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 Abstract. A method for designing low-energy trajectory of transfer to the Moon 

with the insertion of a spacecraft into a low circumlunar orbit is proposed. 

The analysis of this trajectory is based on the solution of a boundary value 

problem for the system of differential equations of the restricted four-body 

problem. The trajectory of the low-energy flight passes through a region of 

space where the gravitational attraction of the Earth, the Moon, and the Sun 

tend to cancel. The trajectory turns out to be very sensitive to the initial 

conditions of the spacecraft motion. Difficulties arise in solving the bound-

ary value problem. Weak stability boundary issue appears. An additional 

difficulty in designing the trajectory of a low-energy transfer of a spacecraft 

is related to the multi-extremality of the optimization problem under considera-

tion. The authors assume that the transfer trajectory passes in the vicinity of 

the libration point L1 or L2 of the Earth – Moon system and introduces 

some restrictions on the velocity vector of the spacecraft at the moment 

the spacecraft passes the vicinity of the libration point. This assumption and 

the use of enumeration in space of the two main parameters of the transfer 

pattern allows to find an initial approximation for the low-energy transfer 

trajectory. 
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 Аннотация. Предложен метод проектирования низкоэнергетических 

перелетов к Луне с выведением космического аппарата на низкую около-

лунную орбиту. Анализ траектории низкоэнергетического лунного пере-

лета основывается на решении краевой задачи для системы дифферен-

циальных уравнений ограниченной задачи четырех тел. Траектория 

низкоэнергетического перелета проходит через область пространства, 

где гравитационное притяжение Земли, Луны и Солнца очень близки. 

Поэтому траектория оказывается крайне чувствительной к начальным 

условиям движения космического аппарата и возникает проблема при 

решении краевой задачи. Дополнительная трудность проектирования 

траектории низкоэнергетического лунного перелета связана с много-

экстремальностью рассматриваемой оптимизационной проблемы. В ис-

следовании выдвигается предположение, что перелетная траектория про-

ходит в окрестности точки либрации L1 или L2 системы Земля – Луна 

и вводятся некоторые ограничения на вектор скорости космического 

аппарата в момент прохождения им окрестности точки либрации. 

Данное предположение с использованием перебора в пространстве 

двух основных параметров схемы перелета позволяет найти начальное 

приближение для траектории низкоэнергетического перелета. 

Ключевые слова:  

низкоэнергетическая траектория, 

траектория полета, Луна, гравитационные 

возмущения, импульс скорости 
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The aim of the paper is to develop the method 

for designing low-energy trajectories for the flight to 

the Moon with the spacecraft (SC) insertion into the 

low Moon orbit (LMO, low circumlunar orbit). Tra-

ditional two impulses pattern for flights to the LMO 

require a relatively large braking impulse while 

the transition from the trajectory approaching the Moon 

to the circumlunar orbit takes place. This velocity 

impulse turns out to be greater than 800 m/s if 

the height of the LMO is 100 km. There is a possibi- 

lity (primarily due to the use of solar gravitational 

perturbations) to reduce this velocity impulse. That is 

why; this type of trajectory is called as low-energy 

transfer trajectory. In literature, weak stability 

boundary (WSB-trajectories) is often used for low-

energy trajectories of lunar flights. In this paper, 

a method for designing low-energy flight trajectories 

is proposed. 

Finding low-energy lunar flights can be consi- 

dered as an important part of the theory of lunar 

flights. The development of this theory, the deve- 

lopment of methods for designing low-energy tra-

jectories of lunar flights, and finding the flight pat-

terns and trajectories of such flights are the subject 

of research by many teams and many researchers. 

It is supposed that on low-energy flight trajec-

tories: 

https://orcid.org/0000-0002-0138-6190
https://orcid.org/0009-0000-1159-3292
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– there must be a section where the perturbing 

action of the Sun provides the approach of the SC to 

the vicinity of the Moon with a small value of the 

selenocentric velocity, 

– on the trajectory of the SC approach to the 

circumlunar orbit, gravitational perturbations from 

the Earth should provide the decrease in the energy 

of the selenocentric motion of the SC and the “tem-

porary capture” of the SC by the Moon (the energy 

constant of the selenocentric osculating orbit be-

comes negative over a long time interval). 

At present, low-energy lunar trajectories are reali-

ties and they have been proven not only theoretically, 

but also practically. These projects were successfully 

implemented using the considered flight trajectories: 

the Hiten project (MUSES-A), the ARTEMIS project 

and the GRAIL project. The problem of analyzing 

low-energy trajectories to the Moon is considered in 

many works [1–11]. Some of these (in particular, in [1]) 

propose methods for finding low-energy lunar trajec-

tories. However, despite the fact that some of the 

methodological ideas used in these works are very 

interesting, the problem cannot be considered that it 

had been solved. In the present work, first of all, 

due to the narrowing of the area of the analyzed 

flight trajectories, it is possible to propose an al- 

gorithm for designing the trajectories of low-energy 

lunar trajectories. 

The problem of finding a rational pattern for 

the flight from the low Earth’s orbit (LEO) to 

the LMO is considered. The propulsion system of 

the SC is supposed to be chemical. In order not to 

tie the study to the characteristics of the used chem-

ical propulsion system, the impulse approximation 

of active sites is used.  

Many characteristics of LEO are considered 

to be known and it is considered as low circular. 

The orbital inclination is considered to be given. 

The longitude of the ascending node of the orbit (Ω) 

is a chosen parameter of the flight pattern. The start-

ing point from the described orbit is also considered 

as a chosen parameter. It is determined by the lati-

tude argument of the starting point (uo) from LEO. 

The target orbit of the artificial satellite of 

the Moon is assumed to be low circular orbit. 

The height of this orbit is assumed to be given. Note 

that the developed technique makes it possible to 

design launch trajectories to high circular circumlu-

nar orbits, but the energy gain from the analyzed 

lunar flight pattern may turn out to be less signifi-

cant than for flights to a low orbit. The fact is that 

when launching the SC into high circumlunar orbits, 

it is possible to use a three-impulse-maneuvering 

pattern in the vicinity of the Moon. Such a flight 

pattern may turn out to be more profitable than 

the traditional single-pulse pattern when launching 

the SC into high circumlunar orbits. 

There is no strict definition of the concept of low-

energy lunar flight. These flights are based on the 

fundamental possibility of using a ballistic flight to 

the Moon, when the SC is temporarily captured by the 

Moon without any rocket-dynamic maneuver (without 

turning on the SC engine). Temporal capture is cha- 

racterized by the negative energy of the osculating 

selenocentric orbit of the SC. That is, the eccentricity 

of the osculating selenocentric trajectory of the SC 

becomes less than one. The selenocentric osculating 

orbit of the SC is a highly elongated elliptical orbit. 

From the point of view of the practice of lunar 

flight, the temporary capture trajectory itself is to be 

unlikely interested. For practice, the SC must be 

inserted into some given target orbit. It is impossi-

ble using of the SC propulsion system. Therefore, 

it is supposed to use a chemical propulsion system 

when approaching the Moon, ensures the transfer of 

the SC to the given circumlunar orbit. To do this, 

it is necessary that the height of the circumlunar 

orbit of the mentioned selenocentric trajectory be no 

more than the height of the final circumlunar orbit. 

Then there is a possibility to realize the deceleration 

impulse of the speed, which ensures the flight to 

the final circumlunar orbit. 

The following pattern of the flight to the Moon 

is analyzed. The SC on the LEO is given the veloci-

ty impulse that increases the velocity of the SC 

without changing the direction of the velocity vec-

tor. This velocity impulse provides a transition to 

the highly elongated osculating geocentric orbit, 

the apogee radius of which is greater than the radius 

of the Earth's gravity sphere. Three celestial bodies 

actively influence the formation of the further flight 

trajectory: the Earth, the Sun and the Moon. Due to 

the strong solar gravitational perturbation, the SC 

enters the vicinity of the Moon with a relatively low 

selenocentric velocity. Subsequently, the SC ap-

proaches the Moon and its height above the lunar 



 

 

surface becomes equal to the given height of the 

circumlunar orbit. At this moment, the SC is given 

by velocity impulse, which ensures the movement 

of the SC along the target circumlunar orbit. 

In the general case, the problem of finding a ra-

tional trajectory for the flight to the circumlunar 

orbit can be formulated as follows. Find the following 

parameters of the flight pattern: the date of start (Tst) 

at the analyzed given epoch, the longitude of the 

ascending node of the LEO (Ω), the latitude argu-

ment of the starting point (uo), the magnitude of the 

accelerating velocity impulse at the start (∆V1), 

the flight time to the target orbit of the artificial sa- 

tellite of the moon (tp), the magnitude and direction 

of the braking velocity impulse at the end point of 

the flight trajectory to the moon (∆Vbr) in order to: 

a) the SC perform the transport task (the SC 

ended up on a circumlunar trajectory of a given 

height) and 

b) the flight required minimal energy input. 

Instead of the magnitude of the accelerated ve-

locity impulse ∆V1, we will consider the apogee 

radius of the osculating orbit, to which the SC is 

transferred by this velocity impulse ra. We will call 

this orbit the intermediate one. The entire flight tra-

jectory in the formulation under consideration is 

completely determined by the initial conditions of 

the SC motion when starting from LEO, that is, 

by the values of four characteristics: Tst, Ω, uo, ra. 

The conditions of motion at the end-point of the 

known flight trajectory depend on the flight time tp. 

With this formulation of the problem, the execution 

of the transport task can be reduced to satisfying 

the following two conditions of the equality type. 

1. At the end point of the flight trajectory, the SC 

distance from the Moon's surface must be equal to 

the height of the LMO Hf. That is, the magnitude of 

the radius vector of the SC relative to the Moon was 

equal to the sum of the radius of the Moon (RMoon) 

and the height of the orbit (Hf) 

rSC_Moon = RMoon + Hf.                    (1) 

2. The radius vector of the SC relatively to the 

Moon and its velocity vector to the Moon must pro-

vide a given inclination of the target circumlunar 

orbit. The condition can be written using the ex-

pression for the unit vector of the angular momen-

tum vector of the selenocentric orbit in the form: 

SC_Moon SC_Moon

SC_Moon SC_Moon

[ ]
cos( ).

[ ]

z
i=

r V

r V
               (2) 

In the last equality, the expression in square 

brackets is the cross product of the selenocentric 

radius of the SC and its selenocentric velocity (an-

gular momentum vector). The subscript z denotes 

the projection of the angular momentum vector onto 

the z-axis of the selenocentric equatorial coordinate 

system (the Moon's axis of rotation). The denomi-

nator of the left side of the equality uses the modu-

lus of the angular momentum vector. i on the right 

side of the equation is the given inclination of the 

plane of the target circumlunar orbit. For the often-

analyzed case of a polar circumlunar orbit, the last 

condition takes the form SC_Moon SC_Moon[ ] 0.z =r V  

The listed two conditions must be satisfied by 

the choice of five parameters of the flight pattern: 

Tst, Ω, uo, ra, and tp. Thus, the execution of the 

transport task is reduced to finding the flight pattern 

parameters that satisfy satisfy the two listed condi-

tions of the equality type. It is clear that there are 

many solutions to a problem in which the number of 

unknowns is greater than the number of conditions 

of the equality type in the general case. We may be 

interested only in those solutions that require mini-

mal energy for the flight. Two variants of the flight 

pattern optimization criterion are considered. In one 

of them, the summary velocity impulse (ΔVΣ, 

the sum of the magnitudes of the velocity impulse 

departing from the Earth ΔV1 and the breaking im-

pulse of velocity carried out in the vicinity of the 

Moon when the SC is inserted into the LMO ΔVbr): 

ΔVΣ = ΔV1 + ΔVbr is considered as the optimization 

criterion. In the second variant, only the velocity 

impulse, which is carried out in the vicinity of the 

Moon during the insertion of the SC into the LMO 

(ΔVbr) is considered as optimization criterion. 

From the point of view of the practical imple-

mentation of the considered maneuver, the second 

criterion is interesting because of practical imple-

mentation of the considered maneuver better per-

fom. The fact is that the first impulse of velocity is 

imparted to the SC in the LEO by the upper stage, 

and the margin of the characteristic velocity is quite 

large. In this case, a relatively small increase in the 

fueling of this block during the considered maneu-

ver (a small increase in the magnitude of the first 

velocity impulse) leads to a strong increase in the 

apogee of the geocentric trajectory of the SC, which 
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is required to implement the trajectory of a low-

energy flight to the Moon. The braking impulse of 

velocity in the vicinity of the Moon is performed 

using the SC engine itself, using the fuel of the pro-

pulsion system of the SC. That is why the expedien-

cy of using a low-energy lunar flight pattern is 

often proved by analyzing the possibility of reducing 

the decelerated impulse of velocity in the vicinity of 

the Moon, without paying attention to the magnitude 

of the velocity impulse departing from the Earth. 

From the point of view of the developed metho- 

dology for designing low-energy lunar trajectories, 

the choice of one of the two listed criteria is unprinci-

pled. In the process of numerical analysis, the authors 

used both the first and second performance indicators. 

For practice – example, apparently, it is natural to 

formulate the problem in the following way: consider 

the magnitude of the decelerated velocity impulse as 

an optimization criterion, but introduce an upper lim-

it on the magnitude of the velocity impulse of depart-

ing from the Earth. When analyzing a specific lunar 

mission, it is necessary to move from the impulsive 

formulation to the formulation of the problem with 

finite thrust, while the optimization criterion is to use 

the inserted mass into the circumlunar orbit. 

Thus, the mathematical formulation of the prob-

lem of finding patterns of low-energy flight trajecto-

ries when launching the SC into circumlunar orbits 

can be as follows. 

Find such five parameters of the flight pattern: 

Tst, Ω, uo, ra, tp, which ensure the satisfaction of 

the two conditions listed above (1), (2) and provide 

a minimum indicator of energy costs or in the form 

ΔVΣ = ΔVΣ (Tst, Ω, uo, ra, tp) → min,         (3) 

or in the form 

ΔVbr = ΔVbr (Tst, Ω, uo, ra, tp) → min.        (4) 

The mathematical formulation of the problem 

involves finding the minimum of a function of five 

variables when two conditions of the equality type 

are satisfied (constrained optimization problem). 

It is possible to reformulate the problem so that 

the number of equality-type conditions is reduced to 

one condition. This is due to the possibility of 

choosing the velocity impulse during the transition 

to a LMO not as purely braking, but in an arbitrary 

direction. In this case, the only condition of the 

equality type will be the condition for the SC to 

reach a point in the vicinity of the Moon with a given 

height (condition (1)). By choosing the velocity im-

pulse vector ΔVbr, it is always possible to ensure 

the subsequent movement of the SC along a circular 

orbit with a given inclination, if the declination 

of the SC selenocentric radius vector relative to 

the lunar equator at the end point of the flight trajec-

tory is less than the given inclination of the circum-

lunar orbit. For a typical variant of a polar circum-

lunar orbit, this constraint is always satisfied. 

Fundamentally, a decrease in the number of 

satisfied equality constraints can have a favorable 

effect on the convergence of the iterative process of 

searching for a rational flight pattern and is consi- 

dered as an important methodological technique. 

To describe the motion of the SC during its flight 

to the Moon, the system of differential equations of 

the restricted four-body problem is used. On the en-

tire flight trajectory, the gravitational effects of the 

Earth, the Moon and the Sun are taken into account 

as material points. The position of celestial bodies is 

determined using the DE-406 ephemeris software. 

The entire trajectory is divided into geocentric and 

selenocentric sections. Since all gravitational forces 

are taken into account in both sections, the choice of 

the trajectory split point has practically no effect on 

the accuracy of the calculation. This choice is related 

to the technique used for finding the low-energy 

flight trajectory and will be explained below. 

The analysis of the trajectory sections was car-

ried out in geocentric and selenocentric coordinate 

systems, the main plane of which was chosen to be 

the plane of the ecliptic of the J2000 epoch. The axes 

of these coordinate systems are parallel. The trajecto-

ry sections used their own dimensionless variables.  

The following system of differential equations was 

used to analyze the geocentric section of SC trajectory: 

Moon Sun3

Moon Sun3

Moon Sun3

1
Φ Φ ;

1
Φ Φ ;

1
Φ Φ ;

; ; .

x
x x

y

y y

z
z z

x y z

dV
x

dt r

dV
y

dt r

dV
z

dt r

dx dy dz
V V V

dt dt dt


= − + + 




= − + + 

= − + +


= = =


          (5) 



 

 

The above differential equations use dimen-

sionless characteristics: x, y, z are the components 

of the geocentric radius-vector of the spacecraft in 

the ecliptic coordinate system; 
2 2 2r x y z= + +  is 

the value of this radius vector; Vx, Vy, Vz are the 

components of the spacecraft geocentric inertial 

velocity; ΦMoonx, ΦMoony, ΦMoon are the components 

of the perturbing acceleration caused by Moon; 

ΦSunx, ΦSuny, ΦSunz are the components of the per-

turbing acceleration caused by the Sun; t is the time. 

The components of the perturbing acceleration 

from the Moon are: 

Moon Moon

3 3Moon Moon
SC_Moon Moon

Moon Moon

3 3Moon Moon
MoonSC_Moon

Moon Moon

3 3Moon Moon
SC_Moon Moon

Φ μ ;

Φ μ ;

Φ μ ,

x b

y b

z b

x x x

r r

y y y

r r

z z z

r r

− 
−=  

 
 

− 
−=   

 

− 
−=  

 
 

 

(6) 

where μMoonb is the dimensionless gravitational con-

stant of the Moon (ratio of the gravitational constant 

of the Moon to the gravitational constant of the 

Earth) Moon
Earth

Earth

μ
μ

μ
b = ; xMoon, yMoon, zMoon are com-

ponents of the radius-vector of the Moon relative to 

the Earth; 
2 2 2

Moon Moon Moon Moonr x y z= + +  is 

the value of this radius vector; SC_Moonr =

2 2 2
Moon Moon Moon( ) ( ) ( )x x y y z z= − + − + −  – the 

value of the radius-vector of the spacecraft relative 

to the Moon. 

The components of the perturbing acceleration 

from the Sun are: 

Sun Sun

3 3Sun Sun
SC_Sun Sun

Sun Sun

3 3Sun Sun
SC_Sun Sun

Sun Sun

3 3Sun Sun
SC_Sun Sun

Φ μ ;

Φ μ ;

Φ μ ,

x b

y b

z b

x x x

r r

y y y

r r

z z z

r r

− 
−=  

 
 

− 
−=  

 
 

− 
−=  

 
 

 

(7) 

where μSunb is the dimensionless gravitational con-

stant of the Sun (ratio of the gravitational constant 

of the Sun to the gravitational constant of the Earth 

Sun
Sun

Earth

μ
μ =

μ
b ); xSun, ySun, zSun are the components of 

the radius-vector of the Sun relative to the Earth; 

2 2 2
Sun Sun Sun Sunr x y z= + +  is the value of this radius 

vector; 
2 2 2

SC_Sun Sun Sun Sun( ) ( ) ( )r x x y y z z= − + − + −  

is the value of the SC radius-vector relative to the Sun. 

The motion on the selenocentric section of the 

trajectory is analyzed using a system similar to the 

shown system of differential equations (5). In this 

case, the Moon is considered as the central body, 

and the Earth and the Sun are the perturbing ones. 

The general idea of reducing the energy costs 

for the flight is associated with the possibility of 

using gravitational disturbances in the limited four-

body problem (Earth-Moon-Sun-SC) during the flight 

to the Moon. First of all, the flight trajectory must 

be chosen so that solar gravitational perturbations 

ensure the SC approach to the vicinity of the Moon 

with a small value of selenocentric velocity. There-

fore, like many researchers, the authors of this arti-

cle tried to estimate gravitational solar perturbations 

as a function of the relative position of the Sun at 

the time of launch of the SC and the elements of 

the geocentric osculating orbit, to which the SC is 

transferred when starting from the LEO. Unfortu-

nately, our attempts did not give a positive result. 

We believe there are two reasons for this: 

– the fact is that the solar perturbations are very 

large. Therefore, the use of a technique that allows 

estimating perturbations as quadrature of functions 

depending on the elements of the unperturbed orbit 

turns out to be incorrect; 

– simultaneously with the gravitational solar per- 

turbations, the geocentric trajectory is also strongly 

perturbed by the Moon. There is a superposition (inter- 

ference) of solar and lunar disturbances. This makes 

it difficult to estimate solar disturbances. 

An attempt to consider the formulated problem 

as a mathematical programming problem and use local 

methods to find its solution is doomed to failure. 

The reason is a very large number of local extre-
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mums. The number of local extremums is so large 

that it is difficult to expect that search methods fo-

cused on finding a global extremum (for example, 

genetic algorithms) will cope with solving the prob-

lem without choosing a good initial approximation. 

In addition, the main idea of the proposed method is 

to find this initial approximation, significantly nar-

rowing the range of possible solutions. 

The paper proposes to consider only such pat-

terns of flight to the Moon, the trajectories of which 

pass through the vicinity of the libration points L1 

or L2 of the Earth-Moon system. More precisely, 

we analyze such flight trajectories that can be ob-

tained using as an initial approximation the trajecto-

ries passing through the vicinity of these libration 

points. The authors do not claim that low-energy 

trajectories necessarily pass through the neighbor-

hood of libration points, but it is precisely such 

flights that are unsearcning in the present work. 

In this paper, it is assumed that the trajectory of 

the SC does not just pass in the vicinity of the libra-

tion point, but some restrictions are introduced on 

the magnitude and direction of the SC velocity vector 

at this moment of time. It is considered that the SC 

geocentric velocity vector at the moment of passage 

of the libration point is such that the following two 

conditions are satisfied: the perigee radius and the 

apogee radius of the osculating geocentric orbit of 

the SC are close to the perigee and apogee radius of 

the geocentric osculating orbit of the libration point. 

The introduction of such restrictions can be ex-

plained as follows. It follows from the Jacobi integral 

of the restricted three-body problem (Earth ‒ Moon ‒ 

SC) that, within the framework of this problem, 

the SC can “penetrate” into the vicinity of the Moon 

through the vicinity of the libration point. In this case, 

the SC geocentric velocity vector should be close to 

the geocentric velocity vector of the libration point. 

In principle, it was possible to choose another 

an variant when restrictions were introduced both 

on the distance of the SC to the libration point and 

on the components of the velocity vector. The authors 

of the article were stopped by the fact that then 

(with the approach used by the authors) it would be 

necessary to compare values of different dimensions 

(distance and speed). Therefore, the described option 

was chosen. It analyzes (minimizes) the sum of three 

positive values of the same dimension (three distances): 

SC SC ,L p Lp a LaJ r r r r r=  + − + −         (8) 

where the first term ΔrL is the SC distance from the 

libration point (it is found as the difference between 

the geocentric vectors of the SC and the libration 

point); SCpr  and SCar  – radius of perigee and apogee 

of the osculating geocentric orbit of the SC; Lpr  and 

Lar  – perigee and apogee radius of the osculating 

geocentric orbit of the libration point. 

Note that in some cases it may be appropriate 

not to use modules in the expression of the intro-

duced functional J. To do this, we can change 

the functional using the squares of each of the terms. 

The terms of the functional J depend on the four 

parameters of the flight pattern Tst, Ω, uo, ra, which 

determine the conditions for the motion of the SC 

after its launch from LEO, and the current time of 

motion of the SC t: J(Tst, Ω, uo, ra, t). On each flight 

trajectory, there is a time t1 when J is minimal. Let 

us denote this minimum value as I and call it the 

total miss of the libration point: 

st st( , , , ) min ( , , , , ),o a o a

t

I T u r J T u r t =      (9) 

The total miss I is a function of four arguments. 

Finding the initial approximation for these arguments 

is proposed to be performed as follows. In order to 

minimize the angle between the plane of the inter-

mediate orbit and the plane of the Moon's orbit, 

the longitude of the ascending angle of the LEO is 

assumed to be equal to the longitude of the ascending 

angle of the Moon's orbit. The analysis shows that 

the longitude of the ascending node of the Moon's 

orbit (relative to the Earth's equator) varies in a rela-

tively small range from –13.4о to +13.4о with a pe-

riod of 18.6 years. For 2024, the longitude of the 

ascending node of the Moon's orbit changes from 

3.77о to 0.137о. Therefore, it is acceptable to con-

sider the initial approximation for the chosen pa-



 

 

rameter of the lunar flight pattern Ω for the launch 

dates in 2024 as zero. Let us also pay attention to 

the fact that with such a choice of the longitude of 

the ascending node of the LEO, the angle between 

the ecliptic plane and the plane of the intermediate 

orbit turns out to be minimal. This leads to an increase 

in the perturbation of the intermediate geocentric 

orbit of the SC by solar gravitational acceleration. 

We suppose that the gravitational solar accelera-

tion should deform the trajectory of the SC when it 

moves as far as possible from the Earth (at the apo-

gee of the intermediate orbit). In order for this de-

formation to be significant, we considered it expedi-

ent to choose the initial approximation for the argu-

ment of the latitude of the starting point from LEO uo 

so that the starting point is located near the ecliptic 

plane. Therefore, the argument of the latitude of the 

starting point from the LEO, counted from the line of 

nodes of the LEO relative to the plane of the ecliptic, 

must be equal to either zero or 180о. It is these values 

that are considered as initial approximations for this 

latitude argument. In this case, if the longitude of 

the ascending node of the intermediate orbit is zero, 

then the arguments of the latitude of the starting 

point, counted relative to the plane of the earth's 

equator, will be the same (0о and 180о). If the longi-

tude of the ascending node of the intermediate orbit 

is chosen equal to 3.77о, then the value of the latitude 

argument will be greater than these values by 3.168о. 

A serious problem in the design of lunar flight 

patterns is multi-extremality. Therefore, an attempt to 

use an approach that uses the methods of finding 

a local extremum, as a rule, is not successful. The solu-

tion does not provide a zero residual value of the 

boundary conditions. The search process in a local 

minimum that is significantly different from zero. 

To overcome these difficulties, it is ideal to enu-

merate all the parameters of the flight pattern in space 

(with a small step for each parameter), to find such 

sets of parameters in which the transport problem is 

solved with relatively good accuracy (there will be 

a finite small number of such sets). Then refine 

the values of the parameters of each received set using 

local methods. A modern computer is not able to im-

plement such an approach. To overcome the described 

difficulty, it is proposed to use following approach. 

Of the four parameters that determine the transfer 

trajectory (start date Tst, radius of the intermediate 

orbit apogee ra, longitude of the ascending node of 

the LEO Ω, argument of the latitude of the launch 

point uo), two are selected, the rational values of which 

are difficult to foresee. These parameters are Tst and ra. 

For these parameters, a complete enumeration of their 

values from the possible range is carried out. The start 

date Tst varies throughout the analyzed range of dates 

(for example, the annual range) with a fairly small step 

(for example, one hour). The apogee radius of the inter- 

mediate orbit ra varies in the range of 1–1.5 million km 

with a step of 5 thousand km. For each point of 

the parameter plane Tst – ra with fixed values of 

the other two parameters chosen from rational consi- 

derations, the SC trajectory is analyzed and the value 

of the total miss of the libration point I is calculated: 

At the same time, the time t1 of the maximum ap-

proach of the SC to the libration point is also found. 

An analysis of the level lines of the total miss 

of the libration point on the plane Tst – ra makes 

it possible to find such launch dates and radii of 

the apogee of the intermediate geocentric orbit, 

at which the SC can reach the vicinity of the con-

sidered libration point and, at the same time, the SC 

velocity vector has such a magnitude and direction 

that the shape and size of the osculating geocentric 

orbit of the SC are close to the shape and size of 

the osculating geocentric orbit of the libration point. 

It is these trajectories that are considered as the initial 

approximation for low-energy transfer trajectories. 

The date of reaching the minimum total miss of 

the libration point t1 is considered as the boundary 

point of the geocentric and selenocentric sections of 

the trajectory. 

At further stages of the analysis, a transition is 

made to the formulation, where the total miss of the 

libration point is not analyzed, the achieved height 

above the lunar surface is considered as an indicator of 

the solution of the transport problem. The required-

height is ensured with the use of local search methods. 

At the final stage of the analysis, when it is 

possible to achieve a given height of the SC above 

the lunar surface, the gradient projection method is 

used, which makes it possible to iteratively improve 

the parameters of the flight pattern (according to 
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the criterion of fuel consumption), while remaining 

on the trajectory that transfers the SC to a LMO of 

a given height. 

When designing low-energy lunar flights, 

a methodological technique was used related to 

the introduction of an intermediate velocity impulse 

on the flight trajectory (ΔVc) into the flight pattern. 

The idea was to make it easier to solve the boundary 

value problem (satisfying the conditions of the trans- 

port problem). With the introduction of an intermedi-

ate velocity impulse, the dimension of the vector of 

the selected parameters of the flight pattern is in-

creased by four units at once: (date of the velocity 

impulse, its magnitude and direction, characterized 

by two angles). In this case, the class of possible 

flight trajectories is greatly expanded, and the solu-

tion of the boundary value problem is simplified. 

When introducing an intermediate velocity impulse, 

it was assumed that in the final solution, its value 

would be reduced to very small (infinitely small) values, 

and this introduction was considered as a methodo-

logical technique. In the course of the analysis, it is 

possible to consider as a low-energy flight such 

flights on which the intermediate impulse of velocity 

is not infinitely small, but simply small (for example, 

equal to 20–30 m/s), and the sum of this impulse ΔVc 

and the braking impulse at the Moon is less velocity 

impulse of traditional direct flights. 

The initial approximation for the date of the in-

termediate velocity impulse is the date of reaching 

the trajectory point with the minimum total miss of 

the libration point. 

The statement considered in this paper does not 

analyze the problem of optimizing the number of ve-

locity pulses on the trajectory of a low-energy flight to 

the Moon. This problem is expected to be analyzed in 

the future. One of the possible research methods is to 

use the necessary optimality conditions of the maxi-

mum principle for the impulse flight trajectory. 

It can also be noted that in further studies, 

we do not exclude the possibility of introducing 

an additional term into the J-function (8), will en-

sure, at the time of the passage of the vicinity of 

the libration point, the proximity of the plane of 

the geocentric osculating orbit of the SC to the plane 

of the geocentric orbit of the Moon. 

In the second part of this work, the developed algo-

rithm for designing a low-energy trajectory for a flight 

to the Moon will be described. The results of a numerical 

analysis of the obtained trajectories will be presented. 
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