СОСТОЯНИЕ ПОВЕРХНОСТНОЙ ГЕОМЕТРИИ ЭРИТРОЦИТОВ В КРОВОТОКЕ ТЕЛЯТ РАСТИТЕЛЬНОГО ПИТАНИЯ

Т.А. Белова

Курский институт социального образования (филиал) РГСУ ул. К. Маркса, 51, Курск, Россия, 305029

Цель работы — оценить состояние цитоархитектоники эритроцитов в раннем онтогенезе у здоровых телят растительного питания. У этих телят отмечается необходимый для данного этапа онтогенеза высокий уровень жидкостных свойств крови, обеспечивающий оптимальную степень перфузии внутренних органов, что в значительной степени поддерживает необходимый для организма уровень метаболизма в тканях, способствуя дальнейшему росту и развитию животного.

Ключевые слова: здоровые телята, фаза растительного питания, реологические свойства эритроцитов.

Конечная фаза раннего онтогенеза телят характеризуется окончательным созреванием органов и систем, в том числе системы крови, ее гемореологии, обусловливающейся особенностями у них цитоархитектоники эритроцитов. Максимально эти особенности определяют гемодинамику в микроциркуляторном русле, вызывая приток необходимого количества O_2 и питательных веществ, неизбежно меняясь в течение онтогенеза под влиянием различных средовых влияний. При этом функциональная активность эритроцитов у телят, перешедших на растительное питание, весьма важна для максимально возможного развертывания потенциальных функциональных возможностей организма в период активного роста. Однако многие аспекты возрастных изменений цитоархитектоники эритроцитов у здоровых телят растительного питания в раннем онтогенезе остаются недостаточно выясненными. В связи с этим сформулирована цель проведенного исследования: оценить состояние цитоархитектоники эритроцитов у здоровых телят растительного питания.

Материалы и методы. Объектом наблюдения являлись 36 здоровых телят растительного питания, не имеющих отклонений в объективном статусе и результатах инструментальных и лабораторных методов исследования, состояние которых было прослежено с 91-х суток до конца 12-го месяца жизни.

В отмытых и ресуспендированных эритроцитах количественно оценены уровни холестерола (ХС) энзиматическим колориметрическим методом набором фирмы «Витал Диагностикум» и общих фосфолипидов (ОФЛ) по содержанию в них фосфора [2] с последующим расчетом отношения ХС/ОФЛ в эритроцитах.

Внутриэритроцитарное ПОЛ определяли по концентрации малонового диальдегида (МДА) в реакции восстановления тиобарбитуровой кислоты в отмытых и ресуспендированных эритроцитах на основе принципа метода [5] и содержанию ацилгидроперекисей [1]. Активность внутриэритроцитарных антиоксидантных ферментов устанавливали для каталазы и супераксиддисмутазы (СОД) [4].

Оценка структурно-функциональных свойств мембраны эритроцитов велась с учетом их цитоархитектоники с использованием световой фазово-контрастной микроскопии клеток [3].

Количественная оценка соотношения патологических и нормальных форм эритроцитов проводилась путем расчета индекса трансформации (ИТ):

$$ИT = (OД + HД) / Д,$$

где Д — процент дискоцитов; ОД — процент обратимо деформированных эритроцитов; НД — процент необратимо деформированных эритроцитов.

Также определялись:

индекс обратимой трансформации (ИОТ)

$$ИОТ = ОД / Д$$
,

индекс необратимой трансформации (ИНОТ)

$$ИНОТ = HД / Д,$$

индекс обратимости (ИО)

$$ИO = OД / HД.$$

Статистическая обработка полученных результатов проводилась t-критерием Стьюлента.

Результаты исследования. У телят в течение фазы растительного питания в раннем онтогенезе в составе мембран эритроцитов отмечалась тенденция к росту уровня холестерина и ОФЛ до $1{,}03\pm0{,}004$ мкмоль/ 10^{12} эр. и $0{,}78\pm0{,}004$ мкмоль/ 10^{12} эр. соответственно при уровне XC/ОФЛ $1{,}28\pm0{,}003$. Это сопровождалось легким ослаблением активности ПОЛ в красных кровяных тельцах, в конечном счете способствуя их невысокой функциональной активности, обеспечивая наилучшие условия микроциркуляции в данную фазу онтогенеза.

Содержание первичных продуктов ПОЛ-АГП в эритроцитах здоровых телят в возрасте 91 суток находилась на уровне $2,83\pm0,12$ $\mu_{233}/10^{12}$ эр., постепенно снижаясь к 12 месяцам жизни до $2,64\pm0,05$ $\mu_{233}/10^{12}$ эр. Уровень МДА в эритроцитах — конечном продукте ПОЛ — имел аналогичную динамику, достигая к 1-му году жизни $0,80\pm0,05$ нмоль/ 10^{12} эр.

Тенденция к ослаблению ПОЛ в эритроцитах здоровых телят растительного питания оказалась возможной вследствие нарастания в них активности антиоксидантной системы, в первую очередь каталазы и супероксиддисмутазы. Так, уровни каталазы и СОД в красных кровяных тельцах животных, находившихся под наблюдением, достигли $11\ 350,0\ \pm\ 11,5\ ME/10^{12}$ эр. и $21\ 200,0\ \pm\ 4,27\ ME/10^{12}$ эр. соответственно.

У телят растительного питания в раннем онтогенезе отмечен нормальный уровень дискоцитов в потоке крови, составивший в среднем $82.7 \pm 0.20\%$ при тенденции к росту ИТ с 0.18 ± 0.010 на 91-е сутки до 0.24 ± 0.006 к концу 12 месяцев жизни (табл.).

 Таблица

 Цитоархитектоника эритроцитов у здоровых телят растительного питания

Параметры	Фаза растительного питания, $n = 36$, $M \pm m$				Средние значения
	91 сут. жизни	6 мес. жизни	9 мес. жизни	12 мес. жизни	за фазу расти- тельного питания, n = 36, M±m
Дискоциты, %	$84,7 \pm 0,22$	$83,1 \pm 0,17$	$82,2 \pm 0,16$	$80,7 \pm 0,24$	$82,7 \pm 0,20$
Обратимо изм. эритроциты, %	11,2 ± 0,08	$12,7 \pm 0,09$	13,4 ± 0,13	14,8 ± 0,18	13,0 ± 0,12
Необратимо изм. эритроциты, %	4,1 ± 0,02	$4,2 \pm 0,04$	$4,4 \pm 0,03$	$4,5 \pm 0,04$	4,3 ± 0,03
Индекс трансфор- мации	$0,18 \pm 0,010$	$0,20 \pm 0,007$	$0,22 \pm 0,00$	$0,24 \pm 0,006$	$0,21 \pm 0,006$
Индекс обратимой трансформации	$0,13 \pm 0,002$	$0,15 \pm 0,004$	$0,16 \pm 0,002$	$0,18 \pm 0,004$	0,16 ± 0,003
Индекс необрати- мой трансформа- ции	0,05 ± 0,003	0,05 ± 0,002	0,05 ± 0,004	0,05 ± 0,006	$0,05 \pm 0,004$
Индекс обрати- мости	$2,73 \pm 0,003$	$3,02 \pm 0,004$	$3,04 \pm 0,008$	$3,29 \pm 0,004$	$3,02 \pm 0,005$

Вместе с тем у наблюдаемых телят отмечено повышение к концу 12 мес. жизни уровня обратимо измененных эритроцитов до $14.8 \pm 0.18\%$. Невысокое содержание в кровотоке у наблюдаемых телят обратимо измененных эритроцитов определило невысокий уровень у них ИОТ в течение раннего онтогенеза, достигая к концу наблюдения 0.18 ± 0.004 . У этих животных количество необратимо измененных эритроцитов испытывало статистически незначимое увеличение с $4.1 \pm 0.02\%$ на 91-е сутки жизни до $4.5 \pm 0.04\%$ через 12 месяцев, сопровождаясь неизменностью ИНОТ (в среднем 0.05 ± 0.004). Выявлено, что у обследованных животных по мере увеличения хронологического возраста за фазу ИО испытывает легкую тенденцию к нарастанию (в среднем 3.02 ± 0.005), подчеркивая аналогичную динамику общего содержания измененных эритроцитов и удельного веса в кровотоке их необратимых форм.

Обсуждение результатов. В последнюю фазу раннего онтогенеза у телят отмечается окончательное становление обменных и гемостатических процессов, неизбежно влияющих на реологические свойства крови [3]. Оптимальная гемодинамика стабилизирует у животных внешние мембраны эритроцитов. Высокий уровень активности ферментов антиокисления красных кровяных телец обусловливает поддержание в них невысокой активности ПОЛ, что в сочетании с легким повышением уровня в их мембранах ХС обеспечивает необходимые реологические и функциональные свойства эритроцитов. Это является физиологической основой поддержания в кровотоке у телят растительного питания низкого содержания с тенденцией к повышению обратимо и необратимо измененных форм эритроцитов при высоком уровне в крови дискоцитов. Оптимальность цитоархитектоники эритроцитов во многом способствует низкому агрегатообразованию красных кровяных телец, обеспечивает должные реологические свойства крови, достаточную перфузию внутренних органов, способствует оптимальному онтогенезу.

Незначительные изменения цитоархитектоники эритроцитов в крови здоровых телят растительного питания являются элементом процесса адаптации их организма к внешней среде, обеспечивая адекватный приток питательных веществ

и кислорода к развивающимся тканям организма животного. Низкая выраженность деформационных изменений поверхности эритроцитов в сосудистом русле телят растительного питания является важным элементом защиты их организма против возможных неблагоприятных средовых факторов.

Таким образом, у телят растительного питания отмечается невысокая степень деформационных изменений их эритроцитов, обеспечивающая оптимальную степень перфузии внутренних органов, что в значительной степени поддерживает необходимый для организма уровень метаболизма в тканях, способствует дальнейшему росту и развитию животного.

Выводы. У телят растительного питания в норме отмечается оптимальность липидного состава эритроцитов и низкий уровень в них перекисного окисления липилов.

В крови телят растительного питания имеет место легкая тенденция к росту уровня в крови количества обратимо и необратимо измененных красных кровяных телец при незначительном снижении дискоидных форм эритроцитов.

ЛИТЕРАТУРА

- [1] *Гаврилов В.Б., Мишкорудная М.И.* Спектрофотометрическое определение содержания гидроперекисей липидов в плазме крови // Лабораторное дело. —1983. № 3. С. 33—36.
- [2] Колб В.Г., Камышников В.С. Справочник по клинической химии. Минск: Беларусь, 1982.
- [3] *Медведев И.Н., Савченко А.П., Завалишина С.Ю. и др.* Методические подходы к исследованию реологических свойств крови при различных состояниях // Российский кардиологический журнал. 2009. 900. 100. 100. 100. 100. 100. 1000. 1
- [4] *Чевари С., Андял Т., Штренгер Я.* Определение антиоксидантных параметров крови и их диагностическое значение в пожилом возрасте // Лабораторное дело. 1991. № 10. С. 9—13.
- [5] *Schmith J.B., Ingerman C.M., Silver M.J.* Malondialdehyde formation as an indicator of prostaglandin production by human platelet // J. Lab. Clin. Med. 1976. Vol. 88 (1). P. 167—172.

EXPRESSIVENESS OF DEFORMATION CHANGES ERYTHROCYTES AT BLOOD FLOW CALFS OF A VEGETATIVE FOOD

T.A. Belova

Kursk institute of social education (branch) RGSU K. Marx str., 5, Kursk, Russia, 305029

The work purpose — to estimate a condition deformation changes erythrocyte in early ontogenesis at healthy calfs of a vegetative food. At calfs of a vegetative food it is noticed necessary for the given stage ontogenesis high level of liquid properties of the blood, providing optimum degree perfusion an internal that substantially supports level of a metabolism necessary for an organism in fabrics, promoting the further growth and development of an animal.

Key words: healthy calfs, a phase of a vegetative food, rheological properties erythrocyte.