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Abstract. The authors describe an algorithm that allows calculating the pa-
rameters of maneuvers performed on several turns by the low-thrust engine,
which ensure the flight of the active spacecraft to the specified vicinity of the
target space object. The movement takes place in the vicinity of a circular orbit.
Linearized equations of motion are used in solving the problem. The influence
of the non-centrality of the gravitational field and the atmosphere is not taken
into account. The determination of maneuver parameters takes place in three
stages. At the first and third stages, the parameters of the pulse transition and
the transition performed by the low-thrust engine, are determined analytically.
At the second stage, the distribution of maneuvering between turns, which pro-
vides a solution to the meeting problem, is carried out by iterating over one
variable. This method of solving the problem provides simplicity and high reli-
ability of determining the parameters of maneuvers, which allows it to be used
on board the spacecraft. The paper investigates the dependence of the total
characteristic speed of solving the meeting problem on the number of turns of
the flight and the magnitude of the engine thrust.
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AHHoTanus. OnucaH aaropuT™, MO3BOJNAIOIIUI paccyUTaTh HMapaMeTphl
MaHEBPOB, UCIOJIHIEMBIX HA HECKOJIBKUX BUTKAX JBUraTeleM MajoH TArH,
obecrneunBaroIuX MepenaeT akTUBHOTO0 KOCMHYECKOTO ammapara B 3a/[aHHYIO
OKPECTHOCTH IIEIEBOTO KOCMUYECKOTO OOBeKTa. JIBIKeHWE IpPOMCXOANT B
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KiroueBble ciioBa:

KOCMHYECKHH ammapar, pacuer mapaMeTpoB
MaHEBpOB, KOCMUYECKHUIT 00BEKT, Masias
TSIra, KPyroBasi OpoMTa, UMITYJIbC CKOPOCTH

JluIst I THPOBAHHUSA

OKPECTHOCTH KpyroBoi opOuThI. [Ipu pemeHny 3a1auu UCIIONIb3yIOTCS JIHHEa-
PU30BAHHBIC YpaBHCHHSA ABUKCHUS. Bausuue HCUCHTPAJIBHOCTU I'paBUTa-
OUOHHOTO TONsl M atMocepbl He yuuThiBaroTcs. OnpenesieHre mapamMmerpoB
MaHEBPOB MPOMCXOAUT B TpH 3Tana. Ha nepBom u TpeTbeM 3Tanax mapaMmeTpbl
HMITYJIbCHOTO TIEpPexo/ia U Mepexo/ia, BBINOIHIEMOrO JIBUraTelieM Majlof Tsry,
ompeesstoTcs aHaauTH4ecku. Ha BTopoMm srame paciipezenieHre MaHEBPHPO-
BaHUS MEXy BUTKaMH, 0OECTIEUMBAIOIIEE PEIICHHE 331a91 BCTPEUH, OCYIIECTB-
JIsieTcst epedopoM 10 OJJHOW TIepeMeHHOM. [IaHHBI METOJ peleHHs 33/1aunt
NIPOCT U FAPAHTUPYET BBICOKYIO HAIEKHOCTh OIPEEICHHS TapaMETPOB MaHEB-
POB, YTO MO3BOJIET HCIOIB30BATh €T0 Ha OOPTY KOCMHYECKOro ammapara. Hc-
CJIeAyeTCs 3aBUCUMOCTh CYMMApHOU XapaKTEPUCTHUECKOM CKOPOCTH PEILICHUS
3a7ja4y BCTPEUHU OT YMCJIa BUTKOB IIepelieTa U BEIMYMHBI TATU IBUTATEIs.
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Introduction

The problem of the meeting in a near-circular
orbit using a low-thrust engines is of great im-
portance in the practice of spacecraft (SC) flights.
This problem is solved during the rendezvous
and docking of spacecraft, the implementation of
a group flight of several spacecraft, the formation of
a given configuration of satellite systems, the removal
of space debris, and maintenance of the spacecraft.

Over the past sixty years, the problem of the meet-
ing has been considered in the papers of many authors.
Particular attention was paid to the problem of rendez-
vous in near-circular orbits, when maneuvers are per-
formed by high-thrust engines. A problem of this type
was encountered most often in practical paper.

As the first notable papers in this area, we can
note the papers of J.E. Prussing [1], who studied the
problem of a meeting with a duration of no more
than three turns for the case of two circular coplanar
orbits, and J.-P. Marec [2], who solved the classical
problem of a meeting of average duration in near-
circular orbits.

Currently, three main approaches to solving
complex multi-impulse problems of spacecraft ma-
neuvering are widely used. In the first case, the prob-
lem of maneuvering in the plane of the orbit and the
problem of turning the plane of the orbit are solved
independently of each other. A similar scheme was
used, in particular, to implement the Shuttle rendez-
vous with the orbital station', to control the move-

' Shuttle Press Kit: STS-92.  Available from:
https://historycollection.jsc.nasa.gov/JSCHistoryPortal/history/s
huttle pk/pk/Flight 100_STS-092 Press Kit.pdf  (accessed:
17.08.2022).
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ment of geostationary satellites [3], satellites inclu-
ded in satellite systems [4], etc. The advantage of
such a scheme is its simplicity and reliability, the dis-
advantage is the excessive costs of the total charac-
teristic speed for maneuvering.

In the second case, numerical methods are used
to find the optimal solution to the most complex
multi-impulse problems, taking into account a wide
range of restrictions [5; 6]. Most often, the simplex
method is used to calculate the parameters of ma-
neuvers [7; 8].

In the third method, at the first stage, using the
solution of the Lambert problem, the parameters of
the two-impulse solution of the meeting problem are
determined. Then the behavior of the hodograph of
the basis vector corresponding to the found solution
is analyzed, and, if necessary, additional velocity
impulses are added to obtain the optimal solution.
This approach was first applied in the papers of Lion
and Handelsman [9], Jezewski and Roosendaal [10].

There are also methods that are at the junction of
different approaches. For example, in papers [11; 12]
proposed numerical-analytical methods for solving
the multi-impulse meeting problem, combining the
advantages of the first and second of the previously
listed approaches. They allow using the results obtained
in the early papers of T. Edelbaum [13], J.-P. Marec [2],
when solving modern practical problems.

Since the 1960s, the process of using electric
rocket engines (ERE) on spacecraft has begun. Due
to the high specific impulse, EREs can significantly
reduce fuel costs for orbital maneuvering. However,
the small (compared to traditional liquid rocket en-
gines) thrust of the ERE leads to the need to take
into account their long-term operation.
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Problems of this type occupy a special place
among the problems of optimal spacecraft maneu-
vering. A significant number of papers have been
devoted to them, several very interesting monographs
have been published [14; 15]. Particularly noteworthy
are the papers of V.G. Petukhov [16], Petukhov and
Olivio [17] and [18; 19]. Due to the complexity of
the problems in which it is assumed that maneuvering
is carried out using low-thrust propulsion systems,
they have traditionally been solved by numerical
methods using the Pontryagin maximum principle or
the continuation method. In recent years, to solve prob-
lems with a large extent of maneuvers, Yu.P. Ulyby-
shev successfully uses the interior point method [20].

In the method considered in this paper, the meet-
ing problem is solved both in an impulse setting
and taking into account the long-term operation of
a low-thrust engine.

To analyze the relative motion of a spacecraft in
the vicinity of circular orbits, it is necessary to use
special mathematical models of motion. The most
popular mathematical model of the relative motion of
spacecraft in the vicinity of circular orbits is the Hill —
Clohessy — Wiltshire (HCW) model. Linearized dif-
ferential equations for the relative motion of a space-
craft in the vicinity of a circular orbit for the rendezvous
and docking problem were obtained by Clohessy —
Wiltshire in 1960 [21], but as early as the 19th centu-
1y, similar equations were used by Hill in his theory of
the motion of the Moon [22]. In this mathematical
model, to obtain the equations of relative motion,
a rotating (orbital) coordinate system and linearization
of differential equations of relative motion are used,
based on the assumption that the distance between the
considered spacecraft is small compared to the aver-
age radius of the orbit. In this paper, we use linearized
equations obtained by P.E. Elyasberg [23].

Due to the increase in the number of maneuvering
SC, the increase in the efficiency of solving problems,
at present there is a tendency to transfer the process
of calculating maneuvers on board the spacecraft.
This leads to the need to simplify the process of cal-
culating the parameters of maneuvers and increase.

1. Formulation of the meeting problem

The problem of calculating the parameters of flight
maneuvers between close near — circular orbits is
solved in an approximate impulse formulation, within
the framework of the unperturbed Keplerian motion.

The flight conditions using N velocity impulse
in a fixed time from the initial orbit to a given point

of the final orbit (meeting problem) in linear ap-
proximation can be written as [12]:

N
D (AV,sing,+2AV, cos@,)=Ae,; (1)

i=1

N
D (=AV, cosp,+2AV,sing,)=Ae,; ()

i=1

N
D 2AV,=Aa; 3)
i=1

N
D (2AV, (1-cos@,)+AV, x
i=1

x(=3¢,+4sing,))=At, “4)

where Ae, = ecoswr— eocosmo; Ae, = esinwy— epsino;
Aa = (ar—ao) | ro; At = ho(ty— 10); AVa = AV, | Vo

AV, =A V; / Vo; f, 0 — indices corresponding to

the final and initial orbits; e;, ey — eccentricities of
the orbits; a; ao — semi-major axes of the orbits;
wy, 0o — angles between the direction to the pericen-
ter of the corresponding orbit and the direction to
the point specified on the final orbit (the axis Ox is
directed to this point); # — the necessary arriving
time to this point; # — time at which, when moving
in the initial orbit, the projection of the radius-
vector in the plane of the final orbit falls on a beam
passing through a given meeting point; Vo, Ao — or-
bital and angular velocities along the reference cir-
cular orbit of radius ro (70 = ay); N — number of ve-
locity impulse; @; — angle of application of the i-th
velocity impulse, calculated from the direction to
the given meeting point towards the motion of the

SC; AV, , AV, — transversal and radial compo-

nents of the i-th velocity impulse respectively.

It must be taken into consideration that the
angles @; — are negative, i.e., because it was as-
sumed that @, = 0 at the given point.

The problem of finding the parameters of opti-
mal maneuvers can be formulated as follows: it's
necessary to determine AV, AVy, ¢; (i = 1, ..., N),
at which the total characteristic velocity of maneu-
vers AV is minimal

285



Baranov A.A., Olivio A.P. RUDN Journal of Engineering Research. 2022;23(4):283-292

AVE + AVE

N
=1

N
AV = Z AV, =
i=1

npu orpannyeHusx (1)—(4).

2. Algorithm for solving the transfer problem

When solving the problem of transfer between
coplanar orbits, the first three equations of system
(1)—(4) are used.

There are three types of solutions for which the
necessary optimality conditions are satisfied:

a) on the p, A plane, the hodograph of the basis
vector is an ellipse, the center of which is located on
the p axis, but is shifted from the origin of the coor-
dinate system; the ellipse is tangent to a circle of
unit radius at a point on the p axis;

b) the hodograph of the basis vector degene-
rates into a point coinciding with the point of inter-
section of a circle of unit radius with the p axis;

c¢) the hodograph of the basis vector — an ellipse
centered at the origin of the coordinate system,
touching the circle at two points on the p axis.

Since all possible optimal solutions have pe-
mennii A = 0, and p # 0, then the velocity impulses
of these solutions are purely transversal.

Assuming that the velocity impulses are ap-
plied at the optimal points for correcting the eccen-
tricity vector,

Ae
tgp, =—=; @1=@; @9, =@1+T,
Ae

X

we find the magnitude of the velocity impulses of
the optimal solution:

AV, :i(Aa +Ae). )

AV, = %(Aa —Ae). 6)

3. Algorithm for solving the meeting problem

When solving the meeting problem, the values
of the velocity impulses AVu, AVp, determined
when solving the transition problem, are distributed
among N turns allowed for maneuvering:
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AV, =Y AV, ™
i=l1
N

AV, =D AV, ®)

where N is the number of turns on which maneuver-
ing is allowed.

The further goal is to choose such a distribution
of the magnitudes of the velocity impulses over the
coils so that equation (4) is satisfied.

To significantly simplify the solution of the
problem, we assume that the magnitudes of the ve-
locity impulses along the turns change linearly:

AV, =AY, +

+HAV,y AV, )E-1)/(N=1); )
AV, =AV,, +

+(A Vth - AVZII)(i - 1) / (N - 1)» (10)

where AV, AViw and AVaa, AV are the value of
the velocity of impulses on the first and last allowed
turns of maneuvering, which is part of the first and
second velocity of solving the transfer problem.

Substituting the values of the velocity impul-
ses calculated by formulas (9), (10) into (7) and (8)
we get:

N
AV, =Y AV, =0.5N(AV,, +AV,,); (1D
i=1

1£1

N
AV, =) AV,,=0.5N(AV,, + AV,

2t1 2tN
i=1

). (12)

Using (11) and (12), we obtain formulas for
determining AV, AV

AV,

AVltN :ﬁ_AVm; (13)
AV.
AVoyey = 0_;;\,1 — AVy¢. (14)

Substituting the found values AViw, AV into
formulas (9) and (10), we obtain:
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2(i-1)
/NN = 1) + AV [1 - 222

(15)

AVyy; = 20V, (i — 1)/

/NN = 1) + AVye [1 - zl(vij)]. (16)

Thus, we found the values of all impulses of
velocity, expressed only through AViy and AVas,
Substituting them into equation (3), we obtain a linear
equation with two unknowns AVis, AVan. The coef-
ficients for velocity impulses are known, since their
application angles are known:

¢, =0, +21n(N, — N); (17)
¢,, =@, +m+2n(N, - N). (18)

Going through the value of the variable AVia,
within the given limits, for each value from equa-
tion (3) we find the value of the variable AV2.

Then, using (15) and (16), we find the values of
all velocity impulses. Adding the modules of all velo-
city impulses, we find the total characteristic velocity
of the next solution. The solution for which the total
characteristic velocity is minimal is taken as a solution
to the meeting problem. If the total characteristic ve-
locity of the found solution coincides with the total
characteristic velocity of the solution to the transition
problem, then a solution was found with the minimum
possible total characteristic velocity.

At the next stage, we estimate the duration of
each of the found maneuvers.

The duration of each of the maneuvers is esti-
mated using the ratio:

w

Ap, =

where w,. — the centripetal acceleration of the refer-
I/OZ

%

c

ence circular orbit [W — J; w — the acceleration

m
the mass of the active SC; P — thrust of its engine.
If the duration of the largest velocity impulse
doesn't exceed 20°, then the solution is close to the

created by the propulsion system (w — P j; m —

impulse one and we consider that the problem has
been solved. If the duration of the maneuvers is signif-
icant, then we proceed to the solution with low thrust.

4. Solving the problem with “low thrust”

For each turn, we find what changes in the ec-
centricity and the semi-major axis produce velocity
impulses determined on this turn

Ae=2AV, —2AV, (20)

>
Aa,=2AV, +2AV,,. @1)

Then we determine the required duration of
low-thrust maneuvers, which will produce the same
change in these elements:

. Ao, . Ao, Ae.
4sm—(p" —4sm—(p2’ _ B4 ;
w

2A0,, +2A0,, = wAg, : (22)
w

From system (22) one can find the quantities
AQii, Ao [24]:

w.Aa . w.Ae
Ap, = 2 + 2arcsin AL
wn 8wncos—
8wn
A . A
Ao, = it —2arcs1nWC—eA. (23)
4wn 8w cos et
8wn

Thus, turn by turn, we find the duration of all
maneuvers. The problem with low thrust is correctly
solved. If the argument of the arcsine is greater than
1, then there is no solution (with the available thrust
and mass of the spacecraft, it is impossible to solve
the rendezvous problem for a given number of turns).

The found solution with “low thrust” gives the
same change in the semi-major axis and the eccen-
tricity vector as the original impulse solution. Equa-
tion (4) is also quite accurate, since the middle of
long maneuvers coincides with the moments of ap-
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plication of velocity impulses, and the same change
in the major axis on the turn is made, therefore,
the required time of arrival at the meeting point is
provided.

5. lterative procedure

In the formulated meeting problem, linearized
equations of motion are used, the non-centrality of
the gravitational field, the influence of the atmos-
phere, etc. are not taken into account. This leads to
the fact that the actual accuracy of the fulfillment of
the terminal conditions in the system (1)—(6) will be
insufficient. To solve the problem with a given ac-
curacy, you can use the iterative scheme [5; 6],
which consists of the following steps:

1. At the beginning of the next iteration, the “ap-
proximate” problem is solved: under the previously
accepted simplifying assumptions, the parameters of
the maneuvers that ensure the formation of the “target”
orbit are determined (at the first iteration, the “target”
orbit coincides with the final orbit).

2. Then, taking into account the calculated ve-
locity impulses, using the models of all necessary
disturbances, an “accurate” prediction of the space-
craft motion is carried out and the parameters of
the formed orbit are found.

3. The deviations of the parameters of the for-
med orbit from the corresponding parameters of
the final orbit are calculated.

4. If the deviations exceed the allowable va-
lues, then the parameters of the “target” orbit are
changed by the value of the calculated deviations,
and the next iteration is carried out.

5. The procedure ends when the terminal condi-
tions are met with the specified accuracy.

6. For “accurate” forecasting, as a rule, numeri-
cal and/or high-precision numerical-analytical inte-
gration is used. It is possible to use different fore-
casting methods at different iterations, but the accu-
racy of the forecast should increase with the number
of the current iteration.

7. Numerical integration takes into account the
influence of non-centrality of the gravitational field,
atmosphere, light pressure, etc., the operation of the
spacecraft engines is accurately modeled, therefore,
in spite the fact that the maneuver parameters and
are found at each iteration using the simplest motion

model, but as a result of the iterative procedure,
they provide access to the final orbit with the re-
quired accuracy.

6. Problem solving examples

Considering the motion of a spacecraft (SC) re-
lative to the point O, moving along a non-perturbed
near-circular orbit with a radius of 6871 km. Let’s
take the gravitational parameter of the Earth equal
to 3.9860044-10' m*/s*>. Consider the problem of
a flight with the help of N impulses of velocity in
a fixed time from the initial orbit to a given point of
the final orbit from a point in phase space ro= (10,
100, —=5) km, vo= (1, —10, 3) m/s to the origin, i.e,
to the point = (0, 0, 0) km, with a velocity v,= (0,
0, 0) m/s. For the problem, we’ll take the initial
mass of the SC equal to 1000 kg, the specific im-
pulse of the SC propulsion system is 220 seconds
(2157.463 m/s), and the thrust (7)) will be varied in
the range from 0.362 to 100 N. The flight is carried
out in N =4 and 13 turns.

Double impulse transfer. In the Table 1 shows
the results of the calculation the parameters of a two-
impulse transfer between coplanar orbits, that is, the
magnitude of the transversal components of the ve-
locity impulses, the angles of application of the first
and second impulses, as can be seen, the minimum
value of the characteristic velocity that a SC must
have for the transfer maneuver, is 4.485 m/s.

Multi-impulse solution. The value of the first
velocity impulse is moved within the limits from
—2.785 to 0.5 m/s with a step of 0.024 m/s.

Parameters of the optimal solutions. In the
Tables 2—4 show the parameters of the optimal solu-
tion, that is, the values of the velocity impulses on
the turns for the cases when N =4 and 13.

Solution of the problem with low thrust. In the Tab-
les 5, 6 and 7 shown the results of calculating the prob-
lem with low thrusts “Thrust = 1 and Thrust = 0.362”,
that is, the values of the velocity impulses and the dura-
tion of maneuvers on turns for cases when N=4 and 13.
In some cases, there’re no solutions because the value of
the arcsine argument is out of range (—1; 1). With in-
creased thrust, the duration of the maneuvers is reduced,
and the costs of the total characteristic velocity (CXC)
of the low thrust solution during thrust increment, coin-
cides with costs of the CXC of the impulse solution.

Table 1
Results of the calculation the parameters of the coplanar transfer problem
AVy,m/s AV, m/s |AV], m/s P’ ®,° P2 °
-2.785 1.7 4.485 6.4 186.4 366.4
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Table 2
Parameters of the optimal solution for N=4
N AV4;, m/s AV,;, m/s |AV ;| + |AV |, m/s
1 -0.024 0.848 0.872
2 -0.472 0.566 1.038
3 -0.92 0.284 1.204
4 -1.369 0.002 1.371
Y -2.785 1.7 4.485
Table 3
Parameters of the optimal solution for N=13
N AVy;, m/s AV, m/s |AVy;| + |AVy;|,m/s
1 -0.001 0.199 0.2
2 -0.037 0.187 0.224
12 -0.392 0.074 0.466
13 -0.427 0.063 0.49
¥ -2.785 1.7 4.485
Table 4
Results of the calculation of the problem with low thrust, for N=4
TN 0.362 0.37 0.4 0.5 1 2 5 10 100
o There is There is Thereis There is
Ao not solution | not solution | not solution | not solution 300.137 144.139 57.082 28.499 2.849
There is There is There is There is
AV, m/s not solution | not solution | not solution | not solution 4.726 4.541 B 4.487 4.485
Table 5
Results of the calculation of the problem with low thrust “Thrust=1”, for N=4
N AV, m/s AV,;, m/s [AVy| + | AVy|, m/s A4¢,° A¢y° (A@yul +14@yl)°
1 -0.04 0.864 0.904 -2.561 54.87 57.431
2 -0.48 0.573 1.053 -30.473 36.424 66.897
3 -0.942 0.306 1.248 -59.841 19.434 79.275
4 -1.443 0.077 1.52 -91.65 4.884 96.534
Y -2.905 1.82 4,725 -184.525 115.612 300.137
Table 6
Results of the calculation of the problem with low thrust, for N=13
T,N 0.362 0.37 0.4 0.5 1 2 5 10 100
A@® 809.865 791.329 728.952 578.15 285.884 142.555 56.979 28.487 2.849
AV, m/s 4.616 4.61 4.591 4.551 4.501 4.489 4.486 4.485 4.485
Table 7
Results of the calculation of the problem with low thrust “Thrust = 0.362”, for N=13
N AVy;, m/s AVy;, m/s | AVy| + | AV, m/s A@q° Aq@,;° (1 A@yl + | A@yl)°
1 -0.003 0.2 0.203 -0.45 35.149 35.599
2 -0.038 0.189 0.227 -6.642 33.117 39.759
12 -0.405 0.087 0.492 -71.015 15.253 86.268
13 -0.444 0.08 0.524 -77.953 13.967 91.92
Y -2.85 1.765 4.615 -500.114 309. 751 809.865
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Conclusion

In the paper describes an algorithm for calculat-
ing the parameters of a multi-turn multi-impulse
encounter. The main advantage of the proposed
algorithm is its simplicity and reliability, which
makes it possible to use it not only in ground con-
trol centers, but also on board the spacecraft. Simul-
taneously, this algorithm makes it possible to obtain
the optimal solution of the problem in the case
when the initial phase belongs to the optimal phase
range and the total characteristic velocity of
the solution of the meeting problem coincides
with the total characteristic velocity of the optimal
solution of the transfer problem. The algorithm
makes it possible to obtain a solution even when
the maneuvers are performed by low thrust engines.
The examples given in the paper confirm the ope-
rability of this algorithm and the high quality of
the resulting solution.
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