

Вестник РУДН. Серия: Инженерные исследования RUDN Journal of Engineering Researches

2021;22(1):65-71

journals.rudn.ru/engineering-researches

DOI: 10.22363/2312-8143-2021-22-1-65-71 УДК 539.3

Научная статья / Research article

Проектирование лопастей воздушных винтов самолетов методом конечных элементов с учетом прочности конструкций

В.П. Агапов^а*, К.Р. Айдемиров^ь

^аНациональный исследовательский Московский государственный строительный университет *Российская Федерация*, 129337, Москва, Ярославское шоссе, д. 26

> ^ьДагестанский государственный технический университет, *Российская Федерация*, 367026, *Махачкала*, пр. И. Шамиля, д. 70 *E-mail: agapovpb@mail.ru

История статьи	Аннотация. Лопасти современных турбовинтовых двигателей имеют сложную
Поступила в редакцию: 12 декабря 2020 г.	пространственную конфигурацию. Их можно отнести к классу оболочек. Мето-
Доработана: 17 февраля 2021 г.	ды расчета оболочек хорошо известны. На их основе создан ряд компьютерных
Принята к публикации: 27 февраля 2021 г.	программ. Однако в этих программах не учитываются особенности, связанные с взаимным влиянием деформаций лопасти и действующих на нее аэродина-
	мических и инерционных нагрузок. Целью исследования являются разработка
	методики конечно-элементного расчета лопастей воздушных винтов самолетов с
	учетом аэроупругих эффектов и создание на ее основе компьютерной программы,
	доступной широкому кругу конструкторов и расчетчиков. Используется метод
	конечных элементов в геометрически нелинейной постановке. В качестве исходного
	используется уравнение равновесия, включающее полную нелинейную матрицу
	жесткости и учитывающее как консервативные, так и неконсервативные нагрузки.
	Задача решается способом последовательного нагружения, при этом исходное урав-
	нение на каждом шаге нагружения линеаризуется, а частота вращения и геометрия
	лопасти считаются неизменными. Результаты шаговых расчетов суммируются.
	Рассчитана лопасть одного из серийных воздушных винтов на прочность. Обна-
	ружено и проанализировано влияние деформаций на величину аэродинамической
	нагрузки и вследствие этого на напряжения в расчетных сечениях. Результаты
Ключевые слова: турбовинтовые	расчета сопоставлены с экспериментальными данными. Предложенная методика и
двигатели, лопасти воздушных винтов	составленная на ее основе программа могут быть использованы при проектировании
самолетов, метод конечных элементов	лопастей воздушных винтов самолетов.

Для цитирования

Агапов В.П., Айдемиров К.Р. Проектирование лопастей воздушных винтов самолетов методом конечных элементов с учетом прочности конструкций // Вестник Российского университета дружбы народов. Серия: Инженерные исследования. 2021. Т. 22. № 1. С. 65–71. http://dx.doi.org/10.22363/2312-8143-2021-22-1-65-71

© Агапов В.П., Айдемиров К.Р., 2021

This work is licensed under a Creative Commons Attribution 4.0 International License https://creativecommons.org/licenses/by/4.0/

Designing of the blades of aircraft propellers by the finite element method, taking into account the strength of structure

Vladimir P. Agapov^a*, Kurban R. Aidemirov^b

*National Research University (Moscow State University of Civil Engineering), 26 Yaroslavskoe Shosse, Moscow, 129337, Russian Federation

> ^bDaghestan State Technical University, 70 I Shamilya Ave., Makhachkala 367026, Russian Federation *E-mail. agapovpb@mail.ru

Article history

Received: December 12, 2020 Revised: Febuary 17, 2021 Accepted: February 27, 2021

Keywords: turboprop engines, blades, multiblade propeller, finite element method

Abstract. The blades of contemporary turboprop engines have a complex spatial configuration. They can be classified as shells. Methods for the shells calculation are well known. A number of computer programs have been created on their basis. However, these programs do not take into account the peculiarities associated with the mutual influence of deformations of the blade and the aerodynamic and inertial loads acting on it. The aim of this work is to develop a method of finite element calculation of aircraft propeller blades taking into account aeroelastic effects and to create a computer program on its basis that is available to a wide range of designers and engineers. The finite element method is used in a geometrically nonlinear formulation. As the initial one, the equilibrium equation is used, which includes a complete nonlinear stiffness matrix and takes into account both conservative and non-conservative loads. The blade of one of the serial propellers was calculated. The effect of deformations on the magnitude of the aerodynamic load and, as a result, on the stresses in the design sections was found and analyzed. The proposed technique and the program compiled on its basis can be used in the design of aircraft propeller blades.

For citation

Agapov VP, Aidemirov KR. Designing of the blades of aircraft propellers by the finite element method, taking into account the strength of structure. *RUDN Journal of Engineering Researches*. 2021;22(1):65–71. (In Russ.) http://dx.doi.org/10.22363/2312-8143-2021-22-1-65-71

Введение

Первые поколения самолетов, создававшиеся в начале двадцатого века, имели поршневые двигатели с пропеллерами, геометрическая форма которых позволяла рассматривать их как естественно закрученные стержни [1]. Расчет таких пропеллеров на прочность проводился по балочной теории, в которой к тому времени сформировался раздел, посвященный расчету естественно закрученных стержней на прочность и колебания [2—7]. В дальнейшем на смену поршневым двигателям пришли двигатели с газотурбинными установками [8]. В сороковые и пятидесятые годы XX в. в разных странах были созданы самолеты как военного, так и гражданского назначения с турбореактивными двигателями, а к началу 1980-х гг. появились самолеты с турбовинтовыми двигателями, в том числе с двигателями, оборудованными многолопастными винтами, называемыми винтовентиляторами [8]. Форма лопастей таких двигателей, определяемая требованиями аэродинамики и акустики, существенно отличается от традиционной. Она может быть классифицирована как оболочка двоякой кривизны, что вынуждает расчетчиков при исследовании напряженно-деформированного состояния лопастей отказаться от применения балочной теории. Ситуация осложняется еще и тем, что срединная поверхность лопасти не может быть описана аналитически, поэтому расчет можно вести только численными методами. В настоящее время для расчета несущих конструкций, используемых в различных областях техники, широко применяется метод конечных элементов (МКЭ). Теоретические аспекты МКЭ статьях и монографиях [9—12]. На основе хорошо разработанной теории составлены универсальные программные комплексы МКЭ [13—16], которые позволяют рассчитывать, в частности, оболочечные конструкции различной конфигурации.

Эти программы находят все более широкое применение для расчета лопастей турбовинтовых двигателей. Например, в работах [17] и [18] программы ANSYS и NASTRAN используются для исследования напряженно-деформированного состояния и аэродинамических характеристик лопастей воздушных винтов. В то же время отсутствуют методики, которые позволяли бы исследовать взаимное влияние деформаций и нагрузок на лопасти на всем пути от старта до достижения крейсерского режима полета. Решению этой задачи и посвящена настоящая работа.

1. Методы

Для решения задачи используется методика статического расчета геометрически нелинейных конструкций, описанная в работе [19] и реализованная в программе ПРИНС. Расчет ведется методом конечных элементов в приращениях и сводится к составлению и решению на каждом шаге нагружения системы нелинейных алгебраических уравнений

$$K_{NL}\Delta u = \Delta P + \Delta Q,$$
 (1)

где K_{NL} — полная нелинейная матрица жесткости (МЖ) конструкции; Δu — вектор узловых перемещений; ΔP и ΔQ — векторы консервативных и неконсервативных узловых нагрузок соответственно.

Полная нелинейная МЖ определяется выражением [19] $K_{NL} = K + K_{\sigma} + K_{u} + K_{NL_1} + K_{NL_2}$.

 $K_{\rm NL} = K + K_{\sigma} + K_{\rm u} + K_{\rm NL_1} + K_{\rm NL_2}.$

Линеаризованная МЖ конструкции, связывающая бесконечно малые приращения нагрузок и перемещений, находится по формуле

$$K_{L} = K + K_{\sigma} + K_{u} - \frac{\partial (\Delta Q_{l})}{\partial (\Delta u_{k})}, \quad l, k = 1, 2, \dots, n, \qquad (2)$$

где *п* — порядок системы уравнений.

Используем линеаризованную МЖ для приближенного решения задачи способом последовательных нагружений. При этом на каждом шаге нагружения будем решать систему линейных алгебраических уравнений:

$$\left[K + K_{\sigma} + K_{u} - \frac{\partial (\Delta Q_{i})}{\partial (\Delta u_{j})} \right] \Delta u = \Delta P + \Delta Q, \qquad (3)$$

в которой все компоненты МЖ и нагрузок находятся в зависимости от параметров напряженно-деформированного состояния в начале шага. Полные значения перемещений и напряжений находятся суммированием результатов, полученных на шагах нагружения по формулам

$$U = \sum_{i=1}^{n} \Delta u_i; \ \sigma = \sum_{i=1}^{n} \Delta \sigma_i$$

В данной работе метод последовательных нагружений принимается за основу для геометрически нелинейного статического расчета лопасти турбовинтового двигателя при следующих предпосылках.

Считается, что частота вращения лопасти возрастает скачкообразно от нуля до максимального значения ω_m . При этом одному шагу нагружения лопасти соответствует приращение частоты $\Delta \omega = \omega_m / n$. Центробежные и аэродинамические нагрузки на шаге нагружения считаются постоянными и зависящими от геометрии лопасти лишь в начале шага нагружения. Координаты узловых точек перевычисляются суммированием узловых перемещений от предыдущего нагружения с координатами узлов в начале данного шага.

При введенных предпосылках уравнение (3) преобразуется к виду

$$[K+K_{\sigma}]\Delta u = \Delta Q^{a} + \Delta Q^{u}$$

где ΔQ^a и ΔQ^u — векторы приращений аэродинамических и центробежных нагрузок соответственно.

Приращения аэродинамических и центробежных нагрузок находятся по формуле

$$\begin{cases} \Delta \mathbf{Q}^{a} \\ \Delta \mathbf{Q}^{u} \end{cases} = \begin{cases} \mathbf{Q}^{a} \\ \mathbf{Q}^{u} \end{cases}_{i}^{-} \begin{cases} \mathbf{Q}^{a} \\ \mathbf{Q}^{u} \end{cases}_{i-1,}^{a}$$

Рис. 1. Схема лопасти; 1,2,...,12 – расчетные сечения **Figure 1.** Blade diagram; 1,2, ..., 12 – design sections

Рис. 2. Сетка конечных элементов Figure 2. Finite element mesh

где Q^{*µ*}_{*i*},Q^{*a*}_{*i*-1},Q^{*a*}_{*i*-1} — полные значения центробежных и аэродинамических нагрузок для i-го и (i-1)-го шагов соответственно (подсчитываются при частоте вращения и топологии лопасти, соответствующим началу каждого шага нагружения).

Аэродинамические нагрузки в данной работе подсчитывались по теории несущей линии [20].

Для анализа нагруженности лопасти и ее напряженно-деформированного состояния по описанной выше методике на ЭВМ составлена программа на языке ФОРТРАН. При этом использован модуль геометрически нелинейного расчета из программы ПРИНС [19].

2. Результаты

По предложенной методике рассчитана лопасть серийного винта AB-72. Ниже приводятся и анализируются результаты расчета. Схема лопасти с указанием расчетных сечений приведена на рис. 1. Напряженное состояние исследовалось на относительном радиусе *r* = 0,3 с целью сопоставления результатов расчета с экспериментом.

Для расчета использовались плоские треугольные КЭ. Сетка КЭ в расчетной зоне сгущалась, как показано на рис. 2. Расчеты проводились при числе шагов нагружения *n* = 4,6,8 и 11.

На рис. З показана зависимость аэродинамических нагрузок от \bar{r} с учетом и без учета аэроупругих эффектов. Как и следовало ожидать, при учете аэроупругих эффектов аэродинамическая нагрузка в целом оказывается выше по сравнению с нагрузкой, подсчитываемой по недеформированной схеме лопасти. В наиболее нагруженном сечении повышение нагрузки составляет приблизительно 12 %. Очевидно, что аэродинамическая нагрузка увеличивается вследствие деформации лопасти, приводящей к увеличению углов атаки в се-

Рис. 3. Зависимость аэродинамических нагрузок от относительного радиуса Figure 3. Dependence of aerodynamic loads on relative radius

чениях лопасти. Изменение углов крутки сечений, обусловленное деформацией, иллюстрируется данными, приведенными в табл. 1. Как видно из табл. 1, наблюдается значительное (до 9 %) увеличение углов крутки вследствие деформации, что и обуславливает увеличение аэродинамической нагрузки. В свою очередь, увеличение нагрузки приводит к увеличению напряжений в сечениях лопасти. В табл. 2 приведены максимальные значения изгибающих моментов в расчетном сечении (*r* = 0,3), найденные в результате линейного и нелинейного расчетов.

V				Таблица 1
углы	крутки сечении лопасти в деформирован The angles of the blade twist in a defor	ном и недеформиро med and non-deform	ованном состоянии ned state	Table
		Угол крутки, град Twist angle, deg.	Ļ.	
Номер сечения Section number	Недерформированная лопасть	Деформированная лопасть Deformed blade		асть
	Undeformed blade —	n=4	n=6	n=8
1	22,14	22,13	22,12	22,12
2	20,29	20,28	20,27	20,27
3	15,26	15,26	15,25	15,25
4	10,41	10,47	10,46	10,46
5	5,49	5,62	5,62	5,63
6	0,49	0,74	0,78	0,80
7	- 3,77	-3,38	-3,32	-3,29
8	- 7,87	-7,30	-7,18	-7,13
9	-11,35	-10,60	-10,44	-10,37
10	-14,47	-13,55	-13,35	-13,26
11	-16,68	-15,29	-15,33	-15,22
12	-18,92	-17,80	-17,54	-17,42

	Максимальные зн	ачения изгибающе	го момента в расчетн	ом сечении	Table
	Maximum va	ues of the bending r	noment in the design s	ection	
	Тип расчета Type of analysis				
Изгибающий момент Bending moment	Линейный Linear	Нелинейный Nonlinear			
		n=4	n=6	n=8	n=11
M_Z	1249	1657	1386	1364	1362

- -

Таблица 2

Из табл. 2 видно, что при изменениях числа шагов по нагрузке от 8 до 11 результаты практически не изменяются (изгибающий момент M_{z} в расчетном сечении уменьшается на 0,15 %). На этом основании можно установить ориентировочное число шагов для последующих нелинейных расчетов лопастей, равное 8—10.

Из табл. 2 видно также, что нелинейный расчет дает большее по сравнению с линейным расчетное значение момента M_{z} .

Наибольший интерес представляет сопоставительный анализ напряжений в расчетном сечении, полученных экспериментально и с помощью линейных и нелинейных расчетов. Эти напряжения приведены в табл. З. Результат линейного расчета отличается от экспериментального значения на 12 %, в то время как при нелинейном расчете расхождение составляет лишь 4 %.

Mayautantu			Таблица 3				
максимальные значения напряжении от аэродинамических нагрузок в поле центробежных сил Table Maximum values of stresses from aerodynamic loads in the field of centrifugal forces							
Напряжения Stresses	Эксперимент Experiment	Линейный расчет Linear analysis	Нелинейный расчет Nonlinear analysis				
$σ_{z,\max}$ (Η/мм2)	45,0	39,6	43,2				

Заключение

Проведенный анализ показывает, что нелинейный расчет лопасти винтовентилятора способом последовательных нагружений позволяет существенно уточнить значения напряжений и деформаций лопасти за сравнительно небольшое число шагов. Метод анализа оказывается, таким образом, достаточно эффективным, и его можно рекомендовать для практических расчетов.

Список литературы

1. Александров В.Г. Справочник авиационного инженера. М.: Транспорт, 1973. 400 с.

2. Тумаркин С.А. Равновесие и колебания закрученных стержней // Труды ЦАГИ. 1937. Вып. 341.

3. Джанелидзе Г.Ю. Соотношения Кирхгофа для естественно скрученных стержней и их приложения // Труды Ленинградского политехнического института им. М.И. Калинина. 1946. № 1.

4. Биргер И.А. Некоторые математические методы решения инженерных задач. М.: Оборонгиз, 1956.

5. Рухадзе А.К. О деформации естественно закрученных стержней. Прикладная математика и механика. 1947. Т. XI. Вып. 5. 1947.

6. Риз П.М. Деформации естественно закрученных стержней // ДАН СССР. 1939. Т. З. № 4. С. 451.

7. Шорр Б.Ф. Изгибно-крутильные колебания закрученных компрессорных лопаток // Прочность и динамика авиационных двигателей. М.: Машиностроение. 1964. Вып. 1. С. 217-246.

8. Кравчик Н.И., Кравчик Т.Н. Развитие воздушных летательных аппаратов и авиационных двигателей. М.: МАИ. 2002. 100 с.

9. Zienkiewicz O.C., Taylor R.L. The Finite Element for Solid and Structural Mechanics. 6th ed. McGraw-Hill, 2005.

10. Bathe K.J., Wilson E.L. Numerical methods in finite element analysis. New Jersey: Prentice-Hall, 2005.

11. Crisfield M.A. Non-linear finite element analysis of solids and structures. John Wiley & Sons Ltd., 1977.

12. Oden J.T. Finite elements in nonlinear continua. New York: McGraw-Hill Book Company, 1972.

13. MSC NASTRAN2016. Nonlinear User's Guide SOL 4002016 (MSC Software) P. 790.

14. ANSYS Theory Reference. Release 5.6 1999 (Canonsburg, PA: ANSYS Inc)

15. ABAQUS6.12. Theoretical manual 2012 (DS Simulia)

16. DIANA FEA User's Manual. Release. 2017. 10 (DIANA FEA bv)

17. *Siddesha. K.M, Deepak. S.A., Kandagal S.B.* Static and Dynamic Analysis of Propeller Blade of Aero Engine // IJRASET. September 2017. Vol. 5. Is. IX. P. 217—221. doi: 10.22214/ijraset.2017.9032

18. *Kong* C., *Park H., Lee K., Choi W.* A study on structural design and analysis of composite propeller blade of turboprop for high efficiency and light weight // ECCM 2012 — Composites at Venice, Proceedings of the 15th European Conference on Composite Materials. Venezia, Italy, 2012. P. 24—28.

19. *Агапов В.П.* Метод конечных элементов в статике, динамике и устойчивости конструкций. М.: Изд-во АСВ, 2005.

20. Александров В.Л. Воздушные винты. М.: Оборонгиз, 1951.

References

1. Aleksandrov VG. Spravochnik aviacionnogo inzhenera [Aeronautical Engineer Handbook]. Moscow: Transport Publ.; 1973. (In Russ.)

2. Tumarkin SA. Ravnovesie i kolebaniya zakruchennyh sterzhnej [Equilibrium and vibrations of twisted rods]. Trudy CAGI. 1937:341. (In Russ.)

3. Dzhanelidze GYu. Sootnosheniya Kirhgofa dlya estestvenno skruchennyh sterzhnej i ih prilozheniya [Kirchhoff relations for naturally twisted rods and their applications]. Trudy Leningradskogo politekhnicheskogo instituta im M.I. Kalinina. 1946;1. (In Russ.)

4. Birger IA. Nekotorye matematicheskie metody resheniya inzhenernyh zadach [Some Mathematical Methods for Solving Engineering Problems]. Moscow: Oborongiz Publ.; 1956. (In Russ.)

5. Ruhadze AK. O deformacii estestvenno zakruchennyh sterzhnej [Deformation of naturally twisted rods]. *Prikladnaya matematika i mekhanika*[Journal of Applied Mathematics and Mechanics]. 1947;XI(5). (In Russ.)

6. Riz PM. Deformacii estestvenno zakruchennyh sterzhnej [Deformations of naturally twisted rods]. *Doklady AN SSSR*. 1939;3(4):451. (In Russ.)

7. Shorr BF. Izgibno-krutil'nye kolebaniya zakruchennyh kompressornyh lopatok [Flexural and torsional vibrations of swirled compressor blades]. In: *Prochnost'i dinamika aviacionnyh dvigatelej* [Strength and dynamics of aircraft engines] (vol. 1). Moscow: Mashinostroenie Publ.; 1964. p. 217—246. (In Russ.)

8. Kravchik NI., Kravchik TN. Razvitie vozdushnyh letatel'nyh apparatov i aviacionnyh dvigatelej [Development of aircrafts and aircraft engines]. Moscow: MAI Publ.; 2002. (In Russ.)

9. Zienkiewicz OC., Taylor RL. The Finite Element for Solid and Structural Mechanics. 6th ed. McGraw-Hill; 2005.

10. Bathe KJ., Wilson EL. *Numerical methods in finite element analysis*. New Jersey: Prentice-Hall, 2005.

11. Crisfield MA. Non-linear finite element analysis of solids and structures. John Wiley & Sons Ltd.; 1977.

12. Oden JT. *Finite elements in nonlinear continua*. New York: McGraw-Hill Book Company; 1972.

13. MSC NASTRAN 2016. Nonlinear User's Guide SOL 400 2016 (MSC Software). P. 790.

14. ANSYS Theory Reference. Release 5.6 1999 (Canonsburg, PA:ANSYS Inc).

15. ABAQUS 6.12. Theoretical manual 2012 (DS Simulia)
16. DIANA FEA User's Manual. Release. 2017. 10
(DIANA FEA bv).

17. Siddesha KM., Deepak SA. Kandagal SB. Static and Dynamic Analysis of Propeller Blade of Aero Engine. *IJRASET*. September 2017;5(IX):217—221. doi: 10.22214/ijraset.2017.9032

18. Kong C, Park H, Lee K, Choi W. A study on structural design and analysis of composite propeller blade of turboprop for high efficiency and light weight. *ECCM 2012 – Composites at Venice, Proceedings of the 15th European Conference on Composite Materials.* Venezia, Italy;2012:24–28.

19. Agapov VP. Metod konechnych elementov v statike, dinamike i ystojchivosti konstrukcij [Finite element method in static, dynamic and buckling analysis of structure]. Moscow: ASV Publ.; 2005. (In Russ.)

20. Alersandrov VL. *Vozduschnyie vinty* [*Propellers*]. Moscow: Oborongiz Publ.; 1951. (In Russ.)

Сведения об авторах

Агапов Владимир Павлович, профессор кафедры прикладной механики и математики НИУ МГСУ, доктор технических наук; eLIBRARY SPIN-код: 2422-0104, Scopus Id: 57197812573; e-mail: agapovpb@mail.ru

Айдемиров Курбан Рабаданович, доцент кафедры сопротивления материалов, теоретической и строительной механики ФГБОУ ВО "ДГТУ", кандидат технических наук; eLIBRARY SPIN-код: 8167-4343, Scopus Id: 57197808227; e-mail: kyrayd@mail.ru

About the authors

Vladimir P. Agapov, Professor of the Department of Applied Mechanics and Mathematics, MGSU, Doctor of Technical Sciences; eLIBRARY SPIN-код: 2422-0104, Scopus Id: 57197812573; e-mail: agapovpb@mail.ru

Kurban R. Aidemirov, Associate Professor of the Department of Strength of Materials, Theoretical and Structural Mechanics, FSBEI HE "DSTU", Candidate of Technical Sciences; eLIBRARY SPIN-code: 8167-4343, Scopus Id: 57197808227; e-mail: kyrayd@mail.ru