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complicated process, discrete-continuous Until now, it has not been possible to build full functionality for the design
topology, model, graph theory of complicated technical objects. Therefore, the functional approach does not

fully correspond to the increasingly complicated tasks of our time. The intro-
duction of discrete-continuous topology is especially important for the ex-
ploring and modeling of complicated systems and processes of their func-
tioning. In order to prove this fact, the present study describes the proper-
ties of complicated processes using examples of the flight process and
the design process. The examination of these processes, as the most com-
plicated, proves that the complicated systems and processes are topological
spaces with metric, so they can be represented in the form of an oriented
progressively bounded graph. Also, it proves the topological invariants
of complicated systems and the processes of functioning. Presentation of
the complicated processes in the form of a directed graph allows getting
shorter path to their algorithmicization and programming, which is neces-
sary for existing practice. In addition, the presentation of a complicated
process as a directed graph will allow using the apparatus of graph theory for
such purpose and will significantly expand the capabilities of programmers.
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TOIIOJIOT U1, MOJIEIIb, TEOPHS IpadoB

Jlns umTHpOBaHUA

Annoranus. llens ucciaenoBanus — MoKasaTh M J0Ka3aTh HEOOXOIH-
MOCTb BBEICHUSI HOBOM, AMCKPETHO-HETIPEPBIBHON TOMOJIOTHUECKON CTPYK-
TYpbI MJIs OIIMCAHUA CJIOKHBIX CHCTEM U IPOLECCOB UX (byHKLll/IOHI/IpOBa-
Hus. B HacTosmiee Bpems CyIIECTBYIOT JBE TOIIOJOTMYECKHE CTPYKTYpBI:
HeTIpepbIBHAS U JUCKpeTHas. Takxke UMEroTCsl GYHKIMOHAIBHBIE TTOIXO0IBI
K OIMCaHUIO CJIOXHBIX CHCTEM M MPOLECCOB X (PYHKIIMOHUPOBAHUS, OCHO-
BaHHbIE Ha HENpPEPBIBHOW Tomojoruu. /o cux mop He yaanaoch MOCTPOUTH
TIOJHBIA (DYHKIIMOHAJI JUIS CHCTEM IPOEKTUPOBAHUS CIIOXKHBIX TEXHHYECKUX
00BEKTOB, 0 ATOM NMpUYMHE (YyHKIIMOHAIBHBIN MOAX0 HE B MOJHON Mepe
COOTBETCTBYIOT YCIIOXKHSIFOLIMMCS 3a/lauaM coBpeMeHHOCTH. 1 mosTomy BBejie-
HHE JMCKPETHO-HENPEPHIBHOM TOMOJIOTMM BaXKHO ISl MCCIICIOBAHUA U MOJIe-
JIMPOBAHMS CIIOXKHBIX CHCTEM M HpoleccoB (pyHKIMOHMpoBaHUs. B kauectse
JIOKa3aTebCTBa OIMMCBHIBAIOTCSA CBOMCTBA CIIOJKHBIX MPOLIECCOB HA MpHUMEpax
rporiecca 1oJieTa u mpolecca NpoeKTUpOBaHus. M3ydeHue 3TuX npoueccos
KaK CaMbIX CJIO’KHBIX IIOKa3bIBAa€T, UYTO OHU, IIPU YCIOBUM BBEAECHUS HOBOU
JUCKPETHO-HEIPEPbIBHOM TOMOJOTHH, MOTYT OBITh NPEICTaBICHBI B BUIE
opueHTHpoBaHHOTO Ipada. OOOCHOBEIBAIOTCS TOMOJIOTNIECKHE HHBAPUAH-
ThI CJIIOXKHBIX CHCTEM W HpoueccoB (yHKUHOHUpoBaHuA. llpencraBieHue
CJIOXHBIX IPOIECCOB B BHIEC OPUEHTHPOBAHHOTO rpada mospomser Gomee
OCHOBATEJIHO MEPEUTH K MX aITOPUTMU3ALMU U IPOrPaMMUPOBAHUIO, YTO
Heo0Xo1uMo s cyniecTByomeil npakruku. Kpome toro, npeacrasieHue
CJIOKHOI'O Ipoliecca KaKk OpUEHTHPOBAHHOTO rpada Mo3BOJIMUT MPUMEHHUTH
IUTSL 9TUX LeNIel armmapar Teopuu rpad)oB, UTO MO3BOJIUT 3HAYUTEIHHO pac-
HIMPUTH BO3MOXXHOCTHU IMPOrpaMMHUCTOB.

Manununa H.JI. O60cHOBaHUE BBEACHHS TUCKPETHO-HENPEPHIBHOIN TOMOJIOTMH B MHTEPECAX alrOPUTMU3ALUH CIOKHBIX
mporeccoB (yHKIMOHUpoBaHHs / BectHuk Poccuiickoro yHuBepcutera aApyx0b1 Haponos. Cepusi: HxeHepHbIe nccie-
jgoBanus. 2021. T. 22. Ne 3. C. 270-282. http://dx.doi.org/10.22363/2312-8143-2021-22-3-270-282

Introduction

ject from these elements, also complying with

To describe the real world and build its models,
topologists use only two topologies: anti-discrete or
discrete [1-3]. However, in the nowadays there are
complicated systems and processes of functioning
of complicated systems, which are also complica-
ted. Whatever one may say, we cannot imagine
an airplane, helicopter, car or submarine using con-
tinuous topology (structure). We cannot crush an air-
plane like clay and mold a helicopter or a submarine
out of it in one continuous and one-to-one transfor-
mation, and, similarly, we cannot disassemble a com-
plicated object into elements and create a new ob-

the requirements of one-to-one conversion [1-3].

So, it is necessary to introduce one more topo-
logy (structure), which will help to cope with
the problems that arise, when we are creating com-
plicated systems or processes, namely, discrete-
continuous topology. About 20 years ago V. Ko-
rukhov wrote about it [4; 5], but this topology was
described in terms of philosophy.

Let’s try to justify the introduction of such an ab-
straction from the standpoint of practical life on a speci-
fic example and see what this can give for the possibi-
lities of modeling complicated processes and systems.
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1. Complicated process as an object of modeling

The concept of a complicated process, like
the concept of a complicated system, is not strictly
defined. In technology, the word “system” is de-
fined mainly as an aggregate number of objects,
which activity is organized by some rules [6].
A feature of complicated systems nowadays is in-
formation processes, which are aimed to ensure op-
timal management [7]. Therefore, a complicated
process should be understood as the process of
functioning of a complicated system. Examples of
such complicated processes are:

— construction, repair, operation of complex
equipment;

— processing of parts, assembly of units or ma-
chines;

— command and control of troops and combat
assets;

— flying of the aircrafts;

— management of transport systems;

— implementation of computer programs, math-
ematical modeling;

— functioning of finite state machines;

— public administration.

Any complicated process consists of a set of se-
quential or parallel operations (essentially techno-
logical, design, including creative), as well as of
the moments of the beginning and end of these op-
erations or the moments of transition from one opera-
tion to another.

Elements of the first subset are operations that
take place in time and require energy expenditures
for their implementation (elementary operations).
These can be signals that determine the possibility
(or necessity) of the beginning or end of elementary
operations. Together, they constitute the physical
content of the process under study.

The elements of the second subset are the mo-
ments of the beginning and the moments of the end
of operations or the moments of transition from one
operation to another. They can also include links
between operations and logical conditions for mo-
ving from one operation to another. Elements of this
subset require practically no time or energy con-
sumption for their implementation. They represent
the logical structure of a complicated process.
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It is obvious that any of the above processes can
be represented as a disjunctive sum of the above sub-
sets of elements. Physically, this entire process as
a whole can be represented as continuous, but with
discrete transitions from one element of the process
to another one. In other words, we have a physically
continuous process with a discrete logical structure.

However, in various attempts to automate
the complicated processes, many researchers define
them as a functional, applying an anti-discrete struc-
ture to them. Although until now it has not been pos-
sible to develop, no matter how significant the func-
tionality of a complicated process, which would de-
scribe the whole process, and not just a tiny part of it.

2. Analysis of the complicated process

Let’s analyze a complicated process using
the example of an airplane flight (design) process.
The constituent parts of a complicated process, usu-
ally called its elements, are considered to be rela-
tively time-limited and fairly homogeneous in terms
of physical content, operations that can be described
by a relatively small number of mathematical ex-
pressions.

Flight elements for an airplane can include,
for example, takeoff run, climb, level flight, indi-
vidual aerobatics, air combat attacks, etc. The com-
plexity of the flight process of modern aircraft and
the need for its more detailed study lead to the fact
that more and more small flight elements are being
studied. Moreover, such elements can no longer
only refer to the aircraft as a whole, but also to its
individual units, systems and components, including
the crew. The main fact is that any complicated pro-
cess can be divided into elements, in each of which
some particular tasks of the general problem of the
complicated process are solved.

A feature of the design process is the deve-
lopment and creation of new, previously non-
existent objects, processes or systems. Here human
creativity is closely intertwined with engineering
synthesis, which is currently carried out only by
humans [8; 9]. The definition of the design process
as a complex discrete-continuous process in no way
contradicts the creative aspects of design [10; 11].



ManuHuHa H.J1. BectHuk PYH. Cepusi: HxeHepHble nccnepoBanus. 2021, T. 22. Ne 3. C. 270-282

The constituent parts of a complex process,
usually called its elements, are considered to be re-
latively time-limited and sufficiently homogeneous
in terms of physical content, operations that can be
described by a relatively small number of mathe-
matical expressions.

The interrelationships of elements are more
complex and are not always obvious from a simple
listing of them. Many elements of a complicated
process, in particular flight, especially very small
ones, often have to be performed simultaneously.
The practical application of the concept of “ele-
ment” of flight in research and in flight practice
allows us to draw some general conclusions in
the transfer to the concept of a complex process:

1) each element of a flight (complicated pro-
cess) can have a mathematical description or a ma-
thematical model, which includes certain parameters
of an aircraft (an object subjected to the process);

2) each element of a flight (complicated pro-
cess) has such characteristics as time of execution,
probability of successful completion, etc.;

3) each element of a real flight (complicated
process) has quite definite moments of beginning
and end;

4) as an element of flight (complicated pro-
cess), such simple operations can serve, which, es-
pecially when a detailed study is required, can be
considered separately from others. All of the same
can be transferred both to the design process and to
other complicated processes.

As a result, the analysis of any complicated
process is necessary. It precedes the development of
a complicated process model and includes determi-
nation of:

— the elements of the process;

— the list of elements of a complicated process
included in each investigated stage of a complicated
process;

— the main parameters and characteristics for
each element of the process, including time and
probabilistic characteristics;

— the system of connections and relations be-
tween the elements of the process, or otherwise:
the system of binary relations on the set of these
elements.

Similar considerations can be made for the de-
sign process. The goal of engineering design is always
the development and creation of new, previously
non-existent objects, processes or systems [8; 9].
Human creativity here is closely intertwined with
engineering synthesis, which, falling into the cate-
gory of NP — complete tasks', is currently carried
out practically only by humans, since there is no
other way to check the correctness of certain crea-
tive solutions, as by “collecting” from parts the en-
tire product being developed as a whole one, and
having checked in practice its compliance with a gi-
ven criterion of efficiency [10; 12].

So, any complicated process includes a num-
ber of sequential and parallel operations (essentially
technological, design, including creative), as well as
the moments of the beginning and end of these op-
erations or the moments of transition from one op-
eration to another. So, when software is created
to automate the control of a complicated process,
it is considered that a complex process consists of
a large number of elementary operations. Each of
these elementary operations has common properties,
but some of them are unique. Let’s try to give
a more precise definition of the concept of a pro-
cess’ element.

Elements or elementary operations of a com-
plex process are called time-limited and homoge-
neous in their physical content and functional pur-
pose areas of a complex process.

All such operations each have a well-defined
beginning — entry (start time) and a very definite
end — exit (end time). The inputs and outputs of
complicated process’ elements constitute the second
of the subsets of complex process elements men-
tioned earlier. By connecting inputs and outputs,
various elementary operations of a complicated pro-
cess are combined into a single complicated pro-
cess. Each of the elements can only be connected to
the entire process through input and output.

Therefore, the dividing of any complicated
process into stages and elements should be based
on a functional and logical principles, according to
which each stage of a complicated process will rep-

! This refers to the complexity of n! It refers to the
overkill problems of combinatorics.
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resent a system of elements that will be aimed to
solve one of the particular tasks of a complicated
process and can be assessed by the corresponding
partial criterion of efficiency for this complicated
process. In this case, a particular task that is solved
at this stage of a complicated process is at this stage
the main functional task, on the solution of which
the outcome of the complicated process as a whole
one also depends. The implementation of the entire
set of elements of a complicated process that make
up this stage should be subordinated to the main
functional task of a complicated process.

Obviously, any complicated process includes
not only elementary operations and their aggregates
(stages), but also the moments of the beginning and
end of the elements (stages) of a complicated pro-
cess and the moments of transition from some ope-
rations (elements, stages) to others.

Based on the concepts of an element and a stage
of a complicated process that correspond to the content
and goals of this study, we will accept the follow-
ing, preliminary, definition of a complicated pro-
cess: a complicated process is a discrete-continuous
process flowing in time and space. It includes sepa-
rate interrelated elements (stages) of this process,
as well as the moments of the beginning, end and
transitions between them.

Thus, the set of elements of a complicated
process consists of two subsets interconnected:
Hy = Qo X Vp.

The process is usually implemented with the help
of some means, or a complicated system. Let us
consider these provisions on the example of an ana-
lysis of an aircraft flight.

3. Physical and structural similarity
of a complicated process and model

Modeling as a research method is based on
the theory of similarity. With a sufficient degree of
accuracy, it can be argued that modeling takes place
only when there is a similarity.

However, rather often researchers, referring to
physical or mechanical similarity, limit themselves
only to the criteria of physical similarity, since it is
far from always clear how to establish logical and
structural similarity. This is because until now in
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topology there are only two variants of the structure:
anti-discrete and discrete. Complicated processes do
not fit into both of these structures and remain out-
side the study using topological and combinatorial
means, although they are partially used in the form
of block diagrams or graph-diagrams. The issues of
the physical similarity of the model and the process
are well studied, however, attention should be paid
to the issues of the relationship between structural
and physical similarity.

From the concept of structural similarity, it fol-
lows that each element of a complicated process
must be put in a one-to-one correspondence with
an element of the model of this process using some
mapping f. The physical similarity of the elements
of the model and the complicated process is also
directly related to the mapping f [2].

9ogiv1) A

9o(iv2)

Rectangular diagram Wz

Note: W,; — set of parameters at the input of the element
qoi; Zo; — set of parameters at the output of the element q;;
W; — set of parameters at the input of the element g;; Z; — set of
parameters at the output of the element q;; ©0:(qoi) =
@it Wo; = Zy; — transformation (display) of input parameters
into output parameters, carried out when implementing an
element of a real complex process qq; ¢;(q;) = @i W; - Z; —
transformation (mapping) of input parameters into output pa-
rameters, carried out when simulating an element of a complex
process gq;; h;: Wy; —» W; — “scale factor” between the inputs of
the process and model elements; q;: Z,; = Z; — “scale factor”
between the outputs of the process and model elements.

Consider a rectangular diagram WZ (Figure).
In this diagram, the arrow q,; denotes an element of
the real process, to which, by means of the mapping
f, the model element g; is put in a one-to-one corre-
spondence. The beginning of the implementation of
the element gq,; is indicated by the vertex vy,
which contains the ends of the arrows (the ends of
the elements) qo(;-1), qo(i-2)» €tC.

The end of the realization of the element q;
is indicated by the vertex vy4, where the arrows
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(the beginning of the realizations of the elements)
do(i+1) 9o(i+2)» €tc., begin. In the model, these ver-
tices correspond to the vertices vy, and vy, which
indicate the beginnings and ends of the implementa-
tion of the g;element of the model.

Due to structural similarity

q; = f1(qo) and qo; = f~1(qy). )

Let’s denote: kqy; = {koj}i is a set of physical
similarity criteria for the element qq;; j = 1,2, ... —
indices of criteria; k; = {ko j}i is a set of physical
similarity criteria for the element q;; j = 1,2,... —
indices of criteria.

When modeling, the criteria for the physical
similarity of a real complex process and its model
should be equal:

koi = k; foreveryonei = 1,2,..,ny. (2)

To ensure the physical similarity of the ele-
ments qq; and q;, the mappings @,;, @;, h;, g; must
meet the following condition:

h;o@;o gi_l o (pail = idem.}
Poiogio @i ohi ' =idem.
This is possible only if the mappings
®oi» P, hi, g; are one-to-one. From equalities (3) it
follows that

hi o @i = @y, °gi-}
hitopoi = @iogi™

This means that the diagram WZ is bicom-
mutative [2]. It follows from this that, subject to
the structural and physical similarity between
the elements of the process and the model:

— the input parameters of the process element
uniquely determine the output parameters of the mo-
del element and vice versa;

— the parameters of the input of the model ele-
ment uniquely determine the parameters of the out-
put of the process element and vice versa.

Insofar as

)

4)

hiteo@oi = @0 g7,

then @; = hi" © @y © g;. )

Expression (5) means that the mapping ¢; is de-
termined not only by the mapping ¢,;, but also by
the mappings h; * and g;. The latter are the particular
values of the mapping f, which reflects the structural
similarity of a real complex process and its model
(systems Hy and H).

Thus, if the mapping @,; is a transformation of
the real physical characteristics of the process’ q;
element, then the model of this transformation ¢; is
determined not only by the transformation ¢;, but
also depends on the “scale factors” h; and g;, which
in turn depend on the structural similarity of the pro-
cess and his models. Consequently, expression (5)
establishes in the most general form the connection
between the structural and physical similarity of
the process and the model. In the particular case
when the coefficients h; and g; are identical trans-
formations (scale 1: 1), we have

Vi = Poi- (6)

Hence formula (1) follows.

Let us consider the flight process, and in its rep-
resentation, any complicated process, as a topological
F space. The study of elements and relationships be-
tween them in complicated processes using the ex-
amples of flight and design processes shows that
complicated processes meet three conditions, which
are called the axioms of the topological structure [3],
and therefore a complicated process is a topological
space. In addition, the complicated process conside-
red as the system Hy = Qg X Vj is metric. The metric
of this space is given by a temporary program or
the order in which the process is executed.

Any model of a complicated process should be
formed as some kind of mathematical structure. This
mathematical structure turns into a model when some
physical interpretation is given to the elements of
the model. The question of the similarity or equiva-
lence of a complicated process and its model rests
on the problem of similarity or equivalence of their
structures, and for this it is necessary to establish
their topological similarity and find a system of
topological invariants in order to be able to compare
a process and a model accurately.

If we talk about the flight process of any air-
craft, then it is not enough to describe the dynamics
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of its flight to form its model. Any flight is also
characterized by a time program or flight schedule,
the processes of forming not only control signals,
but also the moments of their implementation, etc.
If we proceed from the requirements of similarity,
then this, and a very large, set of characteristics and
properties of flight should also be considered.

So, it becomes necessary to consider not only
the physical similarity of the elements of a compli-
cated process and the elements of its model, but also
the structural similarity of the process and its model.
Let’s try to consider the topological invariants of
a complicated process, using, as an example, two
such complicated processes as the design or flight
process of an aircraft and try to find common proper-
ties and characteristics between them.

4. Topological invariants
of the complicated process and its model

The introduction of the discrete-continuous to-
pology on the sets @, and V, makes it possible to
describe the properties of these sets using topologi-
cal invariants.

Each of the sets Qy and Vj is finite. Therefore,
one of the invariants of the system Hy = Qo X V; is
the finiteness of sets, which is numerically expres-
sed by their cardinality:

— Ny — is the cardinality of the set Qy;

—ngy — is the cardinality of the set V.

Of these two quantities, the cardinality ngo of
the set @ is a topological invariant of the system
H,, while the cardinality ny, of the set V, is not,
since it is completely determined through the cardi-
nality ny, of the set @y and its ordinal type Ry.

One of the main topological properties is the com-
pactness property. When applied to a complicated pro-
cess, the compactness property means that any sequence
of elements has at least one limit point beyond
which there can be no process elements. The com-
pactness property is equivalent to the property of
a set to be closed and bounded. Indeed, the design
flight process as a set H, includes boundary points
(closure); moreover, no sequence of either the flight
process or the design process can go to infinity.

All elements of a complex process have a well-
defined orientation in time and space. Each elemen-
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tary process can be realized only in one direction:
from the beginning to the end, since the passage of
time is irreversible.

The properties of the system Hy, = Q, X V, listed
above: finiteness, closedness, boundedness and di-
rectionality allow representing the design process
model in the form of a finite, progressively boun-
ded, directed graph H = Q X V.

The graph H = Q XV has a finite number of
arcs (oriented edges) and vertices; it can have cy-
cles, but it has no contours. A real complicated pro-
cess (design or flight) cannot be imagined as con-
sisting of completely independent, unrelated elements.
This means that the corresponding graph cannot
also consist of unrelated components, i.e. the graph
H = Q X V has one connected component.

So, the following topological properties of
the set Hy have been established as a system of
sets Qg and Vj:

— limb (finiteness);

— limitedness (boundedness);

— isolation;

— connectivity.

Consequently, the model of a complicated pro-
cess can be represented in the form of a graph
H = Q X V. Graphs, in addition to the specified
properties and the number of elements included in
them, can have different characteristic numbers.
In this case the cyclomatic number of the graph
H = Q XV becomes very interesting. It is deter-
mined by the following formula:

v(H)y=my —nyg+1, @)

where my is the number of arcs (edges), and ny is
the number of vertices of the graph H.

The cyclomatic number is equal to the largest
number of independent cycles of the graph [13; 14]
and determines the complexity of the graph’s struc-
ture, and, consequently, the complexity of both a com-
plicated process (system) and its model. The cy-
clomatic number is the next and very important in-
variant of the system Hy = Qg X V.

The study of the properties of the order defined
on the sets Qy and V/; shows that these sets are linear-
ly ordered, inductive and can always be completely
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ordered, that is, they can have ordinal types, and there-
fore can be numbered.

It turns out that the ordinal type F; of the set I/,
is completely determined by the ordinal type R,
of the set Qy. This means that the way of ordering
the set V,, is completely determined by the way of
ordering the set Q.

Thus, to ensure the similarity of a complicated
process and its model, it is necessary that the ordinal
type Ry, given on the set Q, of elements of the compli-
cated process, and the ordinal type R, defined on the
set of arcs of the graph H(V, @), that is Ry = R.
Equality F; = F is ensured in this case automatically.

Theorems proving topological properties, namely,
finiteness, limitedness (boundedness), isolation, and
connectedness, are below.

Properties of the sets Qy, Vo and Hy = Q,®V

Theorem 1. The set Qy = {q;} is finite [11].

Proof. Since each element q,; € Q, has a finite
implementation time (0 < At; < ), the number
of simultaneously executed process elements does
not exceed a finite number of possible executors
(in the process of designing a software product,
these can be systems, programs, units, people), then
in total the flow time of the entire process as a whole
is also finite. The theorem is proved.

The cardinality of the set Qy = {qo;} is equal to
the number ny, of the elements qy;.

Theorem 2. The set V, = {vgy}} is finite [11].

Proof. Since the set Qy = {qo;} is finite,
and each element q,; € Q, can be assigned exactly
two elements vy, €V,. Let us denote these
elements vi(lﬂ(qoi) and 17;(1_)(%1) respectively.

We have V, = {v}(lﬂ(qoi)} U {v,(l_)(qm)}. Obvious-

ly, {v}(f)(qol)} U {U;(l_)(%l)} = @ and, therefore, V,
is finite. The theorem is proved.

The cardinality of the set Vj, is equal to the num-
ber ngy of elements vgy.

It follows from the theorems proved that the set
Hy = Qy®V, is finite.

Theorem 3. The set V, = {vy,}} is a metric
space [11].

Proof. Since vy, € V, are the points on the time
axis (numerical axis), then each pair (v()x, voy) can

be associated with the number p(v(,x, voy) > 0, cal-
led the interval (distance) and is satisfying the axioms
of the metric:

1) p(”Ox: vOy) = 0;

2) p(UOx' 1703/) =0;

3) p(UOxIUOy) =0ex=y;

4) |p(v0x' vOy)' = |p(U0y: va)l — symmetry;

5) |p(v0x' UOz)l < |p(v0x:v0y)| +

+ |p(v0y, V02)| — triangle rule.

The theorem is proved.

Corollary 1. The metric on the set Q is a con-
sequence of the metric on the set ;.

Corollary 2. The sets Vy = {von}, Qo = {qo;}
and Hy = Qy@®V, are topological spaces [1-3].

The introduction of topology on the set
Hy = Qy®V, allows us to consider the question of topo-
logical invariants of the system Hy,. One of the main topo-
logical propetties of a space is the compactness property.

Theorem 4. If Qy = {qo;} is a set of process
elements, and V, = {vy,} is a set of moments of
their beginning and end, then the set Hy = Q,®V,
is compact. To prove Theorem 4, we show first that
the sets @, and V,, are compact [11].

As the first part of the proof, we use the
achievements of Theorem 6.1 by N. Steenrod and
W. Chinn [15] and introduce a lemma.

Lemma 4.1. Any closed element Avy, € Vj is
compact. The proof of the lemma is given in [15].
The result of the proof: the element Avy;, is compact.
For further reasoning, we use Theorem 6.4 of Steen-
rod and W. Chinn [15] and reintroduce the lemma.

Lemma 4.2. Let X be a compact space, and let
the function f: X — Y be continuous, then the image
fx 1s compact [15]. The proof of the lemma is given
in [15]. It obviously follows from Lemma 4.1
and Lemma 4.2 that any closed element of a com-
plex process qq; € Qp is compact. Therefore, the set
Qo = {qo;} is compact.

Let us proceed to the proof of the second part of
the theorem, that the set V, = {v,;,} is compact. To do
this, compose the set Vg = {v,(f)(qoi); v,(l_)(qoi)}.
Obviously, Vy is finite and completely covers the set,
that is, Vy is a finite cover of V. Therefore, V, is
compact [11]. Since Q, is compact and V; is compact,
it is quite obvious that Hy = Qy@®V, is compact.
The theorem is proved.
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Since the topological space Hy = QyDV, is met-
ric and compact, it is compact in itself. Applied to
the design process or a flight process (as well as to
any complex process flowing over time), this means
that the endpoints of a process belong to the process
itself. The compactness property is equivalent to
the property of a set to be closed and bounded.

Definition. A set X = R™ is called bounded if it
is contained in some sufficiently large ball, that is,
if there are points xy and a number r > 0 such that:
X © N(xq,7) [15].

Definition. Let X be a setin R™. A subset A € X
is called closed in X if its complement in X is an open
set in X. In short, A4 is closed in X if X — A is open
inX [15].

Theorem 5. The compact set Hy = Qu®V, is
bounded and closed [11].

The first part of Theorem 6.1 from was used
as Lemma 4.1 [15]. The full theorem says: every
compact subset is bounded and closed in R™. This
theorem implies the validity of Theorem 5. Thus,
Hy = Qy®V, is a closed and bounded set. The theo-
rem is proved.

As applied to the considered complex process,
the property of boundedness means that no sequence
of process elements can go to infinity. Closure, in turn,
means that a complex process as a set includes all
its boundary points (closure of the set). The bound-
edness and closedness of the set Hy = Qy,@V, are
topological invariants of a complex process and al-
low one to establish some properties of a directed
graph, which can be used to represent a model of
such a complex process as a design process.

Let us show further that the set Hy = Qy,DV,
as a mathematical object is a graph.

Definition. A graph is a pair consisting of a set
X and a mapping I': X — X, or, which is the same,
a pair G (X,I') is a graph in which X is a set of ver-
tices and I': X — X is a set of edges.

Theorem 6. If the set Qp = {q,;} is a set of ele-
ments of a complex process, and Vy = {vg,} is a set
of moments of their beginning and ends, then the pair
Hy = Qy®V, is the essence of a graph [11].

Proof. Obviously, each qy; € Q, corresponds

to a pair (v,(l+)(q0i); vf(l_)(qol-)) and, if V§ =
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{U;(l+)(CI0i)F vi(z_)(qu)} is the set of all such pairs,

then Vg = {v”(q0); v (0} = 9.

This implies that Vy = f(Q,) and that there
exists a single-valued mapping I},: Vy — V; such that
all qo; € Iy (von)), and there exists an f — a single-
valued mapping of the set Q, onto the set V; such
that all £, . € Vq.

Then, by definition, Hy = Qo®V, is a graph
in which V, is a set of vertices, and Q is a set of
edges. The theorem is proved.

The properties of the graph Hy(Vy, Qo) are de-
termined, in particular, by the fact that the set
Hy, = Qy@®V, is closed and bounded.

Definition. A graph is called progressively boun-
ded at the vertex v if there is an integer m such
that the length of each path starting at the vertex
vop, does not exceed m; the graph is progressively
bounded at each of its points, progressively boun-
ded [13].

This allows us to say that, in addition to the fact
that the graph Hy(V,, Q,) is progressively bounded,
it is also progressively finite, although the converse
is not true [13]. All elements of the design process
(or the process of flight) have a well-defined orien-
tation in time and space.

Let’s move on to considering the question of
the connectedness of the graph.

Definition. A topological space (X,Y) is called
connected if and only if the set cannot be represen-
ted as a union of two disjoint closed sets [1; 3].

The real design process (flight or design) dif-
fers from an arbitrary set of its elements, first of all,
by the mutual dependence of its individual elements
and sections among themselves. The design process
(flight or design) cannot be imagined in the form of
completely independent sections, despite the fact that
when studying the design process (flight process)
and forming its model, it can never be argued that
we know all the connections of its elements with
each other. The design (flight) process always con-
sists of one and only one connectivity component,
which, in turn, means that the graph Hy(V,, Qo)
must always be connected.

Definition. A graph Hy(V,, Qp) is called com-

plete if (voy; vox) & Qo = (Vox, Voy) € Qo, that is,
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if any two vertices are connected in at least one di-
rection [13; 14].

Definition. A graph Hy(Vy, Q) is called strong-
ly connected when for any two vertices v, and vy,
(UOx * voy) there is a path going from v, to vy,
(or vice versa) [13; 14].

Theorem 7. Graph Hy(V,y, Qp)), in which
Vo = {von} is the set of moments of the beginning
and end of the design process elements, and Q, is
the set of all pairs (V()xi voy) such that vy, < v,
(including transitivity) — strongly connected [11].

Proof.

By definition. However, the design process, more
precisely, its model, may not include as elements all
the pairs (v()x ; voy) such that vy, < vy, but only
the necessary part of them, which ensures the con-
nectivity of the graph H,.

Definition. The partial graph of the graph
Hy(Vy, Q) = Hy(Vy, T) is the graph
Hy(Vo, Qo) = Ho(Vo,A), where vy =T, ), for all
von € Vy [16].

It follows from Theorem 7 and the above defi-
nition, that the graph Hy(V,, Qo) is a partial graph of
the graph Hy(Vy, Qp).

Obviously, in the considered partial graph
Ho(Vo, Qo) not necessarily all (vop; vog) € Qy, that
is, generally speaking, if the graph Hy(Vy, Qp) is
connected, then from this statement it does not
yet follows, that the graph H,(V;, Qo) is connected.
However, bearing in mind the definition adopted for
everywhere dense and everywhere not dense elements
of the complicated process, we can supplement
the set Qp with such a number of everywhere not
dense elements (UOx; voy) € Qo so that the graph
Hy(Vy, Qo) will be always connected [11].

Consider the conditions necessary to ensure
the connectivity of the graph H,(V;, Qo).

The maximum possible number of arcs in a con-
nected graph without loops is determined by Theo-
rem 2.2.4. Ore [14]:

1
NQ(nV: 1= E(nv —1) xn.

where ny, is the number of vertices in the graph.
It follows from Theorem 2.2.5 [14] that if in
a graph with n, vertices there are more arcs than

No(ny,1) = %(nv — 1) * (ny, — 2), then the graph

is connected [11]. Thus, the following theorem
holds.

Theorem 8. In order for the graph Hy(Vy, Qo),
in which Q, = {q,;} is the set of everywhere dense
elements of the complicated process, and Vy = {vy;,}
is the set of moments of their beginnings and ends,
it is sufficient to supplement the set Q, — every-
where is not dense elements of the complicated pro-
cess so that the condition is met:

Ny (ny, 1) = ngp + ANy (vox, Voy ) = No(ny, 2),

where ngg — the number of elements of the design
process (everywhere dense) or the cardinality of
the set Qg; AN, (v()x,voy) — an additional number
of everywhere not dense elements of the design
process; ny is the number of start and end points of
the design process elements [11].

Corollary 8.1. The minimum required number
of additional everywhere not dense elements of
the complicated process that ensure the connectivity
of the graph H,(V,, Q,) does not exceed:

1
Ngumin (Voxi Voy) = >y = 1) * (ny —2) —ngq.

Corollary 8.2. The maximum possible addition
of the graph Hy(V,, Q,) everywhere not dense ele-
ments of the complicated process is determined by
the formula

1
Nomin (Voxs Voy) = > (y = 1) *ny —ngq.

Corollary 8.3. The connectedness condition of
the graph Hy(V,, @), defined by Theorem 10, can
always be satisfied [11].

Indeed,

Noguax (Voxi Voy) = Nopin (Voxi oy ) = ny — 1> 0.

This allows us to formulate the following theorem.

Theorem 9. The complicated process, as a dis-
crete-continuous process, considered in the form of
a system Hy = QyDV,, can always be represented
by a connected graph Hy(V,, Qo) [11].

So, if the design process as a discrete-continuous
process is considered as a set Hy = Qy,DV,, where
Qo = {qoi} is a set of elements of the complicated
process, and V, = {vy,} is a set of moments of their
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beginning and ends, then the set H, — of course, is
bounded and closed, and can always be represented
as a connected progressively bounded, directed graph.

Properties of the system of relations
defined on the sets Qg, Vo and Hy = Qo®V

Binary relations of the form a, < a,, are de-
fined on the sets Q,, V, and Hy = Q,@®V,. Consider
the properties of these relations (order relations).

Definition. A relation of type a, < a,, is called
a partial ordering or an inclusion relation when it has
the following properties [1; 3]:

1) ay < a,, —reflexivity;

2)if ay < a,, and a,, < ay, then a, = a, — an-
tisymmetric;

3)if ay < a, and a,, < a, — transitivity.

Definition. A relation a, < a,, is called a strict-
ly ordering or strictly inclusive relation if it satisfies
two conditions [1; 3]:

1) ay < a, and a, < a, do not take place at
the same time;

2) transitivity.

A strictly ordering relation is also called a line-
ar ordering. A linearly ordered set is called well-
ordered if any non-empty subset in X has the first
element.

Further, a number of theorems will be proved
that will allow, taking into account the fact that
the design process can be represented by a directed
graph H,(V;, Q,), to establish the following properties
of the sets Qp and V,, of the system Hy, = Qy DV,
and their order:

1) the set V, can be defined if and only if the set
Qo and the order relation on the set Q are given;

2) the way of ordering (numbering of elements)
of the set V0 is completely determined by the way
of ordering (numbering of elements) of the set Qg;

3) for the set V; to be linearly ordered, it is ne-
cessary and sufficient that the set Q¢ be linearly or-
dered. It follows that if the set I/ is linearly ordered,
then the set Q is also linearly ordered.

The real design process is in reality always, one
way or another, organized, that is, ordered. The theo-
rem follows from this.

Theorem 10. The set V is linearly ordered [11].

Proof. Since all vy, €V, for a real discrete-
continuous process are points on the time axis or
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Vo C R, then for any pair the relation is defined:
Vox < Vgy OF Voy, < Voy. If vy < v, and vy, <
Voy, this clearly proves that vy, = vy,,. Thus, for all
Vvon €V, the linear ordering conditions are met.
So V, is linearly ordered. The theorem is proved.

The fact that the set is linearly ordered follows
from said above and Theorem 10. This, in particu-
lar, means that in the directed graph Hy(V,, Qo)
cannot have contours. In the actual design process,
the possible presence of contours means that se-
quential execution of the same designated elements
can take place, but this does not mean repetition of
the same elements. Indeed, if during the design some
elements are repeated, then such repetition, in fact,
is the execution of a new element, since this inevi-
tably changes, at least, the implementation time in-
terval and the area of the space in which the element
is “repeated”. Contours in iterative computational
processes and in feedback systems that implement
discrete-continuous processes have a similar content.
Representation of such a “repetition” in the form
of a graph with contours can significantly reduce
the dimension of the graphical or matrix representa-
tion of the graph.

Since the sets Qy and V, are linearly ordered,
each of them can have ordinal types [2]. The ordinal
type of the set @y can be defined as a plurality of
ordering options on the set Q, or a plurality of de-
sign process options.

Let us introduce the notations: Ry is the ordinal
type of the set Qy, Fy is the ordinal type of the set
V,. Ordinal types can be specified in different ways.
It is convenient to define ordinal types in matrix
form using adjacency matrices or sequence relation
matrices.

Consider the questions of complete ordering of
the sets @ and V. Based on Zermelo’s theorem [14],
the following statement is true: the set Qy = {qo;}
can be completely ordered. Therefore, the set Q, has
a minimum element, and any subset X, of the set Q,
has the first element. Indeed, the complicated process,
as a whole, and any of its sections or stages have
a minimum or first element. The ordinal type of
a well-ordered set is called an ordinal number [2].

Let us introduce the notation )y — the ordinal
number of the set Q. The presence of the ordinal



ManuHuHa H.J1. BectHuk PYH. Cepusi: HxeHepHble nccnepoBanus. 2021, T. 22. Ne 3. C. 270-282

number (), means that the elements gy; € Q, can be
renumbered in several ways. Indeed, all elements of
any particular design process can be renumbered,
moreover, in several versions, in accordance with
the implementation of a particular design process.

Theorem 11. The set Qg = {qo;} is inductive [11].

Proof. Indeed, among the elements of the de-
sign process, you can always specify two such ele-
ments qo, and qoy, and choose the third g, so that
the following conditions will take place: qg, < qo,
and ¢y < qoz- The theorem is proved.

Then, based on the Zorn lemma [2; 13] or
the Hausdorff — Kuratowski maximality principle [2],
the set Qy has a maximal element, and on the basis
of Zorn’s theorem, any non-empty subset of
the set @, has at least one maximal element. Indeed,
for a real design process, you can always specify
an element that defines the beginning of the design
and elements that determine the beginning and end
of any part of the design process.

Since the set V/; is linearly ordered, the relations
of antisymmetry and transitivity are defined on the set
Vy. Just like the set @, the set V, can be quite or-
dered and, therefore, the set V/, has a minimum ele-
ment. Any subset Y, of the set V|, has the first ele-
ment. The set V; has an ordinal number. The ele-
ments of the set V, can be renumbered in several
ways, however, the way of numbering the elements
of the set I/ is determined by the way of numbering
the elements of the set Q. Let us denote the ordinal
number of the set V by A,.

Theorem 12. The set Vy = {vgp} is inductive [11].

The theorem follows from the fact that Hy (V;, Q)
is a graph, and the set Q, = {qy;} is inductive. Since
the set Vy = {von} is inductive, it has a maximal
element, and any nonempty subset of it has at least
one minimal and one maximal element. Indeed,
for a real design process, you can always indicate
the moment of its end, and for any of its sections —
the moments of the beginning and end of this section.

It follows from the above theorems that the or-
der relations on the sets Q, and V,, determined by
the ordinal types R, and F,0, cannot be indepen-
dent, that is, the ordinal type F =V X V; cannot
be specified independently of the set Q, and its or-
dinal type Ry = Qg X Q.

Conclusion

The main result of the study is to show that
an intermediate, discrete-continuous structure is ne-
cessary. Only with the introduction of such a topo-
logical abstraction is it possible to prove that
a complex process or system, as well as a model,
is a progressively bounded directed graph.

Thus, we get the opportunity to transfer the study
of complex processes to the field of combinatorics
and take advantage of the achievements of graph
theory and topology, etc., in order to establish topo-
logical invariants or criteria for structural similarity
for the possibility of comparison with each other as
various complex processes, as well as products cre-
ated for their implementation.

So, the complicated processes like discrete-
continuous processes and their models have the fol-
lowing topological invariants or criteria for struc-
tural similarity:

1) the cardinalities of the sets are Qp and Q.
Let us denote them by nyq and ng respectively;

2) the limitedness (boundedness) of the sets Q,
and Q. This property has no numerical characteris-
tics, but it shows that all the boundary points of
a complicated process belong to this process. Each
boundary point of a complicated process is in one-
to-one correspondence with one of the boundary
points of the graph H(V,Q), which is a model of
a complicated process;

3) the boundedness (limitedness) of the sets Q,
and V, impose on the graph H(V, Q) the require-
ment that there are no contours;

4) ordinal type of the set Qy. The design pro-
cess and its model will be similar only when the ordi-
nal types of the sets of elements @ and @ are equal,
that is Ry = R;

5) the cyclomatic number of the system
Hy, = Q¢ X V,, represented on a model as a graph
H(V,Q), 1is determined by the formula
v(H) = my —ny + 1. This invariant is special.
The requirement of equality of cyclomatic numbers
of a complicated process and model is not always
necessary:

a) the time program of a complex process is
nothing more than a variant of the ordinal F, type of
the V; set. Since F, depends on R, it is impossible
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to form a time program for a complex process re-
gardless of the ordinal type of Ry. So, the presence
of a logical structure of a complex process that de-
termines the ordinal type Ry = Qg X @ is a neces-
sary condition for the formation of a time program
for a complex process;

b) since the ordinal type F, is completely de-
termined by the ordinal type R, for a given Q,
there must be a one-to-one correspondence f such
that f:Ry = Fy. Therefore, for the formation of
a time program of a complex process with known
Qo and R, rules (algorithms) formalized in full
form can be defined and set, allowing automated
application;

c) if the ordinal R, type is not set, then the for-
mation of a temporary program of the design pro-
cess, that is, the definition of F; is possible only
with the simultaneous definition of R, and, there-
fore, cannot be performed according to the rules,
which can be formalized in the final form, but will
require the use of some iterative methods.

The cyclomatic number of the system
Hy = Qy®V,, represented on the model as a graph
H(V,Q), 1is determined by the formula
v(H) = my —ny + 1. This invariant is special.
The requirement of equality of cyclomatic numbers of
a complex process and model is not always necessary.
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