

Вестник РУДН. Серия: Инженерные исследования RUDN Journal of Engineering Research

2022;23(1):30-37

ISSN 2312-8143 (Print); ISSN 2312-8151 (Online) journals.rudn.ru/engineering-researches

DOI 10.22363/2312-8143-2022-23-1-30-37 УДК 621.78.01:621.785-97

Научная статья / Research article

Построение гидродинамических поверхностей каркасами из кривых Ламе на примере корпуса подводной лодки

В.В. Карневич

Российский университет дружбы народов, Москва, Российская Федерация valera.karnevich@gmail.com

История статьи

Поступила в редакцию: 19 декабря 2021 г. Доработана: 23 февраля 2022 г. Принята к публикации: 28 февраля 2022 г.

Ключевые слова:

гидродинамическая поверхность, алгебраическая поверхность, субмарина, подводная лодка, судно, мидель-шпангоут, кривые Ламе Аннотация. Исследуется построение гидродинамических поверхностей, которые описываются аналитическими уравнениями и формируют теоретический корпус судна. Предлагается методика автоматизации построения гидродинамических поверхностей с возможностью создания широкого разнообразия форм корпусов, для чего используются кривые Ламе с произвольными степенями как образующие каркас поверхности. Поверхность образуется каркасом сечений в одной из трех взаимно перпендикулярных плоскостей, что позволяет получить три алгебраически отличающиеся, но геометрически идентичные поверхности. Впервые выводятся параметрические уравнения каждой из таких трех поверхностей, образованных каркасами теоретических шпангоутов, батоксов и ватерлиний в форме кривых Ламе. Продемонстрирован алгоритм моделирования корпуса подводной лодки замкнутой поверхностью с отличающимися носовой и хвостовой частями, а также с параллельной центральной вставкой и проиллюстрированы результаты моделирования. Представленная методика может эффективно применяться на ранних этапах проектирования судна при выборе оптимальной формы поверхности корпуса, для чего необходимо рассмотреть ряд различных форм.

Для цитирования

Карневич В.В. Построение гидродинамических поверхностей каркасами из кривых Ламе на примере корпуса подводной лодки // Вестник Российского университета дружбы народов. Серия: Инженерные исследования. 2022. Т. 23. № 1. С. 30–37. http://doi.org/10.22363/2312-8143-2022-23-1-30-37

Generating hydrodynamic surfaces by families of Lame curves for modelling submarine hulls

Valery V. Karnevich

Peoples' Friendship University of Russia (RUDN University), *Moscow, Russian Federation* valera.karnevich@gmail.com

Article history Received: December 19, 2021 Revised: February 23, 2022 Accepted: February 28, 2022 **Abstract.** This paper investigates the construction of hydrodynamic surfaces, which are defined by algebraic equations and describe the theoretical hull of a vessel. A technique for automation of generating hydrodynamic surfaces is proposed. This technique allows to create a vast variety of hull shapes,

© Карневич В.В., 2022

This work is licensed under a Creative Commons Attribution 4.0 International License https://creativecommons.org/licenses/by/4.0/

Keywords: hydrodynamic surface, algebraic surface, submarine, vessel, midsection, Lame curve	for which Lame curves with variable exponents are used as surface genera- tor lines. The surface is constructed by a family of curves in one of the three mutually perpendicular planes, which permits to obtain three algebraically different, but geometrically identical surfaces. This paper introduces para- metric equations for each of the three surfaces, generated by families of sections, buttocks and waterlines in the form of Lame curves. The algo- rithm of modelling a submarine hull with different fore and aft bodies and a parallel middle body by a closed surface is demonstrated and the model- ling results are illustrated. The presented technique may be effectively ap- plied at the early stages of ship design when choosing the optimal hull shape, for which a number of surfaces need to be considered.
For citation	

Karnevich VV. Generating hydrodynamic surfaces by families of Lame curves for modelling submarine hulls. *RUDN Journal of Engineering Research*. 2022;23(1):30–37. http://doi.org/10.22363/2312-8143-2022-23-1-30-37

Введение

Форма поверхности судна определяет ключевые гидродинамические качества: управляемость и сопротивление воды движению [1]. Поэтому оптимизация формы корпуса – одна из первостепенных и важнейших задач корабельных архитекторов. Прорывными исследованиями в этой области можно считать деятельность Вильяма Фруда, который по заданию Королевского института кораблестроения занимался нахождением наиболее эффективной формы корпуса корабля. Он смог подтвердить актуальность своих теоретических изысканий на практике с помощью испытаний физических моделей кораблей во впервые построенных для такой задачи опытовых бассейнах и вывести формулу для экстраполяции результатов мелкомасштабных испытаний на реальные условия, эффективность которой была позже обоснована натурными испытаниями [2]. Однако конструирование и испытание моделей в бассейнах даже в наши дни существенно затратны в финансовом и временном плане, не говоря о натурных экспериментах [3]. В связи с этим сегодня в исследовании и проектировании судов все большее предпочтение отдается компьютерному расчету, в частности CFD (вычислительная гидрогазодинамика). В [4] приводится некоторая оценка возможностей метода CFD симулировать испытания в буксировочном бассейне на примере различных геометрических форм корпусов судов.

Отправная точка компьютерного анализа – создание геометрической модели. Наиболее распространенной практикой геометрического моделирования корпуса судна является построение каркаса по сечениям во взаимно перпендикулярных плоскостях: по линиям шпангоутов, батоксов и ватерлиний. В [5] отмечают, что, задавая дискретный каркас, поверхность корпуса судна может быть построена только приближенно, поэтому точки, не принадлежащие каркасу, не могут быть определены однозначно. Более сгущенный каркас увеличивает точность образованной поверхности, но вместе с тем нагружает геометрическую модель в вычислительном смысле. Авторы работы [6] исследовали оптимизацию геометрии корпуса судна с помощью искусственного интеллекта (ИИ) и установили, что непараметрическая модель (заданная координатами точек) сильно подвержена ловушке локальной оптимизации, а на направление оптимизации параметрической модели (алгебраическая поверхность с конечным числом параметров формы) огромное влияние оказывает первый цикл расчета, поэтому в обработке ИИ использовалась комбинированная модель. В [7] также обращают внимание на несовершенства дискретной поверхности, особенно в динамических задачах, и предлагают несколько сложноструктурных, но эффективных техник трансформации модели каркаса из ряда кривых в цельную поверхность. Тем не менее параметрическая модель крайне удобна на стадии первоначального проектирования, когда необходимо рассмотреть широкое разнообразие форм и использовать для этой задачи минимальное количество переменных.

В настоящем исследовании рассматривается способ построения геометрической модели корпуса судна с помощью алгебраических поверхностей, заданных каркасом из трех плоских кривых. Данные три плоские кривые совпадают с мидель-шпангоутом (в сечении плоскостью *yOz*), главным батоксом (в сечении плоскостью *xOz*) и ватерлинией (в сечении плоскостью *xOy*) (рис. 1). В [8; 9] такие поверхности именуются гидродинамическими, и там также отмечается, что с одной и той же тройкой кривых каркаса можно построить три отличающиеся друг от друга алгебраические поверхности. В [10] изложена методика построения гидродинамической поверхности, образованной мидель-шпангоутом в виде кривой Ламе и параболами в двух остальных перпендикулярных плоскостях и моделирующей корпус симметричного надводного судна. В данной исследовании предлагается более универсальная модель, где все три кривые каркаса судна являются кривыми Ламе, а также алгоритм построения составной поверхности из разных носовой и хвостовой частей и параллельной вставки между ними. Такие поверхности могут быть применены в том числе к проектированию подводной лодки, пример геометрического моделирования которой рассмотрен далее в работе.

Рис. 1. Каркас гидродинамической поверхности из трех плоских кривых

Гидродинамические поверхности, образованные кривыми Ламе

Три кривые, образующие каркас судна, примем в виде кривых Ламе в соответствующих плоскостях:

- мидель-шпангоут:

$$|z|^n = T^n \left(1 - \frac{|y|^m}{W^m} \right); \tag{1}$$

- главный батокс:

$$|z|^{b} = T^{b} \left(1 - \frac{|x|^{a}}{L^{a}} \right); \qquad (2)$$

- ватерлиния:

$$|y|^{k} = W^{k} \left(1 - \frac{|x|^{j}}{L^{j}} \right).$$
 (3)

T, *W*, *L* – геометрические параметры судна (рис. 1), определяемые заранее и характеризующие высоту, ширину и длину судна соответственно.

Рис. 2. Очертания мидель-шпангоута в виде кривой Ламе при различных значениях параметра n = m = 0.5; 1; 2; 4; ∞

Произвольные положительные степени *n*, *m*, *b*, *a*, *k*, *j* трех образующих кривых (1–3) позволяют получить огромное число форм поверхностей. Кривые Ламе, также известные как суперэллипсы, с различными значениями данных степеней показаны на рис. 2. Например, кривая мидельшпангоута при n = m между 0 и 1 является вогнутой в виде остроконечной звезды; при n = m = 1 представляет собой ромб; при n = m больше 1

является выпуклой, в частности при n = m = 2представляет собой окружность. С увеличением параметров n = m кривая Ламе стремится к прямоугольнику.

Так как поверхность судна может быть образована каркасом сечений в трех разных плоскостях и все три поверхности будут отличаться алгебраически, рассмотрим способ получения каждой поверхности по отдельности.

Гидродинамическая поверхность, образованная каркасом сечений в плоскости уOz

За основу поверхности возьмем формулу контура сечения судна в данной плоскости – мидель-шпангоута (1):

$$|z|^{n} = T(x)^{n} \left(1 - \frac{|y|^{m}}{W(x)^{m}} \right).$$
(4)

Ширина W и высота T мидель-шпангоута изменяются в зависимости от рассматриваемого сечения в плоскости yOz, то есть от координаты x, и очерчивают контуры ватерлинии и главного батокса соответственно. Таким образом, переменную ширину W(x) можно получить через уравнение (3):

$$W(x) = W\left(1 - \frac{|x|^j}{L^j}\right)^{1/k},\tag{5}$$

а переменную высоту T(x) через уравнение (2):

$$T(x) = T\left(1 - \frac{|x|^a}{L^a}\right)^{\frac{1}{b}}.$$
 (6)

Подставляя полученные выражения (5) и (6) в формулу (4), имеем

$$|z|^{n} = T^{n} \left(1 - \frac{|x|^{a}}{L^{a}}\right)^{n/b} \left[1 - \frac{|y|^{m}}{W^{m} \left(1 - \frac{|x|^{j}}{L^{j}}\right)^{m/k}}\right].$$
 (7)

Уравнение (7) и есть алгебраическое уравнение первой гидродинамической поверхности. Уравнение поверхности можно выразить в параметрическом виде:

$$x = x(u) = uL,$$

$$y = y(u, v) = vW(1 - |u|^{j})^{1/k}, \qquad (8)$$

 $z = z(u, v) = \pm T(1 - |u|^a)^{1/b}(1 - |v|^m)^{1/n},$

где $-1 \le u \le 1, -1 \le v \le 1$.

Гидродинамическая поверхность, образованная каркасом сечений в плоскости *xOz*

В данной плоскости сечение судна представляет линию батокса, поэтому за основу берем формулу (2):

$$|z|^{b} = T(y)^{b} \left(1 - \frac{|x|^{a}}{L(y)^{a}} \right),$$
(9)

где высота *T* и длина *L* переменны по *y* и очерчивают мидель-шпангоут и ватерлинию соответственно.

Тогда T(y) выражается из формулы (1):

$$T(y) = T\left(1 - \frac{|y|^m}{W^m}\right)^{1/n}$$
, (10)

а *L*(*y*) из формулы (3):

$$L(y) = L\left(1 - \frac{|y|^{k}}{W^{k}}\right)^{1/j}.$$
 (11)

Полное уравнение поверхности получаем, подставляя полученные выражения (10) и (11) в формулу (9):

$$|z|^{b} = T^{b} \left(1 - \frac{|y|^{m}}{W^{m}}\right)^{b/n} \left[1 - \frac{x^{a}}{L^{a} \left(1 - \frac{|y|^{k}}{W^{k}}\right)^{a/j}}\right].$$
 (12)

Параметрические уравнения второй гидродинамической поверхности будут:

$$y = y(u) = uW,$$

 $x = x(u, v) = vL(1 - |u|^k)^{1/j},$ (13)

- - - -

$$z = z(u, v) = \pm T(1 - |u|^m)^{1/n}(1 - |v|^a)^{1/b},$$

где $-1 \le u \le 1, -1 \le v \le 1$.

Гидродинамическая поверхность, образованная каркасом сечений в плоскости *хОу*

В данной плоскости сечение судна имеет форму ватерлинии, поэтому за основу берем формулу (3):

$$|y|^{k} = W(z)^{k} \left(1 - \frac{|x|^{j}}{L(z)^{j}} \right), \qquad (14)$$

где длина L и ширина W переменны по z и очерчивают главный батокс и мидель-шпангоут соответственно.

Тогда L(z) выражается из формулы (2):

$$L(z) = L\left(1 - \frac{|z|^{b}}{T^{b}}\right)^{1/a},$$
 (15)

а W(z) – это у из формулы (1), то есть

$$W(z) = W\left(1 - \frac{|z|^n}{T^n}\right)^{1/m}.$$
 (16)

Подставляя выражения (15) и (16) в уравнение (14):

$$|y|^{k} = W^{k} \left(1 - \frac{|z|^{n}}{T^{n}}\right)^{k/m} \left[1 - \frac{|x|^{j}}{L^{j} \left(1 - \frac{|z|^{b}}{T^{b}}\right)^{j/a}}\right], (17)$$

получаем полное уравнение поверхности. Данное уравнение в параметрической форме:

$$z = z(u) = uT,$$

$$x = x(u, v) = vL(1 - |u|^{b})^{1/a},$$
 (18)

$$y = y(u, v) = \pm W(1 - |u|^{n})^{1/m}(1 - |v|^{j})^{1/k},$$

причем $-1 \le u \le 1, -1 \le v \le 1.$

Алгоритм построения поверхности

корпуса подводной лодки с отличающимися носовой и хвостовой частями

Зададим величины L_f и L_a , характеризующие длину носовой и хвостовой частей судна соответственно. Высота T и ширина W обеих частей корпуса остается одинаковой для их гладкой стыковки на отметке x = 0 (рис. 3). По этой же причине степени m и n, характеризующие форму поверхности в сечении yOz, идентичны для двух частей. Значения степеней *a*, *b*, *j*, *k* задаются отдельно для носовой и хвостовой составляющих корпуса.

Установим универсальный предел варьирования независимых нормализованных параметров: $0 \le u, v \le 1$. Тогда полная поверхность будет состоять из 8 фрагментов и строиться с помощью параметрических уравнений (8), (13) или (18) по табл. 1.

Рис. 3. Схема фрагментов поверхности корпуса субмарины с отличающимися по форме носовой и хвостовой частями

Таблица 1

Знаки уравнений фрагментов поверхности субмарины с носовой и хвостовой частями разной формы

Часть суд	Носовая (<i>L</i> = <i>L</i> _f)				Хвостовая (L = La)				
Фрагме	1	2	3	4	5	6	7	8	
Знак уравнения	x	+	+	+	+	-	-	-	-
	У	+	+	-	-	+	+	-	-
	z	+	-	+	_	+	_	+	_

Визуализацию тройки гидродинамических поверхностей, построенных каркасами сечений в разных плоскостях, осуществим при m = n = 2, чтобы поперечное продольной оси x сечение (мидель-шпангоут) имело форму окружности. Значения остальных параметров приняты так, чтобы отразить общую форму корпуса подлодки без цилиндрической вставки [11]. Три гидродинамические поверхности показаны на рис. 4.

Для увеличения полезного пространства в субмаринах, как правило, используются цилиндрические вставки между носовой и хвостовой частями. Обозначим полную длину вставки как L_m и расположим ее так, чтобы середина вставки находилась на отметке x = 0. Тогда носовая и хвостовая части сместятся на отметки $x = +L_m/2$ и $x = -L_m/2$ соответственно (рис. 5).

Рис. 4. Тройка гидродинамических поверхностей с *L*_{*t*} = 40 м, *L*_{*a*} = 20 м, *W* = *T* = 5 м; *m* = *n* = 2; *a* = *b* = *j* = *k* = 2,5 (для носовой части); *a* = *b* = *j* = *k* = 1,5 (для хвостовой части)

Рис. 5. Схема фрагментов поверхности корпуса субмарины со вставкой неизменного сечения между носовой и хвостовой частями

В параметрических уравнениях фрагментов носовой и хвостовой частей выражения X необходимо дополнить слагаемым в форме $+L_m/2$. Предел варьирования параметров u и v оставим от нуля до единицы. Тогда фрагмент вставки можно задать следующими параметрическими уравнениями:

$$x = x(u) = uL_{m},$$

$$y = y(v) = vW,$$
 (19)

$$z = z(u, v) = T(1 - |v|^{m})^{1/n},$$

где выражение для *z* получено из уравнения (1), задающего форму мидель-шпангоута.

Иными словами, уравнениями (19) можно характеризовать не только цилиндрические (m = n = 2) вставки, но и вставки любой другой произвольной формы, которую позволяют степени кривой Ламе. При этом нужно соблюсти условие неразрывности и гладкости всех частей субмарины,

поэтому параметры *m* и *n* должны быть равны для всех частей. Цилиндрическая вставка также состоит из 8 фрагментов, знаки которых принимаются по табл. 2.

Таблица 2 Знаки уравнений фрагментов вставки субмарины между носовой и хвостовой частями

Часть суд		$0 \le x \le 0$	$\leq L_m/2$	2	$-L_m/2 \le x \le 0$				
Фрагме	нт	1	2	3	4	5 6 7 8			
Знак уравнения	x	+	+	+	+	-	-	-	-
	У	+	+	-	-	+	+	-	-
	z	+	-	+	-	+	-	+	-

Визуализацию поверхности корпуса субмарины с цилиндрической вставкой проведем по вышеописанному алгоритму с помощью уравнений (8) и (19) — каркас из шпангоутов. Геометрические параметры аналогичны предыдущей построенной поверхности (рис. 4), а вставку примем длиной $L_m = 40$ м. Полученная поверхность показана на рис. 6.

Рис. 6. Поверхность корпуса субмарины с цилиндрической вставкой между носовой и хвостовой частями с $L_m = 40 \text{ м}, L_t = 40 \text{ м}, L_a = 20 \text{ м}, W = T = 5 \text{ м}; m = n = 2;$ a = b = j = k = 2,5 (для носовой части); a = b = j = k = 1,5 (для хвостовой части)

Результаты

Визуализация гидродинамических поверхностей осуществлена в среде программирования Рython. С помощью библиотеки численного анализа NumPy вычислены массивы координат точек поверхностей по вышеизложенным параметрическим уравнениям. С помощью библиотеки построения графиков Matplotlib построены и отображены поверхности по заданным массивам точек. Указанная среда позволяет достичь высокого уровня автоматизации, оставив контролируемыми только параметры размеров гидродинамической поверхности, значений степеней формы кривых Ламе, а также параметров отображения трехмерных графиков.

Рис. 7. Конструирование корпуса подводной лодки из сегментов развертывающейся обшивки (Crown Copyright 2013, фото Э. Линнетта, www.defenceimages.mod.uk, фото 45155780.jpg)

В некоторых работах рассматривались частные случаи гидродинамических поверхностей: в [12] приводятся гидродинамические поверхности с батоксом и ватерлинией в виде параболы 4-го порядка и мидель-шпангоутом в виде кривой Ламе при m = 4, n = 1, а также при n = 2, m = 1/3. В [8] получены явные и параметрические уравнения для двух троек гидродинамических поверхностей с батоксом и ватерлинией в виде параболы 2-го порядка и мидель-шпангоутом в виде кривой Ламе при m = n = 2, а также при m = 4, n = 1. Несколько конкретных поверхностей рассмотрены в [13; 14]. В [10] приводятся выражения для гидродинамических поверхностей с произвольными параметрами степеней параболы, очерчивающей главный

батокс и ватерлинию, и степеней кривой Ламе, очерчивающей мидель-шпангоут.

Гидродинамические поверхности с каркасом из плоских алгебраических кривых не могут быть развертывающимися поверхностями, не считая цилиндрической вставки [10]. При конструировании корпуса судна теоретическую поверхность необходимо аппроксимировать сегментами развертывающейся обшивки (рис. 7). Если корпус судна изготавливается из композитных материалов, разбиение на развертывающиеся сегменты может не потребоваться.

Заключение

Реальное судно имеет очень сложную форму корпуса, и в его проектировании необходимо соблюсти целый ряд условий. Однако изложенные в статье уравнения для гидродинамических поверхностей и алгоритмы их построения могут быть крайне полезны на ранних стадиях выбора оптимальной формы корпуса судна.

Стоит добавить к универсальности предложенной модели, что в геометрическом моделировании подводных лодок верхняя и нижняя секции могут также иметь разную форму, если задать разные высоты T и степени кривых Ламе соответствующих фрагментов поверхности.

Аналитический метод описания формы корпуса позволяет широко применять компьютерное моделирование, как было продемонстрировано на примере визуализации корпуса субмарины.

Список литературы

1. Басин А.М., Анфимов В.Н. Гидродинамика судна: сопротивление воды, движители, управляемость и качка. Ленинград: Речной транспорт, 1961. 684 с.

2. *Brown D.K.* The way of a ship in the midst of the sea: the life and work of William Froude. Periscope Publishing Ltd., 2006. 225 p.

3. *Doctors L.J.* Optimization of marine vessels on the basis of tests on model series // Journal of Marine Science and Technology. 2020. Vol. 25. Pp. 887–900. https://doi.org/10.1007/s00773-019-00687-4

4. *Tober H.* Evaluation of drag estimation methods for ship hulls. Stockholm: KTH Royal Institute of Technology, School of Engineering Sciences, 2020. 67 p.

5. Рыченкова А.Ю., Клименко Е.С., Бородина Л.Н. Геометрическое моделирование и оценка качества каркасной поверхности корпуса судна в САПР КОМПАС-3D // Научные проблемы водного транспорта. 2020. № 62. С. 71–90. https://doi.org/10.37890/jwt.vi62.49

6. Li Z., Weimin C. Key technology of artificial intelligence in hull form intelligent optimization // ICMAI 2020: Proceedings of the 2020 5th International Conference on Mathematics and Artificial Intelligence. New York, 2020. Pp. 167–171.

7. *Kwang Hee Ko*. A survey: application of geometric modeling techniques to ship modeling and design // International Journal of Naval Architecture and Ocean Engineering. 2010. Vol. 2. Pp. 177–184. http://doi.org/10.2478/IJNAOE-2013-0034

8. *Кривошапко С.Н.* Гидродинамические поверхности // Судостроение. 2021. № 3. С. 64–67.

9. *Krivoshapko S.N.* Tangential developable and hydrodynamic surfaces for early stage of ship shape design // Ships and Offshore Structures. Taylor & Francis, 2022. Pp. 1–9. https://doi.org/10.1080/17445302.2022.2062165

10. *Карневич В.В.* Гидродинамические поверхности с мидель-шпангоутом в форме кривых Ламе // Вестник Российского университета дружбы народов. Серия: Инженерные исследования. 2021. Т. 22. № 4. С. 323–328. https://doi.org/10.22363/2312-8143-2021-22-4-323-328

11. Jackson H.A., Fast C., Abels F., Burcher R., Couch R. Fundamentals of submarine concept design. Discussion // Transactions-Society of Naval Architects and Marine Engineers. 1992. No 100. Pp. 419–448.

12. Krivoshapko S.N., Ivanov V.N. Encyclopedia of Analytical Surfaces. Springer International Publishing Switzerland, 2015. 752 p. https://doi.org/10.1007/978-3-319-11773-7

13. Кривошапко С.Н. К вопросу об аэродинамических поверхностях, заданных алгебраическими плоскими кривыми // Строительная механика инженерных конструкций и сооружений. 2010. № 2. С. 3–4.

14. Авдоньев Е.Я. Аналитическое описание корпусных поверхностей // Прикладная геометрия и инженерная графика. Киев, 1972. Вып. 15. С. 156–160.

Сведения об авторе

Карневич Валерий Вячеславович, магистр техники и технологий, аспирант, департамент строительства, Инженерная академия, Российский университет дружбы народов, Российская Федерация, 117198, Москва, ул. Миклухо-Маклая, д. 6. ORCID: 0000-0002-6232-2676, eLIBRARY SPIN-код: 4233-3099. E-mail: valera.karnevich@gmail.com