsoid of rotation in the center in the problem of (4*n*+1)-bodies. *Theoretical and Applied Problems of Nonlinear Analysis. Problems of Nonlinear Analysis.* Moscow: Dorodnicyn Computing Centre of RAS; 2012. p. 186–215. (In Russ.)

Журавлев С.Г. Доказательство теоремы существования плоских центральных конфигураций с эллипсоидом вращения в центре в задаче (4n+1)-тел // Теор. и прикл. задачи нелинейного анализа. М.: Вычислительный центр имени А.А. Дородницына Российской академии наук, 2012. С. 186–215.

7. Antonidou K, Libert A.-S. Origin and continuation of 3/2, 5/2, 3/1, 4/1 and 5/1 resonant periodic orbits in the circular and elliptic restricted three-body problem. *Celestial Mechanics and Dynamical Astronomy*. 2018;130:41. https://doi.org/10.1007/s10569-018-9834-8

8. Oks E. Orbital dynamics in the restricted three body problem: overview of recent analytical advances obtained by separating rapid and slow subsystems in non-planar configurations. *Dynamics*. 2021;1:95–124. https://doi.org/10.3390/dynamics1010006

9. Veras D. Relating binary-star planetary systems to central configurations. *Monthly Notices of the Royal Astronomical Society*. 2016;462(3):3368. https://doi.org/10.1093/mnras/stw1873

10. Hansen B, Naoz S. The stationary points of the hierarchical three-body problem. *Monthly Notices of the Royal Astronomical Society*. 2020;499(2):1682–1700. https://doi.org/10.1093/mnras/staa2602

11. Andoyer MH. Sur les solutions periodiques voisines des positions d'equilibre relatif, dans le probleme des n corps. *Bulletin Astronomique, Paris*. 1906;23:129–146.

12. Elmabsout B. Comptes rendus de l'Académie des Sciences. *Mechanics. Mécanique. Série II. Fascicule b.* (vol. 328). Elsevier; 2000.

13. Zhuravlev SG. On existence of planar central configurations in relative noninertial coordinate systems. *International Journal on Pure and Applied Mathematics, Classical and Celestial Mechanics, Cosmodynamics.* 2012;(1):62–74. (In Russ.)

Журавлев С.Г. О существовании плоских центральных конфигураций в относительных неинерциальных системах координат // Международный журнал по теоретической и прикладной математике, классической и небесной механике и космодинамике. 2012. № 1. С. 49–61.

14. Pollard H. *Mathematical introduction to celestial mechanics*. London: Prentice-Hall International Inc.; 1966. https://doi.org/10.2307/3612975

Поллард Г. Математическое введение в небесную механику / пер. с англ. Э.М. Эпштейна. М. – Ижевск: Институт компьютерных исследований, 2012. 188 с.

15. Lalande F, Trani AA. Predicting the stability of hierarchical triple systems with convolutional neural networks. *The Astrophysical Journal*. 2022;938(1):1–9. https://doi.org/10.3847/1538-4357/ac8eab

16. Perepelkina YuV. Mathematical modeling of systems of nonlinear equations using the Maple visual instruments. *New Aspects of Science and Education: Thesises of Reports International Science and Practical Conference, Moscow, 11 April* 2019. Moscow: MAKS Press; 2019. p. 122–123. (In Russ.)

Перепелкина Ю.В. Математическое моделирование поиска решений нелинейных систем уравнений визуальными средствами Maple // Новое в науке и образовании: сборник тезисов докладов международной ежегодной научно-практической конференции, Москва, 11 апреля 2019 г. М.: МАКС Пресс, 2019. С. 122–123.

Сведения об авторах

Перепелкина Юлианна Вячеславовна, кандидат физико-математических наук, доцент Высшей школы сервиса, Российский государственный университет сервиса и туризма, Российская Федерация, 141221, Черкизово, ул. Главная, д. 99; ORCID: 0000-0001-8115-8253, Scopus Author ID: 25925321600, eLIBRARY SPIN-код: 5157-4093; amadeycity@yandex.ru

Задиранов Александр Никитич, доктор технических наук, профессор кафедры процессов горения и экологической безопасности, Учебно-научный комплекс процессов горения и экологической безопасности, Академия государственной противопожарной службы, Российская Федерация, 129366, Москва, ул. Бориса Галушкина, д. 4; ORCID: 0000-0001-7787-8290, Scopus Author ID: 57214856655, eLIBRARI SPIN-код: 2873-6465; zadiranov@mail.ru

About the authors

Yulianna V. Perepelkina, Candidate of Physical and Mathematical Sciences, Assistant Professor of High School of Service, Russian State University of Torusim and Service, 99 Glavnaya St, Cherkizovo, 141221, Russian Federation; ORCID: 0000-0001-8115-8253, Scopus Author ID: 25925321600, eLIBRARY SPIN-code: 5157-4093; amadeycity@yandex.ru

Alexander N. Zadiranov, Doctor of Technical Sciences, Professor of Combustion Behavior and Environmental Safety Department, Educational and Scientific Complex of Combustion Processes and Environmental Safety, State Fire Academy of EMERCOM of Russia, 4 Borisa Galushkina St, Moscow, 129366, Russian Federation; ORCID: 0000-0001-7787-8290, Scopus Author ID: 57214856655, eLIBRARI SPIN code: 2873-6465; zadiranov@mail.ru