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РАЗНОСТНАЯ СХЕМА ВТОРОГО ПОРЯДКА

ДЛЯ ГИПЕРБОЛИЧЕСКИХ УРАВНЕНИЙ

С НЕОГРАНИЧЕННЫМ ЗАПАЗДЫВАНИЕМ

А. Ашыралыев

Bahcesehir University, Istanbul, Turkiye
Российский университет дружбы народов, Москва, Россия

Институт математики и математического моделирования, Алматы, Казахстан

Аннотация. Настоящая работа посвящена исследованию начальной задачи для гиперболическо-
го уравнения с неограниченным запаздыванием

⎧
⎨

⎩

d2v(t)

dt2
+ A2v(t) = a

(
dv(t− ω)

dt
+ Av(t− ω)

)

+ f(t), t > 0,

v(t) = ϕ(t), −ω � t � 0

в гильбертовом пространстве H с самосопряжённым положительно определённым оператором A.
Представлена разностная схема второго порядка точности для численного решения дифферен-
циальной задачи. Установлена теорема об оценках устойчивости решений этой разностной схемы.
На практике доказаны оценки устойчивости решений четырех задач для гиперболических раз-
ностных уравнений с запаздыванием.

Ключевые слова: гиперболическое уравнение, неограниченное запаздывание, численное реше-
ние, разностная схема, второй порядок точности, устойчивость решений.
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1. Введение

Во многих областях современной науки и техники естественным образом возникают системы,
содержащие запаздывающие члены. Такие системы часто описывают динамические процессы,
управляемые дифференциальными уравнениями с запаздыванием, как обыкновенными, так и в
частных производных. Эти запаздывания обычно возникают в сложных системах, включающих
логические и вычислительные компоненты, в которых для обработки информации требуется ко-
нечный временной интервал. Линейная теория дифференциальных уравнений с запаздыванием
привлекла значительное внимание учёных и была всесторонне изучена многими исследователями
(см., например, [4, 7, 12, 17, 20, 21, 23–25,28, 29, 38, 39] и приведённые там ссылки).

© А. Ашыралыев, 2025

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
https://creativecommons.org/licenses/by-nc/4.0/legalcode

547

https://doi.org/10.22363/2413-3639-2025-71-4-547-561
https://doi.org/10.22363/2413-3639-2025-71-4-547-561
https://doi.org/10.22363/2413-3639-2025-71-4-547-561
https://doi.org/10.22363/2413-3639-2025-71-4-547-561
https://doi.org/10.22363/2413-3639-2025-71-4-547-561
https://doi.org/10.22363/2413-3639-2025-71-4-547-561
https://doi.org/10.22363/2413-3639-2025-71-4-547-561
https://elibrary.ru/MADFXS
https://doi.org/10.22363/2413-3639-2025-71-4-547-561
https://doi.org/10.22363/2413-3639-2025-71-4-547-561
https://doi.org/10.22363/2413-3639-2025-71-4-547-561
https://doi.org/10.22363/2413-3639-2025-71-4-547-561
https://doi.org/10.22363/2413-3639-2025-71-4-547-561
https://doi.org/10.22363/2413-3639-2025-71-4-547-561
https://doi.org/10.22363/2413-3639-2025-71-4-547-561
https://creativecommons.org/licenses/by-nc/4.0/legalcode


548 А. АШЫРАЛЫЕВ

С другой стороны, гиперболические уравнения в частных производных, не включающие за-
паздывания по времени, часто встречаются в широком спектре научных и инженерных приложе-
ний. К ним относятся, например, электромагнитная теория, электродинамика, термодинамика,
гидродинамика, теория упругости, механика жидкости, распространение волн и материаловеде-
ние. При применении численных методов для решения таких уравнений вопрос устойчивости
становится критически важным. Особенно эффективная модель для исследования устойчивости
предполагает использование безусловно абсолютно устойчивых разностных схем, связанных с
неограниченными операторами. Со временем операторный метод получил широкое развитие как
ценный аналитический инструмент для исследования решений как локальных, так и нелокаль-
ных задач, связанных с гиперболическими дифференциальными уравнениями в гильбертовых и
банаховых пространствах (см., например, [2, 11, 26, 27, 30, 36]).
Значительный объём литературы посвящён разработке разностных схем для гиперболических

уравнений в частных производных (см., например, [5, 6, 31–33] и приведённые там ссылки). Во
многих из этих работ устойчивость демонстрируется при условии, что временной и простран-
ственный шаги сетки, обозначаемые τ и h соответственно, взаимосвязаны. В более абстрактном
смысле это означает, что должно выполняться условие τ‖Ah‖ → 0 при τ → 0.
Однако существует значительный интерес к исследованию абсолютно устойчивых разностных

схем, достигающих высокого порядка точности для гиперболических уравнений в частных произ-
водных, особенно тех, устойчивость которых сохраняется независимо от каких-либо ограничений
на размеры сетки τ и h.Примечательно, что впервые такие неравенства безусловной устойчивости
для схем первого порядка точности, решающих гиперболические дифференциальные уравнения,
были установлены в [9]. Позднее, в [16], были предложены разностные схемы как первого, так
и второго порядка, построенные с использованием целых степеней пространственных операто-
ров, в качестве приближений к абстрактной начальной задаче для гиперболических уравнений в
гильбертовых пространствах. С использованием операторного подхода были успешно получены
оценки устойчивости решений, генерируемых этими схемами.
В обзорной статье [14] представлены последние результаты по локальным и нелокальным кор-

ректным задачам для дифференциальных и разностных уравнений второго порядка. Представ-
лены результаты по устойчивости дифференциальных задач для уравнений второго порядка и
разностных схем для приближённого решения задач второго порядка.
Однако теория устойчивости задач для гиперболического уравнения с неограниченным запаз-

дыванием изучена недостаточно. Лишь немногие исследователи интересуются подобными зада-
чами. Ограниченные решения нелинейных одномерных гиперболических уравнений с ограничен-
ным запаздыванием исследовались в более ранних работах [22, 34, 35, 37]. В работе [10] были
установлены существование и единственность ограниченного решения нелинейных гиперболиче-
ских дифференциальных уравнений с ограниченным запаздыванием. В общем случае решения
гиперболических дифференциальных уравнений с неограниченным запаздыванием не являются
ограниченными [3].
В статье [19] мы изучили начальную задачу для гиперболического дифференциального урав-

нения с неограниченным запаздыванием
⎧
⎪⎨

⎪⎩

d2v(t)

dt2
+A2v(t) = a

(
dv(t− ω)

dt
+Av(t− ω)

)

+ f(t), t > 0,

v(t) = ϕ(t), −ω � t � 0

(1.1)

в гильбертовом пространстве H с самосопряженным положительно определённым оператором A,
A � δI, δ > 0. Здесь ϕ(t)—непрерывно дифференцируемая абстрактная функция, определённая
на интервале [−ω, 0] со значениями в H, а f(t)—непрерывная абстрактная функция, определён-
ная на интервале [0,∞) со значениями в H.
Функция v(t) называется решением задачи (1.1), если выполняются следующие условия:

i. v(t) дважды непрерывно дифференцируема на интервале [0,∞);
ii. элемент v(t) принадлежит D(A2) при всех t ∈ [0,∞), а функция A2v(t) непрерывна на ин-
тервале [0,∞);

iii. v(t) удовлетворяет уравнению и начальным условиям (1.1).
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Установлена основная теорема об оценках устойчивости решения задачи (1.1). В качестве при-
ложения получены оценки устойчивости решения четырёх задач для гиперболических уравнений
с неограниченным запаздыванием.
В статье [18] мы ввели разностную схему первого порядка точности

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

uk+1 − 2uk + uk−1

τ2
+A2uk+1 = a

[
uk−N − uk−1−N

τ
+Auk−N

]

+ fk,

fk = f(tk), tk = kτ, 1 � k <∞, Nτ = ω,
(
I + τ2A2

) uk+1 − uk

τ
=
uk − uk−1

τ
, k = nN, n = 0, 1, . . . ,

uk = ϕk, ϕk = ϕ(tk), tk = kτ, −N � k � 0

(1.2)

для приближённого решения задачи (1.1). Установлена теорема об оценках устойчивости реше-
ний данной разностной схемы. На практике доказаны оценки устойчивости решения четырёх
задач для гиперболических дифференциальных и разностных уравнений с запаздыванием. При-
ведены численные результаты и пояснительные иллюстрации, подтверждающие обоснованность
теоретических результатов.
Мы заинтересованы в исследовании разностных схем высокого порядка точности, равномерно

устойчивых относительно шага по времени для приближённых решений этой начальной задачи.
Нам не удалось получить результаты такого типа для решения хорошо известной разностной
схемы второго порядка точности, генерируемой оператором A2:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

uk+1 − 2uk + uk−1

τ2
+A2uk = a

[
uk−N − uk−1−N

τ
+Auk−N

]

+ fk,

fk = f(tk), tk = kτ, 1 � k <∞, Nτ = ω,
(
I + τ2A2

) uk+1 − uk

τ
=

2uk − 3uk−1 + uk−2

τ
, k = nN, n = 1, 2, . . . ,

uk = ϕ(tk), tk = kτ, −N � k � 0.

В настоящей работе построена разностная схема второго порядка точности для численного
решения абстрактной задачи (1.1). Установлена теорема об устойчивости этой разностной схемы.
В приложениях получены доказательства устойчивости разностных схем для четырёх линейных
уравнений в частных производных с запаздыванием.

2. Основная теорема об устойчивости разностной схемы второго порядка
точности

Для приближённого решения (1.1) рассмотрим разностную схему второго порядка точности
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk+1 − 2uk + uk−1

τ2
+A2uk +

τ2

4
A4uk+1 = a

[
uk+1−N − uk−1−N

2τ
+Auk−N

]

+ fk,

fk = f(tk), tk = kτ, 1 � k <∞, Nτ = ω,
(
I + τ2A2

) uk+1 − uk

τ
=

3uk − 4uk−1 + uk−2

2τ
+

+
τ

2

(

−A2uk + fk + a

(
3uk−N − 4uk−1−N + uk−2−N

2τ

)

+Auk−N

)

, k = nN, n = 0, 1, . . . ,

uk = ϕk, ϕk = ϕ(tk), tk = kτ, −N � k � 0.

(2.1)

Теорема 2.1. Пусть ϕk ∈ D(A2), −N � k � 0 и fk ∈ D(A), k � 1. Тогда для решения
разностной задачи (2.1) справедливы следующие оценки устойчивости при n = 1, 2, . . . :

max
1�k�nN

∥
∥
∥uk
∥
∥
∥
H
+ max

1�k�nN

∥
∥
∥
∥A

−1u
k − uk−1

τ

∥
∥
∥
∥
H

�

� (2b)n
[

max
−N�k�0

‖ϕk‖H + max
−N�k�0

∥
∥
∥
∥A

−1ϕk − ϕk−1

τ

∥
∥
∥
∥
H

]

+ 2

n∑

i=1

(2b)n−i
iN−1∑

j=(i−1)N

∥
∥A−1fj

∥
∥
H
τ,
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max
1�k�nN

∥
∥
∥Auk

∥
∥
∥
H
+ max

1�k�nN

∥
∥
∥
∥
uk − uk−1

τ

∥
∥
∥
∥
H

�

� (2b)n
[

max
−N�k�0

‖Aϕk‖H + max
−N�k�0

∥
∥
∥
∥
ϕk − ϕk−1

τ

∥
∥
∥
∥
H

]

+ 2

n∑

i=1

(2b)n−i
iN−1∑

j=(i−1)N

‖fj‖H τ,

max
1�k�nN

∥
∥
∥A2uk

∥
∥
∥
H
+ max

1�k�nN

∥
∥
∥
∥A

uk − uk−1

τ

∥
∥
∥
∥
H

�

� (2b)n
[

max
−N�k�0

∥
∥A2ϕk

∥
∥
H
+ max

−N�k�0

∥
∥
∥
∥A

ϕk − ϕk−1

τ

∥
∥
∥
∥
H

]

+ 2
n∑

i=1

(2b)n−i
iN−1∑

j=(i−1)N

‖fj‖H τ +

+

n∑

i=1

(2b)n−imin

⎧
⎨

⎩
2

iN−1∑

j=(i−1)N

‖Afj‖H τ, 3
∥
∥f(i−1)N+1

∥
∥
H
+ 3

iN−1∑

j=(i−1)N+2

∥
∥
∥
∥
fj − fj−1

τ

∥
∥
∥
∥
H

τ

⎫
⎬

⎭
.

Доказательство. Для доказательства теоремы достаточно установить следующие оценки при
n = 1, 2, . . . :

max
1�k�N

∥
∥
∥uk
∥
∥
∥
H

� b max
−N�k�0

‖ϕk‖H + b max
−N�k�0

∥
∥
∥
∥A

−1ϕk − ϕk−1

τ

∥
∥
∥
∥
H

+

N−1∑

j=1

∥
∥A−1fj

∥
∥
H
τ, (2.2)

max
1�k�N

∥
∥
∥
∥A

−1u
k − uk−1

τ

∥
∥
∥
∥
H

� b max
−N�k�0

‖ϕk‖H + b max
−N�k�0

∥
∥
∥
∥A

−1ϕk − ϕk−1

τ

∥
∥
∥
∥
H

+
N−1∑

j=1

∥
∥A−1fj

∥
∥
H
τ, (2.3)

max
1�k�N

∥
∥
∥Auk

∥
∥
∥
H

� b max
−N�k�0

‖Aϕk‖H + b max
−N�k�0

∥
∥
∥
∥
ϕk − ϕk−1

τ

∥
∥
∥
∥
H

+

N−1∑

j=1

‖fj‖H τ, (2.4)

max
1�k�N

∥
∥
∥
∥
uk − uk−1

τ

∥
∥
∥
∥
H

� b max
−N�k�0

‖Aϕk‖H + b max
−N�k�0

∥
∥
∥
∥
ϕk − ϕk−1

τ

∥
∥
∥
∥
H

+

N−1∑

j=1

‖fj‖H τ, (2.5)

max
1�k�N

∥
∥
∥A2uk

∥
∥
∥
H

� b max
−N�k�0

∥
∥A2ϕk

∥
∥
H
+ b max

−N�k�0

∥
∥
∥
∥A

ϕk − ϕk−1

τ

∥
∥
∥
∥
H

+

+min

⎧
⎨

⎩
2 ‖f1‖H + 2

N−1∑

j=2

∥
∥
∥
∥
fj − fj−1

τ

∥
∥
∥
∥
H

τ,

N−1∑

j=1

‖Afj‖H τ
⎫
⎬

⎭
, (2.6)

max
1�k�N

∥
∥
∥
∥A

uk − uk−1

τ

∥
∥
∥
∥
H

� b max
−N�k�0

∥
∥A2ϕk

∥
∥
H
+ b max

−N�k�0

∥
∥
∥
∥A

ϕk − ϕk−1

τ

∥
∥
∥
∥
H

+

+min

⎧
⎨

⎩
‖f1‖H +

N−1∑

j=2

∥
∥
∥
∥
fj − fj−1

τ

∥
∥
∥
∥
H

τ,

N−1∑

j=1

‖Afj‖H τ
⎫
⎬

⎭
, (2.7)

max
nN+1�k�(n+1)N

∥
∥
∥uk
∥
∥
∥
H

� b max
(n−1)N+1�k�nN

∥
∥
∥uk
∥
∥
∥
H
+

+ b max
(n−1)N+1�k�nN

∥
∥
∥
∥A

−1u
k − uk−1

τ

∥
∥
∥
∥
H

+

(n+1)N−1∑

j=nN+1

∥
∥A−1fj

∥
∥
H
τ, (2.8)

max
nN+1�k�(n+1)N

∥
∥
∥
∥A

−1u
k − uk−1

τ

∥
∥
∥
∥
H

� b max
(n−1)N+1�k�nN

∥
∥
∥uk
∥
∥
∥
H
+
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+ b max
(n−1)N+1�k�nN

∥
∥
∥
∥A

−1u
k − uk−1

τ

∥
∥
∥
∥
H

+

(n+1)N−1∑

j=nN+1

∥
∥A−1fj

∥
∥
H
τ, (2.9)

max
nN+1�k�(n+1)N

∥
∥
∥Auk

∥
∥
∥
H

� b max
(n−1)N+1�k�nN

∥
∥
∥Auk

∥
∥
∥
H
+

+ b max
(n−1)N+1�k�nN

∥
∥
∥
∥
uk − uk−1

τ

∥
∥
∥
∥
H

+

(n+1)N−1∑

j=nN+1

‖fj‖H τ, (2.10)

max
nN+1�k�(n+1)N

∥
∥
∥
∥
uk − uk−1

τ

∥
∥
∥
∥
H

� b max
(n−1)N+1�k�nN

∥
∥
∥Auk

∥
∥
∥
H
+

+ b max
(n−1)N+1�k�nN

∥
∥
∥
∥
uk − uk−1

τ

∥
∥
∥
∥
H

+

(n+1)N−1∑

j=nN+1

‖fj‖H τ, (2.11)

max
nN+1�k�(n+1)N

∥
∥
∥A2uk

∥
∥
∥
H

� b max
(n−1)N+1�k�nN

∥
∥
∥A2uk

∥
∥
∥
H
+ b max

(n−1)N+1�k�nN

∥
∥
∥
∥A

uk − uk−1

τ

∥
∥
∥
∥
H

+

+min

⎧
⎨

⎩
2 ‖fnN+1‖H + 2

(n+1)N−1∑

j=nN+2

∥
∥
∥
∥
fj − fj−1

τ

∥
∥
∥
∥
H

τ,

(n+1)N−1∑

j=nN+1

‖Afj‖H τ
⎫
⎬

⎭
, (2.12)

max
nN+1�k�(n+1)N

∥
∥
∥
∥A

uk − uk−1

τ

∥
∥
∥
∥
H

� b max
(n−1)N+1�k�nN

∥
∥
∥A2uk

∥
∥
∥
H
+ b max

(n−1)N+1�k�nN

∥
∥
∥
∥A

uk − uk−1

τ

∥
∥
∥
∥
H

+

+min

⎧
⎨

⎩
‖fnN+1‖H +

(n+1)N−1∑

j=nN+2

∥
∥
∥
∥
fj − fj−1

τ

∥
∥
∥
∥
H

τ,

(n+1)N−1∑

j=nN+1

‖Afj‖H τ
⎫
⎬

⎭
. (2.13)

Мы основываем доказательство этих оценок на методах, разработанных в [19], а также на фор-
мулах

unN+1 =
(
I + τ2A2

)−1
(

I +
1

2
τ2A2

)

unN + τ
(
I + τ2A2

)−1
(
3unN − 4unN−1 + unN−2

2τ

)

+

+
τ

2

(

fnN + a

(
3u(n−1)N − 4u(n−1)N−1 + u(n−1)N−2

2τ

)

+Au(n−1)N

)

,

uk =
1

2

(

Rk−nN−1

(

I − iτA

2

)

+ R̃k−nN−1

(

I +
iτA

2

))

unN +

+ (2iA)−1
(
R̃−1Rk−nN−1 −R−1R̃k−nN−1

) unN+1 − unN

τ
+

+

k−1∑

j=nN+1

(2iA)−1
(
Rk−j − R̃k−j

){(

a

[
uj−N+1 − uj−1−N

2τ
+Auj−N

]

+ fj

)}

τ (2.14)

для всех nN + 2 � k � (n+ 1)N, n = 0, 1, . . . , где

uk = ϕk, −N � k � 0,

для решения разностной задачи (2.1) и оценок

‖R‖H→H � 1, ‖τAR‖H→H � 1, ‖R̃‖H→H � 1, ‖τA R̃‖H→H � 1,

‖R̃R−1‖H→H � 1, ‖R R̃−1‖H→H � 1,
∥
∥(I ± iτA)−1

∥
∥
H→H

� 1,
∥
∥τA(I ± iτA)−1

∥
∥
H→H

� 1.
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Здесь R и R̃— операторные функции, определяемые формулами

Ru =

(

I − iτA− τ2

2
A2

)−1

u, R̃u =

(

I + iτA− τ2

2
A2

)−1

u.

Теорема 2.1 доказана.

Общность данного подхода позволяет рассматривать широкий класс локальных и нелокальных
краевых задач для дифференциальных уравнений с неограниченным запаздыванием по времени.
В частности, он позволяет установить теоремы об устойчивости для ряда задач с неограниченным
запаздыванием.

3. Приложения

Сначала рассмотрим начальную задачу для гиперболического дифференциального уравнения
с неограниченным запаздыванием и нелокальными условиями относительно пространственной
переменной x:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt(t, x) +

(

− ∂

∂x

(

a(x)
∂·
∂x

)

+ σ·
)2

u(t, x) =

= a

(

ut(t− ω, x)− ∂

∂x

(

a(x)
∂u (t− ω, x)

∂x

)

+ σ · u (t− ω, x)

)

+ f(t, x), 0 < t <∞, x ∈ (0, l) ,

u(t, x) = ϕ(t, x), −ω � t � 0, x ∈ [0, l] ,

u(t, 0) = u(t, l), ux(t, 0) = ux(t, l), 0 � t <∞,

(3.1)
где σ > 0 и a(x), ϕ(t, x) и f(t, x)— заданные гладкие функции, удовлетворяющие всем условиям
совместности, гарантирующим гладкое решение задачи (3.1). Будем предполагать, что a(x) �
a > 0 и a(l) = a(0).
Дискретизация задачи (3.1) осуществляется в два этапа. Дифференциальному оператору A,

порождённому задачей (3.1), сопоставляем оператор Ax
h, определяемый по формуле

Ax
hϕh(x) = {−(a(x)ϕx)x,r + σϕr(x)}K−1

1

и действующий в пространстве сеточных функций ϕh(x) = {ϕr}K0 , удовлетворяющих условиям
ϕ0 = ϕK , ϕ1−ϕ0 = ϕK−ϕK−1.Известно, что Ax

h — самосопряженный положительно определённый
оператор в L2h = L2([0, l]h). С помощью Ax

h приходим к начальной задаче
⎧
⎨

⎩

d2uh(t, x)

dt2
+
(
Ax

h

)2
uh(t, x) = a

(
duh(t−ω, x)

dt
+Ax

huh(t−ω, x)

)

+ fh(t, x), 0< t<∞, x∈ [0, l]h,

uh(t, x) = ϕh(t, x), −ω� t� 0, x∈ [0, l]h.

(3.2)
На втором этапе мы заменяем задачу (3.2) разностной схемой второго порядка (2.1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk+1
h (x)− 2ukh(x) + uk−1

h (x)

τ2
+
(
Ax

h

)2
ukh(x) +

τ2

4

(
Ax

h

)4
uk+1
h (x) =

= a

(
uk+1−N
h (x)− uk−N−1

h (x)

2τ
+Ax

hu
k−N
h (x)

)

+ fk,h(x), fk,h(x) = fh(tk, x), tk = kτ,

1 � k <∞, Nτ = ω, x ∈ [0, l]h;

(
I + τ2

(
Ax

h

)2
)uk+1

h (x)− ukh(x)

τ
=

3ukh(x)− 4uk−1
h (x) + uk−2

h (x)

2τ
+

+
τ

2

[

−(Ax
h

)2
ukh(x) + fk,h(x) + a

(
3uk−N

h (x)− 4uk−1−N
h (x) + uk−2−N

h (x)

2τ
+Ax

hu
k−N
h (x)

)]

,

k = nN, n = 0, 1, 2, . . . ;

ukh(x) = ϕk
h(x), ϕk

h(x) = ϕh(tk, x), tk = kτ, −N � k � 0, x ∈ [0, l]h.

(3.3)
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Теорема 2.1 даёт следующий результат об устойчивости.

Теорема 3.1. Для решения разностной задачи (3.3) справедливы следующие оценки устой-
чивости при n = 1, 2, . . . :

max
1�k�nN

∥
∥
∥ukh

∥
∥
∥
L2h

+ max
1�k�nN

∥
∥
∥
ukh − uk−1

h

τ

∥
∥
∥
L2h

�

� M̃

{

(2b)n
[

max
−N�k�0

∥
∥
∥ϕk,h

∥
∥
∥
L2h

+ max
−N�k�0

∥
∥
∥
ϕk,h − ϕk−1,h

τ

∥
∥
∥
L2h

]

+ 2

n∑

i=1

(2b)n−i
iN−1∑

j=(i−1)N

∥
∥
∥fj,h

∥
∥
∥
L2h

τ

}

,

max
1�k�nN

∥
∥
∥ukh

∥
∥
∥
W 2

2h

+ max
1�k�nN

∥
∥
∥
ukh − uk−1

h

τ

∥
∥
∥
L2h

�

� M̃

{

(2b)n
[

max
−N�k�0

∥
∥
∥ϕk,h

∥
∥
∥
W 2

2h

+ max
−N�k�0

∥
∥
∥
ϕk,h − ϕk−1,h

τ

∥
∥
∥
L2h

]

+ 2

n∑

i=1

(2b)n−i
iN−1∑

j=(i−1)N

∥
∥
∥fj,h

∥
∥
∥
L2h

τ

}

,

max
1�k�nN

∥
∥
∥ukh

∥
∥
∥
W 4

2h

+ max
1�k�nN

∥
∥
∥
ukh − uk−1

h

τ

∥
∥
∥
W 2

2h

�

� M̃

{

(2b)n
[

max
−N�k�0

∥
∥
∥ϕk,h

∥
∥
∥
W 4

2h

+ max
−N�k�0

∥
∥
∥
ϕk,h − ϕk−1,h

τ

∥
∥
∥
W 2

2h

]
+

+

n∑

i=1

(2b)n−i min

{

2

iN−1∑

j=(i−1)N

∥
∥
∥fj,h

∥
∥
∥
W 2

2h

τ, 3
∥
∥
∥f(i−1)N+1,h

∥
∥
∥
L2h

+ 3

iN−1∑

j=(i−1)N+2

∥
∥
∥
fj,h − fj−1,h

τ

∥
∥
∥
L2h

τ

}}

.

Здесь и далее M̃ не зависит от h и τ.

Во-вторых, мы рассматриваем начально-краевую задачу для гиперболического функциональ-
но-дифференциального уравнения с неограниченным запаздыванием и инволюцией
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

utt(t, x)− (a(x)ux (t, x))x + σu(t, x) − β (a(−x)ux (t,−x))x =

= b(x)ut(t− ω, x) + c(x)ux (t− ω, x) + f(t, x), 0 < t <∞, x ∈ (−l, l) ,
u(t, x) = ϕ(t, x), −ω � t � 0, x ∈ [−l, l] ,
u(t,−l) = u(t, l) = 0, 0 � t <∞,

(3.4)

где δ > 0 и a(x), b(x), c(x), ϕ(t, x) и f(t, x)— заданные гладкие функции, удовлетворяющие всем
условиям совместности, что гарантирует существование гладкого решения u(t, x) для задачи (3.4).
Будем считать, что a � a (x) = a (−x) � σ > 0 и σ − a |β| � 0.
Дискретизация задачи (3.4) осуществляется в два этапа. Дифференциальному оператору A,

порождённому задачей (3.4), сопоставляем разностный оператор Ax
h, действующий по формуле

Ax
hϕh(x) = {−(a(x)ϕx(x))x,r − β(a(−x)ϕx(−x))x,r + δϕr(x)}K−1

−K+1 (3.5)

в пространстве сеточных функций ϕh(x) = {ϕr}K−K , удовлетворяющих условиям ϕ−K = ϕK = 0.
Известно, что Ax

h — самосопряженный положительно определённый оператор в L2h = L2([−l, l]h)
(см. [1]). С помощью Ax

h приходим к начальной задаче
⎧
⎨

⎩

d2uh(t, x)

dt2
+Ax

huh(t, x) = bh(x)
duh(t− ω, x)

dt
+ ch(x)ux,h(t, x) + fh(t, x), 0 < t <∞, x ∈ [−l, l]h,

uh(t, x) = ϕh(t, x), −ω � t � 0, x ∈ [−l, l]h.
(3.6)
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На втором этапе мы заменяем задачу (3.6) разностной схемой второго порядка точности (2.1):
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk+1
h (x)− 2ukh(x) + uk−1

h (x)

τ2
+
(
Ax

h

)2
ukh(x) +

τ2

4

(
Ax

h

)4
uk+1
h (x) =

= a

(
uk+1−N
h (x)− uk−N−1

h (x)

2τ
+Ax

hu
k−N
h (x)

)

+ fk,h(x), fk,h(x) = fh(tk, x), tk = kτ,

1 � k <∞, Nτ = ω, x ∈ [−l, l]h;
(
I + τ2

(
Ax

h

)2
)uk+1

h (x)− ukh(x)

τ
=

3ukh(x)− 4uk−1
h (x) + uk−2

h (x)

2τ
+

+
τ

2

[

−(Ax
h

)2
ukh(x) + fk,h(x) + a

(
3uk−N

h (x)− 4uk−1−N
h (x) + uk−2−N

h (x)

2τ
+Ax

hu
k−N
h (x)

)]

,

k = nN, n = 0, 1, . . . ;

ukh(x) = ϕk
h(x), ϕk

h(x) = ϕh(tk, x), tk = kτ, −N � k � 0, x ∈ [−l, l]h.
(3.7)

Теорема 2.1 даёт следующий результат об устойчивости.

Теорема 3.2. Для решения разностной задачи (3.7) справедливы следующие оценки устой-
чивости при n = 1, 2, . . . :

max
1�k�nN

∥
∥
∥ukh

∥
∥
∥
L2h

+ max
1�k�nN

∥
∥
∥
∥
∥

ukh − uk−1
h

τ

∥
∥
∥
∥
∥
L2h

�

� M̃

(

(2b)n

[

max
−N�k�0

‖ϕk,h‖L2h
+ max

−N�k�0

∥
∥
∥
∥
ϕk,h − ϕk−1,h

τ

∥
∥
∥
∥
L2h

]

+

+ 2

n∑

i=1

(2b)n−i
iN−1∑

j=(i−1)N

‖fj,h‖L2h
τ

)

, (3.8)

max
1�k�nN

∥
∥
∥ukh

∥
∥
∥
W 1

2h

+ max
1�k�nN

∥
∥
∥
∥
∥

ukh − uk−1
h

τ

∥
∥
∥
∥
∥
L2h

�

� M̃

(

(2b)n
[

max
−N�k�0

‖ϕk,h‖W 1
2h

+ max
−N�k�0

∥
∥
∥
∥
ϕk,h − ϕk−1,h

τ

∥
∥
∥
∥
L2h

]

+

+ 2
n∑

i=1

(2b)n−i
iN−1∑

j=(i−1)N

‖fj,h‖L2h
τ

)

, (3.9)

max
1�k�nN

∥
∥
∥ukh

∥
∥
∥
W 2

2h

+ max
1�k�nN

∥
∥
∥
∥
∥

ukh − uk−1
h

τ

∥
∥
∥
∥
∥
W 1

2h

�

� M̃

(

(2b)n
[

max
−N�k�0

‖ϕk,h‖W 2
2h

+ max
−N�k�0

∥
∥
∥
∥
ϕk,h − ϕk−1,h

τ

∥
∥
∥
∥
W 1

2h

]

+

+

n∑

i=1

(2b)n−imin

{

2

iN−1∑

j=(i−1)N

‖fj,h‖W 1
2h
τ, 3

∥
∥f(i−1)N+1,h

∥
∥
L2h

+3

iN−1∑

j=(i−1)N+2

∥
∥
∥
∥
fj,h − fj−1,h

τ

∥
∥
∥
∥
L2h

τ

})

.

(3.10)

В-третьих, пусть Ω ⊂ R
m— ограниченная открытая область с гладкой границей S, Ω = Ω ∪

S. В [0,∞) × Ω рассматривается начально-краевая задача для многомерного гиперболического
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дифференциального уравнения с неограниченным запаздыванием
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt(t, x) +

(
m∑

r=1

(

− ∂

∂xr

(

ar(x)
∂·
∂xr

)

+ σ·
))2

u(t, x) =

= a

[

− ∂

∂xr

(

ar(x)
∂u(t − ω, x)

∂xr

)

+ σu(t− ω, x) + ut(t− ω, x)

]

= f(t, x),

0 < t <∞, x = (x1, . . . , xm) ∈ Ω,

u(t, x) = ϕ(t, x), −ω � t � 0, x ∈ Ω,

u(t, x) = 0, 0 � t <∞, x ∈ S,

(3.11)

где σ > 0, a ar(x), ϕ(t, x) и f(t, x)— заданные гладкие функции, удовлетворяющие всем условиям
совместности, гарантирующим, что задача (3.11) имеет гладкое решение u(t, x). Будем полагать,
что ar(x) � a0 > 0.
Дискретизация задачи (3.11) проводится в два этапа. На первом этапе, здесь и далее, мы

определяем сеточное пространство

Ωh = {x = xr = (h1j1, · · · , hmjm) , j = (j1, · · · , jm) , 0 � jr � Nr, Nrhr = 1, r = 1, . . . ,m} ,
Ωh = Ωh ∩Ω, Sh = Ωh ∩ S.

Введем банаховы пространства L2h = L2(Ωh), W
1
2h =W 1

2 (Ωh) иW 2
2h =W 2

2 (Ωh) сеточных функций
ϕh(x) = {ϕ(h1r1, . . . , hmrm)} , определённых на Ωh, снабжённые нормами

‖ϕh‖L2h
=

⎛

⎝
∑

x∈Ωh

|ϕh(x)|2 h1 · · · hm
⎞

⎠

1/2

,

‖ϕh‖W 1
2h

= ‖ϕh‖L2h
+

⎛

⎝
∑

x∈Ωh

m∑

r=1

|ϕh,xr ,jr |2 h1 · · · hm
⎞

⎠

1/2

и

‖ϕh‖W2h
= ‖ϕh‖L2h

+

⎛

⎝
∑

x∈Ωh

m∑

r=1

∣
∣
∣(ϕh)xrxr,jr

∣
∣
∣
2
h1 · · · hm

⎞

⎠

1/2

,

соответственно. Дифференциальному оператору A, порождённому задачей (3.11), сопоставляем
разностный оператор Ax

h, действующий по формуле

Ax
huh(x) = −

m∑

r=1

(ar(x)uxr,h)xr ,jr
(3.12)

в пространстве сеточных функций uh(x), удовлетворяющих условиям uh(x) = 0 (∀x ∈ Sh). Из-
вестно, что Ax

h — самосопряженный положительно определённый оператор в L2h. С помощью Ax
h

приходим к начальной задаче
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d2uh(t, x)

dt2
+ (Ax

h)
2 uh(t, x) = a

(
duh(t− ω, x)

dt
+Ax

huh(t− ω, x)

)

+ fh(t, x),

0 < t <∞, x ∈ Ωh,

uh(t, x) = ϕh(t, x), −ω � t � 0, x ∈ Ωh.

(3.13)
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На втором этапе мы заменяем задачу (3.13) разностной схемой второго порядка точности (2.1)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk+1
h (x)− 2ukh(x) + uk−1

h (x)

τ2
+ (Ax

h)
2 ukh(x) +

τ2

4
(Ax

h)
4 uk+1

h (x) =

= a

(
uk+1−N
h (x)− uk−N−1

h (x)

2τ
+Ax

hu
k−N
h (x)

)

+ fk,h(x), fk,h(x) = fh(tk, x), tk = kτ,

1 � k <∞, N τ = ω, x ∈ Ωh,

(
I + τ2 (Ax

h)
2
) uk+1

h (x)− ukh(x)

τ
=

3ukh(x)− 4uk−1
h (x) + uk−2

h (x)

2τ
+

+
τ

2

(

− (Ax
h)

2 ukh(x) + fk,h(x) + a

(
3uk−N

h (x)− 4uk−1−N
h (x) + uk−2−N

h (x)

2τ

)

+Ax
hu

k−N
h (x)

)

,

k = nN, n = 0, 1, . . . ,

ukh(x) = ϕk
h(x), ϕk

h(x) = ϕh(tk, x), tk = kτ, −N � k � 0, x ∈ Ωh.

(3.14)
Теорема 2.1 даёт следующий результат об устойчивости.

Теорема 3.3. Для решения разностной задачи (3.14) справедливы следующие оценки устой-
чивости при n = 1, 2, . . . :

max
1�k�nN

∥
∥
∥ukh

∥
∥
∥
L2h

+ max
1�k�nN

∥
∥
∥
ukh − uk−1

h

τ

∥
∥
∥
L2h

�

� M̃
{
(2b)n

[
max

−N�k�0

∥
∥
∥ϕk,h

∥
∥
∥
L2h

+ max
−N�k�0

∥
∥
∥
ϕk,h − ϕk−1,h

τ

∥
∥
∥
L2h

]
+ 2

n∑

i=1

(2b)n−i
iN−1∑

j=(i−1)N

∥
∥
∥fj,h

∥
∥
∥
L2h

τ
}
,

max
1�k�nN

∥
∥
∥ukh

∥
∥
∥
W 2

2h

+ max
1�k�nN

∥
∥
∥
ukh − uk−1

h

τ

∥
∥
∥
L2h

�

� M̃
{
(2b)n

[
max

−N�k�0

∥
∥
∥ϕk,h

∥
∥
∥
W 2

2h

+ max
−N�k�0

∥
∥
∥
ϕk,h − ϕk−1,h

τ

∥
∥
∥
L2h

]
+ 2

n∑

i=1

(2b)n−i
iN−1∑

j=(i−1)N

∥
∥
∥fj,h

∥
∥
∥
L2h

τ
}
,

max
1�k�nN

∥
∥
∥ukh

∥
∥
∥
W 4

2h

+ max
1�k�nN

∥
∥
∥
ukh − uk−1

h

τ

∥
∥
∥
W 2

2h

�

� M̃
{
(2b)n

[
max

−N�k�0

∥
∥
∥ϕk,h

∥
∥
∥
W 4

2h

+ max
−N�k�0

∥
∥
∥
ϕk,h − ϕk−1,h

τ

∥
∥
∥
W 2

2h

]
+

+

n∑

i=1

(2b)n−i min
{
2

iN−1∑

j=(i−1)N

∥
∥
∥fj,h

∥
∥
∥
W 2

2h

τ, 3
∥
∥
∥f(i−1)N+1,h

∥
∥
∥
L2h

+ 3

iN−1∑

j=(i−1)N+2

∥
∥
∥
fj,h − fj−1,h

τ

∥
∥
∥
L2h

τ
}}

.

Доказательство теоремы 3.3 основано на абстрактной теореме 2.1 и свойствах симметрии раз-
ностного оператора Ax

h, определяемого формулой (3.12), а также на теореме о коэрцитивном
неравенстве для решения эллиптической задачи в L2h (см. [8]).
В-четвертых, рассмотрим начально-краевую задачу

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt(t, x) +

(
m∑

r=1

(

− ∂

∂xr

(

ar(x)
∂·
∂xr

)

+ σ·
))2

u(t, x) =

= a

[

− ∂

∂xr

(

ar(x)
∂u(t − ω, x)

∂xr

)

+ σu(t− ω, x) + ut(t− ω, x)

]

+ f(t, x),

0 < t <∞, x = (x1, . . . , xm) ∈ Ω,

u(t, x) = ϕ(t, x), −ω � t � 0, x ∈ Ω,
∂

∂−→p u(t, x) = 0, x ∈ S, 0 � t <∞

(3.15)
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для многомерных дифференциальных уравнений гиперболического типа с запаздыванием.
Дискретизация задачи (3.15) осуществляется в два этапа. Дифференциальному оператору A,

порождённому задачей (3.15), сопоставляем разностный оператор Ax
h, действующий по формуле

Ax
huh(x) = −

m∑

r=1

(ar(x)uh,xr)xr ,jr
+ σuh(x) (3.16)

в пространстве сеточных функций uh(x), удовлетворяющих условиям Dhuh(x) = 0 для всех

x ∈ Sh. Здесь Dh — аппроксимация оператора
∂

∂−→p . С помощью Ax
h приходим к начальной за-

даче (3.13). На втором шаге, заменяя задачу (3.13) разностной схемой второго порядка точно-
сти (2.1), получаем разностную схему (3.14). Следовательно, из теоремы 3.3 следует оценка устой-
чивости решения этой разностной задачи. Доказательство этой оценки основано на абстрактной
теореме 2.1 и свойствах симметрии оператора симметрии Ax

h, определяемого формулой (3.12), а
также на теореме о коэрцитивном неравенстве для решения эллиптической задачи в L2h (см. [8]).

Заключение

1. В настоящей работе установлена основная теорема об устойчивости разностной схемы второ-
го порядка точности для численного решения абстрактной задачи для гиперболического уравне-
ния с неограниченным запаздыванием. В приложениях получена устойчивость разностных схем
для четырёх линейных гиперболических дифференциальных уравнений с запаздыванием.
2. Интерес представляет исследование устойчивости высокоточных разностных схем, построен-

ных на основе целочисленной степени пространственного оператора равномерно по размеру шага
по времени для приближённых решений этой начальной задачи для гиперболического уравнения
с неограниченным запаздыванием, в котором устойчивость установлена без каких-либо предпо-
ложений относительно шагов сетки τ и h.
3. Требуется исследовать равномерные двухшаговые разностные схемы и асимптотические

формулы для решения задачи о возмущении начальных значений
⎧
⎨

⎩

ε2
d2v(t)

dt2
+A2v(t) = a

(
dv(t− ω)

dt
+Av(t− ω)

)

+ f(t), t > 0,

u(t) = ϕ(t), −w � t � 0

для линейного гиперболического уравнения с запаздыванием в гильбертовом пространстве H с
самосопряжённым положительно определённым оператором A и с параметром ε ∈ (0,∞) , умно-
жающим член старшего порядка [13].
4. Требуется исследовать абсолютно устойчивые разностные схемы высокого порядка точности

для численного решения начальной задачи
⎧
⎪⎨

⎪⎩

vtt(t)dt+A2v(t)dt = a (dv(t− ω) +Av(t− ω)dt) + f(t)dwt,

wt =
√
tξ, ξ ∈ N(0, 1), t > 0,

v(t) = 0, −ω � t � 0

(3.17)

для линейного стохастического гиперболического уравнения с запаздыванием по времени в
гильбертовом пространстве H с самосопряжённым положительно определённым оператором A.
Здесь wt — стандартный винеровский процесс, заданный на вероятностном пространстве (Q,F, P )
(см. [11]).
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Abstract. The present paper is devoted to the study the initial value problem for the hyperbolic
equation with unbounded time delay term

⎧
⎨

⎩

d2v(t)

dt2
+ A2v(t) = a

(
dv(t− ω)

dt
+ Av(t− ω)

)

+ f(t), t > 0,

v(t) = ϕ(t), −ω � t � 0

in a Hilbert space H with a self-adjoint positive definite operator A. The second order of accuracy
difference scheme for the numerical solution of the differential problem is presented. The main theorem
on stability estimates for the solutions of this difference scheme is established. In practice, the stability
estimates for solutions of four problems for hyperbolic difference equations with time delay are proved.
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38. A. F. Yeniçerioğlu, “The behavior of solutions of second order delay differential equations,” J. Math. Anal.

Appl., 2007, 332, No. 2, 1278–1290, DOI: 10.1016/j.jmaa.2006.10.069.
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ВСЕЛЕННОЙ НА ОСНОВЕ ПРИНЦИПА НАИМЕНЬШЕГО ДЕЙСТВИЯ
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Аннотация. В классических работах уравнения для полей гравитации и электромагнетизма
предлагаются без вывода правых частей. Здесь мы даём вывод правых частей и анализ тен-
зора энергии импульса в рамках уравнений Власова—Максвелла—Эйнштейна и рассматриваем
космологические модели типа Милна—МакКри и Фридмана. Это позволяет поставить Общую
теорию относительности (ОТО) на строгую математическую основу: вывести замкнутую систему
уравнений ОТО из принципа наименьшего действия и дать строгое определение космологических
решений. На основе этого объясняется ускоренное расширение Вселенной без лямбды Эйнштейна,
тёмной энергии и фантастических новых полей, как простой релятивистский эффект.

Ключевые слова: Общая теория относительности, уравнение Власова, уравнение Власова—
Эйнштейна, уравнение Власова—Максвелла, уравнение Власова—Пуассона, ускоренное расши-
рение Вселенной, константа Хаббла.
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1. Введение

Общая теория относительности (ОТО) является привлекательной и красивейшей физико-
математической теорией [2,18,22,28,41,47,65], но новейшее её развитие, связанное с ускоренным
расширением Вселенной, поставило новые вопросы как перед физиками, так и перед матема-
тиками. Ставки оказались очень высоки: хорошо подтверждённый эксперимент с Нобелевской
премией 2011 года показывал ускоренное расширение Вселенной, что противоречило закону все-
мирного тяготения. Чтобы хоть как-то объяснить это, были предприняты буквально героические
усилия: лямбда-член, обеспечивающий слабое отталкивание на коротких расстояниях и основ-
ной вклад на далёких. Вводили тёмную энергию, новые поля и новые частицы. Этот вызов всей
теоретической физике и математике потребовал пересмотра космологической части ОТО. Мы
следуем схеме Милна—МакКри, выводя их результаты, обосновывая и обобщая их с помощью
уравнения Власова—Пуассона и перенося на релятивистский случай.
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Обзор построен следующим образом. В разделе 2 и 3 даём схему вывода уравнений типа Вла-
сова на примере релятивистской гравитации и электродинамики, выводя уравнения Власова—
Максвелла—Эйнштейна из принципа наименьшего действия. В разделе 4 предлагается общема-
тематическая конструкция: переход от кинетического описания к гидродинамическому и в смысле
Гамильтона—Якоби. В разделе 5 эти идеи разделов 2, 3, 4 применяются к получению космологиче-
ских решений в нерелятивистском случае, обобщая и проясняя схему Милна—МакКри. Наконец,
в разделе 6 перенесение метода Милна—МакКри на релятивистский случай с примерами в раз-
делах 7, 8, 9, 10 показывает принципиальную возможность объяснения ускоренного расширения
Вселенной, являясь триумфом ОТО и её подтверждением.

2. Действие в Общей теории относительности и уравнения для полей

Пусть f(t,x,v,m, e)—функция распределения частиц по пространству x ∈ R
3, по скоростям

v ∈ R
3, массам и заряду e ∈ R в момент времени t ∈ R. Это означает, что число частиц в объёме

dxdvdmde равно f(t,x,v,m, e)dxdvdmde. Отметим, что в теории вероятностей для этой величины
используется термин плотности распределения, а мы пользуемся терминологией, устоявшейся в
кинетической теории и статистической физике. Рассмотрим действие:

S[gμν , Aμ] = −c
∫

mf(t,x,v,m, e)
√
gμνuμuνd

3xd3vdmdedt −

− 1

c

∫

ef(t,x,v,m, e)Aμu
μd3xd3vdmdedt + k1

∫

(R + Λ)
√−gd4x+ k2

∫

FμνF
μν√−gd4x, (2.1)

где c— скорость света. Здесь u— это четырёхмерная скорость, нулевая компонента которой — это
скорость света u0 = c, а три другие совпадают с трёхмерной, как это принято в теории относи-
тельности [2, 18, 22, 28, 41, 47, 65]: ui = vi (i = 1, 2, 3)— трёхмерная скорость, x0 = ct и xi (латин-
ские индексы i = 1, 2, 3) — координаты, gμν(x, t)—метрика (греческие индексы μ, ν = 0, 1, 2, 3),

Aμ(x, t)— 4-потенциал электромагнитного поля, Fμν(x, t) =
∂Aμ(x, t)

∂xν
− ∂Aν(x, t)

∂xμ
— электромаг-

нитные поля, R—полная кривизна, Λ—лямбда-член Эйнштейна (или просто лямбда) — знаме-

нитая лямбда Эйнштейна1, k1 = − c3

16πγ
и k2 = − 1

4πc
—константы [2, 18, 22, 28, 41, 47, 65], g—

определитель метрики gμν , γ —постоянная тяготения. По повторяющимся индексам, как обыч-
но, идёт суммирование. В действии (2.1) интегрирование ведётся, как обычно, по всей области
изменения параметров, т. е. по пространству x ∈ R

3, по скоростям v ∈ R
3, массам m ∈ R, m � 0,

зарядам e ∈ R и времени t ∈ R. Варьирование ведётся обычным способом [2, 18, 22, 28, 41, 47, 65].
Вид действия (2.1) удобен для получения уравнений Эйнштейна и Максвелла при варьиро-

вании по полям gμν и Aμ. Такой способ вывода уравнений Власова—Максвелла и Власова—
Эйнштейна из действия (2.1) использовался в работах [3, 9, 10, 12, 59, 61]. При варьировании (2.1)
по gμν получим уравнение Эйнштейна:

k1

(

Rμν − 1

2
gμν(R + Λ)

)√−g =

=

∫

m
f(t,x,v,m, e)

2
√
gαβuαuβ

uμuνvdm+ k2

(

−2F βνFαμgαβ +
1

2
FαβF

αβgμν
)√−g. (2.2)

Первое слагаемое правой части этого уравнения и является по определению тензором энергии-
импульса материи (оно выведено впервые в таком виде, видимо, в работах [3,9,12,61]), второе —

1Её Эйнштейн считал главной ошибкой своей жизни, но сейчас это пока — основной способ объяснять ускоренное
расширение Вселенной (хорошо проверенный эксперимент с Нобелевской премией 2011 года). Против введения,
в частности, лямбды и такого объяснения и направлен этот обзор.
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электромагнитная составляющая тензора энергии-импульса (известно [2,18,22,28,41,47,65]). По-
пытки выписать тензор энергии-импульса через функцию распределения предпринимались, на-
сколько нам известно, только в релятивистской кинетической теории для уравнения Власова—
Эйнштейна [3,9,10,12,16,23,33,34,37,38,50, 53, 59,61]. Уравнение электромагнитных полей полу-
чается варьированием (2.1) по Aμ и называется системой уравнений Максвелла:

k2
∂
√−gFμν

∂xν
=

1

c2

∫

euμf(t,x,v,m, e)d3vdmde. (2.3)

Мы получили из действия (2.1) уравнения для полей (2.2), (2.3). Чтобы получить замкнутые
уравнения, нужно выписать уравнение на функцию распределения, которая появилась в урав-
нениях (2.2), (2.3) из действия (2.1). Для этого нужно вывести уравнения движения частицы в
заданных полях. Соответствующее действие хорошо известно [2,18,22,28,41,47,65]. Отметим, что
это действие для частиц можно получить, подставив в первых двух слагаемых действия (2.1)
функцию распределения в виде δ-функции:

f(t,x,v,m, e) = δ(x − x(t))δ(v − dx(t)

dt
)δ(m −m′)δ(e − e′). (2.4)

Получаем, опуская штрихи, стандартное действие для частиц [2, 18, 22, 28, 41, 47, 65]:

S[x(t)] = −cm
∫ √

gμν(x(t), t)uμuνdt− e

c

∫

Aμ(x(t), t)u
μdt. (2.5)

При такой подстановке подразумевается, что трёхмерная скорость входит в четырёхмерную u,
как и раньше, формулой u = (c, v1, v2, v3), где c— скорость света. Кроме того, предполагается,

что трёхмерная скорость есть производная координаты по времени v =
dx

dt
, поэтому в левой

части (2.5) стоит только эта координата, по которой и нужно варьировать, как положено, по
Лагранжу. Обычное варьирование приводит к уравнениям Эйлера—Лагранжа, а потом к урав-
нениям для функции распределения.

3. Уравнения движения частиц в заданных полях, уравнение Лиувилля
и уравнение Власова—Максвелла—Эйнштейна

Воспользуемся инвариантностью первых двух слагаемых уравнения (2.5) относительно за-
мены t = φ(λ). Здесь λ—произвольный параметр. Такая инвариантность хорошо извест-
на [2,18,22,28,41,47,65], но представляется загадкой (и подарком) природы: самые фундаменталь-
ные взаимодействия — гравитационные и электромагнитные — обладают этим свойством, будучи
описываемыми лагранжианами (2.5) первой степени по скоростям. Перепишем с помощью этой
замены действие частиц (2.5):

S = −cm
∫
√
gμνuμuνdλ− e

c

∫

Aμu
μdλ (3.1)

и, варьируя по x(λ), получаем уравнение Эйлера—Лагранжа:

cm
d

dλ

[
gμνu

ν

√
gηξuηuξ

+
e

c
Aμ

]

= cm
√

gηξuηuξ
∂gσν
∂xμ

uσuν +
e

c

∂Aν

∂xμ
uν . (3.2)

Уравнение (3.2) перепишем, обозначив через I = gηξ
∂xη

∂λ

∂xξ

∂λ
интеграл движения:

d2xμ

dλ2
+ Γμ

νη

dxη

dλ

dxν

dλ
=

e

mc2

√
IFμ

ν

dxnu

dλ
, (3.3)

здесь Γμ
νη — символ Кристоффеля:

Γμ
νη =

1

2
gμm

(
∂gmk

∂xν
+
∂gmν

∂xk
+
∂gkν
∂xm

)

.

Уравнение (3.3) отличается от приведённых в руководствах [2,18,22,28,41,47,65] наличием
√
I в

правой части: в этих руководствах дифференцирование идёт по собственному времени ds = dλ
√
I.

Это неудобно, так как для каждой частицы это собственное время индивидуально. Далее будет



МАТЕМАТИЧЕСКАЯ ТЕОРИЯ УСКОРЕННОГО РАСШИРЕНИЯ ВСЕЛЕННОЙ 565

использована формула (3.3), которая обладает симметрией при замене x −→ αx, λ −→ αλ, что и
позволяет понизить её порядок. Для этого перепишем уравнение (3.3) в виде

⎧
⎪⎪⎨

⎪⎪⎩

dxμ

dλ
= wμ,

dwμ

dλ
= −Γμ

νηw
ηwν +

e
√
I

mc2
Fμ
ν w

ν .

(3.4)

Избавляемся от λ, поделив остальные уравнения на первое из уравнений системы (3.4). Так

как x0 = ct пропорционально времени, обозначим
wμc

w0
=
dxμ

dt
= uμ —четырёхмерная скорость,

где u0 = c. При этом из-за симметрии, описанной выше, можно избавиться от уравнения
dw0

dt
и

написать уравнения по xi, ui (i = 1, 2, 3). Такое понижение порядка описано для гравитации в
книгах Фока [28,41] и Вайнберга [2,65]. Там этот переход в уравнениях приведён для гравитации,
где уравнения не отличаются для параметра λ и собственного времени s.Однако если добавляется
электромагнетизм, то отличие заключается как раз в появлении корня в правой части (3.3),
который обеспечивает необходимую симметрию: вторую степень по скоростям в правой части
второго уравнения (3.4). Это понижение переходом к собственному времени нам необходимо, так
как наша цель — получить уравнение на функцию распределения f(t,x,v,m, e). Тогда

⎧
⎪⎪⎨

⎪⎪⎩

dxi

dt
= vi,

dvi

dt
= Gi,

(3.5)

где через Gi обозначено следующее выражение:

Gi = −Γi
ηνu

ηuν +
vi

c
Γ0
ηνu

ηuν +
e
√
J

mc2

[

F i
ηu

η − vi

c
F 0
η u

η

]

,

J = gνξu
νuξ, u = (c,v), v = (v1, v2, v3)— трёхмерная скорость.

Мы получили уравнения движения заряженных частиц в электромагнитных и гравитационных
полях в релятивистской форме из принципа наименьшего действия.
В заключение выпишем уравнение Лиувилля для функции распределения f(t,x,v,m, e) и си-

стемы (3.5):
∂f

∂t
+ vi

∂f

∂xi
+
∂(Gif)

∂vi
= 0. (3.6)

Уравнения (3.6), (2.2) и (2.3) образуют систему уравнений Власова—Максвелла—Эйнштейна.
Это замкнутая система уравнений релятивистской электродинамики и гравитации. Общий смысл
уравнений типа Власова именно таков: они позволяют замкнуть систему электродинамики (урав-
нение Власова—Максвелла) и гравитации (уравнение Власова—Эйнштейна) и вывести их из прин-
ципа наименьшего действия.

4. Общий переход к гидродинамике

Общий переход рассмотрен в [9, 10, 59]. Рассмотрим произвольную систему нелинейных обык-

новенных дифференциальных уравнений:
dx

dt
= v(x), x ∈ R

n, v(x) ∈ C1(Rn). Перепишем её в

виде x = (q, p), q ∈ R
m, p ∈ R

n−m:
dq

dt
= w(q, p),

dp

dt
= g(q, p)

Выпишем уравнение Лиувилля для функции распределения f(t, q, p):
∂f

∂t
+
∂(wif)

∂qi
+
∂(gjf)

∂pj
= 0.

Выполним гидродинамическую подстановку

f(t, q, p) = ρ(q, t)δ(p −Q(q, t)). (4.1)
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Получаем:
∂f

∂t
=
∂ρ(q, t)

∂t
δ(p −Q(q, t))− ρ(q, t)

∂δ(p −Q(q, t))

∂pi

∂Qi(q, t)

∂t
,

∂(wi(q, p)f)

∂qi
=
∂(wi(q,Q)ρ(q, t))

∂qi
δ(p −Q(q, t))− ρ(q, t)wi(q,Q(q, t))

∂δ(p −Q(q, t))

∂pk

∂Qk(q, t)

∂qi
,

∂gj(q, p)f

∂pj
= ρ(q, t)gj(q,Q(q, t))

∂δ(p −Q(q, t))

∂pj
.

При дифференцировании мы воспользовались правилами дифференцирования обобщённых
функций [15]. Собирая множители при дельта-функции и её производных, получаем систему
уравнений: ⎧

⎪⎪⎨

⎪⎪⎩

∂ρ

∂t
+
∂(ρwi(q,Q))

∂qi
= 0,

ρ(q, t)

(
∂Qj(q, t)

∂t
+ wi(q,Q(q, t))

∂Qj(q, t)

∂qi
− gj(q,Q(q, t))

)

= 0.
(4.2)

Гидродинамическая подстановка была изобретена в рамках уравнений Власова [16], а для про-
извольных систем обыкновенных дифференциальных уравнений введена в [9, 10, 59]. Для га-
мильтоновых систем из неё получается уравнение Гамильтона—Якоби естественным способом:
проходит подстановка для скоростей в виде градиента функции, которая оказывается действи-
ем [3, 12, 19, 20, 23, 48, 61].
А именно, уравнение Лиувилля в гамильтоновом случае имеет вид:

∂f

∂t
+

(
∂H

∂p
,
∂f

∂x

)

−
(
∂H

∂x
,
∂f

∂p

)

= 0.

Гидродинамическая подстановка (4.1) даёт систему (4.2), где wi(q, p) =
∂H(q, p)

∂pi
, gj(q, p) =

−∂H(q, p)

∂qj
. Полагая Q(t,x) = ∇W (t,x), получаем уравнения неразрывности и Гамильтона—

Якоби ⎧
⎪⎨

⎪⎩

∂ρ

∂t
+ div(ρ∇W ) = 0,

∂W

∂t
+H(∇W,x) = 0.

Уравнения (4.2) были названы В.В. Козловым в гамильтоновом случае уравнениями Лэм-
ба [19, 20], из них и были получены уравнения Гамильтона—Якоби Маделунгом [48] в частном
случае нерелятивистского гамильтониана и В.В. Козловым [19, 20] в общем случае гамильтоно-
вых систем. Общая подстановка (4.1) с разными размерностями и отождествление системы (4.2)
с уравнениями с одинаковой главной частью в терминах Куранта [39] — видимо, недавняя ис-
тория [3, 12, 61]. Подстановка (4.1) и уравнения (4.2) имеют яркий геометрический смысл: это
движение m-мерных поверхностей в n-мерном пространстве в силу исходной динамической си-
стемы в эйлеровых координатах. Так механика помогает геометрии, проясняется и общая теория
УрЧП: полностью описан класс уравнений, где работает метод характеристик — это уравнения с
одинаковой главной частью. Получен и простейший вывод уравнений Гамильтона—Якоби, кото-
рый мы используем для прояснения и обоснования метода Милна—МакКри в разделе 5 в нереля-
тивистском случае, а в релятивистском случае в разделе 6. Это позволит обосновать ускоренное
расширение Вселенной.

5. Уравнение Власова—Пуассона, космологические решения
и нерелятивистская гидродинамика с лямбда-членом

Воспроизведём простейшее нерелятивистское космологическое решение Милна—МакКри с до-
бавкой лямбда-члена в форме уравнения Власова—Пуассона. Нерелятивистский случай для тя-
готения соответствует действию [22,47]

S[U ] =

∫ [
mv2

2
−mU

]

f(t,x,v,m)dxdvdmdt − 1

8πγ

∫
(
(∇U)2 − 2λU

)
dxdt. (5.1)
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Варьируя по U, получаем уравнения Пуассона с лямбда-членом:

�U = 4πγ

∫

mf(t,x,v,m)dvdm − λ. (5.2)

Мы видим, что для получения замкнутой системы уравнений нужно получить уравнение
для функции распределения, появившейся в уравнении Пуассона (5.2). Действие для одной ча-
стицы получается из первого слагаемого в (5.1) при выборе f(t,x,v,m, e) = δ(m − M)δ(x −
y(t))δ

(
v − dy

dt

)
. Этa формальная подстановка — правило для получения правильных лагранжи-

анов из действия (5.1), работает для вывода любых систем типа Власова, и мы широко пользо-
вались этим [3,6,7,9,10,12,14,57–63] и будем пользоваться в дальнейшем. Получаем стандартное
действие:

S1[y] =

∫ [
My′2

2
−MU(y)

]

dt.

Варьируем, как обычно в механике, и получаем уравнение Ньютона:

y′′ − ∂U

∂y
= 0.

Переходим к уравнению Лиувилля для соответствующей системы обыкновенных дифференци-
альных уравнений: {

ẏ = v,

v̇ = −∂U
∂x

,

и тогда получаем уравнение на функцию распределения, дополняя уравнение (5.2):
∂f

∂t
+

(

v,
∂f

∂x

)

−
(
∂U

∂x
,
∂f

∂v

)

= 0. (5.3)

Система (5.2), (5.3) и есть система уравнений Власова—Пуассона для гравитации с лямбда-
членом, который и призван описать ускоренное расширение.
Мы провели подробный вывод уравнения Власова—Пуассона в простейшем случае, который

иллюстрирует правильность вывода уравнений типа Власова и в более сложных релятивистских
и слаборелятивистских случаях. Этот способ вывода уравнений типа Власова отрабатывался в
статьях [3, 6, 7, 9, 10, 12, 14, 57–63] и является пока единственным способом получать в замкнутой
форме уравнения электродинамики и гравитации из принципа наименьшего действия. По сути
он следует всем учебникам по теории поля (см., например, [2, 18, 22, 28, 41, 47, 65]), где вводятся
два действия: для полей и для частиц. Наша небольшая добавка с уравнениями типа Власова [9,
10, 59] связала эти два действия подстановкой дельта-функции в одну сторону и переходом к
интегрированию с помощью функции распределения в обратную.
Этот переход аналогичен связи лагранжевых и эйлеровых координат в кинетической теории.

Это позволило заодно получать правые части в уравнениях для полей (тензор энергии-импульса
в уравнениях Эйнштейна). Это поставило на математическую платформу ОТО, упрощая её и
давая замкнутую систему уравнений из принципа наименьшего действия (2.1), (2.3). Это упро-
стило и сделало математически строгой и всю гравитацию и электродинамику именно с помощью
уравнения Власова.
Правильность такой схемы вывода уравнений типа Власова была сначала проверена на уравне-

ниях Власова—Пуассона и уравнениях Власова—Максвелла, где ответ был известен, хотя правые
части уравнений для полей не были выведены, и только после этого схема вывода была перенесена
на уравнение Власова—Эйнштейна. Это важно, потому что как зарубежные так, и наши исследо-
ватели брали тензор энергии-импульса необоснованно, что приводило к заведомо неправильным
уравнениям для полей. Более того, сравнение релятивистских действий с нерелятивистскими и
слаборелятивистскими позволило твёрдо установить все коэффициенты действия (2.1), а потому
и уравнения для полей.
Дальнейшая наша цель — получение космологических решений, и сейчас мы выведем урав-

нения Милна—МакКри [49] из уравнения Власова. Система (5.2), (5.3) имеет точное гидроди-
намическое следствие, т. к. допускается (согласно более общей теории раздела 4) гидродина-
мический вид функции распределения как точное следствие (5.2), (5.3). Пусть f(t,x,v,m) =
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ρ(t,x,m)δ(v −w(t,x,m)). Тогда

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂ρ

∂t
+ div(ρw) = 0,

∂wk

∂t
+ wi

∂wk

∂xi
+
∂U

∂xk
= 0,

�U = 4πγ

∫

mρdm− λ.

Это означает, что если ρ(t,x,m), w(t,x,m) и U(t,x) удовлетворяют этой системе уравнений,
то f(t,x,v,m) = ρ(t,x,m)δ(v −w(t,x,m)) и U(t,x) удовлетворяют системе уравнений Власова—
Пуассона (5.2), (5.3).

Пусть wk(t,x,m) =
∂W

∂xk
. Такая подстановка проходит, также согласно общей теории из разде-

ла 3, и получается точное следствие Гамильтона—Якоби системы Власова—Пуассона (5.2), (5.3)
с лямбда-членом:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂ρ

∂t
+ div(ρ∇W ) = 0,

∂W

∂t
+

(∇W )2

2
+ U = 0,

�U = 4πγ

∫

mρdm− λ.

(5.4)

Эта система уравнений обобщает систему Милна—МакКри [49], где она приведена сразу в
изотропном случае с функциями, зависящими только от радиуса, но и c зависимостью плотности
и константы Хаббла от массы. Мы вывели эту систему из системы Власова—Пуассона, которую
мы получили из принципа наименьшего действия: таким образом, мы обосновали и обобщили
систему Милна—МакКри [49], которая признанным образом даёт космологические решения в
нерелятивистском случае. Этим мы подготовили почву для перехода к релятивизму ОТО.
Отметим, что если W есть функция только радиуса, то скорость даёт как раз обобщенный

разлёт Хаббла: w = ∇W = W ′(r)
x

r
. Скорость разбегания

W ′(r)
r

называется постоянной Хаббла.
Обратное тоже верно: любой разлёт по Хабблу, если скорость пропорциональна расстоянию, озна-
чает, что скорость есть градиент некоторой функции. Этим космологическое расширение связыва-
ется с гидродинамическим и даже следствием Гамильтона—Якоби уравнения Власова—Пуассона.
В космологических решениях плотность не зависит от пространственной координаты. Тогда в пер-

вом уравнении неразрывности переменные разделяются, и из него получаем
1

ρ

∂ρ

∂t
= −3H(m, t),

а также �W = 3H(m, t). Мы покажем ниже, что H(m, t) =
W ′(r)
r

совпадает с постоянной Хабб-

ла. Из третьего уравнения имеем уравнение: �U = 4πγ
∫
mρ(m, t)dm − λ. Решая два последних

уравнения в случае, когда U и W зависят только от радиуса, имеем

W (r,m, t) =
H(m, t)

2
r2 +

A(m, t)

r
+B(m, t),

U(r, t) =
4πγ

∫
mρ(m, t)dm− λ

6
r2 +

C(t)

r
+D(t).

Мы видим, дифференцируя W (r,m, t), что H(m, t) =
W ′(r)
r

, т. е. что это действительно постоян-
ная Хаббла. Здесь A(m, t), B(m, t), C(t), D(t)—произвольные функции. Получаем, подставляя
эти выражения во второе уравнение системы (5.4):

1

2

∂H

∂t
r2 +

1

r

∂A

∂t
+
∂B

∂t
+
H2

2
r2 − AH

r
+
A2

2r4
+

4πγ
∫
mρ(m, t)dm− λ

6
r2 +

C

r
+D = 0
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Приравнивая коэффициенты при степенях радиуса (как это делали Милн и МакКри [49]),

получаем A(m, t) = 0, C(t) = 0,
∂B

∂t
+D(t) = 0. Получаем систему уравнений

⎧
⎪⎪⎨

⎪⎪⎩

∂ρ(m, t)

∂t
+ 3H(m, t)ρ(m, t) = 0,

∂H(m, t)

∂t
+H2 +

4πγ

3

∫

mρ(t,m)dm− λ

3
= 0.

(5.5)

Так как скорость разбегания �w = ∇W = H�r, имеем:

1) условие расширения Вселенной: H � 0;

2) условие ускоренного расширения:
∂H(m, t)

∂t
� 0, т. е. H2 +

4πγ

3

∫
mρ(m, t)dm− λ

3
.

Из второго условия видим определяющую роль лямбды для ускоренного расширения. Мы
также видим: так как ρ(m, t) обязано, вообще говоря, зависеть от массы, то и «постоянная»
Хаббла H(m, t), вообще говоря, зависит от массы.
Мы получили систему уравнений (5.5), которая в принципе объясняет как изменение посто-

янной Хаббла, так и её «напряжения» («Constant Hubble Tension» [36]) именно зависимостью от
времени и от массы: уравнения (5.5) можно считать точным уравнением константы Хаббла с
лямбда-членом в не релятивистском случае.
Если, однако, H не зависит от массы (что второе из уравнений (5.5) допускает, как это и пред-

полагали Милн и МакКри в [49]), мы можем свести систему (5.5) к системе двух обыкновенных

уравнений. Обозначим K(t) =
4πγ

3

∫
mρ(m, t)dm и получим:

⎧
⎪⎨

⎪⎩

dK

dt
+ 3HK = 0,

dH

dt
+H2 +K − λ

3
= 0.

(5.6)

Первое из уравнений (5.6) есть в точности уравнение (2.4) Милна—МакКри [49], а второе из
уравнений (5.6) — это их уравнение (3.2) (с лямбда-членом), но полученное без всяких предпо-
ложений из принципа наименьшего действия как его точное следствие. Система (5.6) решается
точно (делением и исключением времени оно сводится к уравнению Бернулли), но нам достаточ-
но и фазового портрета, который исследовался в [61,63]. Условия ускоренного расширения — это

узкая область под параболой H � 0, K � 0, H2 +K − λ

6
� 0.

Система (5.5) сводится к системе обыкновенных дифференциальных уравнений и в более об-
щем случае, когда H(m, t) кусочно-постоянна на конечном числе интервалов Ii. Пусть значение

H(m, t) на этом интервале равно H(i, t), i = 1 . . . r. Обозначая m(i, t) =
4πγ

3

∫

Ii

mρ(m, t)dm, полу-

чаем систему 2r обыкновенных дифференциальных уравнений
⎧
⎪⎪⎨

⎪⎪⎩

dm(i, t)

dt
+ 3H(i, t)m(i, t) = 0, i = 1 . . . r,

dH(i, t)

dt
+H(i, t)2 +Σk=1...rm(k, t)− λ

3
= 0.

В литературе широко обсуждается напряжение константы Хаббла («Constant Hubble Tension»,
см. [36]), оно выражает несоответствие постоянной Хаббла наблюдениям и вопросам, от чего
она вообще может зависеть. Получение точного решения следствия действия (2.1) для постоян-
ной Хаббла в принципе может убрать это несоответствие. Наша цель — аналог теории Милна—
МакКри для динамики в релятивистском случае: этот метод приведёт к построению космоло-
гических решений и объяснит ускоренное расширение Вселенной без введения лямбды и тёмной
энергии.
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6. Общая теория космологических решений: вместо тёмной энергии
и лямбда-члена ясная классическая математика

и простая гамильтонова механика

Перенесём теорию Милна—МакКри из предыдущего раздела на случай общего гамильтониана
H(p, x). Выпишем уравнение Лиувилля:

∂f

∂t
+

(
∂H

∂p
,
∂f

∂x

)

−
(
∂H

∂x
,
∂f

∂p

)

= 0.

Сделаем гидродинамическую подстановку сразу в градиентной форме f(t,x, p) = ρ(t,x)δ(v −
∇W (t,x)). Отметим, что именно в такой форме её отметил В.П. Маслов (см. [23, с. 29]). Получаем
при этом уравнения неразрывности и Гамильтона—Якоби

⎧
⎪⎨

⎪⎩

∂ρ

∂t
+ div(ρ∇W ) = 0,

∂W

∂t
+H(∇W,x) = 0.

Если плотность не зависит от времени (общепринятое космологическое предположение), то пе-
ременные в уравнении неразрывности разделяются, и появляется постоянная Хаббла:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂ρ(t)

∂t
+ 3h(t)ρ(t) = 0,

�W = 3h(t),

∂W

∂t
+H(∇W,x) = 0.

Последние два уравнения — обобщенная система Гурса. Для них можно выписать условия сов-

местности: 3
∂h(t)

∂t
+�H(∇W,x) = 0.

Пусть гамильтониан H(p, x) зависит от этих аргументов через изотропные переменные p2
и (p, x): H(p, x) = H((p, x), p2) (это инвариантность относительно вращений). Тогда при под-
становке Гамильтона—Якоби p = ∇W, W = W (r) гамильтониан приобретает вид H(p, x) =

H((p, x), p2) = H(rWr,W
2
r ). Скорости имеют вид vi =

∂H

∂pi
=

∂H

∂Wr

xi

r
. Это хаббловское расши-

рение. Вывод: это — весьма общий и при этом общематематический факт, который справедлив
даже без «космологического» предположения об однородности пространства (когда плотность не
зависит от пространственной переменной): тогда константа Хаббла тоже зависит от простран-

ственной координаты и имеет явный вид h(r, t) =
∂H

∂Wr

1

r
. Это обобщение может быть полезно,

так как иногда наблюдают константу Хаббла, зависящую от радиуса.
1. Уравнение неразрывности принимает вид

∂ρ

∂t
+

∂

∂xi

(

ρ
∂H

∂pi

)

= 0 или
∂ρ

∂t
+

∂

∂xi

(

ρ
∂H

∂Wr

xi

r

)

= 0.

2. В космологическом случае, когда плотность ρ = ρ(m, t) не зависит от пространственной
координаты, переменные разделяются, и появляется «постоянная» интегрирования h(t), которая
называется постоянной Хаббла и совпадает с появившейся выше:

∂ρ

∂t
+ 3ρh = 0,

∂

∂xi

(
∂H

∂Wr

xi

r

)

= 3h.

3. Уравнение
∂

∂xi

(
∂H

∂Wr

xi

r

)

= 3h имеет общее решение
∂H

∂Wr
= hr +

A(t)

r2
.

4. В космологических моделях «постоянную» A(t) можно положить равной нулю, исключая

особенность в нуле. При этом, подставляя это выражение для скоростей vi =
∂H

∂pi
=

∂H

∂Wr

xi

r
из

раздела 3, получаем vi = h(t)xi, что полностью соответствует общепризнанному представлению
о «постоянной Хаббла» h: чем дальше галактика, тем быстрее она убегает. Мы видим, что такое
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разбегание — общематематический факт из гамильтоновой динамики инвариантных гамильтони-
анов.
5. Решая уравнение разделов 5, 6

∂H

∂Wr
= hr относительно Wr, получаем Wr = F (hr), где F —

это функция, обратная к
∂H

∂Wr
(теорема об обратной функции).

6. Получаем следующую систему уравнений (задача Гурса):
⎧
⎨

⎩

Wr = F (hr),

−∂W
∂t

= H(P, x) = H((p, x), p2) = H(rWr,W
2
r ) = H(rF (hr), F (hr)2).

7. Переписывая все уравнения вместе, получаем следующую систему уравнений:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂ρ

∂t
+ 3ρh = 0,

∂W

∂r
= F (hr),

∂W

∂t
+H(rF (hr), F (hr)2) = 0.

(6.1)

8. Выпишем условие совместности последних двух уравнений (это обычный ход в системе
Гурса). Это условие совместности имеет вид

∂2W

∂r∂t
=
∂2W

∂t∂r
, − ∂

∂t
F (hr) =

∂

∂r
H(rF (hr), F (hr)2).

Мы должны применить эти выкладки в случае ОТО для изотропной метрики

gαβ =

⎛

⎜
⎜
⎝

e(r, t) a(r, t)x a(r, t)y a(r, t)z
a(r, t)x b(r, t) + d(r, t)x2 d(r, t)xy d(r, t)xz
a(r, t)y d(r, t)xy b(r, t) + d(r, t)y2 d(r, t)yz
a(r, t)z d(r, t)xz d(r, t)yz b(r, t) + d(r, t)z2

⎞

⎟
⎟
⎠ .

Нам потребуется и обратная матрица: частицы в импульсах описываются метрикой с верхними
индексами, а поля — нижними:

gαβ = K ·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b+ d(x2 + y2 + z2) −ax −ay −az
−ax g11

a2xy − edxy

b

a2xz − edxz

b

−ay a2xy − edxy

b
g22

a2yz − edyz

b

−az a2xz − edxz

b

a2yz − edyz

b
g33

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Здесь

K =
1

be− (a2 − ed)(x2 + y2 + z2)
,

g11 =
1

b
(−a2y2 − a2z2 + eb+ edy2 + edz2),

g22 =
1

b
(−a2x2 − a2z2 + eb+ edx2 + edz2),

g33 =
1

b
(−a2x2 − a2y2 + eb+ edx2 + edy2).

Как известно в ОТО, гамильтониан вычисляется по массовому соотношению gαβpαpβ = (mc)2

по формуле −H(x, p) = cp0. Поэтому решим квадратное уравнение относительно p0:

g00p20 + 2gi0pip0 + gijpipj = (mc)2.

Физический смысл имеет корень, взятый с минусом [2, 18, 22, 28, 41, 47, 65]:

p0 =
1

e

(
−2a(p1x+ p2y + p3z)−

√
(a2 − ed)(p1x+ p2y + p3z)2 + e((mc)2)− bp2

)
.
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Здесь использовано обозначение p2 = p21+p
2
2+p

2
3. Сделаем подстановку p = ∇W (r, t), Wt =

∂W

∂t
=

−H(x, p) = cp0 и выпишем уравнение Гамильтона—Якоби:

Wt = −H =
c

e

(
−arWr −

√
W 2

r (a
2r2 − eb− dr2e) + e(mc)2

)
.

Получаем следующую систему уравнений для этого известного [2, 18, 22, 28, 41, 47, 65] гамильто-
ниана ОТО—частный случай системы (6.1):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ

∂t
+ 3hρ = 0,

μ∂W
∂r√

e(mc)2 + μ
(
∂W
∂r

)2
= K,

∂W

∂t
+
c

e

∂W

∂r
ar +

c

e

√

e(mc)2 + μ

(
∂W

∂r

)2

= 0,

(6.2)

где μ(r, t) = r2(a2 − de)− be, K(m, r, t) =
(e

c
h− a

)
r—безразмерный радиус-вектор r.

Эту систему уравнений следует дополнить уравнениями Эйнштейна для полей в изотропном
случае, т. е. на метрические коэффициенты a, b, d, e. Но выведем следствия уравнений (6.2). Ре-
шаем среднее уравнение системы (6.2) относительно Wr, получаем

Wr =
Kemc

√
e(μ2 −K2μ)

.

Подставляя это выражение в нижнее уравнение (Гамильтона—Якоби), получаем

Wt = −mc2(arK + μ)
√
e(μ2 −K2μ)

.

Тогда, приравнивая вторые частные производные (условие совместности):
∂2W

∂r∂t
=
∂2W

∂t∂r
. Пере-

пишем выражения в удобном виде: t =
mcT

Z
, Wr =

mcQ

Z
, где Z = e(μ2 −K2μ), T = −c(arK + μ),

Q = eK, K =
(e

c
h− a

)
r, μ(r, t) = r2(a2 − de)− be. Упростим T :

T = e(cd − ah)r2 + ebc. (6.3)

Здесь все компоненты метрики суть функции (r, t) радиус-вектора и времени, а постоянная Хаб-
бла есть, вообще говоря, функция (m, t) времени и массы. Получаем уравнение

2ZQt −QZt = 2ZTr − TZr. (6.4)

Это и есть общее соотношение на коэффициенты метрики в изотропном случае, которое дают
космологические решения.
Все три функции этого уравнения суть полиномы по r, если коэффициенты метрики — сами

полиномы по r. Тогда можно приравнять коэффициенты при степенях r, что и будет обобщением
метода Милна—МакКри.

7. Пример. Коэффициенты метрики —функции только времени

Рассмотрим случай, когда коэффициенты метрики есть функции только от времени: Z = z4r
4+

z2r
2 + z0, T = t2r

2 + t0, Q = q1r. Получаем три уравнения при пятой, третьей и первой степенях:

2z4q1t − z4tq1 = 0,
2z2q1t − z2tq1 = 2z2t2 − 4z4t0,
2z0q1t − z0tq1 = 4z0t2 − 2z2t0.

(7.1)

Первое уравнение интегрируется:
q1√
z4

= const = I(m), (7.2)
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где I(m)— безразмерный интеграл, причём q1 =
e2

c
h−ae, z4 = e(a2 − de)2 − e(a2 − de)

(e

c
h− a

)2
.

Остальные коэффициенты в (7.1): z2 = −2be2(a2 − de) + be2
(e

c
h− a

)2
, z0 = e(be)2, t2 = −c(a2 −

de) − ca
(e

c
h− a

)
= cde− ca2 − aeh+ ca2 = e(cd− ah), t0 = cbe.

Особый интерес представляет последнее из уравнений (7.1), т. к. оно содержит уравнение на
постоянную Хаббла, имеющее вид

∂h

∂t
+ h2 = λ(a, b, d, e, h).

Отклонение от свободного движения (метрики Минковского и модели Фридмана) λ(a, b, d, e, h)
должно дать ускоренное расширение в терминах метрики, если оно положительно. Для следую-
щего примера метрики, обобщающей модель Фридмана—Леметра—Робертсона—Уокера (ФЛРУ),

λ(a, b, d, e, h) =
hbt
b
.

Итак, мы построили общую теорию движения материи в космологических решениях в изо-
тропной метрике. Для окончания нужны ещё движения полей в заданной метрике по уравнениям
Эйнштейна.
Рассмотрение частных случаев представляет значительный интерес: мы свели задачу к иссле-

дованию знака λ(a, b, d, e, h). Это и есть общее соотношение на коэффициенты метрики в изотроп-
ном случае, которые дают космологические решения. Если коэффициенты метрики — полиномы
по r, то все коэффициенты уравнения (3.3) тоже полиномы, и можно приравнять коэффициенты
при степенях r, что и будет обобщением метода Милна—МакКри.
В работе [4,56] рассмотрен случай, когда метрика есть функция только от времени. Здесь огра-

ничимся случаем, когда b(t) и d(t)—произвольные функции времени, но a = 0, e = 1. Отсылаем
за подробностями в общем случае к работе [4, 56].

8. Пример. Обобщённая модель Фридмана—Леметра—Робертсона—Уокера
(ФЛРУ)

Найдём обратную матрицу, обозначая её соответствующие компоненты большими буквами,

получим E = 1, A = 0, D = − d

b(b+ dr2)
, B =

1

b
. Это обобщает случай ФЛРУ [2,18,22,28,41,47,65].

Мы видим, что если уравнения для полей описываются метрическим тензором с нижними
индексами, которые входят в действие (2.1) (здесь это соответствует коэффициентам с большими
буквами), то необходимые уравнения для материи — с метрикой с верхними индексами. Получим
для движения материи уравнения (7.1) (см. [4, 56]):

2d2ht − h(d2)t − dt

(
h

c

)2

h = 0,

4bdht − 2(bd)th− bt
h3

c2
+ 2bdh2 = 0,

bht − bth+ bh2 = 0.

(8.1)

9. Пример. Диагонализация ФЛРУ

Приводя систему к диагональному виду относительно производных, получаем простую систе-
му, эквивалентную системе (8.1) (см. [8]):

dt = 2
d2c2

h
,

ht = −(2dc2 + h2),

bt = −(2dc2)
b

h
.

(9.1)

Из первого и третьего уравнения следует, что bdt − dbt = 0,
d

b
= −k—интеграл кривизны

(b = −a2 в обычных обозначениях для модели Фридмана). Мы автоматически оказались в случае
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постоянной кривизны k-модели Фридмана. При ускоренном расширении вселенной из второго
уравнения следует d ≺ 0. Так как b ≺ 0, имеем следствие k ≺ 0. Это пространство Лобачевского.
Итак, мы получили, что знак кривизны определяется из эксперимента и точного следствия

уравнений, получающихся из принципа наименьшего действия. Мы не только получили простое
объяснение ускоренного расширения Вселенной на основе системы (3.5) без введения лямбды
Эйнштейна, полей, темной энергии, но и впервые получили возможность надежно говорить о
знаке кривизны на основе хорошо проверенного эксперимента об ускоренном расширении Все-
ленной.
Удобно переписать систему (9.1), используя соотношение

d

b
= −k и обозначая b = −a2, где a—

параметр Фридмана:

ht + h2 = −2a2kc2,

at = −kc2 a
3

h
.

(9.2)

В таком виде явно входит кривизна k = −d
b
— откуда из первого уравнения хорошо видно,

что кривизна должна быть отрицательна для ускоренного расширения Вселенной. Можно ис-
кать частное решение системы (9.1) в виде d = Ah2, откуда находим из условия совпадения двух

первых уравнений (9.1) A = − 1

c2
. Это решение является сепаратрисой двух режимов: под этой

параболой решения стартуют из начала координат, над ней решения начинаются вблизи верти-
кальной оси на плюс бесконечности и около. Уравнение на константу Хаббла принимает особенно
простой вид ht = h2. Уход на бесконечность за конечное время. Тот же ответ получается и из
уравнения (9.2), где подстановка уже должна выглядеть по-другому: a = Ah.
Где живёт наша Вселенная? Представляет значительный интерес изучить этот вопрос, а также

последовательно обобщать эти уравнения, добавляя оставшиеся коэффициенты и обобщая модель
Фридмана, сравнивая его и эти обобщения с экспериментальными данными. Первые прикидки
показывают хорошие результаты, устраняя проблему «Constant Hubble Tension» [36].
Подчеркнём, что (9.2) — это точное следствие уравнений Эйнштейна для космологического

движения релятивистских частиц в заданных полях, поэтому (9.2) является триумфальным обос-
нованием ОТО и объяснением ускоренного расширения Вселенной одновременно. Уместно про-
цитировать В.Л. Гинзбурга (его известный обзор 1999 года [17, 43]): «Эйнштейн счёл введение
лямбда-члена “неудовлетворительным с теоретической точки зрения” и отбросил его. Паули, в
примечании к своей известной книге, изданной по-английски в 1958 г., “целиком присоединился к
точке зрения Эйнштейна”. Л.Д. Ландау даже слышать не хотел о лямбда-члене, но добиться
от него причины такой позиции мне не удалось».
Интуиция не подвела великих физиков, как видно из этой статьи. Дело в том, что (9.2) яв-

ляется одновременно продвижением и 21-й проблемы Гинзбурга (экспериментальное подтвер-
ждение ОТО: эксперимент здесь — как раз ускоренное расширение), и 23-й проблемы (космо-
логическая проблема, лямбда-член). Можно сказать, глядя на первое из уравнений (9.2), что в
качестве лямбда-члена выступает метрика, умноженная на кривизну и квадрат скорости света,
а отрицательная кривизна обеспечивает отталкивание, как бы растягивая, расталкивая части-
цы: геодезические в пространствах отрицательной кривизны, как известно, разбегаются. Можно
назвать (9.2)) геометрическим объяснением отталкивания и ускоренного расширения.
Сразу возникают новые вопросы: как сопрячь ньютоново притяжение с геометрическим оттал-

киванием? Ясно, что здесь нужно расширять систему уравнений, включая уравнения для полей
по аналогии с нерелятивистским решением Милна—МакКри.
Ещё один интересный и актуальный вопрос: какова наша Вселенная с глобальной точки зре-

ния? Ибо известны многочисленные пространства отрицательной кривизны (в частности, гео-
дезические на пространствах отрицательной кривизны называются системами Д.В. Аносова и
обладают свойствами разбегания и перемешивания). Это позволило объяснить результаты по
ускоренному расширению Вселенной [52,54], за которые и была присуждена нобелевская премия
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в 2011 году. Результаты позволили завершить попытки вывода уравнений гравитации и электро-
динамики из принципа наименьшего действия [2,16,18,22,28,37,38,41,47,65]. В работах [4,8,56] бы-
ли получены уравнения, позволившие уверенно говорить о возможности объяснения ускоренного
расширения без лямбды, тёмной энергии, дополнительных полей на основе классической ОТО.

10. Пример. Диагонализация ФЛРУ с не равными нулю другими коэффициентами

Система принимает вид:

dt = −2
d2c2

he
+

4a2c2d

he2
− a4c2

he3
+

2aat
e

− a2et
e2

,

ht + h2 = −2dc2 + 2a2
c2

e2
− het

2e
,

bt = −2dc2b

eh
+

2ba2c2

he2
+

2bac

e
.

(10.1)

Отметим, что если a = 0, то кривизна по-прежнему — интеграл. Нужно дополнить эту систему
уравнениями Эйнштейна (2.2), но для импульсов: тогда мы сможем использовать и там форму
Гамильтона—Якоби, приведшую к (8.1), (9.1), (9.2), (10.1). Мы получаем выражение для импуль-
сов:

pμ =
∂L

∂uμ
= −mc gμαu

α

√
gηξuηuξ

. (10.2)

Переходя к верхним индексам умножением на обратную матрицу gμβ , получаем pβ =

−mc uβ
√
gηξuηuξ

. Теперь требуется обратить эту формулу, выразив скорости через импульсы, что-

бы написать действие через импульсы. Для этого в последней формуле поделим β-ю компо-

ненту на нулевую
pβ

p0
=

uβ

c
. В последней формуле необходимо исключить импульс с нуле-

вой компонентой через массовое уравнение pαpβgαβ = (mc)2 и его решение относительно p0:
p0 = (−b ± √

b2 − 4aC)/(2a), где a = g00, b = 2pig
0i, C = pipjg

ij − (mc)2. При этом для со-
гласования с нерелятивистской динамикой берётся знак минус. Массовое уравнение получается
подстановкой тех же соотношений для исключения скоростей с учетом u0 = c pβ/p0 = uβ/c в
формулу (10.2) при μ = 0 (ср. [2, 18, 22, 28, 41, 47, 65]).
Уравнение для полей останется тем же самым (2.2) с заменой на интегрирование по импульсам

с использованием формул f(t,x,v,m)dvdm = f(t,x,p,m)dpdm. Каждая из двух этих величин —
это число частиц в элементе объёма, что является инвариантом при замене переменных. Урав-
нение Эйнштейна (2.2) упрощается и переписывается:

k1

(

Rμν − 1

2
gμν(R +Λ)

)√−g = c

∫

m
f(t,x,p,m)

2
√
gμνuμuν

uμuνdpdm. (10.3)

Выражение в импульсах:

k1

(

Rμν − 1

2
gμν(R+ Λ)

)√−g =
c

2

∫

f(t,x,v,m)
pμpν
√

(p0)2
dpdm. (10.4)

Выражение в нижних индексах, имея в виду связь с функцией Гамильтона—Якоби:

k1

(

Rμν − 1

2
gμν(R+ Λ)

)√−g =
c

2

∫

f(t,x,p,m)
pμpν
√

(p0)2
dpdm. (10.5)

Получается следующий план действий. Написать систему уравнений Власова—Эйнштейна в
импульсах, рассмотреть её изотропную форму и постараться решить эту систему. Сделаем гид-
родинамическую подстановку f(t,x,p,m) = ρ(m, t)δ(p −P(t,x,m)). Получаем из (10.5)

k1

(

Rμν − 1

2
gμν(R+ Λ)

)√−g =
c

2

∫

ρ(m, t)
PμPν
√

(P 0)2
dm. (10.6)
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Теперь полагаем Pμ =
∂W

∂xμ
, W =W (t, r). Получаем

k1

(

Rμν − 1

2
gμν(R + Λ)

)√−g = c

2

∫
∂W

∂xμ
∂W

∂xν
ρ(m, t)
√

(P 0)2
dm. (10.7)

Здесь
∂W

∂xi
=Wr

xi

r
, i = 1, 2, 3. Из (10.7) следует, что нужно аккуратно посчитать P 0 с учётом (6.3)

и вообще учесть (6.3), переходя от изотропного случая (10.7) к космологическому изотропному
случаю уравнений Эйнштейна:

P 0 = Pμg
μ0 =

∂W

∂xμ
gμ0 =

∂W

∂x0
e+

∂W

∂xk
axk = mcT

e

c
√
Z

+
∂W

∂r
axk

xk
r

= mcT
e

c
√
Z

+mcQ
ar√
Z

=

=
1√
Z
(meT +mcQar) =

1√
Z
(−mec(aK + μ) +mceKar) = − 1√

Z
mecμ,

∂W

∂x0
=

1√
Z
meT,

∂W

∂xk
=
∂W

∂r

xk
r

= mceK
1√
Z

xk
r
. (10.8)

Мы получаем вместо (10.7) в изотропном случае следующий вариант уравнений Эйнштейна в
космологическом изотропном случае:

k1

(

R00 − 1

2
g00(R+ Λ)

)√−g =
c

2

∫
∂W

∂x0
∂W

∂x0
ρ(m, t)
√

(P 0)2
dm =

c

2

∫
1√
Z
(meT )2

ρ(m, t)
√

(mecμ)2
dm =

=
1

2

∫
1√
Z

(c(aK + μ))2 e
mρ(m, t)
√

(μ)2
dm =

c2e

2
√

(μ)2

∫
1√
Z

(aK + μ)2mρ(m, t)dm =

=
c2

2
√

(e(cd − ah)r2 + ebc)2

∫
(
e(cd − ah)r2 + ebc

)2
e
mρ(m, t)√

Z
dm =

=
c2

2
√

(e(cd − ah)r2 + ebc)2

∫
(
e(cd − ah)r2 + ebc

)2
e

mρ(m, t)
√
μ2e− μK2e

dm,

k1

(

R0k − 1

2
g0k(R+ Λ)
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2

∫
∂W

∂x0
∂W

∂xk
ρ(m, t)
√

(P 0)2
dm =

=
c

2

∫
1√
Z
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(
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xk
r

) ρ(m, t)
√
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c2exk

2r
√
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∫
1√
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(aK + μ)Kmρ(m, t)dm,

k1

(

Rmk − 1

2
gmk(R + Λ)
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2

∫
∂W

∂xm
∂W

∂xk
ρ(m, t)
√

(P 0)2
dm =

=
c

2

∫
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mceK
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r

)(
mceK
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) ρ(m, t)
√

(mecμ)2
dm =

c2exk

2r
√

(μ)2

∫
1√
Z
K2mρ(m, t)dm. (10.9)

У нас уже есть выражения (6.3) для Wr и Wt через метрику. Осталось написать левую часть.
Мы получили выражение для правой части уравнений Эйнштейна, из которых видно, что удоб-

но всё делать в сферических координатах. При этом независимых уравнений оказывается как раз
два, причём справа стоят полиномы четвёртой степени по r. Поэтому способ решения этих урав-
нений — разложение по r в квадрате должно оборваться и дать замкнутую систему уравнений.
Такой же метод применим и к уравнениям (6.4) для частиц. Такова программа дальнейших ис-
следований.

11. Заключение

Уравнения (8.1), (9.1), (9.2) убедительно показывают, что ускоренное расширение — это про-
стой релятивистский эффект, так как они являются точными космологическими следствиями
классического лагранжиана Эйнштейна ОТО для движения частиц в заданных полях.
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Кроме того, ускоренное расширение даёт однозначно, что наша Вселенная — это пространство
Лобачевского. Это завершает усилия многих поколений учёных [2,17,18,22,28–30,32,40–43,47,65]
и ставит новые задачи.
Возникают вопросы и теоретические по уточнению модели Фридмана, и вопросы сравнения с

экспериментом [2–18,22, 23, 28–34,36–43,47, 49–54,56–65]. В частности, в этих работах напряжен-
но обсуждаются вопросы о несоответствии константы Хаббла экспериментам («Constant Hubble
Tension»), которые предлагаемыми результатами выводятся на новый уровень.
Но мы решили и ещё несколько задач «по дороге». ОТО поставлено на твердую математиче-

скую основу: уравнения ОТО в форме уравнений Власова—Эйнштейна выведены из принципа
наименьшего действия и имеют замкнутую форму. Строго определены космологические реше-
ния метода Милна—МакКри и получены общематематические гидродинамические следствия и
следствия Гамильтона—Якоби уравнений как Лиувилля, так и типа Власова.
Предъявленное обоснование ускоренного расширения Вселенной требует дальнейших как тео-

ретических и чисто математических исследований, связанных с изотропной версией уравнений
Эйнштейна, так и тщательного сравнения с экспериментами, обещая стать самым точным под-
тверждением классической Общей теории относительности.
Мы по сути сделали только первые шаги: в рамках модели Фридмана способ Милна—МакКри

дал замкнутую систему обыкновенных дифференциальных уравнений, но как это согласуется
с уравнениями для полей? Требуется в идеале получить решения полной системы уравнений
Власова—Эйнштейна в изотропном случае, как это удалось Милну и МакКри в ньютоновом
случае (уравнение Власова—Пуассона для тяготения). Но даже если бы концы с концами сошлись
в случае метрики, зависящей от времени (полной или даже с a = 0), это было бы хорошим
продвижением.
Предложенное приложение уравнения Власова к гравитации и космологии с объяснением

ускоренного расширения Вселенной и выводом уравнения Власова—Максвелла—Эйнштейна и
Власова—Пуассона из принципа наименьшего действия показывает его повышенную фундамен-
тальность. Но уравнение Власова является также основой теории плазмы, где имеются уже как
признанные успехи типа затухания Ландау, расчётов плазменных приборов типа диода Ленгмюра
и плазменных двигателей, так и приложения к исследованиям токамаков [1,21,24–27,35,44–46,55].
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Abstract. In classical works, the equations for gravitational and electromagnetism fields are proposed
without deriving the right-hand sides. Here, we derive the right-hand sides and analyze the energy–
momentum tensor within the framework of the Vlasov–Maxwell–Einstein equations and consider
cosmological models such as Milne–McCrea and Friedmann. This allows us to place General Relativity
(GR) on a rigorous mathematical foundation: to derive a closed system of GR equations from the
principle of least action and provide a rigorous definition of cosmological solutions. This explains the
accelerated expansion of the Universe without Einstein’s lambda, dark energy, or fantastic new fields,
but as a simple relativistic effect.
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42. A.A. Friedmann, “Über die Krümmung des Raumes,” Z. Physik, 1922, 11, 377–386.
43. V. L. Ginzburg, “What problems of physics and astrophysics seem now to be especially important and

interesting (thirty years later, already on the verge of XXI century)?,” Phys. Usp., 1999, 42, 353–373, DOI:
10.1070/PU1999v042n04ABEH000562.

44. T. Kessler and S. Rjasanow, “Limit model for the Vlasov–Maxwell system with strong magnetic fields via
gyroaveraging,” Algebra i Analiz [Algebra Anal.], 2020, 32, No. 4, 200–216.

45. T. Kessler and S. Rjasanow, “Limit model for the Vlasov–Maxwell system with strong magnetic fields via
gyroaveraging,” St. Petersburg Math. J., 2021, 32, No. 4, 753–765, DOI: 10.1090/spmj/1668.

46. V.V. Kozlov, “The generalized Vlasov kinetic equation,” Russ. Math. Surv., 2008, 63, No. 4, 691–726, DOI:
10.1070/RM2008v063n04ABEH004549.

47. L.D. Landau and E.M. Lifshitz, The classical theory of fields, Pergamon Press, Oxford, 1983.
48. E. Madelung, “Quantentheorie in hydrodynamischer form (Quantum theory in hydrodynamic form),”

Z. Physik, 1926, 40, 322–326.
49. W.H. McCrea and E.A. Milne, “Newtonian universes and the curvature of space,” Quart. J. Math., 1934,

os-5, No. 1, 73–80, DOI: 10.1093/qmath/os-5.1.73.
50. T. Okabe, P. J. Morrison, J. E. Friedrichsen III, and L.C. Shepley, “Hamiltonian dynamics of

spatially-homogeneous Vlasov–Einstein systems,” Phys. Rev. D, 2011, 84, 024011, DOI: 10.1103/
PhysRevD.84.024011.

51. Yu.N. Orlov and I. P. Pavlotsky, “BBGKY-hierarchies and Vlasov’s equations in postgalilean aproximation,”
Phys. A. Stat. Mech. Appl., 1988, 151, No. 2, 318–340, DOI: 10.1016/0378-4371(88)90019-2.

52. S. Perlmutter et al., “Measurements of Ω and Λ from 42 High-Redshift Supernovae,” Astrophys. J., 1999,
517, 565–586, DOI: 10.1086/307221.

53. G. Rein, “Stability and instability results for equilibria of a (relativistic) self-gravitating collisionless gas—
a review,” Class. Quantum Grav., 2023, 40, No. 19, 193001, DOI: 10.1088/1361-6382/acf436.

54. A.G. Riess et al., “Observational evidence from supernovae for an accelerating universe and a cosmological
constant,” Astron. J., 1998, 116, 1009, DOI: 10.1086/300499.

55. A. L. Skubachevskii, “Vlasov–Poisson equations for a two-component plasma in a homogeneous magnetic
field,” Russ. Math. Surv., 2014, 69, No. 2, 291–330, DOI: 10.1070/RM2014v069n02ABEH004889.

56. V.V. Vedenyapin, “Mathematical theory of the expanding universe based on the principle of least action,”
Comput. Math. Math. Phys., 2024, 64, No. 11, 2624–2642, DOI: 10.1134/S0965542524701471.

57. V.V. Vedenyapin and A.A. Bay, “Least action principle for gravity and electrodynamics, the Lambda-term
and the analog of Milne–McCrea solution for Lorentzian metric,” Eur. Phys. J. Plus, 2024, 139, 111, DOI:
10.1140/epjp/s13360-024-04885-x.

58. V.V. Vedenyapin, A.A. Bay, V. I. Parenkina, and A.G. Petrov, “Minimal action principle for gravity and
electrodynamics, Einstein lambda, and Lagrange points,” Markov Proc. Relat. Fields, 2023, 29, 515–532,
DOI: 10.61102/1024-2953-mprf.2023.29.4.005.

59. V. Vedenyapin, N. Fimin, and V. Chechetkin, “The properties of Vlasov–Maxwell–Einstein equations
and its applications to cosmological models,” Eur. Phys. J. Plus, 2020, 135, No. 5, 400, DOI: 10.1140/
epjp/s13360-020-00412-w.

60. V.V. Vedenyapin, N.N. Fimin, and V.M. Chechetkin, “Properties of the Vlasov–Maxwell–Einstein
equations and their application to the problems of general relativity,” Gravit. Cosmol., 2020, 26, No. 2,
173–183, DOI: 10.1134/S0202289320020115.

https://doi.org/10.3934/krm.2021004
https://doi.org/10.1140/epjp/s13360-023-03763-2
https://doi.org/10.1007/BF01328424
https://doi.org/10.1070/PU1999v042n04ABEH000562
https://doi.org/10.1090/spmj/1668
https://doi.org/10.1070/RM2008v063n04ABEH004549
https://doi.org/10.1093/qmath/os-5.1.73
https://doi.org/10.1103/PhysRevD.84.024011
https://doi.org/10.1103/PhysRevD.84.024011
https://doi.org/10.1016/0378-4371(88)90019-2
https://doi.org/10.1086/307221
https://doi.org/10.1088/1361-6382/acf436
https://doi.org/10.1086/300499
https://doi.org/10.1070/RM2014v069n02ABEH004889
https://doi.org/10.1134/S0965542524701471
https://doi.org/10.1140/epjp/s13360-024-04885-x
https://doi.org/10.61102/1024-2953-mprf.2023.29.4.005
https://doi.org/10.1140/epjp/s13360-020-00412-w
https://doi.org/10.1140/epjp/s13360-020-00412-w
https://doi.org/10.1134/S0202289320020115


584 Contemporary Mathematics. Fundamental Directions, 2025, Vol. 71, No. 4, 562–584

61. V.V. Vedenyapin, N.N. Fimin, and V.M. Chechetkin, “The generalized Friedmann model as a self-
similar solution of Vlasov–Poisson equation system,” Eur. Phys. J. Plus, 2021, 136, 670, DOI:
10.1140/epjp/s13360-021-01659-7.

62. V.V. Vedenyapin, N.N. Fimin, and V.M. Chechetkin, “Cosmological aspects of hydrodynamic treatment
of the Einstein–Vlasov equations,” Eur. Phys. J. Plus, 2022, 137, No. 9, 1022, DOI: 10.1140/epjp/
s13360-022-03257-7.

63. V.V. Vedenyapin, N.N. Fimin, and V.M. Chechetkin, “Hydrodynamic consequences of Vlasov–Maxwell–
Einstein equations and their cosmological applications,” Gravit. Cosmol., 2023, 29, No. 1, 1–9, DOI:
10.1134/S0202289323010115.

64. V.V. Vedenyapin and M.A. Negmatov, “On derivation and classification of Vlasov type equations and
equations of magnetohydrodynamics. The Lagrange identity, the Godunov form, and critical mass,” J. Math.
Sci. (N.Y.), 2014, 202, No. 5, 769–782, DOI: 10.1007/s10958-014-2075-9.

65. S. Weinberg, Gravitation and cosmology, Wiley, New York, 1972.

V.V. Vedenyapin
Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, Moscow, Russia
E-mail: vicveden@yahoo.com, eLIBRARY SPIN-code: 5002-2872, eLIBRARY AuthorID: 137846,

ResearcherID: H-2128-2016, Scopus: 6603544194

Ya.G. Batishcheva
Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, Moscow, Russia
E-mail: jbat@kiam.ru, eLIBRARY SPIN-code: 2666-6763, eLIBRARY AuthorID: 112950

M.V. Goryunova
Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, Moscow, Russia
E-mail: margoryunova2112@gmail.com, eLIBRARY SPIN-code: 1235-9978, engРИНЦ AuthorID:

655159

A.A. Russkov
Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, Moscow, Russia
E-mail: russkov@inbox.ru, eLIBRARY SPIN-code: 1069-6323, eLIBRARY AuthorID: 177619,

ORCID: 0000-0002-2950-2165

https://doi.org/10.1140/epjp/s13360-021-01659-7
https://doi.org/10.1140/epjp/s13360-022-03257-7
https://doi.org/10.1140/epjp/s13360-022-03257-7
https://doi.org/10.1134/S0202289323010115
https://doi.org/10.1007/s10958-014-2075-9
https://www.elibrary.ru/author_profile.asp?id=137846
https://www.webofscience.com/wos/author/record/H-2128-2016
https://www.scopus.com/authid/detail.uri?authorId=6603544194
https://www.elibrary.ru/author_profile.asp?id=112950
https://www.elibrary.ru/author_profile.asp?id=655159
https://www.elibrary.ru/author_profile.asp?id=177619
https://orcid.org/0000-0002-2950-2165


Современная математика. Фундаментальные направления. Том 71, № 4 (2025). С. 585–603

Contemporary Mathematics. Fundamental Directions. ISSN 2413-3639 (print), 2949-0618 (online)

DOI: 10.22363/2413-3639-2025-71-4-585-603 УДК 517.929, 517.958
EDN: MBJBVA Научная статья

ПАРАМЕТРИЗАЦИЯ ФУНКЦИЙ УПРАВЛЕНИЯ В ЗАДАЧЕ

МОДЕЛИРОВАНИЯ ТЕРАПИИ ВИЧ-ИНФЕКЦИИ

Д.С. Гребенников1,2,3, А. И. Лыфенко4, А. М. Тимохин3, Р.С. Савинков1,2,3,
Г.А. Бочаров1,2,3

1Институт вычислительной математики им. Г.И. Марчука РАН, Москва, Россия
2Отделение Московского центра фундаментальной и прикладной математики в ИВМ РАН, Москва,

Россия
3Первый Московский государственный медицинский университет им. И.М. Сеченова, Москва, Россия

4Московский государственный университет им. М.В. Ломоносова, Москва, Россия

Аннотация. Математическое моделирование активно используется для исследования механиз-
мов развития инфекции вирусами иммунодефицита человека первого типа (ВИЧ-1). Современ-
ная терапия ВИЧ-1 инфекции состоит в регулярном использовании на протяжении всей жизни
нескольких противовирусных препаратов, однако её применение сопряжено с побочными эффек-
тами разной степени выраженности вследствие токсичности, взаимодействия препаратов, форми-
рования резистентности, а также высокой стоимости. Математические модели ВИЧ-1 инфекции
и методы оптимального управления могут быть использованы для построения эффективных ре-
жимов применения нескольких антиретровирусных препаратов с учетом иммунного статуса па-
циентов, инфицированных ВИЧ-1. В данной работе выполнена идентификация параметров фар-
макодинамики препаратов на основе построенной нами ранее стохастической модели процессов,
определяющих размножение вирусов в зараженной клетке, и изучена с помощью модели систем-
ной динамики ВИЧ-1 инфекции эффективность стандартной терапии для различных режимов
течения ВИЧ-1 инфекции. Результаты исследования указывают на необходимость учета разли-
чий в отклике организма на терапию по критерию эффективности, что актуализирует задачу
подбора индивидуальных схем терапии с помощью методов оптимального управления на основе
физиологически обоснованных моделей ВИЧ-1 инфекции.

Ключевые слова: математическое моделирование, ВИЧ, идентификация параметров, фарма-
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1. Введение

Математические модели и методы активно используются для исследования механизмов разви-
тия инфекции вирусами иммунодефицита человека первого типа (ВИЧ-1) [5,16]. Современная те-
рапия ВИЧ-1 инфекции состоит в регулярном использовании на протяжении всей жизни несколь-
ких противовирусных препаратов. Это позволяет снизить вирусную нагрузку, частично восстано-
вить иммунный статус (уровень CD4+ Т-лимфоцитов). Препараты, специфически действующие
на стадии размножения ВИЧ-1, называются антиретровирусными, а терапия на их основе — ан-
тиретровирусной. Под стандартной терапией понимается стандарт лечения ВИЧ-инфекции на
основе комбинации не менее трех действующих веществ, минимум два из которых отличают-
ся своим механизмом. Соответствующая терапия называется антиретровирусной (АРТ). Однако
применение АРТ сопряжено с побочными эффектами разной степени выраженности вследствие
токсичности, взаимодействия препаратов, формирования резистентности, а также высокой стои-
мости [10]. Эти факторы определяют сложность задачи разработки универсальных схем терапии,
особенно в рамках режима временно (структурно или аналитически) прерываемой терапии [8].
Математические модели ВИЧ-1 инфекции и методы оптимального управления могут быть ис-

пользованы для построения эффективных режимов применения нескольких антиретровирусных
препаратов с учетом иммунного статуса ВИЧ-1 инфицированных пациентов [4,12]. Для решения
соответствующих задач в основном применяются классические методы на основе принципа мак-
симума Понтрягина [2], а также подходы к управлению ВИЧ-процессом формализуемым в виде
антагонистической дифференциальной игры двух лиц (теория управления Красовского) [1, 6].
Общей особенностью постановок соответствующих задач является рассмотрение управляющих

функций без прямой связи с фармакокинетикой антивирусных препаратов. Важный шаг в разви-
тии фармакокинетически обоснованного определения функций управления является работа [7],
в которой предложены параметризации функций управления через концентрации антивирусных
препаратов. Исследование задачи стабилизации вирусной нагрузки для ВИЧ-1 инфекции с уче-
том фармакокинетики препаратов было выполнено в работе [15]. Однако фармакодинамика, т. е.
внутриклеточное действие препаратов, лишь феноменологически связана с процессами влияния
на жизненный цикл ВИЧ-1. Целью нашей работы является:

• идентификация по экспериментальным данным параметров фармакодинамики препаратов
на основе построенной нами ранее модели процессов, определяющих размножение вирусов
в зараженной клетке;

• исследование с помощью уточненной модели эффективности стандартной терапии в случае
различных по кинетике режимов течения ВИЧ-1 инфекции.

В следующем разделе 2 нами описана постановка задачи управления ВИЧ-1 инфекцией для
данной модели. В разделе 3 рассмотрена модель размножения ВИЧ-1 в клетке, на основе которой
в разделе 4 проводится идентификация параметров фармакодинамики для трех антивирусных
препаратов. В разделе 5 проведено исследование эффективности стандартной терапии для раз-
личных вариантов динамики ВИЧ-1 инфекции.

2. Математическая модель управления в задаче антиретровирусной терапии
ВИЧ-инфекции

Модель ВИЧ-инфекции, рассматривая в данной работе, описывает популяционную динами-
ку вирусов (дикого типа и мутантов) и клеточных компонент иммунной системы (макрофагов
и CD4+ Т-клеток, незараженных и зараженных, а также CD8+ Т-клеток эффекторов, уничто-
жающих зараженные клетки). Вектор-функция переменных модели Y описывает концентрацию
вирусов дикого типа V1, мутировавших вирусов V2, резистентных к противовирусным препаратам,
неинфицированных CD4+ Т-лимфоцитов T, продуктивно инфицированных CD4+ Т-лимфоцитов
вирусами дикого типа T1, латенто-инфицированных CD4+ Т-лимфоцитов вирусами дикого типа
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a1,1 −k10Y3 − (k11 + k12)Y8 − δ7 a1,4 (1− μ)k8
a1,6 μϕk8 a1,9 (1− μ)k9
a1,10 μϕk9 a2,2 −k10Y3 − (k11 + k12)Y8 − δ7
a2,4 μk8 a2,6 (1− μ)ϕk8
a2,9 μk9 a2,10 (1− μ)ϕk9

a3,3
p1(Y1 + Y2)

Y1 + Y2 + S1
− k1(Y1 + ϕY2)− k2(Y9 + ϕY10) + r

(
1− Y3 + Y4 + Y5 + Y6 + Y7

Tmax

)
− δ1

a4,3 ψ(k1Y1 + k2Y9) a4,4 −δ2 − k3Y11
a4,5 α1 a5,3 (1− ψ)(k1Y1 + k2Y9)
a5,5 −α1 − δ3 a6,3 ϕψ(k1Y2 + k2Y10)
a6,6 −δ2 − k3Y11 a6,7 α1

a7,3 (1− ψ)ϕ(k1Y1 + k2Y10) a7,7 −α1 − δ3

a8,8
p2(Y1 + Y2)

Y1 + Y2 + S2
− k4Y1 − ϕk4Y2 − δ4 a9,8 k4Y1

a9,9 −δ5 − k5Y11 a10,8 ϕk4Y2
a10,10 −δ5 − k5Y11 a11,11 k6(Y4 + Y6) + k7(Y9 + Y10)− δ6

Таб. 1. Ненулевые элементы матрицы A(Y(t)).

Tab. 1. Nonzero elements of the matrix A(Y(t)).

TL1, продуктивно инфицированных CD4+ Т-лимфоцитов мутировавшими вирусами T2, латенто-
инфицированных CD4+ Т-лимфоцитов мутировавшими вирусами TL2, неинфицированных мак-
рофагов M, продуктивно инфицированных макрофагов вирусами дикого типа M1, продуктив-
но инфицированных макрофагов мутировавшими вирусами M2, и цитотоксических CD8+ Т-
лимфоцитов E:

Y(t) =
[
V1(t), V2(t), T (t), T1(t), TL1(t), T2(t), TL2(t), M(t), M1(t), M2(t), E(t)

]T
.

Математическая модель динамики ВИЧ-инфекции под действием терапии на основе антиретро-
вирусных препаратов имеет вид:

d

dt
Y(t) = S(t) +A(Y(t)) ·Y(t) +B(Y(t)) ·U(t),

S(t) =
[
0, 0, s1, 0, 0, 0, 0, s2, 0, 0, s3

]T
,

A(Y) =

⎡

⎢
⎢
⎢
⎣

a1,1 a1,2 . . . a1,11
a2,1 a2,2 . . . a2,11
...

...
. . .

...
a11,1 a11,2 . . . a11,11

⎤

⎥
⎥
⎥
⎦
,

B(Y) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −(1− μ)k8Y4 − f2(1− μ)k9Y9
0 −μk8Y4 − f2μk9Y9

(k1Y1 + k2Y9)Y3 0
−ψ(k1Y1 + k2Y9)Y3 0

−(1− ψ)(k1Y1 + k2Y9)Y3 0
0 0
0 0

f1k4Y1Y8 0
−f1k4Y1Y8 0

0 0
0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Уравнения, задаваемые матрицей A(Y) с элементами, зависящими от переменных состояния,
описывают процессы взаимодействия между популяцией вирусов и компонентами иммунной си-
стемы, а задаваемые матрицей B(Y)— содержат описание механизмов влияния антиретровирус-
ных препаратов.
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Динамика заболевания реализуется под влиянием антиретровирусной терапии, которая дей-
ствует на процессы заражения клетки и созревания вирусов и параметризуется введением 2-х
компонентной управляющей функции

U(t) =
[
u1(t), u2(t)

]T
.

Функции управления u1, u2 зависят от концентраций ингибиторов обратной транскриптазы
3TC и AZT: u1(t) = u1(C3TC(t), CAZT (t)), а также ингибитора протеазы RTV: u2(t) =
u2(C3TC(t), CAZT (t), CRTV (t)).
На основе данной модели ставится задача оптимального управления, т. е. режима прерываемо-

го введения трех антивирусных препаратов на отрезке времени [t0, tf ], разбитом на подмножества
[tk, tk+1], k = 0, 1, . . . ,K − 1, tK = tf , для функционала

J(Y(·),U(·)) =
tf∫

t0

(wTY3(t)− wSESE(t)) dt.

Целью построения оптимального управления является максимизация данного функционала, что
связано с ростом числа CD4+ T-клеток иммунной системы Y3(t) и снижением уровня побочных
эффектов SE(t) в моменты времени t. Управляющие функции U = U(C(t)) зависят от количе-
ства антивирусных препаратов C(t) на основе некоторых параметризаций. Искомое управление
ищется в рамках принципа максимума Понтрягина:

J(Y(·),U(·)) ⇒ max s.t. dY/dt = S+A(Y)Y +B(Y)U(t), Y(t) ∈ R
11
+ , U(t) ∈ R

2
+,

который сводится к задаче конечномерной оптимизации в многомерном пространстве моментов
введения препаратов tk и их начальных доз ckl , l ∈ {1, 2, 3}, k = 0, 1, . . . ,K − 1:

max
ck1 ,c

k
2 ,c

k
3

t∈[tk ,tk+1]

J(tf ,C), C(t) = [c1(t), c2(t), c3(t)].

Центральным элементом в переходе от задачи оптимального управления к задаче выбора доз
и моментов введения препаратов является определение параметризаций, задающих зависимость
функций управления от этих параметров U = U(C(t)). Для этого нами используется детальная
биохимическая модель размножения ВИЧ-1 в инфицированной клетке.

3. Математическая модель внутриклеточной репликации ВИЧ

Моделирование действия антиретровирусных препаратов основано на модификации модели
внутриклеточной репликации ВИЧ [13, 14]. Схема процессов модели, на которые воздействуют
лекарственные препараты, рассматриваемые в данной работе, представлена на рис. 1. Цикл внут-
риклеточной репликации состоит из ранних стадий инфицирования клетки, приводящих к встра-
иванию вирусной ДНК в хромосому клетки, и поздних стадий репликации вируса, приводящих
к появлению и созреванию новых вирусных частиц. К ранним стадиям относятся: заражение
свободными вирусными частицами [Vfree], которые переходят в связанное с рецепторами на мем-
бране клетки состояние [Vbound], распаковка из них молекул вирусной РНК [RNAcor], которая
превращается в вирусную ДНК [DNAcor] (процесс обратной транскрипции), которая затем про-
никает в ядро клетки [DNAnuc] и интегрируется в хромосому [DNAint]. К финальным процессам
относятся: созревание отпочковавшихся новых вирусных частиц [Vbud] в полноценные вирусные
частицы [Vmat], которые способны инфицировать другие клетки. Действие первого типа препа-
ратов (ингибиторы обратной транскрипции, RTIs) заключается в уменьшении скорости обрат-
ной транскрипции kRT , второго типа препаратов (ингибиторы протеазы, PIs) — в уменьшении
скорости созревания kmat. В работе рассматриваются три препарата: два ингибитора обратной
транскрипции (3TC, AZT), один ингибитор протеазы (RTV). Детерминистическая версия модели
состоит из 24 обыкновенных дифференциальных уравнений с 51 параметром (постоянными коэф-
фициентами), стохастическая — в виде марковской цепи из 51 процесса (событий, приводящих к
изменению значений переменных модели). Переменные внутриклеточной модели, используемые
в дальнейшем для моделирования фармакодинамики лекарств:

X(t) = [[Vfree](t), . . . , [DNAint](t), . . . , [Vbud](t), [Vmat](t)]
T .
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PIs (RTV)
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RTIs
(3TC, AZT)

Ранние стадии
заражения клетки

Рис. 1. Схема процессов модели внутриклеточной репликации ВИЧ. На схеме
представлены переменные модели и процессы, относящиеся к ранним стадиям ин-
фицирования клетки, а также созревание новых вирусных частиц. Т-образными
стрелками обозначено действие двух типов лекарств: ингибиторы обратной тран-
скрипции (RTIs) уменьшают скорость обратной транскрипции kRT , ингибиторы
протеазы (PIs) уменьшают скорость созревания вирусных частиц kmat. Адаптиро-
вано из [13].

Fig. 1. Schematic diagram of the processes in the HIV intracellular replication model.
The diagram shows the model variables and processes related to the early stages of
cell infection, as well as the maturation of new viral particles. The T-shaped arrows
indicate the action of two types of drugs: reverse transcription inhibitors (RTIs) reduce
the rate of reverse transcription kRT and protease inhibitors (PIs) reduce the rate of
viral particle maturation kmat. Adapted from [13].

В дальнейшем для расчета эффективности лекарств потребуется вычисление распределений
вероятности переменных в определенный момент времени. Для аппроксимации распределений
можно использовать ансамбль большого числа реализаций марковской цепи, который можно по-
лучить численно с помощью методов Монте-Карло [13]. С другой стороны, эволюция совместного
распределения вероятностей состояния переменных модели на основе марковской цепи c дискрет-
ным пространством состояний и непрерывным временем определяется основным кинетическим
уравнением (уравнениями Колмогорова):

dP(x, t)

dt
= AP(x, t),

где P(x, t) = P
(
X(t) = x

)
— вероятность того, что переменные модели X(t) принимают значения

x в момент времени t, A—матрица переходов, связанная с интенсивностями процессов марков-
ской цепи. Если число состояний, которые могут принимать m переменных модели, ограничено
(целые значения от 0 до n − 1), то задача сводится к решению nm обыкновенных дифференци-
альных уравнений. Для дальнейших расчетов ранних стадий заражения клетки малым числом
вирусных частиц система составляет 66 уравнений. Использование основного кинетического урав-
нения по сравнению с расчетом ансамбля реализаций марковской цепи предпочтительно с точки
зрения скорости вычислений и гладкости функционала невязки между решением модели и экс-
периментальными данными для надежного решения задачи идентификации параметров.
Для программной реализации численных расчетов использовались пакеты на языке Julia. Для

решения детерминистических моделей ВИЧ-инфекции и внутриклеточной репликации ВИЧ ис-
пользовался пакет DifferentialEquations. Для численного решения стохастической версии модели
на основе марковской цепи методами Монте-Карло использовался пакет JumpProcesses. Для рас-
чета эволюции распределения вероятностей состояния переменных стохастической версии модели
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с помощью основного кинетического уравнения использовался пакет FiniteStateProjection. Для
решения задачи идентификации параметров внутриклеточной фармакодинамики по эксперимен-
тальным данным использовались алгоритмы нелинейной оптимизации, реализованные в пакете
OptimizationNLopt.

4. Параметризация фармакодинамики ингибиторов вирусного размножения

4.1. Ингибиторы обратной транскрипции. Для описания действия ингибиторов обратной
транскрипции (3TC, AZT) на скорость обратной транскрипции kRT использовалась следующая
параметризация:

k∗RT (C3TC , CAZT ) = kRT
1

1 +
(

C3TC
[IC503TC ]

)m3TC

1

1 +
(

CAZT
[IC50AZT ]

)mAZT
, (4.1)

где Ci — внутриклеточные концентрации i-го препарата, [IC50i]— значение концентрации i-го
препарата, при которой исходная скорость kRT снижается на 50% (при применении только одного
препарата), mi — значение параметра функции Хилла для i-го препарата; i ∈ {3TC,AZT}.
Для идентификации значений параметров в уравнении (4.1) использовались эксперименталь-

ные данные по эффективности препаратов из статьи [9]. Данные представляют собой кривые
эффективности, то есть зависимости эффективности лекарства в подавлении вирусного размно-
жения от концентрации используемого препарата (при монотерапии). Под эффективностью ин-
гибитора обратной транскриптазы i с концентрацией Ci понимается величина

Φeff (Ci) = 1− Φinf (Ci)

Φinf (0)
, Φinf = P ([DNAint](t = T ) > 0), (4.2)

выражающаяся через функционал от решения модели Φinf = Φinf (Ci), равный вероятности ин-
фицирования клетки, то есть доле инфицированных клеток в культуре. Вероятность инфициро-
вания клетки оценивается с помощью стохастической версии модели на основе марковской цепи
как вероятность интеграции в хромосому клетки как минимум одной вирусной ДНК за цикл
репликации длительностью T = 36 ч.
В культуре клеток отдельная клетка может быть инфицирована разным числом вирусных

частиц [Vfree](t = 0), которое может быть описано распределением Пуассона:

[Vfree](0) ∼ Poisson(a). (4.3)

При значении параметра распределения Пуассона a = 0,8, вероятность продуктивного инфици-
рования клеток Φinf (0) ≈ 0,3, что соответствует условиям экспериментального метода, детали
которого приводятся в статье [18] (без добавления лекарственных препаратов используемое в
эксперименте количество вирусных частиц приводило к заражению приблизительно 30% клеток-
мишеней в культуре клеток).
В работе [9] показано, что совместное действие препаратов 3TC и AZT осуществляется неза-

висимо, что позволяет параметризовать их совместное действие в виде произведения функций
Хилла, как это сделано в уравнении (4.1).

4.2. Ингибитор протеаз. Для описания действия ингибитора протеазы (RTV) на скорость
созревания kmat использовалась следующая параметризация:

k∗mat(CRTV ) = kmat
1

1 +
(

CRTV
[IC50RTV1

]

)mRTV1

1

1 +
(

CRTV
[IC50RTV2

]

)mRTV2
, (4.4)

где CRTV — внутриклеточная концентрация RTV, [IC50RTV1 ], [IC50RTV2 ], mRTV1 ,mRTV2 — значе-
ния параметров произведения двух функций Хилла, подходящего для описания кривой эффек-
тивности препарата RTV, характеризующейся наличием двух фаз [17].
Для идентификации значений параметров в уравнении (4.4) использовались эксперименталь-

ные данные по эффективности RTV из статьи [9]. Для оценки эффективности ингибитора проте-
азы использовалась процедура, состоящая из двух стадий: первый этап (трансфекции), на кото-
ром добавлялось лекарство, в результате чего часть произведенных клетками вирусных частиц
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оказывалась не созревшей, и второй этап инфицирования этими вирусами культуры клеток-
мишеней для оценки доли инфицированных клеток.
Таким образом, на первом этапе оценивалась доля полноценных созревших вирусных частиц

ε(CRTV ), которые были сгенерированы при концентрации лекарства CRTV :

ε(CRTV ) =
Φtotal(CRTV )

Φtotal(0)
, Φtotal =

T∫

0

kmat[Vbud](t)dt, (4.5)

где используется функционал Φtotal = Φtotal(CRTV ), означающий суммарное количество произве-
денных за цикл репликации полноценных вирусных частиц, оцениваемый по решению детерми-
нистической версии модели с фиксированным референсным начальным условием [Vfree(0)] = 4.
На втором этапе оценивалась эффективность препарата через долю инфицированных клеток-

мишеней, так же как и для ингибиторов обратной транскриптазы, по формуле (4.2), однако с
другим начальным условием стохастической версии модели:

[Vfree](0) ∼ Poisson(a · ε(CRTV )), (4.6)

где a = 0,8, а ε(CRTV ) определяется уравнением (4.5), что позволяет учесть то, что только пол-
ноценные созревшие вирусные частицы способны инфицировать клетки-мишени.

4.3. Параметризация функций управления. Задача идентификации параметров внутри-
клеточной фармакодинамики i-го препарата pi по экспериментальным кривым эффективности
монотерапии ставилась как задача минимизации функционала квадратичных отклонений Φ

(i)
LS :

p̂i = arg max
pi

pij>0

Φ
(i)
LS(pi) =

n
(i)
obs∑

k=1

(
Φeff (Ci,k)− Φexp

eff (Ci,k)
)2
,

где p̂i — точечная оценка параметров, Φeff (Ci,k) и Φexp
eff (Ci,k)—предсказанное моделью и наблю-

даемое в экспериментах (медианное) значение эффективности препарата i с концентрацией Ci,k,
соответственно.
Результаты идентификации параметров модели эффективности монотерапии для каждого из

трех препаратов представлены в таб. 2 и на рис. 2. Оценка неопределенности значений парамет-
ров, связанной с уровнем изменчивости экспериментальных данных, была выполнена методом
параметрического бутстрепа. Анализ ансамбля кривых эффективности различных препаратов в

клетках разных пациентов из статьи [9] позволяет предположить, что величины ln
(
Φexp
eff (Ci,k)

)−1

имеют нормальное распределение с дисперсией 0,0852 для фиксированной Ci,k. Задача оптимиза-
ции решалась повторно для различных кривых эффективности, сэмплированных из указанного
распределения. В качестве интервальной оценки параметров приводятся 95%-е доверительные
интервалы, рассчитанные как 2,5% и 97,5% перцентили полученных в рамках бутстрепа значе-
ний параметров. Полученные распределения параметров фармакодинамики 3TC и AZT близки
к нормальным и симметричным относительно точечной оценки, а распределения и интервальные
оценки параметров препарата RTV—менее симметричны. Кривая эффективности 3TC прибли-
жается не очень точно в области высоких концентраций препарата, что, при необходимости,
можно устранить с помощью перехода к бифазовой параметризации в виде произведения двух
функций Хилла с четырьмя параметрами, как это сделано для препарата RTV. Относительная
неопределенность (отношение ширины доверительных интервалов к точечной оценке) значений
параметров [IC50i] (связанных с расположением центра кривой эффективности), в основном,
меньше, чем для параметров mi (связанных с формой кривой), за исключением параметров
[IC50RTV1 ] и mRTV1 , связанных с параметризацией формы кривой в области высоких концен-
траций препарата.
На основе идентифицированной по экспериментальным данным модели внутриклеточной фар-

макодинамики препаратов можно получить функции управления u1, u2, использующиеся в мо-
дели системной динамики ВИЧ-инфекции, представленной в разделе 2. Функция u1 описывает
влияние совместного действия препаратов на вероятность инфицирования клеток вирусными
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Рис. 2. Результат идентификации параметров модели внутриклеточной фар-
макодинамики по кривым эффективности монотерапии для трех препаратов
(3TC, AZT, RTV). Предсказания модели представлены значениями функциона-
ла Φeff (Ci), соответствующими точечным оценкам параметров (сплошные линии)
и 95%-м доверительным интервалам (полупрозрачные области). Для эксперимен-
тальных данных приведены медианные значения и оценка их неопределенности
(стандартное отклонение), рассчитанные по оцифрованным данным из статьи [9].
Вертикальными линиями обозначены максимальные значения концентрации пре-
паратов в крови согласно данным фармакокинетики из статьи [7]. Точечные и
интервальные оценки параметров представлены в таб. 2.

Fig. 2. Result of identifying the parameters of the intracellular pharmacodynamics
model based on the monotherapy efficiency curves for three drugs (3TC, AZT, RTV).
The model predictions are represented by the values of the Φeff (Ci) functional
corresponding to the point estimates of the parameters (solid lines) and 95% confidence
intervals (translucent areas). For the experimental data, the median values and their
uncertainty estimate (standard deviation) are presented, calculated using the digitized
data from [9]. The vertical lines indicate the maximum values of drug concentrations in
the blood according to the pharmacokinetic data from [7]. Point and interval estimates
of the parameters are presented in Tab. 2.

Параметр / Parameter [IC503TC ] [IC50AZT ] [IC50RTV1 ] [IC50RTV2 ]
Точечная оценка / Point estimate 0,004 0,064 0,17 0,029
95%-й д. интервал / 95% c. interval (0,003, 0,005) (0,035, 0,093) (0,09, 0,3) (0,023, 0,043)

Параметр / Parameter m3TC mAZT mRTV1 mRTV2

Точечная оценка / Point estimate 1,09 0,62 2,17 1,27
95%-й д. интервал / 95% c. interval (0,92, 1,28) (0,52, 0,7) (1,2, 5,4) (0,73, 1,65)

Таб. 2. Точечные и интервальные оценки параметров внутриклеточной фармакодинамики.
Tab. 2. Point and interval estimates of intracellular pharmacodynamic parameters.
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Концентрация 3TC, мг/л  / 3TC concentration, mg/L

Рис. 3. Иллюстрация предсказанных значений управляющей функции u1 для раз-
ных концентраций препаратов 3TC и AZT, варьируемых в пределах наблюдаемых
в крови концентраций при стандартном приеме лекарств. Справа приводится диа-
пазон неопределенности (95%-е доверительные области) для отдельных кривых,
связанный с бутстреп-распределением фармакодинамических параметров.

Fig. 3. Illustration of predicted values of the control function u1 for different
concentrations of 3TC and AZT, varying within the range of observed blood
concentrations during standard drug therapy. The uncertainty range (95% confidence
intervals) for individual curves, associated with the bootstrap distribution of the
pharmacodynamic parameters, is shown on the right.

частицами, а функция u2 — влияние на количество произведенной инфицированной клеткой но-
вых полноценных вирусных частиц. Функция u1, таким образом, зависит от концентраций ин-
гибиторов обратной транскриптазы 3TC и AZT: u1 = u1(C3TC , CAZT ). В исходной работе [7]
предполагалось, что функция u2 зависит только от концентрации ингибитора протеазы RTV,
однако, как видно из схемы процессов внутриклеточной репликации (рис. 1), на количество со-
зревших вирусных частиц должны влиять оба типа препаратов. Таким образом, в данной работе
u2 = u2(C3TC , CAZT , CRTV ). Значения u1, u2 рассчитываются следующим образом:

u1(C3TC , CAZT ) = 1− Φinf (C3TC , CAZT )

Φinf (0, 0)
, u2(C3TC , CAZT , CRTV ) = 1− Φtotal(C3TC , CAZT , CRTV )

Φtotal(0, 0, 0)
,

(4.7)
где, как и ранее, функционал Φinf = Φinf (C3TC , CAZT ), означающий вероятность инфицирова-
ния клетки под действием лекарств, рассчитывается с помощью стохастической версии модели, а
функционал Φtotal = Φtotal(C3TC , CAZT , CRTV ), означающий суммарное число созревших за цикл
репликации вирусных частиц под действием лекарств, рассчитывается на основе детерминисти-
ческой версии модели.
Иллюстрация предсказанных моделью значений управляющих функций u1, u2 от концентра-

ций трех лекарственных препаратов представлена на рис. 3-4. Совместная терапия ингибиторами
обратной транскриптазы приводит к эффективному снижению вероятности инфицирования кле-
ток вирусными частицами (рис. 3). На рис. 4 показаны зависимости u2 для нескольких случаев:
монотерапия препаратом RTV (слева) и препаратом 3TC (справа), а также добавление по одно-
му других препаратов или добавление одновременно двух других препаратов в концентрации,
равной Cmax/2 для данного лекарства. Комбинация нескольких препаратов позволяет достичь
полного подавления размножения вирусных частиц в инфицированной клетке.

5. Модельная оценка эффективности стандартной терапии

Для оценки эффективности стандартной терапии были использованы уравнения фармакоки-
нетики Ci(t) рассматриваемых препаратов i ∈ {3TC,AZT,RTV } из работы [7], описывающие
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Концентрация 3TC, мг/л
/ 3TC concentration, mg/L

Концентрация RTV, мг/л
/ RTV concentration, mg/L

Рис. 4. Иллюстрация предсказанных значений управляющей функции u2 для раз-
ных концентраций трех лекарственных препаратов, варьируемых в пределах на-
блюдаемых в крови концентраций при стандартном приеме лекарств. Полупро-
зрачные диапазоны соответствуют 95%-м доверительным областям значений u2,
связанным с бутстреп-распределением фармакодинамических параметров.

Fig. 4. Illustration of predicted values of the control function u2 for different
concentrations of three drugs, varying within the range of observed blood concentrations
during standard drug therapy. The translucent ranges correspond to the 95%
confidence intervals of the u2 values associated with the bootstrap distribution of the
pharmacodynamic parameters.

концентрацию препаратов в крови на интервале tl < t < tl+1 между их приемом:

Ci(t) = Ci(tl)e
−kie(t−tl) +

FiDi

V i
c

kia
kia − kie

(
e−kie(t−tl) − e−kia(t−tl)

)
, (5.1)

где tl — время l-го по счету приема i-го препарата с дозой Di, Fi — абсолютная биодоступность,
kia — скорость абсорбции, kie = Cli/V

i
c —константа скорости выведения i-го препарата, выража-

ющаяся через клиренс Cli и объем распределения V i
c , Ci(t0) = 0. Параметры модели для трех

лекарств приведены в работе [7] и соответствуют рекомендациям по приему этих лекарств, пре-
параты принимаются дважды в день со стандартными дозами Di. Кинетика концентраций пре-
паратов в крови Ci(t) в течение первых суток приема вместе с соответствующими значениями
эффективности препаратов (управляющих функций u1(t), u2(t)), предсказанными внутриклеточ-
ной фармакодинамической моделью, показана на рис. 5.
Течение ВИЧ-1 инфекции отличается разнообразием вариантов динамики (фенотипов инфек-

ции), которые отражают отличия в иммунном статусе пациентов, эффективности контроля ви-
русной нагрузки, и скорости развития иммунодефицита. Эти различия проявляются и в отклике
на лечебные воздействия, однако количественные характеристики и их связь с различиями в
параметрах взаимодействия системы «ВИЧ— организм хозяина» могут быть изучены только с
помощью математических моделей [19].
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Рис. 5. Слева: кинетика концентраций препаратов в крови Ci(t) в течение пер-
вых суток приема. Справа: соответствующие значения эффективности препаратов
(управляющих функций u1(t), u2(t)), предсказанные внутриклеточной фармакоди-
намической моделью. Для значений управляющих функций указаны 95%-е довери-
тельные области, связанные со степенью неопределенности фармакодинамических
параметров.

Fig. 5. Left: kinetics of drug concentrations in the blood Ci(t) during the first day of
therapy. Right: corresponding values of drug efficiency (control functions u1(t), u2(t)),
predicted by the intracellular pharmacodynamic model. 95% confidence intervals
associated with the degree of uncertainty of the pharmacodynamic parameters are
shown for the control function values.

Стандартный режим применения антиретровирусных препаратов не учитывает индивидуаль-
ных различий в течении инфекции у ВИЧ-инфицированных, которое может отклоняться от
стандартного в сторону быстрого (категория быстрых прогрессоров) до медленного (категория
непрогрессоров). С использованием модели системной динамики ВИЧ-1 инфекции нами иссле-
дованы характеристики эффективности по критериям снижения вирусной нагрузки (Y1 + Y2),
повышения уровня Т-клеток (Y3) и выраженности побочных эффектов SE для данных трех ва-
риантов динамики инфекции. Данным трем вариантам (фенотипам) течения инфекции соответ-
ствуют различающиеся наборы параметров модели [7]. В численных расчетах, представленных
ниже, терапия начинается на стадии хронической инфекции при снижении уровня T-клеток ни-
же 350 клеток на мм3 (момент времени tstart). Считаем, что продолжение терапии целесооб-
разно, пока уровень T-клеток поддерживается выше критического порога — 200 клеток на мм3

(момент времени tend). Для оценки меры снижения вирусной нагрузки на протяжении приме-
нения терапии Texp = tend − tstart используется функционал интегральной вирусной нагрузки

VAUC(Y(C)) =
tend∫

tstart

(Y1(t) + Y2(t))dt. Интегральная выраженность побочных эффектов при неиз-

менном (стандартном) режиме применения препаратов пропорциональна длительности терапии
Texp.
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Динамика ВИЧ-инфекции: типичные прогрессоры
/ HIV infection dynamics: Typical Progressors

Вирусная нагрузка (без лечения) / Viral load (treatment: off)
T-клетки (без лечения) / T cells (treatment: off)
Вирусная нагрузка (с лечением) / Viral load (treatment: on)
T-клетки (с лечением) / T cells (treatment: on)

Рис. 6. Динамика ВИЧ-инфекции у типичных прогрессоров (уровень T-клеток и
вирусной нагрузки). Начало терапии tstart обозначено темно-синей пунктирной ли-
нией. Момент времени tend, когда терапия перестает быть целесообразной, показан
черной пунктирной линией. Доверительные области, связанные с неопределенно-
стью параметров фармакодинамики, представлены полупрозрачными трубками.

Fig. 6. HIV infection dynamics for typical progressors (T-cell and viral load levels). The
start of therapy, tstart, is indicated by the dark blue dotted line. The point in time, tend,
when therapy is no longer feasible, is shown by the black dotted line. Confidence regions
associated with the uncertainty of the pharmacodynamic parameters are represented
by translucent tubes.

5.1. Динамика инфекции у типичных прогрессоров. Динамика ВИЧ-инфекции у ти-
пичных прогрессоров показана на рис. 6. Стандартный режим терапии позволяет поддержи-
вать уровень T-клеток выше необходимого уровня со сниженной вирусной нагрузки в тече-
ние Texp = 944 суток. Интегральная вирусная нагрузка за период Texp составляет 17,1 · 103
частиц·сутки/мм3 , без терапии она составляла бы 35,1 · 103 частиц·сутки/мм3.

5.2. Динамика инфекции у быстрых прогрессоров. Динамика ВИЧ-инфекции у быстрых
прогрессоров показана на рис. 7. Стандартный режим терапии позволяет поддерживать уровень
T-клеток выше необходимого уровня со сниженной вирусной нагрузки в течение Texp = 922 су-
ток. Интегральная вирусная нагрузка за период Texp составляет 15,8 · 103 частиц·сутки/мм3, без
терапии она составляла бы 24,9 · 103 частиц·сутки/мм3 .

5.3. Динамика инфекции у непрогрессоров. Динамика ВИЧ-инфекции у непрогрессоров
показана на рис. 8. Стандартный режим терапии позволяет поддерживать уровень T-клеток
выше необходимого уровня со сниженной вирусной нагрузки в течение Texp = 158 суток. Инте-
гральная вирусная нагрузка за период Texp составляет 6,7 · 103 частиц·сутки/мм3 , без терапии
она составляла бы 14,3 · 103 частиц·сутки/мм3.
В таб. 3 представлена сравнительная таблица характеристик эффективности терапии для трех

фенотипов инфекции. Видно, что наибольшее снижение интегральной вирусной нагрузки ре-
ализуется у непрогрессоров, однако период стандартной терапии, позволяющий поддерживать
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Динамика ВИЧ-инфекции: быстрые прогрессоры
/ HIV infection dynamics: Rapid Progressors
Вирусная нагрузка (без лечения) / Viral load (treatment: off)
T-клетки (без лечения) / T cells (treatment: off)
Вирусная нагрузка (с лечением) / Viral load (treatment: on)
T-клетки (с лечением) / T cells (treatment: on)
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Рис. 7. Динамика ВИЧ-инфекции у быстрых прогрессоров (уровень T-клеток и
вирусной нагрузки). Начало терапии tstart обозначено темно-синей пунктирной ли-
нией. Момент времени tend, когда терапия перестает быть целесообразной, показан
черной пунктирной линией. Доверительные области, связанные с неопределенно-
стью параметров фармакодинамики, представлены полупрозрачными трубками.

Fig. 7. HIV infection dynamics for rapid progressors (T-cell and viral load levels). The
start of therapy, tstart, is indicated by the dark blue dotted line. The point in time, tend,
when therapy is no longer feasible, is shown by the black dotted line. Confidence regions
associated with the uncertainty of the pharmacodynamic parameters are represented
by translucent tubes.

Типичные прогресссоры
/ Typical progressors

Быстрые прогрессоры
/ Rapid progressor

Непрогрессоры
/ Nonprogressors

Texp, сутки (days) 944 (935, 959) 922 (916, 932) 158 (157, 160)
VAUC(C)/VAUC(0) 0,49 (0,48, 0,49) 0,63 (0,626, 0,639) 0,47 (0,46, 0,48)

Таб. 3. Характеристики эффективности стандартной терапии для трех фенотипов
инфекции. В скобках указаны 95%-е доверительные интервалы.

Tab. 3. Efficiency characteristics of standard therapy for three infection phenotypes.
95% confidence intervals are shown in parentheses.

концентрацию Т-клеток выше критического уровня, составляет всего 5 месяцев. Для быстрых
прогрессоров, напротив, стандартный режим терапии приводит к наименьшему снижению ин-
тегральной вирусной нагрузки, однако позволяет поддерживать уровень Т-клеток выше необхо-
димого 2,5 года. Более эффективное воздействие стандартного режима терапии наблюдается у
типичных прогрессоров, с большим снижением вирусной нагрузки и более долгим поддержанием
концентрации Т-клеток выше критического уровня.
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Динамика ВИЧ-инфекции: долгосрочные непрогрессоры
/ HIV infection dynamics: Long-term Nonprogressors

Вирусная нагрузка (без лечения) / Viral load (treatment: off)
T-клетки (без лечения) / T cells (treatment: off)
Вирусная нагрузка (с лечением) / Viral load (treatment: on)
T-клетки (с лечением) / T cells (treatment: on)
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Рис. 8. Динамика ВИЧ-инфекции у непрогрессоров (уровень T-клеток и вирус-
ной нагрузки). Начало терапии tstart обозначено темно-синей пунктирной линией.
Момент времени tend, когда терапия перестает быть целесообразной, показан чер-
ной пунктирной линией. Доверительные области, связанные с неопределенностью
параметров фармакодинамики, малы и визуально не различимы.

Fig. 8. HIV infection dynamics for nonprogressors (T-cell and viral load levels). The
start of therapy, tstart, is indicated by the dark blue dotted line. The point in time,
tend, when therapy is no longer feasible, is shown by the black dotted line. Confidence
regions associated with the uncertainty of the pharmacodynamic parameters are small
and not visually distinguishable.

6. Выводы

Актуальной задачей для лечения ВИЧ-1 инфекции является разработка персонализированных
подходов к схемам применения антивирусных и иммуномодулирующих препаратов [11,16]. В си-
лу сложности и нелинейности процессов взаимодействия ВИЧ-1 и организма человека, необходи-
мо построение механизменных моделей, учитывающих физические, химические и биологические
процессы, опосредующие данное взаимодействие.
В представленной работе впервые была выполнена идентификация параметров для функций,

описывающих действие антиретровирусных препаратов внутри клетки. Для этого использова-
лась разработанная нами модель внутриклеточного размножения ВИЧ-1. Применение получен-
ных параметризаций в модели системной динамики ВИЧ-1 инфекции позволило определить це-
лесообразность использования стандартного режима антиретровирусной терапии в случае, когда
динамика инфекционного заболевания качественно отличается от стандартной.
Для типичных прогрессоров стандартный режим терапии на основе трех рассмотренных про-

тивовирусных препаратов (3TC, AZT, RTV) с использованием идентифицированных параметров
фармакодинамики позволяет поддерживать уровень CD4+ T-клеток выше критического, равно-
го 200 клеток/мм3, в течение 944 суток, таким образом отдаляя время наступления фазы СПИД
на 2,7 два года с начала терапии, одновременно снижая при этом уровень интегральной вирусной
нагрузки в 2 раза.
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Для быстрых прогрессоров стандартный режим терапии на основе трех рассмотренных про-
тивовирусных препаратов (3TC, AZT, RTV) с использованием идентифицированных параметров
фармакодинамики позволяет поддерживать уровень CD4+ T-клеток выше критического в тече-
ние 922 суток, таким образом отдаляя время наступления фазы СПИД на 2,6 года, одновременно
снижая при этом уровень интегральной вирусной нагрузки в 1,6 раза.
Для непрогрессоров стандартный режим терапии на основе трех рассмотренных противовирус-

ных препаратов (3TC, AZT, RTV) с использованием идентифицированных параметров фарма-
кодинамики позволяет поддерживать уровень CD4+ T-клеток выше критического в течение 158
суток, таким образом отдаляя время наступления фазы СПИД почти на полгода, одновременно
снижая при этом уровень интегральной вирусной нагрузки в более чем в два раза.
Таким образом, результаты моделирования позволяют сделать вывод о том, что рассмотрен-

ный режим терапии оказывается наиболее эффективным для пациентов с неблагоприятным фе-
нотипом динамики ВИЧ-инфекции. Анализ чувствительности модели ВИЧ-инфекции показал,
что возможная вариабельность величин параметров фармакодинамики рассмотренных препара-
тов слабо влияет на изменчивость траекторий модели, т. е. динамику течения инфекции. Это
свидетельствует о том, что используемая в стандартной терапии дозировка препаратов выбрана
таким образом, чтобы их действие было в области максимальной эффективности процесса по-
давления соответствующих стадий размножения вируса. Можно предположить, что следствием
этого могут быть побочные эффекты, уровень которых может быть снижен путем разработки
персонализированных режимов терапии с другими концентрациями антиретровирусных препа-
ратов.
Результаты исследования указывают на необходимость учета различий в отклике организма

на терапию по критерию эффективности и выраженности побочных эффектов. В целом, это
актуализирует задачу подбора индивидуальных схем терапии с помощью методов оптимального
управления на основе физиологически обоснованных моделей ВИЧ-1 инфекции в сочетании с
корректным описанием фармакокинетики и фармакодинамики антивирусных препаратов.
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Parameterization of control functions in the problem of modeling

HIV infection therapy
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Abstract. Mathematical modeling is actively used to study the mechanisms of human immunodefi-
ciency virus of type 1 (HIV-1) infection. Current HIV-1 therapy involves the regular, lifelong use of
multiple antiviral drugs. However, this therapy is associated with varying degrees of side effects due
to toxicity, drug interactions, resistance development, and high cost. Mathematical models of HIV-1
infection and optimal control methods can be used to develop effective regimens for applying multiple
antiretroviral drugs, taking into account the immune status of HIV-1-infected patients. In this study,
we identify the pharmacodynamic parameters of drugs based on a previously constructed stochastic
model of the processes that determine viral replication in infected cells. We also study the efficiency of
standard therapy for various HIV-1 infection regimens using a system dynamics model. The results of
the study indicate the need to take into account differences in the body’s response to therapy based
on the criterion of efficiency, which actualizes the task of selecting individual therapy regimens using
optimal control methods based on physiologically approved models of HIV-1 infection.

Keywords: mathematical modeling, HIV, parameter identification, pharmacodynamics, stochastic
model, optimal control.
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1. Постановка задачи

Движение однородной несжимаемой жидкости с постоянной плотностью в ограниченной обла-
сти Ω ⊂ R

n, n = 2, 3, на отрезке времени [0, T ], T > 0, определяется системой дифференциальных
уравнений в форме Коши (см., например, [2]):

∂v

∂t
+

n∑

i=1

vi
∂v

∂xi
−Divσ +∇p = f, div v(t, x) = 0, t ∈ [0, T ], x ∈ Ω, (1.1)

где v(t, x)—неизвестная вектор-функция скорости движения частицы жидкости, p(t, x)—неиз-
вестная функция давления, f(t, x)— заданная плотность внешних сил, σ = (σij)

i=1,n

j=1,n
—неизвест-

ный девиатор тензора напряжений.
Для корректной постановки эту систему дополняют реологическим (определяющим) соотноше-

нием, которое указывает тип изучаемой жидкости. В данной работе рассматриваются вязкопла-
стические жидкости. Главная особенность вязкопластических жидкостей проявляется в задержке
начала течения до тех пор, пока действующие напряжения τ не превысят некоторую величину
τ∗, называемую пределом текучести, или начальным напряжением сдвига. При τ > τ∗ структу-
ра жидкости разрушается, а при обратном снижении напряжения τ � τ∗ — восстанавливается.
Этот процесс происходит достаточно быстро. Примером вязкопластических жидкостей служат
концентрированные суспензии [25]. Наличие у вязкопластических жидкостей предела текучести
дало им второе название, широко используемое а английской литературе, — yield-stress liquids [28].
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Заметим, что в 1890 г. профессор Новороссийского университета Федор Никифорович Шведов
первым обнаружил отклонение свойств растворов желатина от теории Ньютона и для объясне-
ния полученных результатов ввел понятие пластичности [24]. За рубежом этот тип жидкостей
ассоциируется с именем Бингама, предложившим в 1922 г. для описания течения красок понятие
предела текучести [16]. Реологическое соотношение для таких моделей имеет следующий вид:

σ =

⎧
⎨

⎩

2μE(v) + τ∗
E(v)
|E(v)| , если |E(v)| �= 0,

|σ| � τ∗, если |E(v)| = 0,
(1.2)

где E = (Eij)i=1,n

j=1,n
—тензор скорости деформации, Eij(v) = 1

2

( ∂vi
∂xj

+
∂vj
∂xi

)
, μ > 0—коэффициент

вязкости среды. Изучение таких математических моделей было начато достаточно давно (см.,
например, [10, 12, 19, 27]).

В данной работе для системы уравнений (1.1), (1.2) изучается альфа-модель. Альфа-модели
представляют собой своего рода регуляризованные приближенные системы, которые зависят от
некоторого положительного параметра α, причем регуляризация осуществляется путем некото-
рой фильтрации вектора скорости, который стоит в аргументе нелинейного члена (см. [8, 20]).

Интерес к изучению альфа-моделей в первую очередь связан с их применением к исследованию
эффектов турбулентности для потоков жидкости, а также с лучшими по сравнению с исходными
моделями численными результатами. Отметим, что при изучении турбулентного потока жид-
кости одной из определяющих характеристик является большой диапазон пространственных и
временных масштабов. Это характерное свойство является источником затруднений, как в теоре-
тических исследованиях, так и в вычислениях на практике. Более того, во многих практических
приложениях физически значимые характеристики потока часто сосредоточены на больших мас-
штабах по пространству, как это видно, например, при численном гидродинамическом прогнози-
ровании погоды. В связи с этим было приложено немало усилий для моделирования крупномас-
штабной динамики турбулентного течения путем фильтрации более мелких масштабов.

Как правило, такая фильтрация происходит за счет применения обратного оператора Гельм-
гольца к первому или второму аргументу билинейного оператора системы уравнений движения
среды (или ко всему оператору). Параметр альфа имеет размерность квадрата длины и опреде-
ляет масштаб, при котором высокочастотные (по пространству) моды будут отфильтровываться.
Соответствующие регуляризованные системы принято называть альфа-моделями.

При этом в теоретических исследованиях идея использования такого рода аппроксимаций впер-
вые возникла в работе Ж. Лере [21] (в данной работе Ж. Лере использовал общий вид ядра
фильтрации) для доказательства существования слабого решения системы уравнений Навье—
Стокса. Позднее на этой идее были построены различные альфа-модели для уравнений Эйле-
ра [17, 18], Навье—Стокса [6, 15], Лере [3, 4], Джеффриса—Олдройда [23], дробного Фойгта [5, 7]
и др. Данная работа продолжает изучение альфа-моделей и рассматривает разрешимость следу-
ющей начально-краевой задачи для альфа-модели движения жидкости Бингама:

∂v

∂t
+

n∑

i=1

ui
∂v

∂xi
−Divσ +∇p = f, (1.3)

σ =

⎧
⎨

⎩

2μE(v) + τ∗
E(v)
|E(v)| , если |E(v)| �= 0,

|σ| � τ∗, если |E(v)| = 0,
(1.4)

u = (I − α2Δ)−1v, (1.5)
div v = 0, (1.6)

v|∂Ω = 0, v|t=0 = v0. (1.7)

В работе рассматривается задача (1.3)–(1.7) с периодическим условием по пространственной
переменной, которую в дальнейшем будем называть периодической (по пространственной пере-
менной) начально-краевой задачей для альфа-модели Бингама. Для формулировки основного
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результата сначала введем необходимые функциональные пространства и дадим определение
слабого решения изучаемой начально-краевой задачи (1.3)–(1.7).

2. Определение слабого решения

Введем необходимые обозначения. Пусть Ω =
n∏

i=1
(0, li) ⊂ R

n. Через (C∞
per)

n обозначим про-

странство периодических вектор-функций со значениями в R
n и с периодами i = 1, . . . , n. Введем

множество

Φ =
{
φ ∈ (C∞

per)
n :

∫

Ω

φdx = 0, divφ = 0
}
.

Через V 1 обозначим замыкание Φ по норме W 1
2 (Ω), V

2 — замыкание Φ по норме W 2
2 (Ω). Через

V 0 обозначим замыкание Φ по норме L2(Ω). Через V −1 обозначим сопряженное к V 1 простран-
ство.

Обозначим через D(A) = V 2 и рассмотрим на D(A) оператор A : Av = −πΔv, где π —проектор
Лере, π : L2(Ω) → V 0, v ∈ D(A). Оператор A—монотонный линейный самосопряженный опера-
тор, и для каждого β ∈ R можно определить Aβ с областью определения D(Aβ) ⊂ V 0 (см. [11]).
Обозначим V β = D(Aβ/2). Можно показать, что оператор A является изоморфизмом из V β+2 в
V β. Подробное определение пространств, а также их свойства можно найти в [11].

Одним из основных функциональных пространств является пространство

W1 = {v ∈ L2(0, T ;V
1) ∩ L∞(0, T ;V 0), v′ ∈ L4/3(0, T ;V

−1)}
с нормой ‖v‖W1 = ‖v‖L2(0,T ;V 1) + ‖v‖L∞(0,T ;V 0) + ‖v′‖L4/3(0,T ;V −1).

Обозначим через Δα : V β+2 → V β , β � 0, оператор Δα = (J + α2A), где J = πI, I — тож-
дественный оператор. В силу [11, лемма 4.4.4] оператор Δα обратим. Применим проектор Лере
π : L2(Ω) → V 0 к обеим частям равенства v = (I − α2Δ)u для β = 3 и выразим из последнего
равенства u: u = (J + α2A)−1v = Δ−1

α v. Так как v(t) ∈ V 1, получим, что u(t) ∈ V 3 при п.в.
t ∈ [0, T ].

Пусть f ∈ L2(0, T ;V
−1) и v0 ∈ V 1. Дадим определение слабого решения рассматриваемой

задачи.

Определение 2.1. Пара функций (v, σ) ∈W1 × L2(0, T ;L2(Ω)) называется слабым решением
начально-краевой задачи (1.3)–(1.7) для альфа-модели Бингама, если для всех ϕ ∈ V 1 и почти
всех t ∈ (0, T ) она удовлетворяет равенству

〈v′, ϕ〉 −
n∑

i,j=1

∫

Ω

(Δ−1
α v)ivj

∂ϕj

∂xi
dx+

∫

Ω

σ : E(ϕ) dx =

∫

Ω

f ϕdx, (2.1)

а также реологическому соотношению (1.4) и начальному условию v|t=0 = v0.

Здесь символ «:» для двух матриц A = (aij), B = (bij) обозначает A : B =
n∑

i,j=1
aijbij.

Основным результатом работы являются следующие теоремы:

Теорема 2.1. Пусть f ∈ L2(0, T ;V
−1) и v0 ∈ V 1. Тогда начально-краевая задача (1.3)–(1.7)

имеет хотя бы одно слабое решение (v, σ) ∈W1 × L2(0, T ;L2(Ω)).

Теорема 2.2. Пусть выполнены условия теоремы 2.1. Кроме того, если рассмотреть семей-
ство альфа-моделей (1.3)–(1.7), зависящих от параметра αm, то существует последователь-
ность решений vm этого семейства, которая при стремлении αm к нулю сходится к слабому
решению исходной начально-краевой задачи (см. определение (7.1)).

Для доказательства разрешимости рассматриваемой начально-краевой задачи (1.3)–(1.7) бу-
дет использоваться аппроксимационно-топологический метод исследования задач гидродинамики
(см. [9]). Для этого вводится семейство вспомогательных задач (раздел 3), зависящих от малого
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параметра, доказываются априорные оценки решений (раздел 4) и на основе теории топологи-
ческой степени Лере—Шаудера для вполне непрерывных векторных полей доказывается суще-
ствование слабых решений вспомогательной задачи (раздел 5). Далее, для доказательства разре-
шимости исследуемой альфа-модели на основе необходимых оценок устанавливается предельный
переход (раздел 6). В заключение показывается, что последовательность решений исследуемой
альфа-модели сходится к решению исходной модели (раздел 7).

3. Аппроксимационная задача

«Приблизим» реологическое соотношение модели Бингама (1.4) следующим неньютоновским
соотношением:

σ = 2μE(v) + τ∗
E(v)

max{δ, |E(v)|} , δ > 0.

При такой аппроксимации реологического соотношения (1.4) мы можем исключить в поста-
новке задачи неизвестную σ и рассматривать задачу только о нахождении скорости v. При этом
также аппроксимируем интегральное равенство (2.1), добавив в него слагаемое

δ

∫

Ω

A2v Aϕdx.

Таким образом, для доказательства разрешимости исходной начально-краевой задачи иссле-
дуется следующая аппроксимационная задача (для фиксированного δ > 0):

Задача 3.1. Найти функцию v ∈ W2 =
{
v : v ∈ L2(0, T ;V

4), v′ ∈ L2(0, T ;V
−2)
}
, удовлетво-

ряющую для любого ϕ ∈ V 2 и почти всех t ∈ (0, T ) соотношению

〈v′, ϕ〉 −
n∑

i,j=1

∫

Ω

(Δ−1
α v)ivj

∂ϕj

∂xi
dx+ μ

∫

Ω

∇v : ∇ϕdx+

+ τ∗
n∑

i,j=1

∫

Ω

Eij(v)Eij(ϕ)
max{δ, E(v)} dx+ δ

∫

Ω

A2v Aϕdx =

∫

Ω

f ϕdx

и начальному условию v(0) = v0.

Перепишем аппроксимационную задачу в операторном виде. Для этого введем следующие опе-
раторы:

A : L2(0, T ;V
1) → L2(0, T ;V

−2), 〈Av(t), ϕ〉 =
∫

Ω

∇v(t) : ∇ϕdx;

A3 : L2(0, T ;V
4) → L2(0, T ;V

−2), 〈A3v(t), ϕ〉 =
∫

Ω

A2v Aϕdx;

K : L4(0, T ;V
1) → L2(0, T ;V

−2), 〈K(v(t)), ϕ〉 =
n∑

i,j=1

∫

Ω

(Δ−1
α v)ivj

∂ϕj

∂xi
dx;

Bδ : L2(0, T ;V
1) → L2(0, T ;V

−2), 〈Bδ(v)(t), ϕ〉 = τ∗
n∑

i,j=1

∫

Ω

Eij(v)(t)
max{δ, |E(v)(t)|} Eij(ϕ) dx.

Заметим, что аппроксимационную задачу 3.1 можно записать в виде операторного уравнения:

v′ + μAv +Bδ(v)−K(v) + δA3v = f, (3.1)

решение которого должно удовлетворять начальному условию v(0) = v0.
Рассмотрим свойства операторов из уравнения (3.1). Отметим, что для исследуемых операто-

ров можно доказать и более сильные результаты, чем приведенные ниже, но мы приводим только
те, которые будут в дальнейшем использоваться. Для удобства через C мы будем обозначать кон-
станты, конкретное значение которых для нас не важно. Если важен точный вид константы, то
она будет выписываться в явном виде.
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Лемма 3.1. Для оператора А имеют место следующие свойства:
1. Для любой функции v ∈ L2(0, T ;V

1) функция Av принадлежит L2(0, T ;V
−1), оператор

A : L2(0, T ;V
1) → L2(0, T ;V

−1) непрерывен и имеет место оценка

‖Av‖L2(0,T ;V −1) � ‖v‖L2(0,T ;V 1). (3.2)

2. Для любой функции v ∈W2 функция Av принадлежит L2(0, T ;V
−1), кроме того, оператор

A :W2 → L2(0, T ;V
−2) вполне непрерывен.

Доказательство данной леммы см. в [11].

Лемма 3.2. Для оператора K имеют место следующие свойства:
1. Отображение K : L4(Ω) → V −1 непрерывно, и для него имеет место оценка

‖K(v)‖V −1 � C‖v‖2L4(Ω). (3.3)

2. Для любого v ∈ L4(0, T ;L4(Ω)) функция K(v) принадлежит L2(0, T ;V
−1), и отображение

K : L4(0, T ;L4(Ω)) → L2(0, T ;V
−1) непрерывно.

3. Для любой функции v ∈ W2 функция K(v) принадлежит L2(0, T ;V
−2), отображение K :

W2 → L2(0, T ;V
−2) является вполне непрерывным, и для него имеет место оценка

‖K(v)‖L2(0,T ;V −2) � C‖v‖L2(0,T ;V 1)‖v‖L∞(0,T ;V 0). (3.4)

Доказательство.
1. Для любых v ∈ L4(Ω), ϕ ∈ V 1, используя неравенство Гельдера, мы получим

|〈K(v), ϕ〉| =
∣
∣
∣
∣
∣
∣

n∑

i,j=1

∫

Ω

(Δ−1
α v)ivj

∂ϕj

∂xi
dx

∣
∣
∣
∣
∣
∣
�

n∑

i,j=1

⎛

⎝

∫

Ω

|((I − α2Δ)−1v)ivj |2 dx
⎞

⎠

1/2⎛

⎝

∫

Ω

∣
∣
∣
∣
∂ϕj

∂xi

∣
∣
∣
∣

2

dx

⎞

⎠

1/2

�

�
n∑

i,j=1

⎛

⎝

∫

Ω

|((I − α2Δ)−1v)i|4dx
⎞

⎠

1/4⎛

⎝

∫

Ω

|vj |4dx
⎞

⎠

1/4

‖ϕ‖V 1 � C‖(I − α2Δ)−1v‖L4(Ω)‖v‖L4(Ω)‖ϕ‖V 1 �

� C‖v‖2L4(Ω)‖ϕ‖V 1 ,

откуда следует неравенство (3.3). Отметим, что здесь мы воспользовались следующей известной
оценкой (см. [1, 14]):

‖(I − α2Δ)−1v‖Lp(Ω) � ‖v‖Lp(Ω), p > 1. (3.5)

Покажем непрерывность отображения K : L4(Ω) → V −1. Для произвольных vm, v0 ∈ L4(Ω)
имеем:

|〈K(vm), ϕ〉 − 〈K(v0), ϕ〉| =
∣
∣
∣
∣
∣
∣

∫

Ω

n∑

i,j=1

(
(Δ−1

α vm)iv
m
j

∂ϕj

∂xi
dx−

∫

Ω

n∑

i,j=1

(Δ−1
α v0)iv

0
j

)∂ϕj

∂xi
dx

∣
∣
∣
∣
∣
∣
�

�
n∑

i,j=1

‖(Δ−1
α vm)iv

m
j − (Δ−1

α v0)iv
0
j‖L2(Ω)‖ϕ‖V 1 ,

откуда следует, что

‖K(vm)−K(v0)‖V −1 �
n∑

i,j=1

‖(Δ−1
α vm)iv

m
j − (Δ−1

α v0)iv
0
j‖L2(Ω).

Вновь используя неравенство (3.5), преобразуем правую часть последнего неравенства:
n∑

i,j=1

‖(Δ−1
α vm)iv

m
j − (Δ−1

α v0)iv
0
j ‖L2(Ω) =

=
n∑

i,j=1

‖(Δ−1
α vm)iv

m
j − (Δ−1

α vm)iv
0
j + (Δ−1

α vm)iv
0
j − (Δ−1

α v0)iv
0
j ‖L2(Ω) �
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� C
(
‖vm − v0‖L4(Ω)‖Δ−1

α vm‖L4(Ω) + ‖Δ−1
α vm −Δ−1

α v0‖L4(Ω)‖v0‖L4(Ω)

)
�

� C
(
‖vm‖L4(Ω)‖vm − v0‖L4(Ω) + ‖vm − v0‖L4(Ω)‖v0‖L4(Ω)

)
=

= C
(
‖vm‖L4(Ω) + ‖v0‖L4(Ω)

)
‖vm − v0‖L4(Ω).

Таким образом,

‖K(vm)−K(v0)‖V −1 � C
(‖vm‖L4(Ω) + ‖v0‖L4(Ω)

) ‖vm − v0‖L4(Ω). (3.6)

Полагая vm → v0 в L4(Ω), получаем непрерывность отображения K : L4(Ω) → V −1.

2. Пусть v ∈ L4(0, T ;L4(Ω)). В силу оценки (3.3) при почти всех t ∈ (0, T ) имеем

‖K(v)(t)‖V −1 � C‖v(t)‖2L4(Ω).

Возведем это неравенство в квадрат, проинтегрируем по t от 0 до T и оценим правую часть
сверху:

T∫

0

‖K(v)(t)‖2V −1dt � C2

T∫

0

‖v(t)‖4L4(Ω) dt = C2‖v‖2L4(0,T ;L4(Ω)) <∞.

Поскольку правая часть последнего неравенства конечна, то конечна и левая часть. Таким
образом, для v ∈ L4(0, T ;L4(Ω)) мы имеем, что K(v) ∈ L2(0, T ;V

−1). Переходим теперь к дока-
зательству непрерывности отображения K : L4(0, T ;L4(Ω)) → L2(0, T ;V

−1).
Пусть последовательность {vm} ⊂ L4(0, T ;L4(Ω) сходится к некоторому пределу v0 ∈

L4(0, T ;L4(Ω)). Из неравенства (3.6) получим, что при почти всех t ∈ (0, T ) имеет место оценка

‖K(vm)(t)−K(v0)(t)‖V −1 � C
(
‖vm(t)‖L4(Ω) + ‖v0(t)‖L4(Ω)

)
‖(vm − v0)(t)‖L4(Ω).

Возведем последнее неравенство в квадрат и проинтегрируем по t от 0 до T. Воспользовавшись
неравенством Гельдера, получим:

T∫

0

‖K(vm)(t)−K(v0)(t)‖2V −1 dt �

� C2

⎛

⎝

T∫

0

(‖vm(t)‖L4(Ω) + ‖v0(t)‖L4(Ω)

)4
dt

⎞

⎠

1/2⎛

⎝

T∫

0

‖vm(t)− v0(t)‖4L4(Ω) dt

⎞

⎠

1/2

.

Заметим, что
T∫

0

(‖vm(t)‖L4(Ω) + ‖v0(t)‖L4(Ω)

)4
dt � 8

T∫

0

(
‖vm(t)‖4L4(Ω) + ‖v0(t)‖4L4(Ω)

)
dt =

= 8
(
‖vm(t)‖4L4(0,T ;L4(Ω)) + ‖v0(t)‖4L4(0,T ;L4(Ω))

)
.

Имеем в итоге

‖K(vm)−K(v0)‖2L2(0,T ;V −1) � 2
√
2C2‖vm−v0‖2L4(0,T ;L4(Ω))

(
‖vm‖4L4(0,T ;L4(Ω)) + ‖v0‖4L4(0,T ;L4(Ω))

)1/2
�

� 2
√
2C2‖vm − v0‖2L4(0,T ;L4(Ω))

(
‖vm‖2L4(0,T ;L4(Ω)) + ‖v0‖2L4(0,T ;L4(Ω))

)
.

Так как правая часть неравенства стремится к нулю при m→ +∞, то стремится к нулю и левая
часть. А это и значит, что отображение K : L4(0, T ;L4(Ω)) → L2(0, T ;V

−1) непрерывно.

3. Для доказательства нам потребуется следующий результат (см. [13]):

Теорема 3.1. Пусть V,H, V ∗—тройка гильбертовых пространств, таких что V ⊂ H ≡
H∗ ⊂ V ∗. Здесь вложения непрерывны, H∗ и V ∗— сопряженные пространства, простран-
ства H и H∗ отождествлены по теореме Рисса. Если функция v принадлежит пространству
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L2(0, T ;V ), а ее производная v′ принадлежит L2(0, T ;V
∗), то функция v почти всюду равна

некоторой непрерывной функции из [0, T ] в H (то есть функции из C([0, T ],H)).

В силу данной леммы каждая функция v ∈ W2 принадлежит C([0, T ];V 0). Поэтому каждая
функция из W2 принадлежит не только L2(0, T ;V

2), но и L2(0, T ;V
2) ∩ L∞(0, T ;V 0). Далее за-

метим, что имеет место вложение (см., например, [22]): L2(0, T ;V
2)∩L∞(0, T ;V 0) ⊂ L4(0, T ;V

1).
Таким образом, для пространства W2 имеет место вложение:

W2 ⊂ Y = {v : v ∈ L4(0, T ;V
1), v′ ∈ L2(0, T ;V

−1)}.
Опять воспользуемся следующим результатом из [13]:

Теорема 3.2. Пусть X0, F,X1 —тройка банаховых пространств, удовлетворяющих условию
X0 ⊂ F ⊂ X1. Здесь вложения непрерывны, пространства X0,X1— рефлексивны, вложение
X0 → F — компактно. Пусть T > 0—фиксированное число и α0, α1 — два конечных числа, та-
ких что αi > 1, i = 0, 1. Предположим, что Y = {v : v ∈ Lα0(0, T ;X0); v

′ ∈ Lα1(0, T ;X1)}—
пространство с нормой ‖v‖Y = ‖v‖Lα0 (0,T ;X0) + ‖v′‖Lα1 (0,T ;X1). Тогда вложение пространства Y
в пространство Lα0(0, T ;X0) компактно.

В силу последней теоремы имеет место компактное вложение: Y → L4(0, T ;L4(Ω)). Таким
образом, действие отображения K можно представить следующим образом:

W2 ⊂ Y → L4(0, T ;L4(Ω))
K−→ L2(0, T ;V

−1) ⊂ L2(0, T ;V
−2).

Здесь первое и последнее вложения непрерывны, второе вложение вполне непрерывно, и отобра-
жение K : L4(0, T ;L4(Ω)) → L2(0, T ;V

−1) непрерывно в силу пункта 2 леммы 3.2. Таким образом,
отображение K : W2 → L2(0, T ;V

−1) вполне непрерывно.
Оценим теперь ‖K(v)‖L2(0,T ;V −2). Имеем:

|〈K(v), ϕ〉| =
∣
∣
∣
∣
∣
∣

n∑

i,j=1

∫

Ω

(Δ−1
α v)ivj

∂ϕj

∂xi
dx

∣
∣
∣
∣
∣
∣
�

n∑

i,j=1

∫

Ω

|(Δ−1
α v)i||vj |

∣
∣
∣
∣
∂ϕj

∂xi

∣
∣
∣
∣ dx �

�
n∑

i,j=1

‖vi‖L4(Ω)‖vj‖L4(Ω)

∣
∣
∣
∣

∣
∣
∣
∣
∂ϕj

∂xi

∣
∣
∣
∣

∣
∣
∣
∣
L4(Ω)

� C‖v‖L4(Ω)‖v‖V 0‖ϕ‖V 2 ,

откуда для любой функции v ∈W2 при почти всех t ∈ (0, T ) имеет место оценка:

‖K(v)(t)‖V −2 � C‖v(t)‖L4(Ω)‖v(t)‖V 0 .

Возводя это неравенство в квадрат и интегрируя полученное неравенство по отрезку [0, T ],
получим:

T∫

0

‖K(v)(t)‖2V −2dt � C2

T∫

0

‖v(t)‖2L4(Ω)‖v(t)‖2V 0dt �

� C2‖v‖2L∞(0,T ;V 0)

T∫

0

‖v(t)‖2L4(Ω)dt � C‖v‖2L∞(0,T ;V 0)‖v‖2L2(0,T ;V 1),

откуда следует требуемое неравенство (3.4).

Лемма 3.3. Для оператора Bδ имеют место следующие свойства:
1. Для любой функции v ∈ L2(0, T ;V

1) функция Bδ(v) принадлежит L2(0, T ;V
−2), оператор

Bδ : L2(0, T ;V
1) → L2(0, T ;V

−2) непрерывен, и имеет место оценка

‖Bδ(v)(t)‖L2(0,T ;V −2) � C, (3.7)

где C — константа, не зависящая от функция v и δ.
2. Для любой функции v ∈ W2 функция Bδ(v) принадлежит L2(0, T ;V

−2), и оператор Bδ :
W2 → L2(0, T ;V

−2) вполне непрерывен.
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Доказательство.
1. Для любой функции v ∈ L2(0, T ;V

1) при любом ϕ ∈ V 2 при почти всех t ∈ (0, T ) имеем

|〈Bδ(v)(t), ϕ〉| =
∣
∣
∣
∣
∣
∣
τ∗

n∑

i,j=1

∫

Ω

Eij(v)(t)
max(δ, |E(v)(t)|)Eij(ϕ)dx

∣
∣
∣
∣
∣
∣
� τ∗

n∑

i,j=1

∫

Ω

|Eij(v)(t)|
max(δ, |E(v)(t)|) |Eij(ϕ)|dx �

� τ∗
n∑

i,j=1

∫

Ω

|E(v)(t)|
max(δ, |E(v)(t)|) |E(ϕ)|dx � τ∗C‖ϕ‖V 2 .

Здесь мы воспользовались неравенством
|b|

max(δ, |b|) � 1. Следовательно, при почти всех t ∈
(0, T ) имеет место неравенство

‖Bδ(v)(t)‖V −2 � τ∗C.
Возводя последнее неравенство в квадрат и интегрируя по t от 0 до T, мы и получим, что

B(v) ∈ L2(0, T ;V
−2) и имеет место требуемая оценка (3.7). Докажем непрерывность оператора

Bδ : L2(0, T ;V
1) → L2(0, T ;V

−2).
Пусть последовательность vn сходится к некоторой функции v0 в L2(0, T ;V

1). Тогда при почти
всех t ∈ (0, T ) для произвольного ϕ ∈ V 2 получим:

|〈Bδ(vn)(t)−Bδ(v0)(t), ϕ〉| =

=

∣
∣
∣
∣
∣
∣
τ∗

n∑

i,j=1

∫

Ω

Eij(vn)(t)
max(δ, |E(vn)(t)|)Eij(ϕ)dx − τ∗

n∑

i,j=1

∫

Ω

Eij(v0)(t)
max(δ, |E(v0)(t)|)Eij(ϕ)dx

∣
∣
∣
∣
∣
∣
�

� τ∗
n∑

i,j=1

∣
∣
∣
∣
∣
∣

∫

Ω

( Eij(vn)(t)
max(δ, |E(vn)(t)|) −

Eij(v0)(t)
max(δ, |E(vn)(t)|)

)

Eij(ϕ)dx
∣
∣
∣
∣
∣
∣
+

+τ∗
n∑

i,j=1

∣
∣
∣
∣
∣
∣

∫

Ω

( Eij(v0)(t)
max(δ, |E(vn)(t)|) −

Eij(v0)(t)
max(δ, |E(v0)(t)|)

)

Eij(ϕ)dx
∣
∣
∣
∣
∣
∣
�

� τ∗
n∑

i,j=1

∫

Ω

|Eij(vn)(t)− Eij(v0)(t)|
max(δ, |E(vn)(t)|) |Eij(ϕ)|dx+

+τ∗
n∑

i,j=1

∫

Ω

|Eij(v0)(t)|
∣
∣
∣
∣

1

max(δ, |E(vn)(t)|) −
1

max(δ, |E(v0)(t)|)
∣
∣
∣
∣ |Eij(ϕ)|dx �

� τ∗

δ

n∑

i,j=1

∫

Ω

|E(vn − v0)(t)||E(ϕ)|dx +
τ∗

δ

n∑

i,j=1

∫

Ω

| |E(v0)(t)| − |E(vn)(t)||| E(ϕ)|dx �

� 2τ∗

δ

n∑

i,j=1

∫

Ω

|E(vn − v0)(t)||E(ϕ)| � 2τ∗C
δ

‖vn(t)− v0(t)‖V 1‖ϕ‖V 2 .

Отсюда в силу произвольности ϕ получаем, что

‖Bδ(vn)(t)−Bδ(v0)(t)‖V −2 � 2τ∗C
δ

‖vn(t)− v0(t)‖V 1 .

Возведя в квадрат и проинтегрировав, получим:

‖Bδ(vn)−Bδ(v0)‖L2(0,T ;V −2) �
2τ∗C
δ

‖vn − v0‖L2(0,T ;V 1).

То есть Bδ(vn) → Bδ(v0) в L2(0, T ;V
−2).

2. Аналогично доказательству пункта 3 леммы 3.2 имеем компактное вложение W2 ⊂ Y ⊂
L2(0, T ;V

1). Тогда действие оператора Bδ : W2 → L2(0, T ;V
−2) можно представить в виде следу-

ющей композиции: W2 ⊂ Y ⊂ L2(0, T ;V
1)

Bδ−−→ L2(0, T ;V
−2). Здесь первое вложение непрерывно,
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второе вложение компактно, а отображение Bδ в силу первого пункта теоремы непрерывно. Та-
ким образом, отображение Bδ : W2 → L2(0, T ;V

−2) непрерывно как суперпозиция непрерывного
и вполне непрерывного отображения.

Введем также операторы L и N с помощью равенств

L :W2 → L2(0, T ;V
−1)× V 1, L(u) = (v′ + δA3 + μAv, v|t=0),

N :W2 → L2(0, T ;V
−1)× V 1, N(v) = (Bδ(v)−K(v), 0).

Лемма 3.4. Операторы L и N имеют следующие свойства:
1. оператор L :W2 → L2(0, T ;V

−2)× V 1 непрерывно обратим;
2. оператор N :W2 → L2(0, T ;V

−2)× V 1 компактен.

Доказательство.
1. Непрерывная обратимость оператора следует из приведенной ниже теоремы о разрешимости

абстрактной параболической задачи.

Теорема 3.3. Для любой правой части f ∈ L2(0, T ;V
−1) и начального условия v0 ∈ V 1 задача

{
v′ + δA3v + μAv = f,

v(0) = v0

имеет единственное решение v в пространстве

W3 = {v : v ∈ L2(0, T ;V
4), v′ ∈ L2(0, T ;V

−2)},
непрерывно зависящее от f и v0. Для решения также имеет место оценка

δ‖v‖L2(0,T ;V 4) �
√
2δ + 1

(‖v0‖V 1 + ‖f‖L2(0,T ;V −1)

)
. (3.8)

Доказательство этой теоремы проводится на основе аппроксимационно-топологического под-
хода к исследованию задач гидродинамики (см. [9]). Сначала рассматриваемая задача аппрок-
симируется (в уравнение добавляется член εA3v′) и доказывается существование решения при-
ближенного уравнения в пространстве {v : v ∈ C([0, T ];V 4), v′ ∈ L2(0, T ;V

4)}. Затем на основе
априорных оценок решений, не зависящих от ε, показывается, что из последовательности реше-
ний можно извлечь подпоследовательность, сходящуюся слабо к решению исходной задачи при
ε→ 0. Единственность решения получается на основе неравенства Гронуола—Беллмана.

Полное изложение доказательства здесь не приводится в силу своего объема.

2. Компактность оператора N : W2 → L2(0, T ;V
−2) × V 1 непосредственно вытекает из ком-

пактности его первой компоненты (каждое слагаемое компактно).

4. Априорные оценки

Помимо вспомогательной задачи 3.1, рассмотрим семейство операторных уравнений

v′ + δA3v + μAv + λBδ(v)− λK(v) = λf, ∀λ ∈ [0, 1], (4.1)

решение которых удовлетворяет начальному условию v(0) = λv0. Заметим, что при λ = 1 за-
дача (4.1) совпадает с (3.1). Тогда задача (4.1) с начальным условием v(0) = λv0 может быть
переписана в виде

v = λL−1((f, v0)−N(v)), где λ ∈ [0, 1]. (4.2)

Теорема 4.1. Для решения v ∈W2 семейства (4.2) имеют место следующие оценки:

‖v‖2L∞(0,T ;V 0) �
C

μ
‖f‖2L2(0,T ;V −1) + ‖v0‖2V 0 , (4.3)

μ‖v‖2L2(0,T ;V 1) �
C

μ
‖f‖2L2(0,T ;V −1) + ‖v0‖2V 0 , (4.4)

‖v‖Lr(0,T ;W 1+q
2 (Ω)) � C, (4.5)

δ‖v‖L2(0,T ;V 4) � C, (4.6)

‖v′‖L2(0,T ;V −2) � C. (4.7)
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Доказательство. Пусть v ∈ W2 —решение (4.2). Тогда в силу приведенных выше рассуждений
v является решением (4.1) и удовлетворяет начальному условию v(0) = λv0.

Применим обе части (4.1) к функции v ∈W2. Имеем

〈v′ + δA3v + μAv − λK(v) + λBδ(v), v〉 = 〈λf, v〉.
Вспоминая определения операторов, получаем следующее равенство:

〈v′, v〉+ δ

∫

Ω

A2vAv dx+ μ

∫

Ω

∇v : ∇v dx− λ

n∑

i,j=1

∫

Ω

(Δ−1
α v)ivj

∂vj
∂xi

dx+

+ λτ∗
n∑

i,j=1

∫

Ω

Eij(v)Eij(v)
max(δ, |E(v)|) dx = λ〈f, v〉.

Преобразуем слагаемые в последнем равенстве:

〈v′, v〉 = 1

2

d

dt
‖v‖2V 0 ; μ

∫

Ω

∇v : ∇v dx = μ‖v‖2V 1 ;

δ

∫

Ω

A2vAv dx = −δ
∫

Ω

Δ(Av)Av dx = δ

∫

Ω

∇(Av) : ∇(Av) dx = δ‖v‖2V 3 ;

−
n∑

i,j=1

∫

Ω

(Δ−1
α v)ivj

∂vj
∂xi

dx = −λ
2

n∑

i,j=1

∫

Ω

(Δ−1
α v)i

∂(vjvj)

∂xi
dx =

=
λ

2

n∑

j=1

∫

Ω

∂(Δ−1
α v)i
∂xi

vjvjdx =
λ

2

n∑

j=1

∫

Ω

div u vjvjdx = 0.

Таким образом, получим:

1

2

d

dt
‖v‖2V 0 + δ‖v‖2V 3 + μ‖v‖2V 1 + λτ∗

n∑

i,j=1

∫

Ω

E2
ij(v)

max{δ, |E(v)|}dx = λ〈f, v〉.

Воспользуемся в правой части неравенствами Юнга и Коши:

λ〈f, v〉 = λ‖f‖V −1‖v‖V 1 � λ
‖f‖2V −1

2μ
+
λμ

2
‖v‖2V 1 � 1

2μ
‖f‖2V −1 +

μ

2
‖v‖2V 1 .

Заметим, что

λτ∗
n∑

i,j=1

∫

Ω

E2
ij(v)

max{δ, |E(v)|}dx � 0.

Тогда получаем оценку

1

2

d

dt
‖v‖2V 0 + δ‖v‖2V 3 +

μ

2
‖v‖2V 1 � 1

2μ
‖f‖2V −1 .

Проинтегрировав последнее неравенство от 0 до t ∈ [0, T ], получим следующую оценку:

1

2
‖v(t)‖2V 0 − 1

2
‖v(0)‖2V 0 + δ

t∫

0

‖v(s)‖2V 3ds+
μ

2

t∫

0

‖v(s)‖2V 1ds �

� 1

2μ

t∫

0

‖f(s)‖2V −1ds �
1

2μ

T∫

0

‖f(s)‖2V −1ds =
1

2μ
‖f‖2L2(0,T ;V −1),
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которую можно переписать в виде:

1

2
‖v(t)‖2V 0 + δ

t∫

0

‖v(s)‖2V 3ds+
μ

2

t∫

0

‖v(s)‖2V 1ds �
1

2μ
‖f‖2L2(0,T ;V −1) +

1

2
‖v0‖2V 0 .

Так как каждое слагаемое в левой части последнего неравенства неотрицательно, то получаем
следующие оценки:

‖v(t)‖2V 0 � 1

μ
‖f‖2L2(0,T ;V −1) + ‖v0‖2V 0 � C

μ
‖f‖2L2(0,T ;V 0) + ‖v0‖2V 0 �

C‖f‖2L2(0,T ;V −1)

μ
+ ‖v0‖2V 0 ;

μ

t∫

0

‖v(s)‖2V 1ds �
1

μ
‖f‖2L2(0,T ;V −1) + ‖v0‖2V 0 �

C‖f‖2L2(0,T ;V −1)

μ
+ ‖v0‖2V 0 .

Правые части этих неравенств не зависят от t, поэтому можно перейти к max по t ∈ [0, T ] в
левой части:

ess supt∈[0,T ] ‖v(t)‖2V 0 �
C‖f‖2L2(0,T ;V −1)

μ
+ ‖v0‖2V 0 ;

μ

T∫

0

‖v(s)‖2V 1ds �
C‖f‖2L2(0,T ;V −1)

μ
+ ‖v0‖2V 0 .

Отсюда следуют требуемые неравенства (4.3) и (4.4).
Теперь применим к уравнению (4.1) пробную функцию Av. Получим:

〈v′, Av〉+ δ

∫

Ω

A2vA2vdx+ μ

∫

Ω

∇v : ∇Avdx− λ

n∑

i,j=1

∫

Ω

(Δ−1
α v)ivj

∂Δvj
∂xi

dx+

+ λτ∗
n∑

i,j=1

∫

Ω

Eij(v)
max(δ, |E(v)|)Eij(Δv)dx = λ〈f,Av〉.

Преобразуем и оценим слагаемые в последнем равенстве:

〈v′, Av〉 = 〈A1/2v′, A1/2v〉 = 1

2

d

dt
‖v‖2V 1 ; δ

∫

Ω

A2vA2vdx = δ‖v‖2V 4 ;

μ

∫

Ω

∇v : ∇Avdx = μ

∫

Ω

∇v∇vdx = μ‖v‖2V 2 ;

λ〈f,Av〉 = λ‖f‖V 0‖Av‖V 0 � ‖f‖V 0‖v‖V 2 � μ

2
‖v‖2V 2 +

‖f‖2V 0

2μ
;

−
n∑

i,j=1

∫

Ω

(Δ−1
α v)ivj

∂Δvj
∂xi

dx =

n∑

i,j=1

∫

Ω

∂(Δ−1
α v)i
∂xi

vjΔvjdx+

n∑

i,j=1

∫

Ω

(Δ−1
α v)i

∂vj
∂xi

Δvjdx =

=
n∑

i,j=1

∫

Ω

(div u)vjΔvjdx−
n∑

i,j,k=1

∫

Ω

∂(Δ−1
α v)i
∂xk

∂vj
∂xi

∂vj
∂xk

dx−
n∑

j=1

∫

Ω

(Δ−1
α v)i

∂2vj
∂xi∂xk

∂vj
∂xk

dx =

= −
n∑

i,j,k=1

∫

Ω

∂(Δ−1
α v)i
∂xk

∂vj
∂xi

∂vj
∂xk

dx− 1

2

n∑

i,j,k=1

∫

Ω

(Δ−1
α v)i

∂

∂xi
(
∂vj
∂xk

∂vj
∂xk

)dx =

= −
n∑

i,j,k=1

∫

Ω

∂(Δ−1
α v)i
∂xk

∂vj
∂xi

∂vj
∂xk

dx+
1

2

n∑

i,j,k=1

∫

Ω

(div u)
∂vj
∂xk

∂vj
∂xk

dx = −
n∑

i,j,k=1

∫

Ω

∂(Δ−1
α v)i
∂xk

∂vj
∂xi

∂vj
∂xk

dx.
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Отсюда в силу непрерывности вложения W 1
1 (Ω) ⊂ L3/2(Ω) получаем:

λ

n∑

i,j=1

∫

Ω

(Δ−1
α v)ivj

∂Δvj
∂xi

dx = λ

n∑

i,j,k=1

∫

Ω

∂(Δ−1
α v)i
∂xk

∂vj
∂xi

∂vi
∂xk

dx �

�
n∑

i,j,k=1

⎛

⎝

∫

Ω

∣
∣
∣
∣
∂(Δ−1

α v)i
∂xk

∣
∣
∣
∣

3

dx

⎞

⎠

1/3⎛

⎝

∫

Ω

∣
∣
∣
∣
∂vj
∂xi

∣
∣
∣
∣

3

dx

⎞

⎠

1/3⎛

⎝

∫

Ω

∣
∣
∣
∣
∂vi
∂xk

∣
∣
∣
∣

3

dx

⎞

⎠

1/3

� ‖∇v‖3L3(Ω) =

= ‖|∇v|2‖3/2L3/2(Ω) � C‖∇|∇v|2‖3/2L1(Ω) � C‖∇2v‖3/2L2(Ω) · ‖∇v‖
3/2
L2(Ω) �

3μ

4
‖v‖2V 2 +

C4

4μ3
‖v‖6V 1 .

Далее рассмотрим следующее слагаемое:

−λτ∗
n∑

i,j=1

∫

Ω

Eij(v)
max{δ, |E(v)|} Eij(Δv)dx = −λτ∗

n∑

i,j,k=1

∫

Ω

Eij(v)
max{δ, |E(v)|}

∂2

∂x2k
Eij(v)dx =

= λτ∗
n∑

i,j,k=1

∫

Ω

∂

∂xk

Eij(v)
max{δ, |E(v)|}

∂

∂xk
Eij(v)dx.

Дифференцируя функцию
Eij(v)

max{δ, |E(v)|} как сложную функцию от E(v) (суперпозицию функ-

ции f(x) =
x

max{δ, x} и функции g(v) = E(v)), получим:

λτ∗
n∑

i,j,k=1

∫

Ω

∂

∂xk

Eij(v)
max{δ, |E(v)|}

∂Eij(v)
∂xk

dx = λτ∗
n∑

i,j,k,p,q=1

∫

Ω

∂

∂Epq
Eij(v)

max{δ, |E(v)|}
∂Epq(v)
∂xk

∂Eij(v)
∂xk

dx.

Рассмотрим два случая. Первый случай δ � |E(v)|:

λτ∗
n∑

i,j,k,p,q=1

∫

Ω

∂

∂Epq
Eij(v)

max{δ, |E(v)|}
∂Epq(v)
∂xk

∂Eij(v)
∂xk

dx =
λτ∗

δ

n∑

i,j,k,p,q=1

∫

Ω

∂Eij(v)
∂Epq

∂Epq(v)
∂xk

∂Eij(v)
∂xk

dx =

=
λτ∗

δ

n∑

i,j,k,p,q=1

∫

Ω

δijpq
∂

∂xk
Epq(v) ∂

∂xk
Eij(v)dx =

λτ∗

δ
‖∇E(v)‖2L2(Ω) � 0.

Второй случай δ � |E(v)|:

λτ∗
n∑

i,j,k,p,q=1

∫

Ω

∂

∂Epq
Eij(v)

max{δ, |E(v)|}
∂Epq(v)
∂xk

∂Eij(v)
∂xk

dx =

= λτ∗
n∑

i,j,k,p,q=1

∫

Ω

∂

∂Epq
Eij(v)
|E(v)|

∂Epq(v)
∂xk

∂Eij(v)
∂xk

dx =

= λτ∗
n∑

i,j,k,p,q=1

∫

Ω

1

|E(v)|
(

δijpq −
EijEpq
|E(v)|2

)
∂Epq(v)
∂xk

∂Eij(v)
∂xk

dx � 0.

В итоге получим:

λτ∗
n∑

i,j=1

∫

Ω

Eij(v)
max{δ, |E(v)|} Eij(Δv)dx � 0.

Таким образом, получаем оценку

1

2

d

dt
‖v‖2V 1 + μ‖v‖2V 2 + δ‖v‖2V 4 � 3μ

4
‖v‖2V 2 +

C4

4μ3
‖v‖6V 1 +

μ

8
‖v‖2V 2 +

2‖f‖2V 0

μ
;

1

2

d

dt
‖v‖2V 1 +

μ

8
‖v‖2V 2 � 2

μ
‖f‖2V 0 +

C4

4μ3
‖v‖6V 1 . (4.8)
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Разделим это неравенство на (1 + ‖v‖2V 1)
2. Получим:

1

2

d
dt‖v‖2V 1

(1 + ‖v‖2
V 1)2

+
μ

8

‖v‖2V 2

(1 + ‖v‖2
V 1)2

� 2

μ

‖f‖2V 0

(1 + ‖v‖2
V 1)2

+
C4

4μ3
‖v‖6V 1

(1 + ‖v‖2
V 1)2

.

Так как
‖f‖2V 0

(1 + ‖v‖2
V 1)2

� ‖f‖2V 0 и
‖v‖6V 1

(1 + ‖v‖2
V 1)2

�
‖v‖2V 1‖v‖4V 1

(1 + ‖v‖2
V 1)2

� ‖v‖2V 1 , то полученное неравен-

ство можно переписать в виде:

1

2

d
dt‖v(t)‖2V 1

(1 + ‖v(t)‖2
V 1)2

+
μ

8

‖v(t)‖2V 2

(1 + ‖v(t)‖2
V 1)2

� 2

μ
‖f‖2V 0 +

C4

4μ3
‖v‖2V 1 .

Проинтегрируем последнее неравенство по t от 0 до T :

1

2

T∫

0

d
dt‖v(t)‖2V 1

(1 + ‖v(t)‖2
V 1)2

dt+
μ

8

T∫

0

‖v(t)‖2V 2

(1 + ‖v(t)‖2
V 1)2

dt � 2

μ

T∫

0

‖f(t)‖2V 0dt+
C4

4μ3

T∫

0

‖v(t)‖2V 1dt �

� 2

μ
‖f‖2L2(0,T ;V −1) +

C4

4μ2

(
1

μ2
‖f‖2L2(0,T ;V −1) +

1

μ
‖v(t)‖2V 0

)

.

Воспользуемся тем, что
1

2

1

(1 + ‖v(T )‖2
V 1)2

� 1

2
и

1

2

T∫

0

d
dt‖v(t)‖2V 1

(1 + ‖v(t)‖2
V 1)2

dt = −1

2

(
1

(1 + ‖v(T )‖2
V 1)2

− 1

(1 + ‖v(0)‖2
V 1)2

)

=

=
1

2

1

(1 + ‖v(0)‖2
V 1)2

− 1

2

1

(1 + ‖v(T )‖2
V 1)2

.

Получим неравенство
T∫

0

‖v(t)‖2V 2

(1 + ‖v(t)‖2
V 1)2

dt � C, (4.9)

где C =
8

μ

(
2

μ
‖f‖2L2(0,T ;V −1) +

C4

4μ2

(
1

μ
‖f‖2L2(0,T ;V −1) + ‖v0‖2V 0

)

+ 1

)

.

Теперь выберем r, p, q так, чтобы: q ∈
(
0,

1

2

)
, r =

2

1 + 2q
, а p =

2

r(1− q)
, 1 =

1

p
+

1

p′
. По

интерполяционному неравенству и неравенству Гельдера получаем:

T∫

0

‖v‖r
W 1+q

2

dx �
T∫

0

‖v‖qr
W 2

2
‖v‖r(1−q)

W 2
2

dx �

⎛

⎝

T∫

0

‖v‖rp(1−q)

W 2
2

dx

⎞

⎠

1/p⎛

⎝

T∫

0

‖v‖qr′r
W 2

2
dx

⎞

⎠

1/p′

.

Рассмотрев коэффициенты так, что rp(1− q) = 2 и rqp′ =
2

3
, получим:

T∫

0

‖v‖
2
3

W 2
2
dx � C

⎛

⎝

T∫

0

‖v‖2V 2

(1 + ‖v(s)‖2
V 1)2

ds

⎞

⎠

1/3⎛

⎝

T∫

0

(1 + ‖v‖2V 2)ds

⎞

⎠

2/3

.

Первый множитель ограничен вследствие (4.9), второй из-за (4.8). Отсюда получаем оценку:

‖v‖Lr(0,T ;W 1+q
2 ) � C.

Для получения оценок (4.6) и (4.7) заметим, что если v является решением операторного урав-
нения (3.1), то имеет место равенство:

v′ + δA3v + μAv = −λBδ(v) + λK(v) + λf.

Следовательно:

‖v′ + δA3v + μAv‖L2(0,T ;V −2) = ‖ − λBδ(v) + λK(v) + λf‖L2(0,T ;V −2). (4.10)
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В силу неравенства (3.8), левую часть можно оценить следующим образом:

δ‖v‖L2(0,T ;V 4) �
√
2δ + 1

(‖v0‖V 1 + ‖v′ + δA3v + μA‖L2(0,T ;V 2)

)
,

откуда

‖v′ + δA3v + μA‖L2(0,T ;V −2) �
δ√

2δ + 1
‖v‖L2(0,T ;V 4) − ‖v0‖V 1 .

Правую часть (4.10) в силу неравенств (3.3), (3.7) можно оценить следующим образом:

‖ − λBδ(v) + λK(v) + λf‖L2(0,T ;V −2) � λ‖Bδ(v)‖L2(0,T ;V −2) + λ‖K(v)‖L2(0,T ;V −2)+

+λ‖f‖L2(0,T ;V −2) � ‖Bδ(v)‖L2(0,T ;V −2) + ‖K(v)‖L2(0,T ;V −2) + ‖f‖L2(0,T ;V −2) � C + C‖v‖L∞(0,T ;V 0)+

+‖v‖L2(0,T ;V 1) + C‖f‖L2(0,T ;V 0) � C +
C√
μ

(
C‖f‖2L2(0,T ;V −1)

μ
+ ‖v0‖2V 0

)

+ C‖f‖L2(0,T ;V −1).

Следовательно,

δ√
2δ + 1

‖v‖L2(0,T ;V 4) � C +
C√
μ

(

C
‖f‖2L2(0,T ;V −1)

μ
+ ‖v0‖2V 0

)

+ C‖f‖L2(0,T ;V −1) + |v0‖V 1 .

Умножая последнее неравенство на
√
2δ + 1, получим

δ‖v‖L2(0,T ;V 4) �
√
2δ + 1

(

C +
C√
μ

(

C
‖f‖2L2(0,T ;V −1)

μ
+ ‖v0‖2V 0

)

+ C‖f‖L2(0,T ;V −1) + ‖v0‖V 1

)

�

�
√
3

(

C +
C√
μ

(

C
‖f‖2L2(0,T ;V −1)

μ
+ ‖v0‖2V 0

)

+ C‖f‖L2(0,T ;V −1) + ‖v0‖V 1

)

.

Здесь мы воспользовались тем, что δ � 1. Обозначив последнюю часть неравенства через C,
мы получаем требуемое неравенство (4.6).

Аналогично v′ = −δA3v − μAv − λBδ(v) + λK(v) + λf. Отсюда

‖v′‖L2(0,T ;V −2) = ‖ − δA3v − μAv − λBδ(v) + λK(v) + λf‖L2(0,T ;V −2) � δ‖v‖L2(0,T ;V 4) +

+ μC‖v‖L2(0,T ;V 1) + C +
C√
μ

(
C‖f‖2L2(0,T ;V −1)

μ
+ ‖v0‖2V 0

)

+ C‖f‖L2(0,T ;V −1) �

� C + μC

√
C

μ
‖f‖2

L2(0,T ;V −1)
+ ‖v0‖2V 0 +

C√
μ

(
C‖f‖2L2(0,T ;V −1)

μ
+ ‖v0‖2V 0

)

.

Обозначив правую часть последнего неравенства через C, мы получим требуемую оценку
на (4.7). Отметим, что константа C в этой оценке не зависит от δ.

5. Доказательство существования решений аппроксимационной задачи

Теперь мы готовы сформулировать теорему о существовании решений операторного уравне-
ния (3.1). Для ее доказательства будет использоваться теория топологической степени Лере—
Шаудера для вполне непрерывных векторных полей.

Теорема 5.1. Для операторного уравнения (3.1) существует хотя бы одно решение v ∈W2.

Доказательство. По теореме 4.1 все решения семейства операторных уравнений (4.2) удовлетво-
ряют априорным оценкам (4.6) и (4.7). Из оценок (4.6) и (4.7) следует, что ‖v‖W2 � C, где C > 0—
некоторая постоянная. Тогда все решения операторного уравнения лежат в шаре BR ⊂W2 с цен-
тром в нуле и радиусом R = C + 1.

По лемме 3.4 оператор L : W2 → L2(0, T ;V
−2)×V 1 непрерывно обратим, тогда ни одно решение

семейства уравнений (4.2) не принадлежит границе того же шара BR.
В силу лемм 3.2, 3.3, 3.4 и доказанных свойств операторов K(v), Bδ , N(v), оператор I −

λL−1((f, v0)−N(v)) : L2(0, T ;V
−2)× V 1 →W2 является вполне непрерывным.
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Таким образом, вполне непрерывное векторное поле v− λL−1((f, v0)−N(v)) не вырождено на
границе шара BR, а значит, для этого векторного поля определена степень Лере—Шаудера

degLS(I − λL−1((f, v0)−N(v)), BR, 0).

По свойствам гомотопической инвариантности и нормировки степени получаем, что

degLS(I − L−1((f, v0)−N(v)), BR, 0) = degLS(I,BR, 0) = 1.

Так как эта степень отлична от нуля, то существует хотя бы одно решение v ∈W2 операторного
уравнения (3.1). Таким образом, из вышеприведенных рассуждений следует, что аппроксимаци-
онная задача 3.1 имеет хотя бы одно решение v ∈W2.

6. Предельный переход

В этом разделе мы перейдем в аппроксимационной задаче 3.1 к пределу при δ → 0. Тем самым
будет доказана теорема 2.1.

В силу теоремы 5.1 для каждого δ > 0 существует решение аппроксимационной задачи 3.1. То
есть существует v ∈W2, которая для любого ϕ ∈ V 2 удовлетворяет интегральному равенству

〈v′δ, ϕ〉 −
n∑

i,j=1

∫

Ω

(Δ−1
α vδ)i(vδ)j

∂ϕj

∂xi
dx+ μ

∫

Ω

∇vδ : ∇ϕdx+ τ∗
n∑

i,j=1

∫

Ω

Eij(vδ)Eij(ϕ)
max{δ, |E(vδ)|}dx+

+ δ

∫

Ω

A2vδAϕdx =

∫

Ω

fδϕdx

и начальному условию vδ(0) = v0.
В силу априорных оценок (4.3)–(4.7) имеют место следующие сходимости:

vδ → v слабо в L2(0, T ;V
1); vδ → v сильно в L2(0, T ;L4(Ω));

vδ → v сильно в Lr(0, T ;V
1); v′δ → v′ слабо в L2(0, T ;V

−2);

δvδ → u слабо в L2(0, T ;V
4).

Из указанных сходимостей и в силу непрерывности оператора Δ−1
α : L2(0, T ;V

1) → L2(0, T ;V
3)

получим, что:

〈v′δ, ϕ〉 → 〈v, ϕ〉 при δ → 0;
n∑

i,j=1

∫

Ω

(Δ−1
α vδ)i(vδ)j

∂ϕj

∂xi
dx→

n∑

i,j=1

∫

Ω

(Δ−1
α v)ivj

∂ϕj

∂xi
dx при δ → 0;

μ

∫

Ω

∇vδ : ∇ϕdx→ μ

∫

Ω

∇v : ∇ϕdx при δ → 0;

δ

∫

Ω

A2vAϕdx →
∫

Ω

A2wAϕdx при δ → 0.

Однако в смысле распределений δA2v сходится к нулю. Отсюда, в силу единственности преде-
ла, w = 0.

Далее, так как
Eij(vδ)

max{δ, |E(vδ)|} ограничено сверху константой, не зависящей от δ, то это выра-

жение сходится к некоторой функции w слабо, например, в Lp(0, T ;Lp(Ω)) для любого 1 < p <∞.
Покажем теперь, что на самом деле

μ

∫

Ω

∇vδ : ∇ϕdx+
n∑

i,j=1

∫

Ω

Eij(vδ)Eij(ϕ)
max{δ, |E(vδ)|}dx→

∫

Ω

σ : E(ϕ)dx

при δ → 0 для функции σ ∈ L2(0, T ;L2(Ω), удовлетворяющей при почти всех (t, x) ∈ [0, T ] × Ω
реологическому соотношению (1.4).
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Для этого введем последовательность функций

σδ = 2μE(vδ) + τ∗E(vδ)
max{δ, |E(vδ)|}

и покажем, что она сходится в некотором смысле к функции σ = 2μE(v) + τ∗

|E(v)|E(v).
В силу поточечной сходимости имеем, что при E(vδ) �= 0 последовательность σδ → σ.
Рассмотрим множество A = {[0, T ]×Ω}∩{|E(v)| = 0}∩{|σ| > τ∗} и предположим, что mes A =

m > 0. Определим QT = [0, T ]× Ω:

χij =
σij
|σ| 1A ∈ L∞(QT ), Iδ =

∫

QT

σδijχijdxdt, I =

∫

QT

σijχijdxdt.

Обозначим v0 = I − mτ∗ и заметим, что v0 > 0. Так как Iδ → I (в силу слабой сходимости
σδ → σ), то существует такое δ0, что для любого δ < δ0 выполнено Iδ >

v0
2

+mτ∗. Обозначим

δ1 = min
{
δ0,

v0
24μ|Q|

}
. Разделим A на три подобласти:

A1 = Q ∩ {|E(vδ)| � δ}, A2 = Q ∩ {δ < |E(vδ)| � δ1}, A3 = Q ∩ {|E(vδ)| > δ1}.

Разобьем интеграл Iδ на три части Iδ =
3∑

k=1

∫

Ak

σ : χdx =
3∑

k=1

Ik и рассмотрим их по отдельности:

I1 =

∫

A1

(

2μ+
τ∗

δ

)

E(vδ) : χdxdt, |I1| � 2μδ1mes Q+ τ∗mes A1 ∩A,

I2 =

∫

A2

(

2μ +
τ∗

|E(v)|
)

E(vδ) : χdxdt, |I2| � 2μδ1mes Q+ τ∗mes A2 ∩A,

I3 =

∫

A3

σδ : χdxdt, |I3| � C(1 + ‖vδ‖V 1)I(δ1, δ),

где I(δ1, δ) = (mes(A ∩A3))
1/2.

Заметим, что Iδ >
v0
2

+ μτ∗ и |Iδ| �
∑

k

|Ik|, получим

v0
2

+ μτ∗ < |Iδ| � 4μδ1mes Q+ CI(δ1, δ) +mτ∗ � CI(δ1, δ) +mτ∗ +
v0
6
.

Получили противоречие с тем, что I(δ1, δ) → 0 при δ → 0, что следует из того, что |E(vδ)| → 0
почти всюду на A, следовательно, |E(vδ)| → 0 по мере. Итак, |σ| � τ∗ при |E(v)| = 0.

Положим B = QT ∩ {E(v) �= 0}. В силу выбора σδ имеем, что σδ → σ почти всюду на B. Для
любого измеримого множества Q′ ⊂ QT и χij ∈ L∞(QT ) такого, что χij |QT \B = 0, имеем

∣
∣
∣
∣
∣
∣
∣

∫

Q′

σδ : χdxdt

∣
∣
∣
∣
∣
∣
∣

� ‖χ‖L∞(QT )(mes(Q′))1/2(1 + ‖vδ‖L2(0,T ;V 1)).

Следовательно, по теореме Витали
∫

B

σδ : χdxdt→
∫

B

σ : χdxdt.

С другой стороны, σδ → σ слабо в L2(QT ). Отсюда и следует выполнение реологического
соотношения при |E(v)| �= 0.
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Таким образом, переходя к пределу при δ → 0 в каждом из интегралов, получим, что пара
(v, σ) удовлетворяет при почти всех t ∈ (0, T ) для любого ϕ ∈ V 2 равенству

〈v′, ϕ〉 −
n∑

i,j=1

∫

Ω

(Δ−1
α v)ivj

∂ϕj

∂xi
dx+

∫

Ω

σ : E(ϕ)dx =

∫

Ω

fϕdx,

и реологическому соотношению

σ =

⎧
⎨

⎩

2μE(v) + τ∗
E(v)
|E(v)| , если |E(v)| �= 0,

|σ| � τ∗, если |E(v)| = 0.

Это и завершает доказательство теоремы 2.1.

7. Сходимость решений при α→ 0

В данном разделе рассмотрим вопрос сходимости решений альфа-модели Бингама. Поскольку
при α = 0 рассматриваемая модель должна совпадать с исходной моделью Бингама, естественно
ожидать и сходимости решений альфа-модели к решениям исходной модели при α → 0. Прежде
чем непосредственно перейти к исследованию данного вопроса, мы введем необходимые понятия.
Рассмотрим следующую начально-краевую задачу, соответствующую исходной модели Бингама:

∂v

∂t
+

n∑

i=1

vi
∂v

∂xi
+∇p−Div σ = f, (7.1)

σ =

⎧
⎨

⎩

2μE(v) + τ∗
E(v)
|E(v)| , если |E(v)| �= 0,

|σ| � τ∗, если |E(v)| = 0,
(7.2)

div v(t, x) = 0, v|∂Ω = 0, v|t=0 = v0. (7.3)

Пусть f ∈ L2(0, T ;V
−1) и v0 ∈ V 1. Сформулируем определение слабого решения для начально-

краевой задачи (7.1)–(7.3).

Определение 7.1. Пара функций (v, σ) ∈W1 × L2(0, T ;L2(Ω)) называется слабым решением
начально-краевой задачи (7.1)–(7.3) для альфа-модели Бингама, если для всех ϕ ∈ V 1 и почти
всех t ∈ (0, T ) она удовлетворяет равенству

〈v′, ϕ〉 −
n∑

i,j=1

∫

Ω

vivj
∂ϕj

∂xi
dx+

∫

Ω

σ : E(ϕ)dx =

∫

Ω

fϕdx,

а также реологическому соотношению (7.2) и начальному условию v|t=0 = v0.

Таким образом, в силу теоремы 2.1 при каждом фиксированном α задача (1.3)–(1.7) имеет
слабое решение. Основная цель данного раздела — изучить сходимость слабых решений зада-
чи (1.3)–(1.7) к слабым решениям задачи (7.1)–(7.3) при α → 0. Для этого рассмотрим последо-
вательность чисел αm таких, что αm → 0 при m → ∞, и еще одно семейство вспомогательных
задач, зависящих от параметра αm:

∂vm

∂t
+

n∑

i=1

umi
∂vm

∂xi
+∇p−Div σm = f, (7.4)

σm =

⎧
⎨

⎩

2μE(vm) + τ∗
E(vm)

|E(vm)| , если |E(vm)| �= 0,

|σm| � τ∗, если |E(vm)| = 0,
(7.5)

um = (I − α2
mΔ)−1vm, (7.6)

div vm = 0, vm|∂Ω = 0, vm|t=0 = v0. (7.7)
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По доказанной теореме 2.1 при каждом αm существует слабое решение (vm, σm) вспомогатель-
ной задачи (7.4)–(7.7). Тогда для всех ϕ ∈ V 2 при почти всех t ∈ (0, T ) имеет место равенство

〈(vm)′, ϕ〉 −
n∑

i,j=1

∫

Ω

(Δ−1
α v)mi v

m
j

∂ϕi

∂xj
dx+

∫

Ω

σm : E(ϕ)dx =

∫

Ω

fϕdx. (7.8)

В предельном переходе (пункт 6) при доказательстве теоремы 2.1 получаем, что полученное
решение v задачи (1.3)–(1.7) удовлетворяет оценкам (4.3), (4.4), (4.7), из которых следует, что
при m→ ∞

vm → v∗ слабо в L2(0, T ;V
1), vm → v∗ слабо в L∞(0, T ;V 0),

(vm)′ → (v∗)′ слабо в L4/3(0, T ;V
−1).

Используя эти сходимости, перейдем к пределу в равенстве (7.8). Рассмотрим отдельно слага-
емое с оператором K.

|〈K(vm), ϕ〉 − 〈K(v∗), ϕ〉| =
∣
∣
∣
∣
∣
∣

∫

Ω

n∑

i,j=1

umi v
m
j

∂ϕj

∂xi
dx−

∫

Ω

n∑

i,j=1

v∗i v
∗
j

∂ϕj

∂xi
dx

∣
∣
∣
∣
∣
∣
=

=

∣
∣
∣
∣
∣
∣

∫

Ω

n∑

i,j=1

(
(umi − vmi )vmj + (vmi − v∗i )v

m
j + (vmj − v∗j )v

∗
i

)∂ϕj

∂xi
dx

∣
∣
∣
∣
∣
∣
�

�

∣
∣
∣
∣
∣
∣

∫

Ω

n∑

i,j=1

(umi − umi + α2
mΔumi )vmj

∂ϕj

∂xi
dx

∣
∣
∣
∣
∣
∣
+

+

∣
∣
∣
∣
∣
∣

∫

Ω

n∑

i,j=1

(vmi − v∗i )v
m
j

∂ϕj

∂xi
dx
∣
∣
∣+
∣
∣
∣

∫

Ω

n∑

i,j=1

(vmj − v∗j )v
∗
i

∂ϕj

∂xi
dx

∣
∣
∣
∣
∣
∣
.

Отдельно оценим каждое слагаемое. Используя неравенство Гельдера, а также непрерывность
вложения V 1 ⊂ L4(Ω), для всех ϕ ∈ V 2 получим

∣
∣
∣
∣
∣
∣

∫

Ω

n∑

i,j=1

α2
mΔumi v

m
j

∂ϕj

∂xi
dx

∣
∣
∣
∣
∣
∣
� αm

n∑

i,j=1

⎛

⎝

∫

Ω

|αmΔumi |2dx
⎞

⎠

1/2⎛

⎝

∫

Ω

∣
∣
∣
∣v

m
j

∂ϕj

∂xi

∣
∣
∣
∣

2

dx

⎞

⎠

1/2

�

� αm

n∑

i,j=1

‖αmΔumi ‖L2(Ω)‖vmj ‖L4(Ω)

∥
∥
∥
∥
∂ϕj

∂xi

∥
∥
∥
∥
L4(Ω)

� Cαm

n∑

i,j=1

‖αmΔumi ‖L2(Ω)‖vmj ‖V 1

∥
∥
∥
∥
∂ϕj

∂xi

∥
∥
∥
∥
V 1

�

� Cαm‖αmΔum‖L2(Ω)‖vm‖V 1‖ϕ‖V 2 .

Остальные слагаемые оцениваются аналогичным образом. Таким образом,

|〈K(vm), ϕ〉 − 〈K(v∗), ϕ〉| � C
(
αm‖αmΔum‖L2(Ω)‖vm‖V 1‖ϕ‖V 2 + ‖vm − v∗‖L4(Ω)‖vm‖L4(Ω)‖ϕ‖V 1 +

+ ‖vm − v∗‖L4(Ω)‖v∗‖L4(Ω)‖ϕ‖V 1

)
� C

(
αm‖αmΔum‖L2(Ω)‖vm‖V 1 + ‖vm − v∗‖L4(Ω)‖vm‖V 1 +

+ ‖vm − v∗‖L4(Ω)‖v∗‖V 1

)‖ϕ‖V 2 .

Следовательно,

‖K(vm)−K(v∗)‖V −2 � C
(
αm‖αmΔum‖L2(Ω)‖vm‖V 1 +

+ ‖vm − v∗‖L4(Ω)‖vm‖V 1 + ‖vm − v∗‖L4(Ω)‖v∗‖V 1

)
.

Проинтегрируем обе части последнего неравенства по t в пределах от 0 до T. Применив нера-
венство Гельдера, заключаем, что

T∫

0

‖K(vm)−K(v∗)‖V −2dt � αmC

T∫

0

‖αmΔum‖L2(Ω)‖vm‖V 1dt+ C

T∫

0

‖vm − v∗‖L4(Ω)‖vm‖V 2dt+
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+ C

T∫

0

‖vm − v∗‖L4(Ω)‖v∗‖V 1dt � αmC

⎛

⎝

T∫

0

‖αmΔum‖2L2(Ω)dt

⎞

⎠

1/2⎛

⎝

T∫

0

‖vm‖2V 1dt

⎞

⎠

1/2

+

+C‖vm − v∗‖L2(0,T ;L4(Ω))‖vm‖L2(0,T ;V 1) + C‖vm − v∗‖L2(0,T ;L4(Ω))‖v∗‖L2(0,T ;V 1). (7.9)

Так как vm → v∗ слабо в L2(0, T ;V
1) и (vm)′ → (v∗)′ слабо в L4/3(0, T ;V

−1), то в силу тео-
ремы Обена—Симона [26] vm → v∗ сильно в L2(0, T ;L4(Ω)). Таким образом, получаем, что два
слагаемых в неравенстве (7.9) стремятся к нулю. Напомним, что

‖v‖2V 1 = ‖u− α2Δu‖2V 1 = ‖u‖2V 1 + 2‖α∇u‖2L2(Ω) + α4‖Δu‖2L2(Ω).

Поэтому
T∫

0

‖αΔu‖2L2(Ω)dt �
1

2

T∫

0

‖v‖2V 1dt �
C

2
(‖f‖2L2(0,T ;V −1) + 1). (7.10)

Таким образом, в силу неравенств (7.9) и (7.10), а также указанных сходимостей, получим
T∫

0

‖K(vm)−K(v∗)‖V −2dt � αm
C

2
(‖f‖2L2(0,T ;V −1) + 1) → 0

при αm → 0. Следовательно, K(vm) → K(v∗) сильно в L1(0, T ;V
−2), а значит, и в пространстве

D′(0, T ;V −2).
Для установления сходимостей в остальных слагаемых равенства (7.8) мы полностью повторим

рассуждения, которые были проведены при доказательстве предельного перехода в предыдущем
разделе. Все эти слагаемые сходятся в пространстве L4/3(0, T ;V

−1), а значит, и в пространстве
D′(0, T ;V −2).

Таким образом, переходя в равенстве (7.8) к пределу при m → ∞ получим, что предельные
функции v∗ и σ∗ удовлетворяют равенству

〈(v∗)′, ϕ〉 −
∫

Ω

n∑

i,j=1

v∗i v
∗
j

∂ϕj

∂xi
dx+

∫

Ω

σ∗ : E(ϕ)dx = 〈f, ϕ〉.

Следовательно, пара (v∗, σ∗) согласно определению 7.1 является слабым решением начально-
краевой задачи (7.1)–(7.3) для пробной функции ϕ ∈ V 2. Однако, заметим, что функция v∗ в
силу полученных сходимостей удовлетворяет оценкам (4.3), (4.4), (4.7). Следовательно, каждое
слагаемое последнего равенства выполнено и для произвольной пробной функции ϕ ∈ V 1. Та-
ким образом, доказана сходимость слабых решений альфа-модели (7.4)–(7.7) к слабым решениям
начально-краевой задачи (7.1)–(7.3). Теорема 2.2 доказана.
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Аннотация. В данной работе обсуждаются некоторые особенности краевой задачи для системы
уравнений в частных производных, описывающей рост насыпи песка в контейнере под действи-
ем вертикального источника. В частности, характеризуется долговременное поведение профилей
поверхности и приводится достаточное условие на вертикальный источник, гарантирующее схо-
димость к равновесию за конечное время. На контрпримерах показано, что устойчивая конфигу-
рация может не достигаться за конечное время, вообще говоря, даже если источник не зависит
от времени. Наконец, дается полная характеристика равновесных профилей поверхности.
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1. Введение

Со времени работы [12] вариационный подход к изучению растущих песчаных насыпей за-
рекомендовал себя как эффективный способ описания макроскопического поведения сыпучих
материалов. В этих моделях сложная динамика течения сыпучих материалов упрощается путём
разделения материала на статический нижний слой (стоя́щий слой), содержащий бо́льшую часть
насыпи, и текучий, динамичный верхний слой (скользящий слой). Этот подход особенно эф-
фективен для моделирования эволюции песчаной насыпи по мере добавления нового материала
(см. [3, 10]).
Нас интересует эволюция песчаной насыпи, растущей в ограниченном контейнере (бункере) под

действием вертикального источника. Контейнер имеет плоское основание Ω ⊂ R
2 и вертикальные

стенки, высота которых задаётся функцией φ : ∂Ω → [0,+∞[. Вертикальный источник, который
предполагается не зависящим от времени, моделируется функцией f : Ω → [0,+∞[. В каждый мо-
мент времени t � 0 форма песчаной насыпи (т. е. профиль стоящего слоя) описывается графиком
функции u(t, ·), где u : R+ ×Ω → R. Обозначим через u0 начальный профиль насыпи. Ключевой
особенностью сыпучего материала является существование критического угла наклона, который
не может быть превышен стоящим слоем. Далее мы нормализуем критический уклон к единице
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и, следовательно, накладываем ограничение |∇u| � 1 на пространственный градиент u. Толщина
слоя скатывания определяется выражением v : R+ ×Ω → [0,+∞[, и предполагается, что матери-
ал, выбрасываемый источником, скатывается вниз только при попадании в точки с критическим
уклоном, т. е. (1 − |∇u|)v = 0 в R

+ × Ω. Когда профиль достигает вершины стенки (т. е. в тех
точках ∂Ω, где u = φ), песок, скользящий из слоя скатывания, стекает вниз. Поэтому мы вводим
третью переменную в нашей задаче: неотрицательную меру ν на ∂Ω, описывающую количество
песка, стекающего в каждой точке границы. Предполагая, что материал катится вдоль направле-
ний наискорейшего спуска, закон сохранения массы можно записать как ∂tu− div(v∇u) = f − ν.
Подводя итог, можно сказать, что для заданного бункера (Ω, φ) и вертикального источника f

динамика соответствующей растущей насыпи песка описывается триплетом (u, v, ν), удовлетво-
ряющим следующей системе уравнений в частных производных с ограничениями:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tu− div(v∇u) = f − ν в R
+ × R

N ,

|∇u| � 1, v � 0, (1− |∇u|)v = 0 в R
+ × Ω,

0 � u(t, x) � φ(x) ∀t � 0, x ∈ ∂Ω,

u(t, x) = φ(x) для ν-п.в. (t, x) ∈ R
+ × ∂Ω,

u(0, ·) = u0.

(1.1)

Точное определение решения задачи (1.1) будет дано в начале раздела 2. Поскольку анализ
можно провести в пространстве любой размерности N � 1, в приведенной выше задаче и далее мы
будем предполагать, что Ω— открытое ограниченное выпуклое подмножество RN . Более того, для
упрощения изложения мы будем предполагать, что u0 = 0, т. е. эволюция начинается с пустого
бункера. Тем не менее, мы будем рассматривать возможно ненулевые начальные данные при
анализе связанного вариационного неравенства для компоненты u (см. предложение 2.1), что,
в свою очередь, будет полезно для изучения стационарных решений задачи (2.2), т. е. решений
(u, v, ν) задачи

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− div(v∇u) = f − ν в R
N ,

|∇u| � 1, v � 0, (1− |∇u|)v = 0 п.в. в Ω,

0 � u � φ на ∂Ω,
u(x) = φ(x) для ν-п.в. x ∈ ∂Ω.

Как мы покажем в разделе 4, указанную выше задачу можно сформулировать и без явного
указания граничной меры ν, а только в терминах её носителя Γf , который можно явно построить
(см. (2.4)). В этом контексте мы можем опираться на хорошо известные результаты, касающиеся
явной характеризации решений (см. [2, 4–9]). Более точно, в [2] был рассмотрен случай задачи
открытого стола (т. е. φ = 0) с регулярной границей, который впоследствии был обобщён на
анизотропный случай в [5, 6] (см. также [7] о применении той же вариационной задачи к макро-
скопической электродинамике анизотропных жёстких сверхпроводников). В [4] был исследован
случай частично открытого контейнера, т. е. φ = 0 на части границы и φ = +∞ на оставшей-
ся части. В [8] нами была исследована задача о подносе, соответствующая граничным данным
φ, достигнутым профилем на всей границе. Наконец, общая задача о бункере, рассмотренная в
разделе 4, была изучена в [9].

Статья устроенная следующим образом.
В разделе 2 мы формулируем предположения относительно Ω, φ и f, которые гарантируют

существование решения задачи (1.1) (его N -мерной слабой формулировки), как доказано в [10].
Раздел 3 посвящен асимптотическому поведению формы насыпи. Мы показываем, что решение

u(t, ·) сходится при t → +∞ к пределу u∞ (см. теорему 3.2). После явных вычислений приме-
ров 3.1 и 3.2 мы обсуждаем условия его сходимости за конечное время, формулируя предполо-
жение и доказывая результат в этом направлении (см. предположение 3.1 и теорему 3.3).
В разделе 4 мы показываем, что u∞ является компонентой u стационарного решения зада-

чи (1.1) (см. теорему 4.3). Этот результат, по сути, основан на тщательном анализе стационарной
задачи, проведённом в [9].
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Обозначения.
• Евклидова норма вектора ξ ∈ R

N обозначается как |ξ|.
• Для множества E ⊆ R

N через χE обозначим характеристическую функцию E, т. е.

χE(x) =

{
1, если x ∈ E,

0, если x 	∈ E.

• Для любого E ⊂ R
N мы обозначим через M(E) множество ограниченных борелевских мер,

сосредоточенных на E, а через M+(E)—множество неотрицательных мер в M(E).
• Для μ ∈ L∞(0, T ;M(E)) положим μt = μ(t, ·).
• Для функции u = u(t, x) через ∂tu и ∇u обозначим соответственно производную по времени
и пространственную часть градиента.

• Для любого открытого множества A через C∞
c (A) обозначим множество гладких функций с

компактным носителем в A, а через D′(A)— его топологически двойственное, т. е. множество
распределений на A.

• Lip1(A)—множество липшицевых функций в A с константой Липшица 1, т. е.

Lip1(A) =
{
u : A→ R : u(x)− u(y) � |x− y|, ∀x, y ∈ A

}
.

• L1
+(A)—множество неотрицательных функций из L1(A).

• Для f ∈ L1
+(A) под supp(f) ⊆ A будем понимать существенный носитель f как функции,

расширенной в R
N путём продолжения нулём на R

N \ A.

2. Эволюционная задача

Зафиксируем целое число N � 1, а также:
(D1) непустое открытое выпуклое ограниченное множество Ω ⊂ R

N ;
(D2) полунепрерывную снизу функцию φ : ∂Ω → [0,+∞[;
(D3) неотрицательную интегрируемую функцию f ∈ L1

+(Ω).

Введём выпуклое множество допустимых профилей

Xφ :=
{
u ∈ Lip1(Ω): u � 0 в Ω, u � φ на ∂Ω

}
, (2.1)

и рассмотрим эволюционную задачу (1.1) с предыдущими данными и начальным профилем
u0 = 0. Точнее, будем говорить, что (u, v, ν) является решением системы

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tu− div(v∇u) = f − ν в R
+ × R

N ,

|∇u| � 1, v � 0, (1− |∇u|)v = 0 в R
+ × Ω,

0 � u � φ в R
+ × ∂Ω,

u = φ ν-п.в. в R
+ × ∂Ω,

u(0, ·) = 0,

(2.2)

если для каждого T > 0

(S1) u ∈ L∞(0, T ;W 1,∞(Ω)), ∂tu ∈ L2(]0, T [×Ω), u(t, ·) ∈ Xφ для п.в. t ∈ [0, T ];
(S2) v ∈ L∞(0, T ;L1

+(Ω)), ν ∈ L∞(0, T ;M+(∂Ω));

(S3) (1− |∇u(t, x)|) v(t, x) = 0 для LN+1-п.в. (t, x) ∈]0, T [×Ω;
(S4) u(0, ·) = 0 в Ω;
(S5) u(t, x) = φ(x) νt-п.в. на ∂Ω, для п.в. t ∈]0, T [;
(S6) для каждой пробной функции ϕ ∈ C∞

c (RN ) справедливо
d

dt

∫

Ω

u(t, x)ϕ(x) dx +

∫

Ω

v(t, x)∇u(t, x) · ∇ϕ(x) dx =

∫

Ω

f(x)ϕ(x) dx −
∫

∂Ω

ϕ(x) dνt(x) в D′(0, T ).

Замечание 2.1. Заметим, что каждая функция u ∈ L∞(0, T ;W 1,∞(Ω)) принадлежит также
C([0, T ];L2(Ω)) (см. [13, Theorem 7.104]), так что начальное условие u(0, ·) = 0 (или даже u(0, ·) =
u0 ∈ Xφ) имеет смысл. Более того, это также означает, что условие u(t, ·) ∈ Xφ в (S1) выполняется
для всех t ∈ [0, T ].
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Решающую роль в описании решения задачи (2.2) играет функция Лакса—Хопфа, связанная
с граничными данными φ:

uφ(x) := min{φ(y) + |x− y| : y ∈ ∂Ω}, x ∈ Ω.

Напомним, что uφ —липшицева функция в Ω, |∇uφ| = 1 п.в. в Ω, и эта функция является макси-
мальной во множестве Xφ, определённом в (2.1), т. е.

u � uφ в Ω, ∀u ∈ Xφ. (2.3)

Замечание 2.2. Если φ = 0 (задача открытого стола в вариационных моделях для растущих
песчаных насыпей), то функция Лакса—Хопфа является функцией расстояния от границы Ω.

Для x ∈ Ω введём множество Π(x) всех проекций x на ∂Ω, т. е.

Π(x) := {y ∈ ∂Ω: uφ(x) = φ(y) + |x− y|},
и границу стока

Γf := {y ∈ ∂Ω: ∃x ∈ supp(f) такой, что y ∈ Π(x)} =
⋃

x∈supp(f)
Π(x). (2.4)

Поскольку φ—полунепрерывная снизу функция, а носитель supp(f) компактен, то легко видеть,
что Γf замкнута.
Следующий результат существования для задачи (2.2) и свойства решений, необходимые в

остальной части статьи, были доказаны в [10, Theorem 6.5] (см. также [12]).

Теорема 2.1. При условиях (D1)–(D3) существует решение (u, v, ν) уравнения (2.2). Более
того,
(i) u-компонента решения единственна, а t �→ u(t, ·)—неубывающая функция в R

+;
(ii) мера νt сосредоточена на Γf для п.в. t � 0, и каждому ν соответствует единственная v.

Замечание 2.3. Фактически, результат в [10] получен в более общей постановке: предполага-
ется, что источник f является неотрицательной ограниченной мерой в Ω, а компонента v, в свою
очередь, является неотрицательной ограниченной мерой в Ω. Тем не менее, компоненты (v, ν) по-
лучены с помощью двойственности и оптимального переноса, и следовательно, мы можем приме-
нить результаты о регулярности для плотностей потока (см. [11, Theorem 4.13] или [14, Theorem 2])
и восстановить абсолютную непрерывность компоненты v относительно меры Лебега в Ω.

Следующий результат, впервые доказанный в [12], а затем подробно описанный в [10,
Theorem 4.3] (см. также [1]), показывает, что система уравнений в частных производных (2.2)
может рассматриваться как эквивалентное условие первого порядка для задачи ограниченной
оптимизации, решаемой относительно компоненты u, таким образом, другие компоненты (v, ν)
решения могут пониматься как множители Лагранжа.

Теорема 2.2. Следующие утверждения эквивалентны:
(i) Если (u, v, ν) является решением (2.2), то для любого T > 0 справедливо неравенство

∫

Ω

(f(x)− ∂tu(t, x)) (w(x) − u(t, x)) dx � 0 ∀w ∈ Xφ (2.5)

для п.в. t ∈]0, T [.
(ii) Пусть u ∈ L∞(0, T ;W 1,∞(Ω)) удовлетворяет условию (S1), начальному условию (S4) и

условию максимальности (2.5). Тогда существует (v, ν) такое, что (u, v, ν) является ре-
шением уравнения (2.2).

Замечание 2.4. Используя терминологию выпуклого анализа, при f ∈ L2(Ω) условие макси-
мальности (2.5) можно перефразировать как дифференциальное включение.
В частности, пусть I : L2(Ω) → [0,+∞] обозначает индикаторную функцию выпуклого множе-

ства Xφ, определяемую как

I(w) :=

{
0, если w ∈ Xφ,

+∞ иначе,
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и обозначим через ∂I(w) его субдифференциал в w ∈ L2(Ω).
Тогда вариационное неравенство (2.5) эквивалентно дифференциальному включению

f − ∂tu(t, ·) ∈ ∂I(u(t, ·)), t � 0.

В дальнейшем мы будем говорить, что u удовлетворяет f − ∂tu ∈ ∂I(u(t, ·)), если выполняется
условие максимизации (2.5).

Вариационное неравенство (2.5) даёт обширную информацию о свойствах компоненты u реше-
ния (например, в теореме 2.1 (i)). Чтобы получить эту информацию, полезно вспомнить следую-
щее правило вывода, доказанное в более общей постановке в [10, Lemma 4.2].

Лемма 2.1. Пусть w ∈ L1(0, T ;W 1,∞(Ω)) и ∂tw ∈ L2(]0, T [×Ω). Тогда
1

2

d

dt

∫

Ω

|w(t, x)|2 dx =

∫

Ω

w(t, x) ∂tw(t, x) dx для п.в. t ∈]0, T [.

Единственность решения задачи (2.5) с начальными данными u(0, ·) = u0 ∈ Xφ и его монотон-
ность по t являются следствиями следующего принципа сравнения, доказанного в [3, Lemma 3.1]
или [10, Proposition 4.1] и справедливого также для источников, зависящих от времени. Поскольку
этот результат важен для наших целей, мы приводим набросок его доказательства для полноты
изложения.

Предложение 2.1 (принцип сравнения). Пусть f1, f2 ∈ L∞(0, T ;L1
+(Ω)), u

1
0, u

2
0 ∈ Xφ, при

этом f1 � f2 и u10 � u20. Пусть также ui, i = 1, 2, являются решениями задач
{
fi(t, ·) − ∂tui(t, ·) ∈ ∂I(ui(t, ·)) для п.в. t ∈]0, T [,
ui(0, ·) = ui0.

Тогда u1 � u2 в ]0, T [×Ω.

Доказательство. Пусть u+(t, x) := max{u1(t, x), u2(t, x)} и u−(t, x) := min{u1(t, x), u2(t, x)}.
Заметим, что u+, u− ∈ Xφ. В силу оптимальности u1 и u2, используя соответственно u+ и u−
в (2.5), получаем, что для п.в. t � 0

∫

Ω

(f1(t, x)− ∂tu1(t, x))(u
+(t, x) − u1(t, x)) dx � 0,

∫

Ω

(f2(t, x)− ∂tu2(t, x))(u
−(t, x) − u2(t, x)) dx � 0.

Так как u+ − u1 = (u2 − u1)χ{u1<u2} = u2 − u− и χ{u1<u2} ∂tu2 = χ{u1<u2} ∂tu
+, получаем, что

∫

Ω

(f2(t, x)− ∂tu
+(t, x))(u1(t, x)− u+(t, x)) dx =

∫

Ω

(f2(t, x)− ∂tu2(t, x))(u
−(t, x)− u2(t, x)) dx � 0,

так что ввиду f2 � f1 по лемме 2.1 имеем
1

2

d

dt

∫

Ω

|u+(t, x)− u1(t, x)|2 dx =

∫

Ω

(∂tu
+(t, x)− ∂tu1(t, x))(u

+(t, x)− u1(t, x)) dx �

�
∫

Ω

f2(t, x)(u
+(t, x)− u1(t, x)) dx −

∫

Ω

f1(t, x)(u
+(t, x)− u1(t, x)) dx � 0

для п.в. t � 0. По замечанию 2.1, ψ(t) := ‖u+(t)− u1(t)‖2L2(Ω) —непрерывная функция с ψ(0) = 0,

следовательно, из приведённого выше неравенства следует, что ψ ≡ 0, т. е. u+(t, ·) = u1(t, ·) для
любого t � 0.

Теорема 2.3. Если f ∈ L∞(0, T ;L1
+(Ω)) и u0 ∈ Xφ, то решение задачи

{
f(t, ·)− ∂tu(t, ·) ∈ ∂I(u(t, ·)) для п.в. t ∈]0, T [,
u(0, ·) = u0
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единственно, а t �→ u(t, ·)—монотонная неубывающая функция в R
+.

Доказательство. Единственность решения является прямым следствием принципа сравнения.
Более того, фиксируя t0 > 0 и применяя принцип сравнения к f1 = f, f2 ≡ 0 и u10 = u20 = u(t0, x),

получаем u(t, x) � u(t0, x) для t � t0.

3. Асимптотическая устойчивость профилей поверхности

Пусть (u, v, ν)—решение уравнения (2.2). Поскольку по теореме 2.2 (i), теореме 2.3 и (2.3)
функция t �→ u(t, ·) монотонно не убывает в R

+ и 0 � u(t, ·) � uφ для любого t, то существует
предел

u∞(x) := lim
t→+∞u(t, x), x ∈ Ω. (3.1)

Более того, u∞ ∈ Xφ, ввиду того, что u(t, ·) принадлежит Xφ для любого t � 0, а сходимость
в (3.1) равномерна в Ω.
Наша цель — дать явное представление u∞. В качестве первого шага покажем, что асимптоти-

ческий профиль максимален там, где источник активен.

Лемма 3.1. Равенство u∞(x) = uφ(x) справедливо для всех x ∈ supp(f).

Доказательство. Предположим от противного, что существует x0 ∈ supp(f) ⊂ Ω такое, что
u∞(x0) < uφ(x0). Пусть δ := (uφ(x0)−u∞(x0))/2, и пусть r > 0 таково, что uφ(x)− u∞(x) � δ для
любого x ∈ Br(x0) ∩ Ω. Поскольку f ∈ L1

+(Ω) и x0 ∈ supp(f), мы также имеем
∫

Br(x0)∩Ω
f dx > 0.

Следовательно, для любого t � 0 имеем
∫

Ω

f(x) (uφ(x)− u(t, x)) dx �
∫

Ω

f (uφ(x)− u∞(x)) dx �

�
∫

Br(x0)∩Ω
f(x) (uφ(x)− u∞(x)) dx � δ

∫

Br(x0)∩Ω
f(x) dx =: ρ > 0, ∀t � 0.

(3.2)

Учитывая uφ ∈ Xφ в (2.5), получаем, что
∫

Ω

(f(x)− ∂tu(t, x))(uφ(x)− u(t, x)) dx � 0.

Следовательно, по лемме 2.1 указанное выше неравенство и (3.2) дают

1

2

d

dt

∫

Ω

|uφ(x)− u(t, x)|2 dx = −
∫

Ω

∂tu(t, x) (uφ(x)− u(t, x)) dx �

� −
∫

Ω

f(x) (uφ(x)− u(t, x)) dx � −ρ, ∀t � 0,

что противоречит тому факту, что t �→ ‖uφ−u(t)‖2L2(Ω) —неотрицательная непрерывная функция.

Чтобы продолжить исследование u∞, которое окажется стационарным решением задачи (см.
раздел 4), нам понадобятся некоторые определения.

Определение 3.1. Отрезок [[y, x]] называется транспортным лучом, если y ∈ ∂Ω, x ∈ Ω,
uφ(x) = uφ(y) + |x− y| (т. е. y ∈ Π(x)), и [[y, x]] не является собственным подмножеством другого
отрезка, удовлетворяющего тем же свойствам. Точки y и x называются соответственно начальной
и конечной точками транспортного луча.
Обозначим через J ⊂ Ω множество конечных точек транспортных лучей, определяемое соот-

ношением

J := {x ∈ Ω: ∃y ∈ ∂Ω такое, что [[y, x]] является транспортным лучом}. (3.3)
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При заданной f ∈ L1
+(Ω) определим функцию

uf (x) := 0 ∨ sup{uφ(x)− |x− z| : z ∈ supp(f)}.
Наконец, вспоминая определение Γf в (2.4), введём множество допустимых профилей, дости-

гающих граничного значения φ на Γf

Xf := {u ∈ Xφ : u = φ на Γf}. (3.4)

Основные особенности функции uf , доказанные в [9, Proposition 5.3 и Theorem 5.5], заключа-
ются в следующем.

Теорема 3.1. Предположим, что f ∈ L1
+(Ω), f 	≡ 0. Тогда справедливы утверждения:

(i) uf ∈ Xf , uf = uφ на supp(f);
(ii) каждая функция u ∈ Xf такая, что u = uf на supp(f), удовлетворяет условию uf � u � uφ

на Ω;
(iii) uf = uφ в Ω тогда и только тогда, когда J ⊆ supp(f).

Теперь мы готовы доказать, что асимптотический профиль u∞ на самом деле является uf .

Теорема 3.2. При предположениях (D1)–(D3) (единственная) компонента u решения (2.2)
сходится монотонно и равномерно к функции uf при t→ +∞.

Доказательство. По лемме 3.1 и теореме 3.1 (i) получаем, что u∞ = uφ = uf на supp(f). Следо-
вательно, по теореме 3.1 (ii) также имеем, что

uf � u∞ � uφ в Ω. (3.5)

Заметим, что uf является (стационарным) решением (2.5). В частности, поскольку uf = uφ на
supp(f), имеем, что

∫

Ω

f(w − uf ) dx =

∫

supp(f)

f(w − uφ) dx � 0 ∀w ∈ Xφ.

Следовательно, по принципу сравнения с f1 = f2 = f, u10 = uf , u
2
0 = 0, мы заключаем, что u(t, x) �

uf (x), x ∈ Ω, для любого t � 0, так что u∞ � uf , что вместе с (3.5) завершает доказательство.

Замечание 3.1. Внеся небольшие изменения в доказательство, мы можем доказать, что един-
ственное решение u(t, ·) для (2.5) с начальными данными u0 ∈ Xφ сходится монотонно и равно-
мерно к u∞ = u0 ∨ uf при t→ +∞.

Поскольку здесь рассматривается источник f, постоянный во времени, можно было бы пред-
положить, что эволюция u(t, ·) сходится к uf за конечное время. Тем не менее, в следующих
примерах мы покажем, что в общем случае это неверно.

Пример 3.1. Пусть Ω = B1— единичный шар в R
N с центром в начале координат, φ ≡ 0 и

f(x) = (N + α)|x|α, α > 0. Поскольку supp(f) = Ω, по теореме 3.1 (iii) и теореме 3.2 (см. также
замечание 2.2), предельная функция u∞ совпадает с функцией расстояния до границы B1, т. е.

u∞(x) = uφ(x) = 1− |x|, x ∈ B1.

Начиная с u0 = 0, за конечное время tα =
2α − 1

(N + 1)α
достигаем профиля u1(x) = u1(|x|), при этом

u1(r) :=
1

2
−
∣
∣
∣
∣r −

1

2

∣
∣
∣
∣ , r ∈ [0, 1]. (3.6)

Поскольку эволюция при t ∈ [0, tα] не существенна для нашего примера, мы опускаем соответ-
ствующие вычисления и предполагаем, что начинаем в момент времени t = 0 с этого начального
профиля u1. Пусть ρ : [0,+∞[→ [0,+∞[— единственное неотрицательное решение задачи Коши

⎧
⎪⎨

⎪⎩

ρ̇ = −N
2
ρα,

ρ(0) =
1

2
.

(3.7)
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Для любого α > 0 решение является монотонной невозрастающей функцией и сходится к 0 при
t → +∞. Если α � 1, решение строго положительно и строго убывает, а для любого α ∈]0, 1[
существует τα > 0 такое, что ρ(t) > 0 для t ∈ [0, τα[ и ρ(t) = 0 для любого t � τα.
Мы утверждаем, что функция

u(t, x) :=

{
1− 2ρ(t) + |x|, если |x| < ρ(t),

1− |x|, если ρ(t) � |x| � 1,
(3.8)

является решением (2.5) при u(0, ·) = u1, и, следовательно, по теореме 2.2 (ii), u(t, x)— это эво-
люция профиля стоящего слоя при φ ≡ 0 и f(x) = (N + α)|x|α. Очевидно, что u(t, ·) сходится
к uφ за конечное время τ тогда и только тогда, когда ρ(t) = 0 для всех t � τ. Следовательно,
если α � 1, то u(t, 0) < 1 = uφ(0) для всех t � 0, так что сходимости к uφ за конечное время не
наблюдается. Если же α ∈]0, 1[, то источник имеет достаточно массы на каждом малом шаре с
центром в начале координат, чтобы заставить решение сходиться к uφ за конечное время τα.
Осталось доказать, что для каждого t � 0 и каждого w ∈ Xφ справедливо неравенство

K(t) :=

∫

B1

(f(x)− ∂tu(t, x)) · (w(x) − u(t, x)) dx � 0 ∀t � 0.

Вычисляя

∂tu(t, x) =

{
−2ρ̇(t) = N ρ(t)α, если |x| < ρ(t),

0, если ρ(t) < |x| < 1,

получаем, что

K(t) =

∫

Bρ(t)

((N + α)|x|α −N ρ(t)α) · (w(x) − 1 + 2ρ(t) − |x|) dx+

∫

B1\Bρ(t)

f(x)(w(x) − uφ(x)) dx.

Так как w � uφ, интеграл в B1 \ Bρ(t) неположителен. Для оценки первого интеграла можно
воспользоваться следующим неравенством, учитывающим, что |∇w| � 1: положив x̂ := x/|x| для
каждого x 	= 0, для каждого ρ0 ∈ [0, 1] имеем неравенство

{
w(x) � w̃(x) := w(ρ0x̂) + |x| − ρ0, если 0 < |x| � ρ0,

w(x) � w̃(x), если ρ0 � |x| � 1.
(3.9)

Пусть ρ0(t) ∈ [0, ρ(t)] определяется как

ρ0(t) :=

(
N

N + α

)1/α

ρ(t),

так что (N + α)|x|α − Nρ(t)α отрицательно, если |x| < ρ0(t), и положительно, если |x| > ρ0(t).
Следовательно, из (3.9) мы заключаем, что

[(N + α)|x|α −N ρ(t)α]w(x) � [(N + α)|x|α −N ρ(t)α]w̃(x) ∀|x| < ρ(t),

так что

K(t) �
∫

Bρ(t)

[(N + α)|x|α −N ρ(t)α] · [w̃(x)− 1 + 2ρ(t)− |x|] dx =

=

∫

Bρ(t)

[(N + α)|x|α −N ρ(t)α] · [w(ρ0(t)x̂)− ρ0(t)− 1 + 2ρ(t)] dx =

= NωN [w(ρ0(t))− ρ0(t)− 1 + 2ρ(t)]

ρ(t)∫

0

[(N + α)rα −N ρ(t)α] rN−1 dr = 0,

где w(ρ0) :=
1

NωN

∫

SN−1

w(ρ0 σ) dσ, что завершает доказательство нашего утверждения.
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Построение эволюции, представленное в примере 3.1 выше, может показаться несколько неяс-
ным. В частности, следует прояснить роль обыкновенного дифференциального уравнения (3.7).
Для этого может быть полезен следующий пример, рассматривающий более общий источник.

Пример 3.2. Рассмотрим ситуацию, аналогичную описанной в примере 3.1, т. е. Ω = B1 ⊆ R
N

и φ ≡ 0, но для

f(x) = f̃(|x|), f̃ : [0, 1] → R непрерывна, возрастает, и f̃(0) = 0.

Предположим, что в момент времени t = 0 мы начинаем с профиля u1, определённого в (3.6).
Мы хотим доказать, что функция u(t, x), определённая в (3.8), является решением (2.5) при

подходящем выборе функции ρ : [0,+∞[→ [0,+∞[.
Для определения ρ(t) (в частности, для получения обыкновенного дифференциального урав-

нения, заменяющего (3.7)), проведём следующее рассмотрение, основанное на феноменологии
растущих песчаных насыпей: только масса, засыпанная в Bρ(t), будет включена в насыпь, в то
время как масса, засыпанная в B1 \Bρ(t), свободно скатывается вниз, поскольку профиль макси-
мален. Это приводит к дополнительному условию

∫

Bρ(t)

∂tu(t, x) dx =

∫

Bρ(t)

f(x) dx, t � 0.

Поскольку ∂tu(t, x) = −2ρ̇(t), это условие даёт

−2ρ̇(t) =
1

|Bρ(t)|
∫

Bρ(t)

f(x) dx, t � 0. (3.10)

При этом предполагается, что среднее значение источника f на шаре Bρ(t), стоящем справа,
равно 0, если ρ(t) = 0. С учётом начального условия ρ(0) = 1/2 соответствующая задача Коши
имеет единственное неотрицательное решение ρ(t). Имеются две возможности: либо ρ(t) > 0
для всех t � 0, либо существует τ > 0 такое, что ρ(t) = 0 для всех t � τ. Второй случай,
соответствующий сходимости за конечное время, имеет место тогда и только тогда, когда

τ :=

1/2∫

0

|Bρ|∫

Bρ

f(x) dx
dρ < +∞. (3.11)

Теперь выберем ρ(t), удовлетворяющее (3.10) и такое, что ρ(0) = 1/2, и покажем, как в приме-
ре 3.1, что функция u, определённая в (3.8), является решением вариационного неравенства (2.5)
такого, что u(0, ·) = u1, так что u— это профиль растущей песчаной насыпи.
Прежде всего, поскольку f является непрерывной функцией, для каждого t � 0 существует

ρ0(t) ∈ [0, ρ(t)] такое, что

f̃(ρ0(t)) =
1

|Bρ(t)|
∫

Bρ(t)

f(x) dx. (3.12)

Вследствие этого, учитывая (3.10), справедливо равенство

∂tu(t, x) = −2ρ̇(t) = f̃(ρ0(t)) ∀t � 0.

На этом этапе мы можем завершить доказательство, как в примере 3.1: поскольку f̃ возрастает,
то имеем, что

f̃(r) � f̃(ρ0(t)), ∀r ∈ [0, ρ0(t)], f̃(r) � f̃(ρ0(t)), ∀r ∈ [ρ0(t), ρ(t)],
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так что для каждого w ∈ X0 выполняется
∫

B1

(f(x)− ∂tu(t, x))(w(x) − u(t, x)) dx �
∫

Bρ(t)

(f̃(|x|)− f̃(ρ0(t)))(w̃(x)− 1 + 2ρ(t) − |x|) dx =

= NωN [w(ρ0(t))− ρ0(t)− 1 + 2ρ(t)]

ρ(t)∫

0

(f̃(r)− f̃(ρ0(t))) r
N−1 dr = 0,

где w̃ определено в (3.9), а последнее равенство следует из (3.12).
Подводя итог, можно сказать, что эволюция u(t, ·) в (3.8) при ρ, удовлетворяющем (3.10), и

ρ(0) = 1/2 сходится к u∞ = uφ за конечное время тогда и только тогда, когда выполняется (3.11).

Главное в примерах 3.1 и 3.2 заключается в том, что за единичный промежуток времени к
насыпи добавляется лишь стремящаяся к нулю доля (при t → +∞) массы из источника f, а
остальная часть сбрасывается на границе стола. В примере 3.1, когда α � 1, эта бесконечно
малая доля не может заполнить максимальный профиль uφ за конечное время. Это происходит
из-за того, что источник слишком слаб вблизи множества конечных точек транспортных лучей
J = {0}, что означает, что условие (3.11) не выполняется. В частности,

1/2∫

0

|Bρ|∫

Bρ

f(x) dx
dρ =

1/2∫

0

ρ−α dρ = +∞ ∀α � 1.

Эти соображения приводят нас к следующему утверждению.

Предположение 3.1. Пусть f ∈ L1
+(Ω) удовлетворяет условию

sup
y∈J

1∫

0

|Bρ|∫

Bρ(y)∩Ω
f(x) dx

dρ < +∞. (3.13)

Тогда u(t, ·) сходится к uφ за конечное время.

Условие сильнее, чем (3.13), но, возможно, проще на практике: существуют α ∈ [0, 1[ и кон-
станта c > 0 такие, что

lim inf
r↘0

1

rN+α

∫

Br(y)∩Ω
f(x) dx � c ∀y ∈ J. (3.14)

Очевидно, оба условия можно сформулировать и в случае f ∈ M+(Ω). Например, (3.14) требует,
чтобы нижняя (N + α)-мерная плотность меры f, ограниченной на J, была ограничена снизу
положительной константой.
Заметим, что если y ∈ J не принадлежит носителю f, то подынтегральное выражение в (3.13)

стремится к +∞ при достаточно малых ρ, следовательно, из (3.13) следует, в частности, что J ⊂
supp(f). Согласно теоремам 3.2 и 3.1 (iii), это вложение необходимо и достаточно для сходимости
u(t, ·) к uφ при t→ +∞.
В следующей теореме мы доказываем достаточное условие сходимости к uφ за конечное время

(см. также в [3, Theorem 3.3] аналогичное условие в случае φ ≡ 0). Отметим, что в условиях
теоремы 3.3 ниже, условие (3.14) выполняется при α = 0 и c = ε.

Теорема 3.3 (сходимость за конечное время). Пусть J ⊂ Ω—множество конечных точек
транспортных лучей, определённых в (3.3). Предположим, что существуют r > 0 и ε ∈]0, r]
такие, что

f(x) � ε ∀x ∈ Ω ∩
⋃

y∈J
Br(y).

Тогда u(t, ·) сходится к uφ за конечное время.
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Доказательство. Пусть y ∈ J ∩Ω и Br(y) ⊂ Ω. Рассмотрим зависящий от времени источник

f2(t, x) =

{
ε(0 ∨ (r − |x− y|)), если t ∈ [0, r/ε],

ε χBr(y), если t > r/ε,

а u2—решение (2.5), где f = f2 и u2(0, ·) = 0. Определим

α(t) := u2(t, y), u(t, x) := 0 ∨ (α(t)− |x− y|), x ∈ Ω, t � 0.

По теореме 2.3, α—непрерывная и неубывающая функция. Пусть t � r/ε—первый момент вре-
мени, такой что Bα(t)(y) ∩ ∂Ω 	= ∅. Для t ∈ [0, t] можно проверить, что u2(t, x) = u(t, x) и

α(t) =

{
ε t, если t ∈ [0, r/ε],

α(t), если t ∈ [r/ε, t],
(3.15)

при этом

α(t) :=
[
rN+1 + (N + 1)εrN

(
t− r

ε

)] 1
N+1

, t � 0 (3.16)

(см. подробное доказательство теоремы 3.3 в [3]). В частности, представление (3.16), если при-
нять как данность, что u2 = u при t ∈ [0, t], можно получить следующим образом. Высоту α(t)
конуса можно вычислить, учитывая, что ни одна песчинка не может упасть со стола до момента
времени t, так что должен выполняться следующий баланс масс:

∫

Ω

f2(t, x) dx =

∫

Ω

∂tu2(t, x) dx. (3.17)

Простой расчёт даёт

∫

Ω

f2(t, x) dx =

⎧
⎨

⎩

ωNε r
N

N + 1
, если t ∈ [0, r/ε],

ωNε r
N если t ∈ [r/ε, t],

∫

Ω

∂tu2(t, x) dx =

⎧
⎨

⎩

ωNr
N α̇(t)

N + 1
, если t ∈ [0, r/ε],

ωNα(t)
N α̇(t), если t ∈ [r/ε, t],

так что (3.15) следует из того, что функция α, определённая в (3.16), является решением задачи
Коши ⎧

⎨

⎩

d

dt
α(t) =

ε rN

α(t)N
, t � 0,

α(r/ε) = r.

(3.18)

Для достаточно большого T > t пусть ν ∈ L∞(0, T ;M+(∂Ω)) будет мерой, связанной с u2
посредством теоремы 2.2 (ii), и пусть

T (y) := sup{t � t : νt = 0}.
В силу [10, Theorem 5.4] имеем, что u2(t, x) = u(t, x) при t ∈ [0, T (y)]. (Точнее, теорема 5.4 в [10]
была доказана для случая источника f2, являющегося δ-функцией Дирака относительно y, но при
t � T (y) это решение совпадает с u2.) В частности, существует z ∈ ∂Ω такое, что α(T (y))−|z−y| =
φ(z). Определим

A(t) := {x ∈ Ω: α(t)− |x− y| > 0} ⊆ Bα(t)(y), t � 0.

Поскольку баланс масс (3.17) сохраняется также для t ∈ [t, T (y)], мы заключаем, что

α̇(t) =
ωNε r

N

|A(t)| , t ∈ [r/ε, T (y)].

Заметив, что |A(t)| � |Bα(t)| = ωNα(t)
N , путём сравнения с решением α уравнения (3.18) заклю-

чаем, что
α(t) � α(t), ∀t ∈ [r/ε, T (y)].

Мы утверждаем, что u2(T (y), y) = uφ(y). А именно,

u2(T (y), y) = α(T (y)) = φ(z) + |z − y| � uφ(y),

так что утверждение следует из максимальности uφ.



О ДИФФЕРЕНЦИАЛЬНОЙ МОДЕЛИ РОСТА ПЕСЧАНЫХ НАСЫПЕЙ В БУНКЕРЕ 637

Из соотношения
uφ(y) = α(T (y)) � α(T (y))

мы приходим к выводу, что

T (y) � uφ(y)
N+1 +N rN+1

(N + 1)ε rN
� τ :=

[min
∂Ω

φ+ diam(Ω)]N+1 +N rN+1

(N + 1)ε rN
.

Наконец, поскольку f � ε в трубчатой окрестности J, то f � f2 и, следовательно, по принципу
сравнения и тому факту, что u(T (y), y) = uφ(y), получаем, что u(t, y) = uφ(y) для любого t � τ.
Если y ∈ J, но Br(y) не содержится в Ω, то можно модифицировать приведенное выше до-

казательство, учитывая, что Ω удовлетворяет равномерному внутреннему условию конуса. Это
означает, что существует положительная константа γ такая, что |Br(y) ∩ Ω| � γ|Br(y)| для лю-
бого y ∈ Ω, и можно доказать, что α(t) := u2(t, y) � γ α(t) для t ∈ [r/ε, T (y)], так что мы можем
получить равномерную оценку сверху для времени T (y), определённого выше.
Следовательно, существует время τ ′ � τ такое, что u(t, y) = uφ(y) для любого t � τ ′ и для

любого y ∈ J, так что заключение следует из [9, Theorem 5.5].

4. Стационарные решения

В этом разделе мы изучаем стационарные решения (2.2), т. е. решения задачи
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− div(v∇u) = f − ν в R
N ,

|∇u| � 1, v � 0, (1− |∇u|)v = 0 п.в. в Ω,

0 � u � φ на ∂Ω,
u(x) = φ(x) для ν-п.в. x ∈ ∂Ω,

(4.1)

где f ∈ L1
+(Ω) и φ : ∂Ω → [0,+∞[— такие же, как и в предыдущих разделах. Точнее, (u, v, ν)

называется стационарным решением (4.1), если u ∈ Xφ, v ∈ L1
+(Ω), ν ∈ M+(∂Ω) удовлетворяют

условиям (1− |∇u|)v = 0 п.в. в Ω, u = φ ν-п.в. на ∂Ω, и
∫

Ω

v∇u · ∇ψ dx =

∫

Ω

f ψ dx−
∫

∂Ω

ψ dν, ∀ψ ∈ C∞
c (RN ). (4.2)

Сначала напомним стационарную версию теоремы 2.2, доказанную в [10, Theorem 3.2].

Теорема 4.1. Следующие утверждения эквивалентны:
(i) Если (u, v, ν) ∈ Xφ × L1

+(Ω)×M+(∂Ω) является решением задачи (4.1), то
∫

Ω

f(x) (w(x) − u(x)) dx � 0 ∀w ∈ Xφ. (4.3)

(ii) Если u ∈ Xφ удовлетворяет условию максимальности (4.3), то существует (v, ν) ∈
L1
+(Ω)×M+(∂Ω) такое, что (u, v, ν) является решением задачи (4.1).

Теперь докажем, что задачу (4.1) можно переформулировать без какой-либо ссылки на меру
ν ∈ M+(∂Ω).

Теорема 4.2 (эквивалентная формулировка для стационарных решений). Пусть Ω, φ, f удо-
влетворяют условиям (D1), (D2), (D3), пусть Γf ⊂ ∂Ω—множество, определённое в (2.4),
и пусть Xf ⊂ W 1,∞(Ω)—множество, определённое в (3.4). Тогда эквивалентны следующие
утверждения:
(i) Если (u, v, ν) ∈ Xφ ×L1

+(Ω)×M+(∂Ω) является решением задачи (4.1), то (u, v) является
решением задачи

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− div(v∇u) = f в Ω,

|∇u| � 1, v � 0, (1− |∇u|)v = 0 п.в. в Ω,

0 � u � φ на ∂Ω,
u(x) = φ(x) на Γf ,

(4.4)
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т. е. (u, v) ∈ Xf × L1
+(Ω) удовлетворяет (1− |∇u|)v = 0 п.в. в Ω и
∫

Ω

v∇u · ∇ψ dx =

∫

Ω

fψ dx ∀ψ ∈ C∞
c (RN \ Γf ). (4.5)

(ii) Если (u, v) ∈ Xf×L1
+(Ω) является решением задачи (4.4), то существует мера ν ∈ M+(∂Ω)

такая, что (u, v, ν) является решением задачи (4.1).

Прежде чем доказывать теорему 4.2, напомним, что задача существования и единственности
решений уравнения (4.4) была подробно проанализирована в [9] в более общем случае выпуклого
ограничения на ∇u и для невыпуклой области Ω.
Основные результаты [9], относящиеся к нашей задаче, можно сформулировать в следующей

теореме.

Теорема 4.3. В условиях теоремы 4.2 справедливы утверждения:
(i) [существование] Существует единственная vf ∈ L1

+(Ω) такая, что (uφ, vf ) является ре-
шением задачи (4.4);

(ii) [единственность v и характеристика u] Пара (u, v) ∈ Xf × L1
+(Ω) является решением зада-

чи (4.4) тогда и только тогда, когда v = vf и uf � u � uφ;
(iii) [единственность] (uφ, vf ) является единственным решением задачи (4.4) тогда и только

тогда, когда J ⊆ supp(f), где J ⊂ Ω—множество конечных точек транспортных лучей,
определённых в (3.3).

Доказательство теоремы 4.2.
(i) По теореме 2.1 мы уже знаем, что supp(ν) ⊆ Γf , следовательно,

∫

∂Ω

ψ dν = 0 для любого

ψ ∈ C∞
c (RN \ Γf ), так что (4.5) легко следует из (4.2). Осталось доказать, что u = φ на Γf .

Поскольку (u, v, ν) является решением (4.1), функция u удовлетворяет условию
∫

Ω

f(w−u) dx � 0

для любого w ∈ Xφ. Выбрав w = uφ, мы заключаем, что u = uφ на supp(f). Пусть y ∈ Γf . По
определению (2.4) функции Γf , существует x ∈ supp(f) такой, что uφ(x) = u(x) = φ(y) + |x− y|,
следовательно, u(y) � u(x)−|x−y| � φ(y).Поскольку u � φ на ∂Ω, мы заключаем, что u(y) = φ(y).
(ii) Пусть (u, v) ∈ Xf ×L1

+(Ω) удовлетворяет (4.5) и (1− |∇u|)v = 0 п.в. в Ω. По теореме 4.3 (ii)
получаем, что v = vf и uf � u � uφ. По теореме 3.1 (i) мы также знаем, что u = uφ на supp(f),
следовательно, ∫

Ω

f(w − u) dx =

∫

supp(f)

f(w − uφ) dx � 0 ∀w ∈ Xφ,

так что (4.3) выполняется, и заключение следует из теоремы 4.1 (ii).

Сравнивая информацию об эволюции, предоставленную теоремой 2.1, с информацией о ста-
ционарных решениях, предоставленной теоремой 4.3, можно заметить, что в процессе эволюции
динамика стоящего слоя единственна, в то время как скатывающийся слой может принимать
различные конфигурации. Для стационарных конфигураций стоящий слой может меняться (со-
храняя память об исходной конфигурации насыпи), в то время как скатывающийся слой остается
фиксированным.

5. Заключение

Мы рассмотрели систему (2.2), описывающую эволюцию насыпи песка в вертикальном бункере
под действием внешнего вертикального источника песка, постоянного во времени. В теореме 3.2
мы доказали, что профиль насыпи песка сходится к стационарному решению задачи. В приме-
рах 3.1 и 3.2 мы показали, что, вообще говоря, сходимости за конечное время ожидать не следует.
Тем не менее, на основе анализа этих примеров мы сформулировали предположение 3.1 и дока-
зали в теореме 3.3 достаточное условие на источник, гарантирующее сходимость профиля за
конечное время. Наконец, в теореме 4.2 мы установили эквивалентную формулировку для стаци-
онарных решений, не зависящую от граничной меры ν, встречающейся в исходной формулировке,
а в теореме 4.3 мы охарактеризовали все возможные стационарные конфигурации задачи.
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ОБ УСПОКОЕНИИ СИСТЕМЫ УПРАВЛЕНИЯ НЕЙТРАЛЬНОГО ТИПА

НА ВРЕМЕННОМ ГРАФЕ-ЗВЕЗДЕ С ЗАПАЗДЫВАНИЕМ,
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Аннотация. На временно́м графе-звезде рассматривается задача об оптимальном успокоении
системы управления для обобщенного уравнения пантографа, представляющего собой уравне-
ние нейтрального типа с запаздыванием, пропорциональным времени. Запаздывание в системе
распространяется через внутреннюю вершину графа. Исследуется вариационная задача мини-
мизации функционала энергии с учетом вероятностей сценариев, соответствующих различным
ребрам. Установлено, что оптимальная траектория удовлетворяет условиям типа Кирхгофа во
внутренней вершине. Доказана эквивалентность вариационной задачи некоторой краевой зада-
че для функционально-дифференциальных уравнений второго порядка на графе и установлена
однозначная разрешимость обеих задач.

Ключевые слова: уравнение нейтрального типа с запаздыванием, уравнение пантографа, граф-
звезда, оптимальное успокоение системы, задача Красовского, вариационная задача, однозначная
разрешимость.
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1. Введение

Дифференциальные операторы на графах, часто называемые квантовыми графами, активно
изучаются с прошлого века в связи с моделированием различных процессов, протекающих в
сложных системах, представимых в виде пространственных сетей [7, 10, 17, 20, 21]. Для таких
моделей помимо условий непрерывности в вершинах характерны также условия Кирхгофа.
Для задания на графах функционально-дифференциальных операторов с запаздыванием,

С.А. Бутериным в работе [11] была предложена концепция глобального запаздывания. Послед-
нее означает, что запаздывание распространяется через внутренние вершины графа. Другими
словами, решение уравнения на входящем ребре служит начальной функцией для уравнений на
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исходящих ребрах. Глобальное запаздывание стало альтернативой локально нелокальному слу-
чаю, рассмотренному в [24], когда уравнение на каждом ребре имеет свой собственный параметр
запаздывания и может быть решено отдельно от уравнений на остальных ребрах.
Использование концепции глобального запаздывания позволило перенести на графы класс за-

дач об успокоении управляемых систем с последействием. Впервые задача этого типа была по-
ставлена и исследована на интервале Н.Н. Красовским [6] для системы управления с постоянным
запаздыванием, описываемой уравнением запаздывающего типа. Эта задача получила дальней-
шее развитие в работах А.Л. Скубачевского [9, 23] и позже в работах других авторов (см. [1]
и литературу там), где рассматриваемая система управления имеет нейтральный тип, т. е. со-
держит запаздывание и в главных членах. Это существенно усложняет задачу и, в частности,
приводит к понятию обобщенного решения соответствующей краевой задачи для оптимальной
траектории. С.А. Бутерин в работах [3,12] распространил на графы задачу об успокоении систем
управления с постоянным запаздыванием. В [12] рассмотрен случай уравнения первого порядка
запаздывающего типа, а в [3] — общий случай нестационарной управляемой системы, уравнения
которой относятся к нейтральному типу и имеют произвольный порядок.
Рассмотрение указанной задачи на графах, в свою очередь, привело к концепции временно́го

графа, ребра которого, в отличие от пространственной сети, отождествляются с промежутками
времени, а каждая внутренняя вершина понимается как точка разветвления процесса, дающая
несколько различных сценариев дальнейшего его протекания. В [3–5, 12] показано, что на вре-
менны́х графах также могут возникать условия Кирхгофа. А именно, им будет удовлетворять
траектория течения процесса, являющаяся оптимальной с учетом сразу всех сценариев. Кроме
того, в [5,12] была предложена стохастическая интерпретация системы управления на временно́м
дереве. В частности, к системе на дереве приведет замена коэффициентов в уравнении на интер-
вале дискретными случайными процессами с дискретным временем.
В работах [18, 19] на графы была перенесена задача об успокоении системы управления, опи-

сываемой так называемым уравнением пантографа [16]. В данном случае запаздывание не по-
стоянно, а является пропорциональным времени сжатием. Рассматривалась система управления,
задаваемая классическим уравнением пантографа

y′(t) + by(t) + cy(q−1t) = 0, t > 0, y(0) = y0, (1.1)

где b, c ∈ R, q > 1. Уравнение вида (1.1) широко применяется в прикладных задачах. Так, на-
пример, это уравнение используется при моделировании динамики контактного провода электро-
снабжения подвижного состава [22]. Для q ∈ (0, 1) оно возникает в астрофизике при описании
поглощения света межзвездной материей [2], а также в биологии при моделировании процесса
роста клеток [13].
В данной работе мы переходим к рассмотрению системы управления для обобщенного уравне-

ния пантографа

y′(t) + ay′(q−1t) + by(t) + cy(q−1t) = 0, t > 0, y(0) = y0, (1.2)

где a, b, c ∈ R, q > 1. Уравнение вида (1.2) изучалось в [14, 15] и ряде других работ. Были
получены различные представления решения и показано, что разрешимость задачи (1.2) зависит
от коэффициента a и от класса гладкости решений. В частности, при a �= −qk, k � 0, существует
единственное решение в C∞[0,+∞); при этом в зависимости от значения a могут существовать
и другие C1-решения, не принадлежащие C∞[0,+∞).
На интервале задача об успокоении системы управления для обобщенного уравнения панто-

графа была рассмотрена Л.Е. Россовским в работе [8], где исследовалась следующая система
управления нейтрального типа:

y′(t) + ay′(q−1t) + by(t) + cy(q−1t) = u(t), t > 0, (1.3)

y(0) = y0 ∈ R, (1.4)
где a, b, c ∈ R, q > 1, а u(t)— управляющее воздействие, которое является вещественнозначной
функцией; состояние системы в начальный момент времени задается условием (1.4).
Задача управления формулируется следующим образом: требуется найти u(t), приводящее си-

стему (1.3), (1.4) в равновесие y(t) = 0 при t � T для некоторого T > 0.



644 А.П. ЛЕДНОВ

Для этого достаточно найти u(t) ∈ L2(0, T ), приводящее систему в состояние

y (t) = 0, q−1T � t � T, (1.5)

а затем сбросить управление, положив u (t) ≡ 0 при t > T. При этом из всех возможных управ-
лений ищется управление, обладающее минимальной энергией ‖u‖2L2(0,T ).

В результате получается вариационная задача о минимизации квадратичного функционала

J (y) =

T∫

0

(
y′ (t) + ay′

(
q−1t

)
+ by (t) + cy

(
q−1t

))2
dt −→ min (1.6)

на множестве функций y (t) ∈W 1
2 [0, T ], удовлетворяющих краевым условиям (1.4), (1.5).

Исследование вариационной задачи (1.4)–(1.6) включает сведение ее к эквивалентной крае-
вой задаче для функционально-дифференциального уравнения второго порядка с растяжением
и сжатием аргумента.
В частности, установлено, что если функция y (t) ∈ W 1

2 [0, T ], удовлетворяющая услови-
ям (1.4), (1.5), минимизирует функционал (1.6), то она является решением краевой задачи для
уравнения

− ((1 + a2q
)
y′(t) + ay′

(
q−1t

)
+ aqy′(qt)

)′
+
(
ab− cq−1

)
y′
(
q−1t

)
+

+
(
cq − abq2

)
y′(qt) +

(
b2 + c2q

)
y(t) + bcy

(
q−1t

)
+ bcqy(qt) = 0, 0 < t < q−1T, (1.7)

при краевых условиях (1.4) и (1.5). При этом, поскольку задача (1.4), (1.5), (1.7) может не иметь
решения в W 2

2

[
0, q−1T

]
, ее решение является обобщенным в смысле выполнения условия
(
1 + a2q

)
y′(t) + ay′

(
q−1t

)
+ aqy′(qt) ∈W 1

2

[
0, q−1T

]
.

Обратное утверждение также верно: если y (t) ∈ W 1
2 [0, T ] является обобщенным решением

задачи (1.4), (1.5), (1.7), то y доставляет минимум функционалу (1.6).
Следующая теорема при предположении |a| �= q−

1
2 , обеспечивающем коэрцитивность функци-

онала J (y), устанавливает существование и единственность обобщенного решения краевой зада-
чи (1.4), (1.5), (1.7) и, стало быть, однозначную разрешимость вариационной задачи (1.4)–(1.6).

Теорема 1.1 (см. [8]). Пусть |a| �= q−
1
2 . Тогда задача (1.4), (1.5), (1.7), имеет единственное

обобщенное решение y ∈W 1
2 [0, T ].

В следующем разделе дается постановка вариационной задачи на графе-звезде. Далее, в тре-
тьем разделе, следуя общей стратегии для интервала, устанавливается эквивалентность вари-
ационной задачи некоторой краевой задаче для функционально-дифференциальных уравнений
второго порядка на графе. В заключительном разделе доказывается однозначная разрешимость
обеих задач.

2. Постановка вариационной задачи на графе-звезде

Рассмотрим изображенный на рис. 1 граф типа звезды Γm, состоящий изm ребер. Как обычно,
под функцией y на графе Γm будем понимать кортеж y = [y1, . . . , ym], в котором компонента yj
определена на ребре ej , т. е. yj = yj (t) , t ∈ [0, Tj ].
Пусть до момента времени t = T1 > 0, ассоциированного с единственной внутренней вершиной

v1 графа Γm, наша система управления с запаздыванием, пропорциональным времени, на Γm

описывается уравнением

�1y(t) := y′1(t) + a1y
′
1(q

−1t) + b1y1(t) + c1y1(q
−1t) = u1(t), 0 < t < T1, (2.1)

заданным на ребре e1 графа Γm, с начальным условием

y1(0) = y0. (2.2)

При t = T1, т. е. в вершине v1, система разветвляется на m − 1 независимых параллельных
процессов, описываемых уравнениями

�jy(t) := y′j(t) + ajy
′
j(q

−1(t− (q − 1)T1)) + bjyj(t) + cjyj(q
−1(t− (q − 1)T1)) = uj(t),

t > 0, j = 2,m,
(2.3)
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но имеющих общую историю, определяемую уравнением (2.1) с начальным условием (2.2) и усло-
виями

yj(t) = y1(t+ T1), (q−1 − 1)T1 < t < 0, j = 2,m, (2.4)

а также условиями непрерывности в вершине v1, которые в данном случае согласуются с (2.4)
при t→ −0:

yj(0) = y1(T1), j = 2,m. (2.5)

Как и в случае интервала, мы предполагаем, что q > 1, y0 ∈ R и все aj , bj , cj ∈ R.

Рис. 1. Граф Γm

Fig. 1. Graph Γm

В (2.3) j-ое уравнение задано на ребре ej графа Γm, представляющем собой, вообще говоря,
бесконечный луч, выходящий из вершины v1. Условия (2.4) означают, что запаздывание распро-
страняется через вершину v1.

Пример 2.1. Пусть m = 2, a := a1 = a2, b := b1 = b2, c := c1 = c2, и

y(t) :=

{
y1(t), 0 � t � T1,

y2(t− T1), t > T1,
u(t) :=

{
u1(t), 0 < t < T1,

u2(t− T1), t > T1.

Тогда система управления (2.1)–(2.5) принимает вид (1.3), (1.4).

Предположим для определенности, что Tj > (q − 1)T1 при всех j = 2,m. Для успокоения
системы (2.1)–(2.5) сразу при всех сценариях нужно привести ее в состояние

yj (t) = 0, q−1 (Tj − (q − 1)T1) � t � Tj, j = 2,m, (2.6)

выбрав подходящие управления uj (t) , j = 1,m. Тогда, положив uj (t) ≡ 0 при t > Tj , j = 2,m,
будем иметь yj(t) = 0 при тех же t и j. Другими словами, система будет приведена в равновесие на
каждом ребре, выходящем из вершины v1. Поскольку такие uj (t) не единственны, будем искать
их, минимизируя усилия ‖uj‖2L2(0,Tj)

.Кроме того, аналогично тому, как это было сделано в [12] для
случая постоянного запаздывания, мы можем регулировать степень участия каждого ‖uj‖2L2(0,Tj)

в соответствующем функционале энергии, выбирая определенный положительный вес αj .
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Таким образом, приходим к вариационной задаче

J (y) =

m∑

j=1

αj

Tj∫

0

(�jy (t))
2 dt → min (2.7)

при условиях (2.2), (2.4)–(2.6), где αj > 0, j = 1,m, фиксированы.
Для выбора весов αj, j = 1,m, можно применить вероятностный подход в соответствии с

интерпретацией системы управления на временно́м графе, предложенной в [12]. А именно, для
этого нужно положить α1 = 1, а в качестве αj , j = 2,m, взять вероятности сценариев, задаваемых
соответствующими уравнениями в (2.3). Тогда α2 + . . . + αm = 1. Последнее тождество также
обеспечивает соответствие случаю интервала, если уравнения в (2.3) не зависят от j, т. е. являются
искусственными копиями единственного возможного сценария (см. [12, пример 2]).
Заметим, что условия (2.4) никаких ограничений на функцию y = [y1, . . . , ym] не накладывают.

Поэтому условимся, что взятие J (y) , равно как и �jy при j = 2,m, от какой бы то ни было
функции y на Γm автоматически подразумевает применение условий (2.4). Для краткости также
введем обозначение �y := [�1y, . . . , �my] .

3. Сведение к краевой задаче

Рассмотрим вещественное гильбертово пространство W k
2 (Γm) =

m⊕

j=1
W k

2 [0, Tj ] со скалярным

произведением

(y, z)W k
2 (Γm) =

m∑

j=1

(yj, zj)W k
2 [0,Tj ]

,

где y = [y1, . . . , ym], z = [z1, . . . , zm], (f, g)W k
2 [a,b] =

k∑

ν=0

(
f (ν), g(ν)

)

L2(a,b)
— скалярное произведение

в W k
2 [a, b], а (·, ·)L2(a,b)

— скалярное произведение в L2 (a, b) .

Обозначим через W замкнутое подпространство W 1
2 (Γm) , состоящее из всех наборов

[y1, . . . , ym], удовлетворяющих условиями (2.5), (2.6) и y1 (0) = 0.

Также введем пространство W k
2

(
Γ̃m

)
=W k

2 [0, T1]⊕
m⊕

j=2

W k
2 [0, q

−1 (Tj − (q − 1)T1)].

Лемма 3.1. Если y ∈W 1
2 (Γm) является решением вариационной задачи (2.2), (2.4)–(2.7), то

B (y,w) :=

m∑

j=1

αj

Tj∫

0

�jy (t) �jw (t) dt = 0 ∀w ∈ W. (3.1)

Обратно, если для некоторого y ∈W 1
2 (Γm) выполняется (2.2), (2.5), (2.6) и (3.1), то y является

решением задачи (2.2), (2.4)–(2.7).

Доказательство. Пусть y ∈ W 1
2 (Γm)—решение задачи (2.2), (2.4)–(2.7). Тогда для произволь-

ной фиксированной функции w ∈ W сумма y + sw принадлежит W 1
2 (Γm) при любом s ∈ R и

удовлетворяет условиям (2.2), (2.5), (2.6). Нетрудно видеть, что

J (y + sw) = J (y) + 2sB (y,w) + s2J (w) .

Так как J (y + sw) � J (y) для всех s ∈ R, то выполняется (3.1).
Обратно, пусть y ∈W 1

2 (Γm) удовлетворяет условиям (2.2), (2.5) и (2.6). Тогда (3.1) влечет

J (y + w) = J (y) + 2B (y,w) + J (w) � J (y) ∀w ∈ W.

Таким образом, y доставляет минимум функционалу (2.7) при условиях (2.2), (2.5) и (2.6).

Преобразуем (3.1), сделав замену переменных в членах, содержащих wj

(
q−1 (t− (q − 1)T1)

)
и

w1

(
q−1t

)
. В результате выражение для B (y,w) примет вид
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B (y,w) =

m∑

j=1

αj

Tj∫

0

�jy (t)
(
w′
j (t) + bjwj (t)

)
dt+

+ q

⎛

⎜
⎝α1

q−1T1∫

0

�1y (qt)
(
a1w

′
1 (t) + c1w1 (t)

)
dt +

+

m∑

j=2

αj

q−1(Tj−(q−1)T1)∫

(q−1−1)T1

�jy (qt+ (q − 1)T1)
(
ajw

′
j (t) + cjwj (t)

)
dt

⎞

⎟
⎠ .

Применяя (2.4) к w = [w1, . . . , wm] ∈ W, можно представить

q−1(Tj−(q−1)T1)∫

(q−1−1)T1

�jy (qt+ (q − 1)T1)
(
ajw

′
j (t) + bjwj (t)

)
dt =

=

q−1(Tj−(q−1)T1)∫

0

�jy (qt+ (q − 1)T1)
(
ajw

′
j (t) + cjwj (t)

)
dt+

+

T1∫

q−1T1

�jy (qt− T1)
(
ajw

′
1 (t) + cjw1 (t)

)
dt, j = 2,m.

Тогда перепишем (3.1) в эквивалентном виде

B (y,w) =

m∑

j=1

⎛

⎜
⎝

Tj∫

0

(
αj�jy (t) + �̃1,jy (t)

)
w′
j (t) dt+

+

Tj∫

0

(
αjbj�jy (t) + �̃0,jy (t)

)
wj (t) dt

⎞

⎟
⎠ = 0 ∀w ∈ W, (3.2)

где

�̃ν,1y (t) =

⎧
⎪⎪⎨

⎪⎪⎩

qα1θν,1�1y (qt) , 0 < t < q−1T1,

q
m∑

k=2

αkθν,k�ky (qt− T1) , q−1T1 < t < T1,

�̃ν,jy (t) =

{
qαjθν,j�jy (qt+ (q − 1)T1) , 0 < t < lj,

0, lj < t < Tj ,
j = 2,m,

(3.3)

при ν ∈ {0, 1} и

θν,j =

{
aj , ν = 1,

cj , ν = 0,
j = 1,m.

Обозначим через B краевую задачу для функционально-дифференциальных уравнений второ-
го порядка

Ljy (t) := −
(
�̂jy (t)

)′
+ αjbj�jy (t) + �̃0,jy (t) = 0, 0 < t < lj, j = 1,m, (3.4)

при условиях (2.2), (2.4)–(2.6) и условии типа Кирхгофа

�̂1y (T1) =
m∑

j=2

�̂jy (0) , (3.5)
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где �̃ν,j, ν ∈ {0, 1}, определены в (3.3), а выражения �̂jy (t) имеют вид
�̂jy (t) := αj�jy (t) + �̃1,jy (t) , j = 1,m, (3.6)

тогда как
l1 := T1, lj := q−1 (Tj − (q − 1)T1) , j = 2,m. (3.7)

Определение 3.1. Функцию y = [y1, . . . , ym] ∈W 1
2 (Γm) назовем обобщенным решением крае-

вой задачи B, если �̂jy (t) ∈W 1
2 [0, lj ] , j = 1,m, а функции yj , j = 1,m, удовлетворяют уравнени-

ям (3.4) и условиям (2.2), (2.4)–(2.6), (3.5).

Имеет место следующее утверждение.

Лемма 3.2. Если y ∈ W 1
2 (Γm) удовлетворяет условиям (2.2), (2.5), (2.6) и (3.1), то y яв-

ляется обобщенным решением краевой задачи B. Обратно, любое обобщенное решение краевой
задачи B подчиняется условию (3.1).

Доказательство. Пусть y ∈ W 1
2 (Γm) и удовлетворяет условиям (2.2), (2.5), (2.6) и (3.1). Учи-

тывая, что (3.1) эквивалентно (3.2) и применяя лемму 2 из [12] к (3.2) вместе с (3.7), получаем,
что �̂jy (t) ∈W 1

2 [0, lj ] , j = 1,m, и выполняется (3.5). Кроме того, интегрируя по частям в (3.2) и
используя (2.5), (2.6), будем иметь

B (y,w) = w1 (T1)

⎛

⎝�̂1y (T1)−
m∑

j=2

�̂jy (0)

⎞

⎠+

m∑

j=1

lj∫

0

Ljy (t)wj (t) dt = 0. (3.8)

В силу (3.5), а также произвольности wj , из (3.8) получаем (3.4).
Обратно, пусть y— обобщенное решение задачи B. Тогда левое равенство в (3.8) дает (3.1).
Объединив леммы 3.1 и 3.2, получаем следующий результат.

Теорема 3.1. Функция y ∈ W 1
2 (Γm) является решением вариационной задачи (2.2), (2.4)–

(2.7) тогда и только тогда, когда y является обобщенным решением краевой задачи B.

4. Однозначная разрешимость

В данном разделе устанавливается однозначная разрешимость краевой задачи B, а согласно
теореме 3.1 — и вариационной задачи (2.2), (2.4)–(2.7).
Введем обозначения

�01y (t) = y′1 (t) + a1y
′
1

(
q−1t

)
, �0jy (t) = y′j (t) + ajy

′
j

(
q−1 (t− (q − 1)T1)

)
, j = 2,m, (4.1)

�11y (t) = b1y1 (t) + c1y1
(
q−1t

)
, �1jy (t) = bjyj (t) + cjyj

(
q−1 (t− (q − 1)T1)

)
, j = 2,m, (4.2)

Jν (y) =

m∑

j=1

Tj∫

0

∣
∣�νj y (t)

∣
∣2 dt, ν = 0, 1,

где автоматически предполагается (2.4).

Лемма 4.1. Существуют C0 и C1 такие, что

J (w) � C0‖w‖2W 1
2 (˜Γm)

, J1(w) � C1‖w‖2L2(˜Γm)
∀w ∈ W. (4.3)

Доказательство. Пусть w ∈ W. Используя (4.1), (4.2) и неравенство

(γ1 + · · · + γn)
2 � n

(
γ21 + · · ·+ γ2n

)
, γ1, . . . , γn ∈ R, (4.4)

для n = 2, получаем

J0(w) � 2
m∑

j=1

‖w′
j‖2L2(0,T ) + 2

⎛

⎜
⎝a

2
1

T1∫

0

(
w′
1

(
q−1t

))2
dt+

m∑

j=2

a2j

Tj∫

0

(
w′
j

(
q−1 (t− (q − 1)T1)

))2
dt

⎞

⎟
⎠ ,
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J1(w) � 2
m∑

j=1

b2j‖wj‖2L2(0,T ) + 2

⎛

⎜
⎝c21

T1∫

0

w2
1

(
q−1t

)
dt+

m∑

j=2

c2j

Tj∫

0

w2
j

(
q−1 (t− (q − 1)T1)

)
dt

⎞

⎟
⎠ .

Учитывая (2.4) применительно к w, для ν = 0, 1 вычисляем
T1∫

0

(
w

(ν)
1

(
q−1t

))2
dt = q‖w(ν)

1 ‖2L2(0,q−1T1)
,

Tj∫

0

(
w

(ν)
j

(
q−1 (t− (q − 1)T1)

))2
dt = q‖w(ν)

1 ‖2L2(q−1T1,T1)
+ q‖w(ν)

j ‖2L2(0,q−1(Tj−(q−1)T1))
, j = 2,m.

В частности, это дает вторую оценку в (4.3). Наконец, аналогично лемме 5 в [12] нетрудно по-
казать, что ‖w′‖L2(Γm) порождает норму в W, эквивалентную норме ‖w‖W 1

2 (˜Γm). Таким образом,
используя оценку

J (w) � 2α̃1 (J0(w) + J1(w)) , α̃1 = max {α1, . . . , αm} ,
получаем первое неравенство в (4.3).

Лемма 4.2. Пусть |a1| �= q−
1
2 и |a2|+ · · · + |am| > 0. Тогда существует C2 > 0 такое, что

J0 (w) � C2‖w‖2W 1
2 (˜Γm)

∀w ∈ W. (4.5)

Доказательство. Предположим от противного, что найдутся w(s) =
[
w(s),1, . . . , w(s),m

] ∈ W при
s ∈ N, такие что ‖w(s)‖W 1

2 (˜Γm) = 1 и

J0

(
w(s)

)
� 1

s
, s ∈ N. (4.6)

Используя первое выражение в (4.1) и (4.6), для всех s ∈ N получаем
T1∫

0

(
w′
(s),1 (t)

)2
dt+ 2a1

T1∫

0

w′
(s),1 (t)w

′
(s),1

(
q−1t

)
dt+ a21

T1∫

0

(
w′
(s),1

(
q−1t

))2
dt � 1

s
. (4.7)

Применим неравенство Коши—Буняковского к среднему интегралу:

a1

T1∫

0

w′
(s),1 (t)w

′
(s),1

(
q−1t

)
dt � −|a1|√q‖w′

(s),1‖2L2(0,T1)
.

Подставляя эту оценку в (4.7), имеем

(1− |a1|√q)2 ‖w′
(s),1‖2L2(0,T1)

� 1

s
+ a21q‖w′

(s),1‖2L2(q−1T1,T1)
. (4.8)

С другой стороны, согласно (4.1), для всех j ∈ 2,m, таких что aj �= 0, почти всюду на (0, Tj)
справедливы оценки

∣
∣w′

j

(
q−1 (t− (q − 1)T1)

)∣
∣ � |aj |−1

∣
∣�0jw (t)

∣
∣+ |aj|−1

∣
∣w′

j (t)
∣
∣ . (4.9)

Используя (4.1), (4.4), (4.6) и (4.9), при всех s ∈ N и j = 2,m получаем оценки
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

‖w′
(s),j‖2L2(0,Tj)

� 1

s
, если aj = 0,

‖w′
(s),j‖2L2((q−1−1)T1,0)

� 2

qa2js
+

2

qa2j
‖w′

(s),j‖2L2(0,(q−1)T1)
,

‖w′
(s),j‖2L2(Tj,k+1,Tj,k)

� 2

qa2js
+

2

qa2j
‖w′

(s),j‖2L2(Tj,k,Tj,k−1)
,

если aj �= 0,

где k ∈ {n ∈ N : Tj > (qn − 1)T1} и Tj,k := q−k
(
Tj −

(
qk − 1

)
T1
)
. Учитывая, что

‖w′
(s),j‖L2(q−1(Tj−(q−1)T1),Tj) = 0, j = 2,m,
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из полученных неравенств следует ‖w′
(s),j‖L2(0,Tj) → 0 при s → ∞ для j = 2,m. Более того, если

aj �= 0, то для таких j дополнительно имеем ‖w′
(s),j‖L2((q−1−1)T1,0) → 0 при s → ∞. Последнее,

вместе с тождествами

‖w′
(s),j‖2L2((q−1−1)T1,0)

= ‖w′
(s),1‖2L2(q−1T1,T1)

, j = 2,m,

и оценками (4.8), позволяет заключить, что ‖w′
(s),1‖L2(0,T1) → 0 при s→ ∞.

В итоге имеем ‖w′
(s)‖L2(Γm) → 0 при s → ∞, где w′ = [w′

1, . . . , w
′
m] . Поскольку ‖w′‖L2(Γm)

порождает норму в W, эквивалентную норме ‖w‖W 1
2 (˜Γm), то и ‖w(s)‖W 1

2 (˜Γm) → 0 при s → ∞.

Последнее противоречит ‖w(s)‖W 1
2 (˜Γm) = 1.

Лемма 4.3. Пусть |a1| �= q−
1
2 и |a2|+ · · · + |am| > 0. Тогда существует C3 > 0 такое, что

J (w) � C3‖w‖2W 1
2 (˜Γm)

∀w ∈ W.

Доказательство. Снова предположим от противного, что найдутся w(s) ∈ W, s ∈ N, такие, что
‖w(s)‖W 1

2 (˜Γm) = 1, но теперь

J (w(s)

)
� 1

s
, s ∈ N. (4.10)

Из неравенства

α̃2J0 (w) � 2J (w) + 2α̃1J1 (w) , α̃1 = max {α1, . . . , αm} , α̃2 = min {α1, . . . , αm} ,
совместно с оценками (4.3) и (4.5) получаем

α̃2C2

2
‖w‖2

W 1
2 (˜Γm)

� J (w) + α̃1C1‖w‖2L2(Γm). (4.11)

В силу компактности вложенияW 1
2 (Γm) в L2 (Γm) найдется подпоследовательность {w(nk)}k∈N,

фундаментальная в L2 (Γm) . Тогда неравенство (4.11) дает
α̃2C2

2
‖w(sk) − w(sl)‖2W 1

2 (˜Γm)
� J (w(sk) − w(sl)

)
+ α̃1C1‖w(sk) − w(sl)‖2L2(Γm).

Кроме того, используя (4.4) при n = 2 и (4.10), имеем

J (w(sk) − w(sl)

)
� 2

sk
+

2

sl
.

Таким образом, последовательность {w(sk)}k∈N является фундаментальной в W и сходится к
некоторой функции w(0) ∈ W.
В силу леммы 4.1 сходимость w(sk) к w(0) в W влечет сходимость �w(sk) к �w(0) в L2 (Γm) .

Следовательно, в силу (4.10) будем иметь

‖�w(0)‖2L2(Γm) = lim
k→∞

‖�w(sk)‖2L2(Γm) = lim
k→∞

J (w(sk)

)
= 0,

т. е. w(0) ∈ W удовлетворяет уравнениям

w′
(0),1(t) + a1w

′
(0),1(q

−1t) + b1w(0),1(t) + c1w(0),1(q
−1t) = 0,

w′
(0),j(t) + ajw

′
(0),j(q

−1(t− (q − 1)T1)) + bjw(0),j(t) + cjw(0),j(q
−1(t− (q − 1)T1)) = 0, j = 2,m.

Если для некоторого j ∈ 1,m выполняется aj = cj = 0, то уравнение для w(0),j сводится
к обычному дифференциальному уравнению, решение которого, с учетом принадлежности w(0)

классу W, дает w(0),j(t) = 0 при 0 < t < Tj .

Рассмотрим j ∈ 1,m, при которых a2j + c2j �= 0. Поскольку w(0),j (t) = 0, j = 2,m, при
t � q−1 (Tj − (q − 1)T1) соответствующие уравнения на интервале

(
q−1 (Tj − (q − 1)T1) , Tj

)
при-

нимают вид

ajw
′
(0),j(q

−1(t− (q − 1)T1)) + cjw(0),j(q
−1(t− (q − 1)T1)) = 0, j = 2,m,

или

ajw
′
(0),j(t) + cjw(0),j(t) = 0, q−2

(
Tj −

(
q2 − 1

)
T1
)
< t < q−1 (Tj − (q − 1)T1) , j = 2,m.
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Отсюда с учетом w(0),j

(
q−1 (Tj − (q − 1)T1)

)
= 0 следует, что w(0),j(t) = 0, j = 2,m, при

t � q−2
(
Tj −

(
q2 − 1

)
T1
)
. Продолжая дальше влево аналогичным образом, получаем w(0),j(t) =

0 при
(
q−1 − 1

)
< t < Tj , j = 2,m. Учитывая, что w(0),j(t) = w(0),1(t+T1) при (q−1 − 1)T1 < t < 0,

из чего следует w(0),1(t) = 0 для q−1T1 < t < T1, аналогичными рассуждениями можем получить
w(0),1(t) = 0 для 0 < t < T1.
В итоге имеем w(0)(t) = 0, что противоречит ‖w(0)‖W 1

2 (˜Γm) = 1.

Следующая теорема является основным результатом данного раздела.

Теорема 4.1. Пусть |a1| �= q−
1
2 и |a2|+ · · ·+ |am| > 0. Тогда краевая задача B имеет един-

ственное обобщенное решение y ∈W 1
2 (Γm) . Кроме того, существует C такое, что

‖y‖W 1
2 (Γm) � C|y0|. (4.12)

Доказательство. Рассмотрим функцию Φ = [Φ1, . . . ,Φm] ∈W 1
2 (Γm) такую, что

Φ1 (t) =

⎧
⎨

⎩

y0

(

1− qt

T1

)

, 0 � t < q−1T1,

0, q−1T1 � t � T1,
Φj (t) ≡ 0, j = 2, . . . ,m.

В силу леммы 3.2, для того чтобы функция y ∈ W 1
2 (Γm) , удовлетворяющая условиям (2.2),

(2.5), (2.6), была решением краевой задачи B, необходимо и достаточно, чтобы выполнялось
условие (3.1). Другими словами, y является решением краевой задачи B, если и только если
x := y − Φ ∈ W и

B (Φ, w) +B (x,w) = 0 ∀w ∈ W. (4.13)
Так как B (w,w) = J (w) , то в силу леммы 4.3 билинейная форма (·, ·)W := B (·, ·) является

скалярным произведением в W. Кроме того, справедлива оценка

|B (Φ, w)| = α1

∣
∣
∣
∣
∣
∣

T1∫

0

�1Φ (t) �1w (t) dt

∣
∣
∣
∣
∣
∣
�M |y0|‖w‖W , (4.14)

где ‖w‖W =
√

(w,w)W . Таким образом, по теореме Рисса об общем виде линейного непрерывного
функционала в гильбертовом пространстве существует единственная функция x ∈ W такая, что
выполняется (4.13). Следовательно, краевая задача B имеет единственное решение y = Φ + x.
Кроме того, согласно (4.13) и (4.14) имеем

‖x‖W �M |y0|,
что позволяет получить оценку (4.12).

Замечание 4.1. Утверждение теоремы 4.1 может быть дополнено следующим результатом
из [18]. А именно: в случае, когда система (2.1)–(2.5) имеет запаздывающий тип (т. е. aj = 0 для
всех j = 1,m), краевая задача B имеет единственное решение; при этом y ∈W 1

2 (Γm) ∩W 2
2 (Γ̃m) и

также справедлива априорная оценка (4.12).
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24. Wang F., Yang C.-F. Traces for Sturm–Liouville operators with constant delays on a star graph// Results

Math. — 2021. — 76. — 220. —DOI: 10.1007/s00025-021-01529-9.

А.П. Леднов
Саратовский национальный исследовательский государственный университет им. Н. Г. Черны-

шевского, Саратов, Россия
Московский центр фундаментальной и прикладной математики, Москва, Россия
Московский государственный университет им. М.В. Ломоносова, Москва, Россия
E-mail: lednovalexsandr@gmail.com, ORCID: 0009-0002-7088-8693

https://doi.org/10.1007/s00025-023-01850-5
https://doi.org/10.1002/mma.10549
https://doi.org/10.1017/S0334270000006366
https://doi.org/10.1017/S0956792500000966
https://doi.org/10.1006/jmaa.1997.5262
https://doi.org/10.1090/S0002-9904-1971-12805-7
https://doi.org/10.1063/1.1665178
https://doi.org/10.1098/rspa.1971.0078
https://doi.org/10.1007/s00025-021-01529-9
https://orcid.org/0009-0002-7088-8693


Contemporary Mathematics. Fundamental Directions, 2025, Vol. 71, No. 4, 642–654 653

DOI: 10.22363/2413-3639-2025-71-4-642-654 UDC 517.9
EDN: MGDOHS Research article

On the damping of a neutral-type control system on a temporal star graph
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Abstract. On a temporal star graph, we consider the problem of optimally damping a control
system for a generalized pantograph equation, which is a neutral-type equation with time-proportional
delay. The delay in the system propagates through an internal vertex of the graph. We study the
variational problem of minimizing the energy functional, taking into account the probabilities of
scenarios corresponding to different edges. We establish that the optimal trajectory satisfies Kirchhoff-
type conditions at the internal vertex. We prove the equivalence of the variational problem to a certain
boundary-value problem for second-order functional differential equations on the graph, and establish
the unique solvability of both problems.
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Аннотация. Для гамильтоновых систем на симплектических многообразиях со связями в модели
обобщенной гамильтоновой динамики Дирака В.В. Козлов рассмотрел операцию симплектиче-
ского проектирования гамильтонова векторного поля для случая обобщенных неинтегрируемых
дифференциальных связей. В данной работе рассматривается метод регуляризации связей, поз-
воляющий обойти вырождение операции симплектического проектирования в случае нечетного
количества связей. Он основан на вложении исходной системы в расширенную систему большей
размерности с увеличенным количеством связей.

Ключевые слова: уравнения Гамильтона, дифференциальные связи, симплектическое проек-
тирование.
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1. Введение

Основными геометрическими объектами лагранжевой и гамильтоновой механики являются
расслоения касательных TQ и кокасательных T ∗Q гладких конфигурационных многообразий Q.
В динамике Дирака [6] связи механических систем описываются как интегрируемые дифферен-
циальные распределения в этих пространствах. Вариационный подход к описанию динамики та-
ких систем, в частности, позволяет рассматривать задачи с лагранжианами, вырожденными по
скоростям, что важно в релятивистской механике. Динамика Дирака также описывается в рам-
ках так называемой обобщённой геометрии [4, 7, 8]. Основным геометрическим объектом такого
рассмотрения является двойное расслоение TT ∗Q ⊕ T ∗T ∗Q, иногда его называют обобщенным
касательным расслоением или расслоением Понтрягина. Геометрические структуры, основанные
на этом объекте, корректно описывают механические системы. Такие структуры, получившие на-
звание структуры Дирака, были введены Т. Курантом [5] с некоторой мотивацией из механики:
систему можно рассматривать в терминах координат и скоростей или координат и импульсов,
геометрическое описание тогда происходит на TQ или T ∗Q, соответственно. Структуры Дирака
вводятся для обеспечения связи этих двух способов описания.
В работе [2] динамика Дирака распространена на гамильтоновы системы на симплектических

многообразиях, частным случаем которых являются кокасательные расслоения гладких многооб-
разий с естественной симплектической структурой. Связи в динамических системах описываются
в общем случае как неинтегрируемые дифференциальные распределения в этих пространствах.
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Введена операция симплектической проекции гамильтонова векторного поля, позволяющая стро-
ить уравнения движения с учетом связей. В случае интегрируемости дифференциальных распре-
делений, описывающих связи, получается гамильтонова динамика Дирака. Для формулировки
уравнений, описывающих динамику таких систем, необходимо спроектировать гамильтоновы и
лагранжевы векторные поля, описывающие динамику системы без связей, на эти распределе-
ния, описывающие связи. Для этого рассматриваются различные операторы проекции (см. [2]).
В частности, предлагается метод симплектической проекции гамильтоновых потоков, позволяю-
щий сохранить гамильтонову структуру. Этот метод неявно предложен в [6] для применения в
теории относительности и квантовой механике, как способ описания решений задач с вырожден-
ными лагранжианами, приводящий к системам уравнений в гамильтоновой форме с конечны-
ми связями. Такая техника также может быть использована и в задах неголономной механики.
В невырожденном случае, когда ограничение симплектической структуры на дифференциаль-
ное распределение является невырожденной симплектической структурой, в работе [2] доказана
единственность такой проекции. В работе [3] дано описание симплектического проектирования в
рамках обобщенной геометрии.
В настоящем исследовании рассматривается возможность реализации симплектической про-

екции в некоторых вырожденных случаях. Предлагается метод регуляризации связей, позволя-
ющий обойти вырождение операции симплектического проектирования в случае нечетного ко-
личества связей. Он основан на вложении исходной системы в расширенную систему большей
размерности с увеличенным количеством связей. В качестве важного приложения это позволяет
изучать системы с одной дифференциальной связью.

2. Симплектическое проектирование

Пусть на симплектическом многообразии M2n с канонической формой ω2 имеется гамильто-
ново векторное поле с функцией Гамильтона H : M2n → R, и определено дифференциальное
распределение, задающееся в локальных канонических координатах x = (p, q), ξ = (ṗ, q̇) систе-
мой дифференциальных 1-форм

αi(x, ξ) = 0, i = 1, . . . , k, (x, ξ) ∈ TM2n. (2.1)

Это распределение рассматривается как связи, наложенные на движение гамильтоновой систе-
мы. Проектирование осуществляется с помощью симплектической геометрии касательных плос-
костей, которая индуцируется симплектической структурой фазового пространства. Используя
эту структуру, можно задающие связи дифференциальные формы преобразовать в векторные
поля.

Определение 2.1. Симплектическое проектирование гамильтонова векторного поля — это
сдвиг этого поля в касательном пространстве вдоль векторных полей, определяемых связями,
таким образом, чтобы преобразованное векторное поле удовлетворяло связям, т. е. лежало на
дифференциальном распределении.

В [2] доказано, что если ограничение симплектической формы ω2 на дифференциальное рас-
пределение (2.1) является невырожденной 2-формой, то симплектическое проектирование одно-
значно определено. В случае нечетного количества дифференциальных связей такое ограничение
всегда будет вырожденным.
Цель настоящей работы— показать возможность реализации симплектического проектирова-

ния в вырожденных случаях. Важным приложением является возможность исследования си-
стем с одной дифференциальной связью— в этом случае симплектическое проектирование все-
гда невозможно. Для того, чтобы обойти такую ситуацию, мы введем систему с бо́льшим числом
степеней свободы, решения которой будут включать в себя все решения исходной системы.

3. О римановых структурах на касательных и кокасательных расслоениях

Мы будем рассматривать симплектические многообразия, снабженные некоторой произволь-
ной римановой метрикой. Примером такого объекта является кокасательное расслоение конфигу-
рационного многообразия механической системы. Помимо естественной симплектической струк-
туры на нем существует естественная риманова метрика —метрика Вейля. Опишем ее.
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Пусть Qn —конфигурационное многообразие механической системы с n степенями свободы.
На нем существует естественная кинетическая метрика, в которой квадрат нормы касатель-
ного вектора равен соответствующей кинетической энергии системы. На касательном расслое-
нии TQn вводим метрику Сасаки [1], являющуюся расширением кинетической метрики. Фазо-
вым пространством соответствующей гамильтоновой системы является кокасательное расслоение
M2n = T ∗Qn, на котором задана естественная симплектическая структура. Эта структура поз-
воляет установить следующее изоморфное соответствие f между ковекторами и касательными
векторами. Если α ∈ T ∗

xQ
n —ковектор в точке x ∈ Qn, то ему соответствует касательный вектор

f(α) = ξ ∈ TxQ
n в точке x ∈ Qn такой, что для любого касательного вектора η ∈ TxQ

n зна-
чение на нем ковектора α определяется соотношением α(η) = ω2(η, ξ), т. е. α(η) = ω2(η, f(α)).
Соответствие f можно рассматривать как диффеоморфизм f : (x, α) → (x, f(α)) между T ∗Qn и
TQn. Дифференциал этого отображение позволяет переносить векторы, касательные к T ∗Qn, на
векторы, касательные к TQn, и является диффеоморфизмом df : TT ∗Qn → TTQn. Этот диффео-
морфизм естественным образом переносит риманову метрику Сасаки, определенную на TQn, в
метрику G, определенную на M2n = T ∗Qn,—метрику Вейля. Для пары векторов μ, ν, касатель-
ных к T ∗Qn, скалярное произведение < ·, · > в метрике Вейля определяется следующим образом:
< μ, ν >= (df(μ), df(ν)), где (·, ·)— скалярное произведение в метрике Сасаки на TQn.
В общем случае, пусть на многообразии M2n с симплектической структурой, заданной канони-

ческой 2-формой ω2, задана также произвольная риманова метрика, и 〈ξ, η〉 обозначает скалярное
произведение касательных векторов ξ, η.
Эти структуры порождают два естественных изоморфизма между линейными пространствами

Ω1(M2n)—C∞-гладких дифференциальных 1-форм на M2n и V(M2n)—C∞-гладких векторных
полей на M2n:

g : V(M2n) → Ω1(M2n), h : Ω1(M2n) → V(M2n). (3.1)
Определим эти изоморфизмы. Пусть α— это 1-форма на M2n, тогда X = h(α)— это векторное
поле, такое, что α(·) = ω2(·,X). Пусть Y — векторное поле наM2n, тогда β = g(Y )— это 1-форма,
такая, что β(·) = 〈·,X〉.
Композиция f = g ◦ h этих отображений является автоморфизмом линейного пространства

Ω1(M2n).
Рассмотрим на M2n гамильтонову систему с функцией Гамильтона H(r), r ∈ M2n. Считаем,

что на систему наложена одна связь γ = 0, γ ∈ Ω1(M2n).

4. Расширенная система и регуляризация

Построим расширенную систему. Объекты расширенной системы будем отмечать волной (̃·).
Фазовое пространство расширенной системы— это многообразие M̃2n+2 = M2n × R × R. Точка
s этого многообразия представляет собой тройку s = (r, x, y), r ∈ M2n, x ∈ R, y ∈ R. Введем
естественную проекцию π : M̃2n+2 →M2n так, что π(r, x, y) = r.
При помощи дифференциала этого отображения касательные векторы переносятся слева на-

право, а пространство Ω1(M2n) C∞-дифференциальных форм наM2n переносится справа налево
и естественным образом вкладывается в пространство Ω1(M̃2n+2) C∞-дифференциальных форм
на M̃2n+2. Результат такого вложения будем также обозначать тильдой (̃·).
Симплектическая форма на расширенном фазовом пространстве ω̃2 = ω2 + dy ∧ dx. Функция

Гамильтона расширенной системы

H̃(s) = H̃(r, x, y) = H(r) +H1(x, y),

где H1(x, y)—произвольная функция на R×R. Для сокращения выкладок мы полагаем зависи-
мостьH1 только от новых переменных, поскольку на условие невырожденности симплектического
проектирования выбор функции H1 не влияет.
На систему наложены две связи: α̃i = 0, α̃i ∈ Ω1(M̃2n+2), i = 1, 2:

α̃1 = γ̃ = 0,

α̃2 = g̃(h̃(γ̃)) + μdy + νdx = 0,

где μ(r, x, y), ν(r, x, y)—произвольные функции на расширенном пространстве.
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Пусть всюду μ 	= 0.
Отметим следующую взаимную однозначность. Если (r(t), x(t), y(t))— гладкая кривая на

M̃2n+2, удовлетворяющая связям α̃i = 0, i = 1, 2, расширенной системы, то r(t)—кривая, удовле-
творяющая связи γ = 0 исходной системы. Обратно, если r(t)—кривая, удовлетворяющая связи
γ = 0 исходной системы, то для произвольной зависимости x(t), найдется такая единственная
зависимость x(t), y(t), что кривая (r(t), x(t), y(t)) удовлетворяет связям α̃i = 0, i = 1, 2, расши-
ренной системы.
Можно использовать и более общее условие μ2 + ν2 	= 0, но оно требует более громоздких

выкладок.
Пусть ṽH = h̃(dH̃)— гамильтоново векторное поле расширенной системы. Тогда результат опе-

рации симплектического проектирования (векторное поле X̃, удовлетворяющее связям) опреде-
ляется следующими соотношениями

X̃ = ṽH + λ1h̃(α̃1) + λ2h̃(α̃2),

α̃1 = 0,

α̃2 = 0.

Теорема 4.1. Если форма γ невырождена, то симплектическое проектирование в расширен-
ной системе невырождено, то есть осуществимо.

Доказательство. Условие невырожденности симплектического проектирования локально, поэто-
му достаточно доказать это утверждение в локальных координатах.
Пусть в некоторых локальных канонических координатах x = (x1, . . . , x2n) матрицы симплек-

тической формы и метрического тензора имеют вид S(x) = ‖sij‖, G(x) = ‖gij‖.
Будем рассматривать 1-формы на M и на M̃ так же, как и ковекторные поля.
Опишем отображения g и h(3.1).
Пусть Y = (Y1(q, p), . . . , Y2n(q, p))— векторное поле на M2n. Тогда g(Y ) = β = GY — это ковек-

торное поле. Пусть β = (β1, . . . , β2n)—ковекторное поле на M2n. Тогда h(β) = Y = S−1β — это
векторное поле.
Пусть H —функция Гамильтона исходной системы. Для расширенной системы к функции Га-

мильтона добавим новое слагаемое H1:

H̃ = H +H1.

Пусть на систему наложена одна связь α1 = 0, где α1 —ковекторное поле. В расширенной
системе добавим связь следующего вида:

α2 + μdpn+1 + νdqn+1 = 0,

где α2 = g(h(α1)) = GS−1α1.
При симплектическом проектировании уравнения движения расширенной системы примут вид

ẋ = S−1dH + λ1S
−1α1 + λ2S

−1α2. (4.1)

В канонических координатах (q, p) эти уравнения выглядят следующим образом:

q̇n+1 =
∂H1

∂pn+1
− λ2μ,

ṗn+1 = − ∂H1

∂qn+1
+ λ2ν.

(4.2)

Условия выполнения связей выглядят следующим образом:

(α1, ẋ) = 0,

(α2, ẋ) + μṗn+1 + νq̇n+1 = 0.

Подставив в эти выражения (4.1) и α2 = GS−1α1, находим

(α1, S
−1dH + λ1S

−1α1 + λ2S
−1GS−1α1) = 0,

(GS−1α1, S
−1dH + λ1S

−1α1 + λ2S
−1GS−1α1) + μ

(

− ∂H1

∂qn+1
+ λ2ν

)

+ ν

(
∂H1

∂pn+1
− λ2μ

)

= 0.
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Отсюда получаем систему линейных уравнений относительно λ1, λ2:

(α1, λ1S
−1α1 + λ2S

−1GS−1α1) = −(α1, S
−1dH),

(GS−1α1, λ1S
−1α1 + λ2S

−1GS−1α1) = (GS−1α1, S
−1dH) + μ

∂H1

∂qn+1
− ν

∂H1

∂pn+1
.

Поскольку матрицы S и S−1 кососимметрические, то

(α1, S
−1α1) = 0,

(GS−1α1, S
−1GS−1α1) = 0.

(4.3)

Таким образом,
λ2(α1, S

−1GS−1α1) = −(α1, S
−1dH), (4.4)

λ1(GS
−1α1, S

−1α1) = (GS−1α1, S
−1dH) + μ

∂H1

∂qn+1
− ν

∂H1

∂pn+1
. (4.5)

Матрицы G и S−1 невырождены, и, по предположению, ковектор α1 	= 0, поэтому

(α1, S
−1GS−1α1) = −(S−1α1, GS

−1α1) 	= 0,

(GS−1α1, S
−1α1) 	= 0.

Тогда множители λ1, λ2 определяются однозначно.
Теорема доказана.

По всей видимости, рассмотренный случай одной связи можно распространить на случай k
связей и получить следующее утверждение:

Теорема 4.2. Систему с n степенями свободы и произвольным количеством k связей мож-
но вложить в систему с числом степеней свободы n + k, с добавлением k новых связей, при
условии независимости всей системы 2k связей, так, что в новой системе симплектическое
проектирование будет невырожденным, то есть осуществимым.

В качестве примера для изложенного метода возможности осуществления симплектического
проектирования рассмотрим задачу о неголономной точке.

5. Неголономная точка

Пусть механическая система состоит из одной материальной точки массы m, с координатами
x, y, z в некоторой абсолютной системе координат. Считается, что на точку действуют силы с по-
тенциальной энергией V (x, y, z). Введем канонические импульсы (px, py, pz) и запишем функцию
Гамильтона

H = κ(p2x + p2y + p2z) + V (x, y, z), κ = (2m)−1.

Пусть на движение точки наложена неголономная связь ẋ−yż = 0, которая в дифференциальной
форме имеет вид α1 = dx− ydz = 0.
Конфигурационное пространство Q = R

3. Риманова (кинетическая) метрика на нем имеет
постоянную матрицу G3 = diag{κm2, κm2, κm2}. Касательное расслоение TQ = R

6. Метрика
Сасаки на нем имеет постоянную матрицу G = diag{κm2, κm2, κm2, κm2, κm2, κm2}. В этом
случае квадрат нормы вектора, касательного к TQ, равен сумме кинетической энергии точки
и ее энергии ускорений. Фазовое пространство гамильтоновой системы T ∗Q = R

6. Дуальная
метрика Вейля на нем имеет ту же постоянную матрицу G. Вложим эту систему в расши-
ренную систему, число степеней свободы которой на единицу больше, а фазовое пространство
представляет собой R

8. При этом считаем, что симплектическая форма в расширенной систе-
ме получается добавлением слагаемого dpw ∧ dw к симплектической форме исходной системы:
ω̃2 = dpx∧dx+dpy∧dy+dpz ∧dz+dpw∧dw. К исходной функции Гамильтона добавим слагаемое
κp2w, так что новая функция Гамильтона

H̃ = κ(p2x + p2y + p2z + p2w) + V (x, y, z).

Форма исходной связи в расширенном пространстве

α1 = dx− ydz = 0
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как ковектор имеет координаты

α1 = (0, 0, 0, 0, 1, 0,−y, 0).
Тогда

g(α1) = Gα1 = (0, 0, 0, 0, κm2 , 0,−κm2y, 0),

h(g(α1)) = (κm2, 0,−κm2y, 0, 0, 0, 0, 0).

Форма добавленной связи
α2 = κm2dpx − κm2ydpz + dpw = 0

как ковектор имеет координаты

α2 = (κm2, 0,−κm2y, 1, 0, 0, 0, 0).

При симплектическом проектировании, в соответствии с (4.1), получаем уравнения с множи-
телями:

ṗx = −Vx + λ1, ṗy = −Vy, ṗz = −Vz − yλ1,

ẋ = 2κpx − κm2λ2, ẏ = 2κpy, ż = 2κpz + κm2yλ2,

ẇ = 2κpw,−λ2 ṗw = 0,

(5.1)

где Vx =
∂V

∂x
, Vy =

∂V

∂y
, Vz =

∂V

∂z
.

Для определения множителей λ1, λ2 используем соотношения

α1 = ẋ− yż = 0,

α2 = κm2ṗx − κm2yṗz + ṗw = 0.

Подставив в эти равенства выражения скоростей канонических координат из (5.1), получим си-
стему линейных уравнений относительно λ1, λ2:

α1 = (2κpx − κm2λ2)− y(2κpz + κm2yλ2) = 0,

α2 = κm2(−Vx + λ1)− κm2y(−Vz − yλ1).

Откуда

λ2 =
2px − 2ypz
m2(1 + y2)

, λ1 =
Vx − yVz
(1 + y2)

.

Замечание 5.1. Отметим, что в полученной системе уравнений отделяются уравнения для
исходной системы. В результате мы имеем замкнутую систему уравнений в исходном фазовом
пространстве, что является общим фактом для такого способа регуляризации симплектического
проектирования.

Теорема 5.1. В системе уравнений движения расширенной системы (4.1) уравнения для ис-
ходных фазовых координат отделяются и представляют собой замкнутую систему уравнений
в исходном фазовом пространстве, зависящую от параметров исходной системы тогда и толь-
ко тогда, когда

μ
∂H1

∂qn+1
− ν

∂H1

∂pn+1
≡ 0.

Доказательство. В системе уравнений движения расширенной системы (4.1) исходные фазо-
вые координаты задаются вектором x. В уравнениях для них (для ẋ) добавочные координаты
(qn+1, pn+1) могут содержаться только в выражениях для множителей λ1, λ2. Из (4.4)-(4.5) нахо-
дим

λ2 = − (α1, S
−1dH)

(α1, S−1GS−1α1)
, λ1 =

(GS−1α1, S
−1dH)

(GS−1α1, S−1α1)
.

Утверждение теоремы следует из того, что в этих выражениях участвуют функции только от
исходных фазовых координат, и добавочные координаты отсутствуют.

Замечание 5.2. Отметим, что предлагаемая регуляризация корректна в том смысле, что вне
зависимости от выбора регуляризации, если она проведена таким образом, что уравнения для
исходных координат полностью отделились, то они всегда одни и те же.
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Abstract. For Hamiltonian systems on symplectic manifolds with constraints in the Dirac model of
generalized Hamiltonian dynamics, V. V. Kozlov considered the operation of symplectic projection
of a Hamiltonian vector field for the case of generalized nonintegrable differential constraints. This
paper considers a constraint regularization method that circumvents the degeneracy of the symplectic
projection operation in the case of an odd number of constraints. The method is based on embedding
of the original system into an extended system of higher dimension with an increased number of
constraints.
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КЛАСС АНИЗОТРОПНЫХ УРАВНЕНИЙ ДИФФУЗИИ-ПЕРЕНОСА
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Аннотация. В работе обобщается вероятностный метод Эйнштейна для броуновского движения
на случай сжимаемых жидкостей в пористых средах. Рассматривается многомерный случай с
произвольными функциями распределения вероятностей. Связывая ожидаемое смещение за еди-
ницу времени со скоростью жидкости, мы выводим анизотропное уравнение диффузии-переноса
в недивергентной форме, содержащее член переноса. В предположении закона Дарси получено
соответствующее нелинейное уравнение в частных производных для функции плотности. Иссле-
дованы классические решения этого уравнения, доказаны принцип максимума и сильный прин-
цип максимума. Кроме того, получены оценки экспоненциального убывания решений при всех
временах, в частности, доказана их экспоненциальная сходимость при t → ∞. В основе анали-
за лежат явно построенные преобразования типа Бернштейна—Коула—Хопфа, которые удаётся
сконструировать даже для весьма общих уравнений состояния. Доказана и использована лемма
о росте во времени, позволившая получить указанные оценки убывания.

Ключевые слова: парадигма Эйнштейна, уравнение диффузии-переноса, фильтрация жидко-
сти в пористых средах, нелинейность, уравнения в частных производных в недивергентной форме,
качественный анализ, преобразование Бернштейна—Коула—Хопфа, асимптотический анализ.
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1. Введение

Цель этой статьи состоит в следующем:

(1) разработка новой модели процессов диффузии и переноса жидкостей в пористых средах с
использованием парадигмы Эйнштейна для броуновского движения [14];

(2) строгий анализ этой модели для получения конкретных результатов по устойчивости.

Что касается первой цели, напомним, что моделирование фильтрации в пористых средах тра-
диционно базируется на следующих трёх компонентах [4, 23, 27]:

(a) уравнение непрерывности (материальный баланс/сохранение массы);
(b) уравнение движения, которое обычно представляет собой закон Дарси или одно из его обоб-

щений;
(c) уравнение состояния, описывающее связь между давлением и плотностью.
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Это приводит к уравнениям в частных производных (УрЧП) параболического типа (линей-
ным, квазилинейным, вырожденным и т. д.) для функции давления или плотности (см. [1, 3, 7]).
Благодаря (a), все они естественным образом возникают в дивергентной форме. Эти уравнения
изучаются уже давно, и существует обширная литература, см., например, [1,29] для течений Дар-
си, [2,6–10,15,17–19,24,25,28] для течений Форхгеймера и ссылки в этих работах. Они относятся
к более широкому классу нелинейных параболических уравнений, см. книги [13,21].

Хотя три уравнения (a), (b), (c), упомянутые выше, являются детерминированными, они, по су-
ти, могут быть подвержены стохастическим возмущениям [26,30]. Принимая во внимание эту сто-
хастическую точку зрения, мы предлагаем альтернативный подход к первой составляющей (a) —
сохранению массы— пересматривая и используя вероятностное уравнение материального балан-
са Эйнштейна [14]. Более конкретно, мы применяем парадигму Эйнштейна [14] и рассматриваем
движение жидкости в пористой среде как случайные перемещения частиц из точки x в точку x+ζ
в течение малого интервала времени τ, где ζ — случайное смещение. Обобщая рассуждения из [14]
на многомерное пространство, мы приходим к следующему уравнению в частных производных
для функции плотности ρ:

∂ρ

∂t
=

n∑

i,j=1

aij
∂2ρ

∂xi∂xj
+
E

τ
· ∇ρ, (1.1)

где aij(x, t)—коэффициенты диффузии, а E(x, t) =
∫
ζφ(x, t, ζ)dζ, где φ(x, t, ζ) обозначает рас-

пределение вероятностей этих событий (более подробно см. в разделе 2 ниже). Здесь E/τ — это
новый член переноса, поскольку φ(x, t, ζ) не предполагается чётной функцией по ζ. Обратим
внимание, что E — это ожидаемое значение смещения частицы в течение времени от t до t + τ.
Поэтому мы постулируем (см. гипотезу 2.1), что средняя скорость E/τ пропорциональна скорости
жидкости v, или, в более общем случае,

M0v =
1

τ
E, (1.2)

где M0 —матрица, гарантирующая определённый уровень «соответствия» v и E/τ, см. (2.14).
Предположение (1.2) связывает микроскопический перенос с макроскопическим. Это важно для
понимания и развития нашей модели.

После (1.1) и (1.2) мы рассматриваем анизотропный закон Дарси для (b) и изоэнтропические
течения газа, а также течения слабосжимаемой жидкости для (c). В результате получается ква-
зилинейное параболическое уравнение второго порядка в недивергентной форме относительно ρ,
содержащее квадратичный член по ∇ρ и другие нелинейности по ρ, см. (2.18)–(2.22) ниже.

Перейдём ко второй цели статьи — математическому анализу полученных моделей. Мы дока-
жем принцип максимума и сильный принцип максимума для решений. Для начальной задачи с
постоянными граничными данными мы получаем оценки экспоненциального убывания решения
в пространственной C0-норме. Следовательно, решение экспоненциально сходится в C0-норме к
своему постоянному граничному значению при стремлении времени к бесконечности. Для доказа-
тельства мы явно строим отдельные преобразования типа Бернштейна—Коула—Хопфа [5,11,20],
чтобы преобразовать то же самое решение в необходимое суб- или суперрешение соответствую-
щего усеченного линейного оператора. Более того, лемма о росте во времени устанавливается с
помощью метода Ландиса. Затем она применяется на последовательных временных интервалах
для получения оценок экспоненциального убывания.

Статья организована следующим образом. В разделе 2 мы выводим модели в несколько этапов.
Во-первых, обобщая вероятностный метод Эйнштейна [14] на многомерное пространство, мы вы-
водим общее уравнение диффузии (2.8) в недивергентной форме. Без предположения о чётности
функции распределения вероятностей, это уравнение содержит отношение E(x, t)/τ — среднее
смещение за единицу времени. Во-вторых, связывая это отношение E(x, t)/τ со скоростью v(x, t)
жидкости, мы получаем уравнение (2.22). Основным предположением является гипотеза 2.1, ко-
торая обобщает основную идею (2.11). Эта гипотеза связывает микроскопические понятия, такие
как движение частиц с вероятностями, со скоростью, которая является макроскопической харак-
теристикой жидкости. В-третьих, используя закон Дарси, мы находим уравнение (2.17) для дав-
ления p и плотности ρ. Наконец, уравнение состояния используется для получения нелинейного
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уравнения в частных производных (2.22) для плотности. Особыми случаями являются уравне-
ния (2.18), (2.19) и (2.20).

Раздел 3 посвящен изучению уравнения (2.22) в его общем виде (3.3) с точки зрения принципа
максимума и сильного принципа максимума для нелинейного оператора L, см. (3.7). Принцип
максимума доказан в теореме 3.1, а сильный принцип максимума — в теореме 3.2. Для последней
теоремы в лемме 3.1 построены преобразования типа Бернштейна—Коула—Хопфа, преобразую-
щие решение оператора L в субрешения и суперрешения усечённого линейного оператора L. Эти
преобразования явно записываются в терминах уравнения состояния.

В последнем разделе 4 мы изучаем поведение решения начально-краевой задачи (4.36) при
больших временах. Основным инструментом служит лемма Ландиса о росте для линейного опе-
ратора L̃, представляющего собой общую форму L, из леммы 4.1. Это приводит к оценкам суб-
и суперрешений L̃ в предложении 4.1. С помощью преобразований типа Бернштейна—Коула—
Хопфа из раздела 3 для связи L, L и L̃ мы получаем основные результаты теоремы 4.1. Они
заключаются в оценках экспоненциального убывания для всех времён и, как следствие, экспо-
ненциальной сходимости решений при стремлении времени к бесконечности. Фактически, экспо-
ненциальная скорость может не зависеть от начальных данных, как показано в следствии 4.1.
Приложения к различным типам течений жидкости приведены в примерах 4.1 и 4.2. Стоит отме-
тить, что лемма о росте демонстрирует устойчивость исходной нелинейной задачи, что частично
оправдывает предлагаемую нами модель динамики течений жидкости в пористых средах.

Авторы осознают, что разработанные в данной работе модели существенно отличаются от стан-
дартных. Очевидно, что для их подтверждения необходимы дополнительные данные и экспери-
менты. Тем не менее, поскольку вывод настолько прост, их идеи, методы и математический анализ
представлены здесь в надежде на дальнейшее обсуждение и развитие. В конечном итоге они мо-
гут оказаться полезными для разработки альтернативной методологии описания и понимания
сложных процессов диффузии и переноса в пористых средах.

2. Вывод моделей

Обозначения. На протяжении всей статьи пространственная размерность n � 1 фиксирована.
Для вектора x ∈ R

n его евклидова норма обозначается через |x|. Пусть Mn×n обозначает множе-
ство матриц действительных чисел размера n×n, а Mn×n

sym —множество симметричных матриц в
Mn×n. Для пары матриц A,B ∈ Mn×n их скалярное произведение 〈A,B〉 равно следу Tr(ATB).
Для действительной функции f(x), где x = (x1, . . . , xn) ∈ R

n, обозначим через D2f матрицу Гессе
вторых частных производных (∂2f/∂xi∂xj)i,j=1,...,n.

2.1. Общие уравнения. Пусть ρ(x, t)—функция плотности жидкости в точке x ∈ R
n в мо-

мент времени t ∈ R. Пусть τ > 0—небольшой временной интервал в качестве входного параметра
в момент наблюдения. Пусть ζ ∈ R

n — случайное смещение частиц жидкости. Предположим, что
вероятность перемещения частиц из точки x в момент времени t в точку x + ζ в момент вре-
мени t + τ, где ζ = (ζ1, ζ2, . . . , ζn) ∈ R

n, может быть охарактеризована функцией распределения
вероятностей φ(x, t, ζ) � 0, так что

∫

Rn

φ(x, t, ζ)dζ = 1.

Уравнение материального баланса Эйнштейна [14] записывается в виде

ρ(x, t+ τ) =

∫

Rn

ρ(x+ ζ, t)φ(x, t, ζ)dζ. (2.1)

При малом τ мы аппроксимируем производную по времени от ρ следующим образом:

∂ρ(x, t)

∂t
≈ 1

τ
(ρ(x, t+ τ)− ρ(x, t)). (2.2)

Вычислим ρ(x, t + τ) в правой части (2.2) по материальному балансу (2.1). Предположим,
что функция ζ �→ φ(x, t, ζ) сосредоточена в малом шаре с центром в начале координат. Согласно
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разложению Тейлора функции ζ �→ ρ(x+ζ, t) при малых |ζ| с точностью до квадратичных членов
имеем приближение

ρ(x+ ζ, t) ≈ ρ(x, t) + ζ · ∇ρ(x, t) + 1

2

n∑

i,j=1

ζiζj
∂2ρ(x, t)

∂xi∂xj
.

Затем, используя (2.1), мы можем записать аппроксимацию

ρ(x, t+ τ) =

∫

Rn

ρ(x+ ζ, t)φ(x, t, ζ)dζ ≈
∫

Rn

ρ(x, t)φ(x, t, ζ)dζ +

+

∫

Rn

ζ · ∇ρ(x, t)φ(x, t, ζ)dζ + 1

2

n∑

i,j=1

∫

Rn

ζiζj
∂2ρ(x, t)

∂xi∂xj
φ(x, t, ζ)dζ.

Таким образом,

ρ(x, t+ τ) ≈ ρ(x, t) + E(x, t) · ∇ρ(x, t) + 1

2

n∑

i,j=1

āij(x, t)
∂2ρ(x, t)

∂xi∂xj
, (2.3)

где вектор

E(x, t) =

∫

Rn

φ(x, t, ζ)ζdζ, (2.4)

а коэффициенты

āij(x, t) =

∫

Rn

ζiζjφ(x, t, ζ)dζ при i, j = 1, . . . , n. (2.5)

Объединяя (2.3) с (2.2) и заменяя приближение равенством, получаем

∂ρ(x, t)

∂t
=

1

2τ

n∑

i,j=1

āij(x, t)
∂2ρ(x, t)

∂xi∂xj
+

1

τ
E(x, t) · ∇ρ(x, t). (2.6)

Определим матрицы размера n× n

Ā(x, t) = (āij(x, t))i,j=1,...,n и A(x, t) = (aij(x, t))i,j=1,...,n
def
=

1

2τ
Ā(x, t). (2.7)

Тогда уравнение (2.6) можно переписать в виде

∂ρ

∂t
=

n∑

i,j=1

aij
∂2ρ

∂xi∂xj
+

1

τ
E · ∇ρ = 〈A,D2ρ〉+ 1

τ
E · ∇ρ. (2.8)

Замечание 2.1. Следует сделать следующие замечания.
(a) Ввиду (2.5), матрица Ā(x, t) симметрична, а значит, и A(x, t) тоже. Кроме того, для ξ =

(ξ1, . . . , ξn) ∈ R
n имеем

ξTĀ(x, t)ξ =

n∑

i,j=1

ξiāij(x, t)ξj =

∫

Rn

|ξ · ζ|2φ(x, t, ζ)dζ � 0.

Следовательно, Ā(x, t) положительно полуопределена. Поскольку τ > 0, то из (2.7) вытекает,
что матрица A(x, t) также положительно полуопределена.

(b) Если ζ �→ φ(x, t, ζ)—четная функция, то, согласно (2.4), E(x, t) = 0, и мы имеем

∂ρ

∂t
=

n∑

i,j=1

aij
∂2ρ

∂xi∂xj
. (2.9)

(c) Рассмотрим случай взаимно независимых событий относительно координат смещения ζ, т. е.

φ(x, t, ζ) = φ1(x, t, ζ1) · · · φn(x, t, ζn), при ζ = (ζ1, ζ2, . . . , ζn),



КЛАСС АНИЗОТРОПНЫХ УРАВНЕНИЙ ДИФФУЗИИ-ПЕРЕНОСА В НЕДИВЕРГЕНТНОЙ ФОРМЕ 667

где каждая φi(x, t, ζi)— это функция распределения вероятностей по переменной ζi ∈ R,
i = 1, 2, . . . , n. Тогда имеем

āij =

{
σ̄iσ̄j при i 	= j,

σ̄2i,i при i = j,

где

σ̄i(x, t) =

∫

R

sφi(x, t, s)ds, σ̄i,i(x, t) =

⎛

⎝

∫

R

s2φi(x, t, s)ds

⎞

⎠

1/2

.

(d) Предположим, в дополнение к (c), что каждая функция φi(x, t, s) при 1 � i � n чёт-
на по s ∈ R. Тогда каждое σi = 0, и, следовательно, Ā(x, t)—диагональная матрица
diag[σ̄21,1, σ̄

2
2,2, . . . , σ̄

2
n,n]. Поскольку каждое σ̄i,i положительно, то в этом случае матрица

Ā(x, t) положительно определена. Более того, функция ζ �→ φ(x, t, ζ)—четная, следователь-
но, согласно пункту (b), уравнение (2.8) принимает вид

∂ρ

∂t
=

n∑

i=1

σ̄2i,i
2τ

· ∂
2ρ

∂x2i
. (2.10)

Это многомерная версия уравнения, полученного Эйнштейном в [14].

Мы сосредоточимся на изучении общего уравнения (2.8), а не (2.9) или (2.10).

2.2. Основное предположение. Заметим, что E(x, t)— это ожидаемое смещение из точки x
между моментами времени t и t+ τ. Таким образом, E(x, t)/τ — это частное

среднее смещение
время

,

что можно рассматривать как среднюю скорость. Следовательно, при малых τ мы можем ап-
проксимировать это отношение E(x, t)/τ скоростью v(x, t) жидкости, т. е.

E(x, t)

τ
≈ v(x, t). (2.11)

Однако мы предположим гораздо более общее отношение, чем (2.11).

Гипотеза 2.1. Существует безразмерная матрица M0(x, t) размера n× n такая, что

M0(x, t)v(x, t) =
E(x, t)

τ
, (2.12)

ξTM0(x, t)ξ � 0 для всех ξ ∈ R
n. (2.13)

Условие (2.13) указывает, что скорость жидкости v(x, t) и отношение E(x, t)/τ имеют некоторое
«соответствие», т. е.

v(x, t) · E(x, t)

τ
� 0. (2.14)

Гипотеза 2.1 — наше фундаментальное предположение. Она связывает микроскопические осо-
бенности движения частиц в среде с макроскопическими свойствами потока жидкости, а именно
со скоростью жидкости в данном случае.

Объединение (2.8) с (2.12) даёт

∂ρ

∂t
= 〈A(x, t),D2ρ〉+ (M0(x, t)v(x, t)) · ∇ρ. (2.15)

В этом уравнении член 〈A(x, t),D2ρ〉 представляет диффузию в недивергентной форме, а член
(M0(x, t)v(x, t)) · ∇ρ представляет перенос/конвекцию.
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2.3. Движение жидкости в пористых средах. Пусть p(x, t)—давление жидкости. Пред-
положим, что закон Дарси — анизотропный [4, 12],

v = −K̄(x, t)(∇p − ρ	g), (2.16)

где K̄(x, t)—матрица размера n×n, а 	g— ускорение свободного падения при n = 1, 2, 3, и может
быть любым постоянным вектором для n � 4.

Объединение (2.15) с (2.16) даёт
∂ρ

∂t
= 〈A(x, t),D2ρ〉 − (K0(x, t)∇p) · ∇ρ+ ρB0(x, t) · ∇ρ, (2.17)

где
K0(x, t) =M0(x, t)K̄(x, t), B0(x, t) =M0(x, t)K̄(x, t)	g.

Далее мы используем уравнения состояния, чтобы связать давление p и плотность ρ в (2.17).

Случай изоэнтропических течений газа. Имеем p = cργ с константой c > 0 и показателем адиа-
баты γ � 1. Тогда (2.17) принимает вид

∂ρ

∂t
= 〈A(x, t),D2ρ〉 − cγργ−1(K0(x, t)∇ρ) · ∇ρ+ ρB0(x, t) · ∇ρ. (2.18)

В частности, для идеальных газов γ = 1, и уравнение (2.18) имеет вид
∂ρ

∂t
= 〈A(x, t),D2ρ〉 − c(K0(x, t)∇ρ) · ∇ρ+ ρB0(x, t) · ∇ρ. (2.19)

Случай слабосжимаемых жидкостей. Имеем
1

ρ

dρ

dp
= κ, где κ—малая положительная постоянная сжимаемость.

Заметив, что ∇ρ = κρ∇p, перепишем (2.17) в виде
∂ρ

∂t
= 〈A(x, t),D2ρ〉 − 1

κρ
(K0(x, t)∇ρ) · ∇ρ+ ρB0(x, t) · ∇ρ. (2.20)

В общем случае предположим справедливость уравнения состояния

p = P0(ρ), где P0 —известная возрастающая функция. (2.21)

Тогда уравнение (2.17) становится уравнением в частных производных на ρ:
∂ρ

∂t
= 〈A(x, t),D2ρ〉 − P ′

0(ρ)(K0(x, t)∇ρ) · ∇ρ+ ρB0(x, t) · ∇ρ. (2.22)

В следующих двух разделах мы сосредоточимся исключительно на математическом аспекте
уравнения (2.22).

3. Принцип максимума и сильный принцип максимума

Пусть U —непустое, открытое, ограниченное подмножество R
n с границей Γ и замыканием Ū .

Пусть T > 0. Обозначим UT = U × (0, T ] и введём параболическую границу ΓT = UT \ UT , где
UT = Ū × [0, T ]— замыкание UT (в R

n+1).
Пусть A : UT → Mn×n

sym , где A(x, t) = (aij(x, t))i,j=1,...,n, K : UT → Mn×n и B : UT → R
n —

заданные функции. В данном разделе мы предполагаем, что существует константа c0 > 0 такая,
что

ξTA(x, t)ξ � c0|ξ|2 для всех (x, t) ∈ UT и всех ξ ∈ R
n. (3.1)

Здесь и далее J —интервал с непустой внутренностью в R, а P —функция из C1(J,R) с
производной

P ′ ∈ C(J, [0,∞)). (3.2)

Для течений жидкости в пористых средах P связано с уравнением состояния (2.21). Однако
мы будем рассматривать общие функции P. Из (3.2) ясно, что P — возрастающая функция от J.

Для любого интервала I из R обозначим через C2,1
x,t (U × I) класс непрерывных функций u(x, t)

с непрерывными частными производными ∂u/∂t, ∂u/∂xi, ∂2u/∂xi∂xj для i, j = 1. . . . , n.
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Рассмотрим нелинейное уравнение (2.22) в форме

∂u

∂t
− 〈A(x, t),D2u〉+ uB(x, t) · ∇u+ P ′(u)(K(x, t)∇u) · ∇u = 0. (3.3)

Для изоэнтропических неидеальных потоков газа в случае уравнения (2.18) с γ > 1 можно
использовать

J = [0,∞), P (s) = sγ , K = cK0, B = −B0. (3.4)
Для потоков идеального газа в случае уравнения (2.19) также можно использовать (3.4) с γ = 1

для физического u = ρ (плотности), но также можно заменить J = R на (3.4) для математиче-
ского u. Таким образом,

J = [0,∞) или J = R, P (s) = s, K = cK0, B = −B0. (3.5)

Например, для слабосжимаемых жидкостей и уравнения (2.20) мы можем использовать

J = (0,∞), P (s) = ln s, K = κ−1K0, B = −B0. (3.6)

Явно определим нелинейный оператор L, связанный с левой частью (3.3):

Lu =
∂u

∂t
− 〈A(x, t),D2u〉+ uB(x, t) · ∇u+ P ′(u)(K(x, t)∇u) · ∇u (3.7)

для любой функции u ∈ C2,1
x,t (UT ) с областью значений u(UT ), являющейся подмножеством J.

Ниже мы рассматриваем принципы максимума и сильного максимума, связанные с этим нели-
нейным оператором L.

3.1. Принцип максимума.

Теорема 3.1 (принцип максимума). Пусть

u ∈ C(UT ) ∩ C2,1
x,t (UT ), u(UT ) ⊂ J. (3.8)

(i) Если Lu � 0 на UT , тогда
max
UT

u = max
ΓT

u. (3.9)

(ii) Если Lu � 0 на UT , тогда
min
UT

u = min
ΓT

u. (3.10)

Доказательство. Определим b̃(x, t) = u(x, t)B(x, t) + P ′(u(x, t))K(x, t)∇u(x, t) и оператор для
функции v:

L̂v =
∂v

∂t
− 〈A(x, t),D2v〉+ b̃(x, t) · ∇v.

Заметим, что L̂u = Lu.

В случае (i) имеем L̂u � 0, следовательно, по стандартному принципу максимума для линей-
ного оператора L̂ и функции u получаем (3.9).

В случае (ii) имеем L̂u � 0, следовательно, по стандартному принципу максимума для линей-
ного оператора L̂ и функции u получаем (3.10).

Пусть S ⊂ R
n+1 и u— ограниченная функция на S. Обозначим

osc
S
u = sup

S
u− inf

S
u.

Следствие 3.1 (осцилляция). Пусть функция u удовлетворяет условию (3.8). Если Lu = 0
на UT , то

osc
UT

u = osc
ΓT

u. (3.11)

Доказательство. Поскольку Lu = 0, мы можем применить как (i), так и (ii) в теореме 3.1.
Следовательно, из (3.9) и (3.10) получаем (3.11).
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3.2. Преобразования типа Бернштейна—Коула—Хопфа. Для устранения квадратичных
членов градиента введём следующее преобразование типа Бернштейна—Коула—Хопфа.

Для заданной функции u мы определяем оператор L следующим образом:

Lw =
∂w

∂t
− 〈A(x, t),D2w〉+ u(x, t)B(x, t) · ∇w. (3.12)

Заметим, что L является линейным оператором по w для каждой заданной функции u.

Лемма 3.1. Пусть u—функция такая, что

u ∈ C2,1
x,t (UT ), u(UT ) ⊂ J. (3.13)

Определим линейный оператор L с помощью (3.12). Пусть s0 ∈ J. Для λ ∈ R, C > 0, C ′ ∈ R,
определим

Fλ(s) = C

s∫

s0

eλP (z)dz + C ′, s ∈ J. (3.14)

(i) Тогда Fλ ∈ C2(J), F ′
λ > 0 и λF ′′

λ � 0 на J.
(ii) Предположим, что существует константа c1 � 0 такая, что

ξTK(x, t)ξ � −c1|ξ|2 для всех (x, t) ∈ UT и всех ξ ∈ R
n. (3.15)

Если Lu � 0 на UT , то для любых чисел λ � c1/c0, C > 0, C ′ ∈ R, функция w = Fλ(u)
удовлетворяет Lw � 0 на UT .

(iii) Предположим, что существует константа c2 � 0 такая, что

ξTK(x, t)ξ � c2|ξ|2 для всех (x, t) ∈ UT и всех ξ ∈ R
n. (3.16)

Если Lu � 0 на UT , то для любых чисел λ � −c2/c0, C > 0, C ′ ∈ R, функция w = Fλ(u)
удовлетворяет Lw � 0 на UT .

Доказательство.
(i) Эти факты очевидно следуют из (3.14) и условия (3.2).
Для пунктов (ii) и (iii) находим w = F (u) для функции F ∈ C2(J) такой, что

F ′ > 0 на J. (3.17)

Имеем
∂w

∂xi
= F ′(u)

∂u

∂xi
,

∂2w

∂xi∂xj
= F ′(u)

∂2u

∂xi∂xj
+ F ′′(u)

∂u

∂xi

∂u

∂xj
.

Тогда

Lw = F ′(u)

⎡

⎣
∂u

∂t
−

n∑

i,j=1

aij
∂2u

∂xi∂xj
+ uB · ∇u

⎤

⎦− F ′′(u)
n∑

i,j=1

aij
∂u

∂xi

∂u

∂xj
=

= F ′(u)Lu− F ′′(u)(∇u)TA(x, t)∇u.
Заметим, что Lu = Lu+ P ′(u)(∇u)TK(x, t)∇u. Таким образом,

Lw = F ′(u){Lu− P ′(u)(∇u)TK(x, t)∇u} − F ′′(u)(∇u)TA(x, t)∇u. (3.18)

(ii) Рассмотрим Lu � 0 на UT . Тогда из (3.18) следует, что

Lw � −P ′(u)F ′(u)(∇u)TK(x, t)∇u− F ′′(u)(∇u)TA(x, t)∇u.
Для Lw � 0 на UT мы накладываем условие

F ′′(u)ξTA(x, t)ξ � −P ′(u)F ′(u)ξTK(x, t)ξ ∀(x, t) ∈ UT , ∀ξ ∈ R
n. (3.19)

Найдём F такое, что
F ′′ � 0 на J. (3.20)

Это свойство и (3.1), (3.15) влекут для всех (x, t) ∈ UT и ξ ∈ R
n неравенства

F ′′(u)ξTA(x, t)ξ � c0F
′′(u)|ξ|2, −P ′(u)F ′(u)ξTK(x, t)ξ � c1P

′(u)F ′(u)|ξ|2.
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Благодаря этим неравенствам и (3.19) достаточным условием для Lw � 0 на UT является

c0F
′′(s) � c1P

′(s)F ′(s).

Для λ � c1/c0 указанное выше неравенство будет следовать из уравнения

F ′′(s) = λP ′(s)F ′(s), (3.21)

что даёт решение
F ′(s) = eλ

∫

P ′(s)ds = CeλP (s). (3.22)
Здесь мы выбираем C > 0 так, чтобы выполнялось условие (3.17). Затем выбираем решение
F = Fλ, как в (3.14). Поскольку (3.17) уже выполнено, уравнение (3.21) и свойство (3.2) влекут
за собой второе требование (3.20).

(iii) Рассмотрим Lu � 0 на UT . Тогда из (3.18) следует, что

Lw � −P ′(u)F ′(u)(∇u)TK(x, t)∇u− F ′′(u)(∇u)TA(x, t)∇u.
Благодаря этому неравенству, достаточным условием для Lw � 0 на UT является

F ′′(u)ξTA(x, t)ξ � −P ′(u)F ′(u)ξTK(x, t)ξ ∀(x, t) ∈ UT , ∀ξ ∈ R
n. (3.23)

В этом случае мы найдём F такую, что

F ′′ � 0 на J. (3.24)

Это, а также (3.1) и (3.16) влекут для всех (x, t) ∈ UT и ξ ∈ R
n неравенства

F ′′(u)ξTA(x, t)ξ � c0F
′′(u)|ξ|2, −P ′(u)F ′(u)ξTK(x, t)ξ � −c2P ′(u)F ′(u)|ξ|2.

Используя эти неравенства и (3.23), запишем достаточное условие для Lw � 0 на UT :

c0F
′′(s) � −c2P ′(s)F ′(s).

При λ � −c2/c0 � 0 мы снова решаем уравнение (3.21). Как и в пункте (ii), мы выбираем решение
F = Fλ в (3.14). Требования (3.17) и (3.24) снова выполняются благодаря (3.22) и (3.21).

Заметим, что функция Fλ в лемме 3.1 непрерывна и строго возрастает на J.

Пример 3.1. Имеем следующие примеры потоков жидкости.
(a) Случай изоэнтропических неидеальных потоков газа. Используя (3.4), мы можем выбрать

Fλ(s) =

s∫

0

eλz
γ
dz, s � 0. (3.25)

(b) Случай идеального газа. Мы используем (3.5) и выберем s0 = 0 в (3.14) для обоих случаев J.
При λ = 0 мы, очевидно, можем выбрать

Fλ(s) = s, s ∈ J. (3.26)

Для λ 	= 0 можно выбрать

Fλ(s) =
1

λ
eλs для всех s ∈ J или Fλ(s) = sign(λ)eλs для всех s ∈ J. (3.27)

(c) Случай слабосжимаемых жидкостей. Используем (3.6). При λ 	= −1 в общем случае
из (3.14) получаем, что

Fλ(s) = C

s∫

s0

zλdz + C ′ =
C

λ+ 1
(sλ+1 − sλ+1

0 ) + C ′,

и, следовательно, можно выбрать

Fλ(s) =
sλ+1

λ+ 1
для всех s > 0 или Fλ(s) = sign(λ+ 1)sλ+1 для всех s > 0. (3.28)

Для λ = −1 можно аналогично выбрать

Fλ(s) = ln s, s > 0.
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3.3. Строгий принцип максимума. Предположим дополнительно в этом пункте 3.3, что U
связно.

Теорема 3.2. Предположим, что A(x, t) и B(x, t) ограничены на UT , а K(x, t) удовлетворя-
ет условию (3.15) (соответственно, (3.16)). Предположим, что u—функция, удовлетворяю-
щая (3.13), ограниченная на UT и такая, что Lu � 0 (соответственно, Lu � 0) на UT . Пусть

M = sup
UT

u(x, t) (соответственно, m = inf
UT

u(x, t)).

Предположим, что существует пара (x0, t0) ∈ UT такая, что

u(x0, t0) =M (соответственно, u(x0, t0) = m). (3.29)

Тогда

u(x, t) =M (соответственно, u(x, t) = m) для всех (x, t) ∈ Ut0 = U × (0, t0]. (3.30)

Доказательство. Пусть Lw определено по формуле (3.12). Перепишем Lw в виде

Lw = wt − 〈A(x, t),D2w〉+ B̃(x, t) · ∇w, где B̃(x, t) = u(x, t)B(x, t). (3.31)

Поскольку и u(x, t), и B(x, t) ограничены на UT , то B̃(x, t) также ограничено на UT . Обратим
внимание, что оператор L не содержит члена c(x, t)w. Ниже мы будем использовать сильный
принцип максимума в частной форме [22, гл. 3, теорема 2.3], см. также [22, гл. 3, теорема 2.4].

Часть 1. Рассмотрим Lu � 0 в UT и соответствующие условия. Из (3.29) следует, что u(x0, t0) =
max
UT

u(x, t).

Случай c1 = 0. В этом случае Lu � Lu � 0 на UT . Можно применить сильный принцип
максимума к оператору L в форме (3.31) и функции u + |M | + 1, тогда получим u = M на Ut0 .
Таким образом, мы получаем первое утверждение из (3.30).
Случай c1 > 0. Пусть λ1 = c1/c0 и w = Fλ1(u) на UT . По лемме 3.1 (ii), имеем Lw � 0 на UT и,

ввиду роста Fλ1 ,

w(x0, t0) = Fλ1(M) = max
UT

w.

Применим сильный принцип максимума к оператору L и функции w+|Fλ1(M)|+1, тогда получим
w = Fλ1(M) на Ut0 . Таким образом, u = F−1

λ1
(w) =M на Ut0 .

Часть 2. Рассмотрим Lu � 0 в UT и соответствующие условия. Заметим, что u(x0, t0) =
min
UT

u(x, t).

Случай c2 = 0. Имеем Lu � Lu � 0 на UT . Применим сильный принцип максимума к опера-
тору L и функции u − |m| − 1, тогда получим u = m на Ut0 . Таким образом, получаем второе
утверждение из (3.30).
Случай c2 > 0. Пусть λ2 = −c2/c0 и w = Fλ2(u) на UT . Доказательство второго утверждения

в (3.30) аналогично доказательству случаю c1 > 0 в части 1 выше, с использованием леммы 3.1 (iii)
вместо леммы 3.1 (ii) и сильного принципа максимума, применённого к оператору L и функции
w − |Fλ2(m)| − 1. Опустим подробности.

4. Начально-краевая задача

Пусть U и Γ— такие же, как в разделе 3. Зафиксируем точку x0 	∈ Ū и положим

r0 = min{|x− x0| : x ∈ Ū}, R = max{|x− x0| : x ∈ Ū}.
Тогда R > r0 > 0.
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4.1. Результаты для линейных операторов. Как показано в разделе 3, исследование нели-
нейной задачи можно свести к исследованию некоторого линейного оператора. Поэтому сначала
мы установим некоторые существенные результаты для общего линейного случая.

При условии T > 0 пусть UT и ΓT будут такими, как в разделе 3.

Предположение 4.1. Пусть A : UT → Mn×n
sym и b : UT → R

n таковы, что
(i) A удовлетворяет условию (3.1) для некоторой константы c0 > 0;
(ii) существуют константы M1 > 0 и M2 � 0 такие, что

Tr(A(x, t)) �M1, |b(x, t)| �M2 для всех (x, t) ∈ UT . (4.1)

Определим линейный оператор L̃ следующим образом:

L̃w = wt − 〈A(x, t),D2w〉+ b(x, t) · ∇w, w ∈ C2,1
x,t (UT ). (4.2)

Лемма 4.1 (лемма о росте). В условиях предположения 4.1 положим

β =
1

4c0
max

{

2(M1 +M2R),
R2

T

}

, T∗ =
R2

4c0β
, η∗ = 1− (r0/R)

2β . (4.3)

Если w ∈ C(UT ) ∩ C2,1
x,t (UT ) удовлетворяет L̃w � 0 на UT и w � 0 на Γ× [0, T ], то имеем

max

{

0,max
x∈Ū

w(x, T∗)
}

� η∗ max

{

0,max
x∈Ū

w(x, 0)

}

. (4.4)

Доказательство. Мы следуем [22, гл. 3, лемма 6.1], а также [16, лемма IV.3]. Значения в (4.3)
временно игнорируем.

Шаг 1. Пусть функция ϕ ∈ C(Ū) ∩ C2(U) такова, что

0 < d0 � ϕ � d1 на Ū ,

|∇ϕ| � d2, ϕ � c0|∇ϕ|2, |〈A,D2ϕ〉| � d3 на U
(4.5)

для некоторых положительных чисел d0, d1, d2, d3. Заметим, что последнее условие в (4.5) вы-
полняется в UT (из-за свойств матрицы A(x, t)). Конкретная функция ϕ будет построена на 3-м
шаге ниже. Определим барьерную функцию W на Ū × R следующим образом:

W (x, t) =

{
t−βe−

ϕ(x)
t , если (x, t) ∈ Ū × (0,∞),

0, если (x, t) ∈ Ū × (−∞, 0],

где β —положительное число. В силу оценки снизу на ϕ(x) в (4.5) мы имеем W ∈ C(Ū ×R). При
t > 0 получим

Wt = −β
t
W +

ϕ

t2
W, Wxi = −ϕxi

t
W, Wxixj = −ϕxixj

t
W +

ϕxiϕxj

t2
W

и будем иметь на UT

L̃W =
W

t2
{
t(−β + 〈A,D2ϕ〉 − b · ∇ϕ) + ϕ− (A∇ϕ) · ∇ϕ} .

Нам требуется L̃W � 0 на U × (0,∞), поэтому накладываем условия

ϕ � (A∇ϕ) · ∇ϕ, β � 〈A,D2ϕ〉 − b · ∇ϕ на UT . (4.6)

По (3.1), достаточным условием для первого условия в (4.6) является ϕ � c0|∇ϕ|2 на UT , что,
по сути, выполняется в соответствии с нашим предположением (4.5). Достаточным условием для
второго условия в (4.6) является

β � |〈A,D2ϕ〉|+ |b||∇ϕ| на UT . (4.7)

Основываясь на (4.1) и (4.5), выберем

β � d3 +M2d2, (4.8)

чтобы удовлетворялось (4.7). Итак, для β в (4.8) имеем L̃W � 0 на U × (0,∞).
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Шаг 2. Пусть β удовлетворяет условию (4.8). Положим M = max{0,max
Ū

w(x, 0)} и определим

W̃ =M(1− ηW ) на Ū ×R, где η = (d0e/β)
β > 0. Тогда L̃W̃ � 0 на U × (0,∞). На Ū × {0} имеем

W (x, 0) = 0 и, следовательно,

W̃ (x, 0) =M � w(x, 0) для всех x ∈ Ū . (4.9)

Заметим, что при t > 0

W̃ (x, t) =M
(
1− ηt−βe−ϕ(x)/t

)
�M

(
1− ηt−βe−d0/t

)
.

Элементарные вычисления показывают, что функция h0(t) = t−βe−d0/t на (0,∞) достигает мак-
симума при t0 = d0/β со значением h0(t0) = η−1. Таким образом, на Ū × (0,∞) имеем:

W̃ (x, t) �M (1− ηh0(t0)) = 0.

В частности,
W̃ � w на Γ× (0,∞). (4.10)

Наложим ещё одно условие:
β � d1/T, T∗ = d1/β. (4.11)

Тогда T∗ � T, имеем L̃(w−W̃ ) � 0 на U×(0, T∗] и, ввиду (4.9), (4.10), w−W̃ � 0 на параболической
границе U×(0, T∗]. Применяя принцип максимума к оператору L̃ и функции (w−W̃ ) на множестве
Ū × [0, T∗], получаем

w � W̃ на Ū × [0, T∗]. (4.12)

Заметим, что

W̃ (x, t) �M
(
1− ηt−βe−d1/t

)
. (4.13)

При t = T∗, из (4.12) и (4.13) для всех x ∈ Ū следует, что

w(x, T∗) � W̃ (x, T∗) �M

[

1−
(
d0e

β

)β (d1
β

)−β

e−d1(β/d1)

]

=M

[

1−
(
d0
d1

)β
]

= η∗M,

где
η∗ = 1− (d0/d1)

β ∈ (0, 1). (4.14)

Таким образом, мы получаем неравенство (4.4) для T∗, η∗ при β, удовлетворяющем условиям (4.8),
(4.11), (4.14).

Шаг 3. Выберем функцию ϕ(x) = μ|x − x0|2 с числом μ > 0, которое определим позже. Тогда
μr20 � ϕ � μR2 на Ū , следовательно, мы выбираем d0 = μr20 и d1 = μR2 в (4.5).

Для второго условия в (4.5), поскольку |∇ϕ| = 2μ|x− x0| � 2μR, выберем d2 = 2μR.
Третье условие в (4.5) трансформируется в μ|x− x0|2 � 4c0μ

2|x− x0|2, потому выберем

μ =
1

4c0
.

Для последнего условия в (4.5) заметим, что 〈A,D2ϕ〉 = 2μTr(A(x, t)), и, таким образом, вы-
берем d3 = 2μM1.

При указанных выше значениях μ, d0, d1, d2, d3 отношения (4.8) и (4.11) трансформируются в

β � 2μ(M1 +M2R) =
2(M1 +M2R)

4c0
, β � μR2

T
=

R2

4c0T
, T∗ =

μR2

β
=

R2

4c0β
. (4.15)

Выбранное β в (4.3) удовлетворяет первым двум условиям в (4.15). Кроме того, T∗ в (4.15) в
точности соответствует заданному в (4.3). Более того, из (4.14) следует, что

η∗ = 1− (μr20/(μR
2))β = 1− (r0/R)

2β ,

что является тем же числом, что и в (4.3). Доказательство завершено.
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Ключевым улучшением оценки (4.4) по сравнению с принципом максимума является множи-
тель η∗, принадлежащий интервалу (0, 1). Из приведённой выше леммы о росте выведем более
конкретные оценки для суб- и суперрешений, а также сами решения для всех времён. Основное
внимание уделим убывающим решениям для больших времён, хотя также получим некоторые
«оптимальные» оценки для малых времён.

Предположение 4.2. Пусть A : U × (0,∞) → Mn×n
sym и b : U × (0,∞) → R

n удовлетворяют
следующим условиям:
(i) существует положительная константа c0 такая, что

ξTA(x, t)ξ � c0|ξ|2 для всех (x, t) ∈ U × (0,∞) и всех ξ ∈ R
n; (4.16)

(ii) A(x, t) и b(x, t) ограничены на U × (0,∞).

В предположении 4.2 определим линейный оператор L̃ формулой (4.2) для w ∈ C2,1
x,t (U×(0,∞)).

По условию (ii) в предположении 4.2, существуют константы M1 > 0 и M2 > 0 такие, что

Tr(A(x, t)) �M1, |b(x, t)| �M2 для всех (x, t) ∈ U × (0,∞). (4.17)

Предложение 4.1. Пусть предположение 4.2 справедливо, а положительные числа M1, M2

заданы как в (4.17). Положим

β =
1

2c0
(M1 +M2R), T∗ =

R2

4c0β
, η∗ = 1− (r0/R)

2β ,

ν = T−1
∗ ln(1/η∗), ν0 =

R2

2c0
ln(R/r0).

(4.18)

Пусть w ∈ C(Ū × [0,∞)) ∩ C2,1
x,t (U × (0,∞)).

(i) Если L̃w � 0 на U × (0,∞) и w � 0 на Γ× (0,∞), тогда

max
x∈Ū

w(x, t) � (1− e−ν0/t)max{0,max
x∈Ū

w(x, 0)} при 0 < t � T∗, (4.19)

max
x∈Ū

w(x, t) � η−1
∗ e−νtmax{0,max

x∈Ū
w(x, 0)} при t � 0, (4.20)

и, следовательно,
lim sup
t→∞

max
x∈Ū

w(x, t) � 0. (4.21)

(ii) Если L̃w � 0 на U × (0,∞) и w � 0 на Γ× (0,∞), тогда

min
x∈Ū

w(x, t) � (1− e−ν0/t)min{0,min
x∈Ū

w(x, 0)} при 0 < t � T∗, (4.22)

min
x∈Ū

w(x, t) � η−1
∗ e−νtmin{0,min

x∈Ū
w(x, 0)} при t � 0, (4.23)

и, следовательно,
lim inf
t→∞ min

x∈Ū
w(x, t) � 0. (4.24)

(iii) Если L̃w = 0 на U × (0,∞) и w = 0 на Γ× (0,∞), тогда

max
x∈Ū

|w(x, t)| � (1− e−ν0/t)max
x∈Ū

|w(x, 0)| при 0 < t � T∗, (4.25)

max
x∈Ū

|w(x, t)| � η−1
∗ e−νtmax

x∈Ū
|w(x, 0)| при t � 0, (4.26)

и, следовательно,
lim
t→∞max

x∈Ū
|w(x, t)| = 0. (4.27)

Доказательство. Для любого целого числа k � 0 положим

Tk = kT∗, Jk = max{0,max
x∈Ū

w(x, Tk)} � 0.

(i) В этом случае L̃w � 0 на U × (0,∞) и w � 0 на Γ× [0,∞).



676 Л. ХОАНГ, А.И. ИБРАГИМОВ

Сначала докажем (4.19). Полагая t ∈ (0, T∗], применим лемму 4.1 к T = t. Переобозначим β,
T∗, η∗ через β′, T ′∗, η′∗ в (4.3) и, заметив, что

t � T∗ =
R2

4c0β
=

R2

2(M1 +M2R)
,

получим

β′ =
1

4c0
max

{

2(M1 +M2R),
R2

t

}

=
R2

4c0t
,

T ′
∗ = R2/(4c0β

′) = t,

η′∗ = 1− (r0/R)
R2/(2c0t) = 1− e−ν0/t.

Из (4.4) получаем, что

max
Ū

w(x, t) � η′∗ max{0,max
Ū

w(x, 0)} = (1− e−ν0/t)max{0,max
Ū

w(x, 0)},

что доказывает (4.19).

Далее докажем (4.20). При k � 1 применяем лемму 4.1 к цилиндру Ū × [Tk−1, Tk], т. е. при
T = Tk − Tk−1 = T∗. Снова, используя β′, T ′∗, η′∗ для обозначения β, T∗, η∗ в (4.3), получаем

β′ = max

{
M1 +M2R

2c0
,
R2

4c0T

}

= β,

T ′
∗ =

R2

4c0β′
=

R2

4c0β
= T∗,

η′∗ = 1− (r0/R)
2β′

= 1− (r0/R)
2β = η∗.

Таким образом, из оценки (4.4) следует, что Jk � η∗Jk−1.Итерируя это неравенство по k, получаем

Jk � ηk∗J0 для любого k � 0. (4.28)

Для каждого t > 0 пусть k � 0 и t ∈ (Tk, Tk+1]. Заметим, что k+1 � t/T∗. Из принципа максимума,
неравенства w � 0 на Γ× (Tk−1, Tk] и неравенства (4.28) имеем

w(x, t) � Jk � ηk∗J0 = η−1
∗ ηk+1

∗ J0 � η−1
∗ η

t/T∗∗ J0 = η−1
∗ e−tT−1∗ ln(1/η∗)J0.

Таким образом,
max
x∈Ū

w(x, t) � η−1
∗ e−νtJ0 для любого t � 0,

что доказывает (4.20). Устремляя t к бесконечности в (4.20), получаем (4.21).

(ii) В этом случае мы можем применить результаты пункта (i), заменив w на −w. Тогда из (4.19)
и (4.20) следует, что

max
x∈Ū

(−w(x, t)) � (1− e−ν0/t)max{0,max
Ū

(−w(x, 0))} при 0 < t � T∗, (4.29)

max
x∈Ū

(−w(x, t)) � η−1
∗ e−νtmax{0,max

Ū
(−w(x, 0))} при t � 0, (4.30)

что влечёт (4.22) и (4.23) соответственно. Устремляя t к бесконечности в (4.23), получим (4.24).

(iii) Поскольку L̃w = 0 на U × (0,∞) и w = 0 на Γ× (0,∞), мы можем применить результаты
обоих пунктов (i) и (ii) выше. Заметим, что

|w(x, t)| = max{w(x, t),−w(x, t)} � max{max
x∈Ū

w(x, t),max
x∈Ū

(−w(x, t))}. (4.31)

При 0 < t � T∗, объединяя (4.31) с (4.19) и (4.29), и используя тот факт, что

max
Ū

w(x, 0), max
Ū

(−w(x, 0)) � max
Ū

|w(x, 0)|, (4.32)

получаем (4.25).
При t � 0 объединение (4.31) с (4.20), (4.30) и (4.32) даёт (4.26). Наконец, из (4.26) следу-

ет (4.27).
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Замечание 4.1. Заметим, что оценки (4.19), (4.22) и (4.21) для малых времён при t → 0+

более оптимальны, чем их аналоги для больших времён (4.20), (4.23) и (4.27). Это связано с тем,
что множители перед исходными данными сходятся к 1 при t→ 0+, а не к η−1∗ > 1.

4.2. Результаты для нелинейной задачи. Вернёмся к нелинейной задаче.

Предположение 4.3. Пусть A : U × (0,∞) → Mn×n
sym , K : U × (0,∞) → Mn×n и B : U ×

(0,∞) → R
n таковы, что

(i) A(x, t) удовлетворяет условию (4.16);
(ii) A(x, t) и B(x, t) ограничены на U × (0,∞);
(iii) существуют константы c1 � 0 и c2 � 0 такие, что

−c1|ξ|2 � ξTK(x, t)ξ � c2|ξ|2 для всех (x, t) ∈ U × (0,∞), всех ξ ∈ R
n. (4.33)

Будем считать предположение 4.3 выполненным до конца этого раздела. Условие (4.33) в пред-
положении 4.3 означает, что K удовлетворяет условиям (3.15) и (3.16) для всех T > 0. (В частно-
сти, если K ограничено на U × (0,∞), то (4.33) заведомо выполняется.) В силу ограниченности
B и A на U × (0,∞) существуют положительные числа M0 и M1 такие, что

|B(x, t)| �M0 для всех (x, t) ∈ U × (0,∞), (4.34)

Tr(A(x, t)) �M1 для всех (x, t) ∈ U × (0,∞). (4.35)
Рассмотрим начально-краевую задачу

⎧
⎪⎪⎨

⎪⎪⎩

∂u

∂t
− 〈A,D2u〉+ uB · ∇u+ P ′(u)(K∇u) · ∇u = 0 на U × (0,∞),

u(x, t) = u∗ на Γ× (0,∞),

u(x, 0) = u0(x) на U,

(4.36)

где u∗ —константа, а u0(x)— заданная функция.
Определим нелинейный оператор L с помощью (3.7) для любой функции u ∈ C2,1

x,t (U × (0,∞)),
причём область значений u является подмножеством J.

Предположим, что u ∈ C(Ū×[0,∞))∩C2,1
x,t (U×(0,∞)) является решением (4.36) и удовлетворяет

условию
u(x, t) ∈ J для всех (x, t) ∈ U × (0,∞), (4.37)

Как и в (3.31), мы определяем линейный оператор L по формуле

Lw = wt − 〈A(x, t),D2w〉+ B̃(x, t) · ∇w, где B̃(x, t) = u(x, t)B(x, t)

для любой функции w ∈ C2,1
x,t (U × (0,∞)).

В силу непрерывности u(x, t) на Ū × [0,∞) мы должны иметь

u(x, 0) = u∗ при x ∈ Γ (4.38)

и, вместе с требованием (4.37), u∗ ∈ J̄ . Кроме того, функция u0(x) непрерывна при x ∈ U , а
u(x, 0) является её единственным продолжением до непрерывной функции на Ū . Следовательно,
можно сказать, что u(x, 0) = u0(x) на Ū и u = u∗ на Γ× [0,∞). Обозначим

m∗ = min
x∈Ū

u(x, 0), M∗ = max
x∈Ū

u(x, 0).

Тогда в силу (4.38) имеем m∗ � u∗ � M∗. Поскольку u(U × (0,∞)) ⊂ J, то m∗,M∗ ∈ J̄ и,
следовательно, отрезок [m∗,M∗] ⊂ J̄ .

Из принципа максимума — теоремы 3.1 — следует, что для всех T > 0

m∗ � u(x, t) �M∗ на Ū × [0,∞). (4.39)

Если m∗ =M∗, то, очевидно,

u = m∗ = u∗ =M∗ на Ū × [0,∞). (4.40)

По этой причине сейчас мы сосредоточимся на случае m∗ < M∗. Выберем любую точку (x0, t0) ∈
U × (0,∞). Тогда u(x0, t0) ∈ J ∩ [m∗,M∗].

Рассмотрим случай m∗ 	∈ J. Поскольку m∗,M∗ находятся в интервале J̄ и m∗ < M∗, можно
сделать вывод, что m∗ не может быть правой конечной точкой J, следовательно, m∗ должна быть
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левой конечной точкой J и J̄ . Аналогично, если M∗ 	∈ J, то M∗ должна быть правой конечной
точкой J и J̄ .

Из этих рассуждений получим следующие условия для m∗ < M∗:
(E1) M∗ ∈ J, m∗ 	∈ J, правый предел lim

z→m+∗
P (z) существует и принадлежит R ∪ {−∞},

(E2) m∗ ∈ J, M∗ 	∈ J, левосторонний предел lim
z→M−∗

P (z) существует и принадлежит R ∪ {∞}.

Рассмотрим случай (E1) и λ > 0. Функцию eλP (z), z ∈ J, можно продолжить до непрерывной
функции Eλ : J∪{m∗} → [0,∞). Любую функцию Fλ из (3.14) можно продолжить до C1-функции
с J ∪ {m∗} в R, по-прежнему обозначая её Fλ, следующим образом:

Fλ(s) = C

s∫

s0

Eλ(z)dz +C ′, s ∈ J ∪ {m∗}. (4.41)

Рассмотрим случай (E2) и λ < 0. Аналогичным образом, любую функцию Fλ из (3.14) можно
продолжить до C1-функции с J ∪ {M∗} в R, по-прежнему обозначая её Fλ:

Fλ(s) = C

s∫

s0

Eλ(z)dz + C ′, s ∈ J ∪ {M∗}. (4.42)

Теорема 4.1. Пусть m∗ < M∗.
(i) Если m∗,M∗ ∈ J, то существуют число C0 > 0, зависящее от c0, c1, c2, M0, M1, m∗, M∗,

и число ν > 0, зависящее от c0, M0, M1, m∗, M∗, такие, что

max
x∈Ū

|u(x, t)− u∗| � C0e
−νtmax

x∈Ū
|u0(x)− u∗| при t � 0. (4.43)

(ii) Предположим, что выполняется либо c1 = 0, либо условие (E1). Тогда

lim sup
t→∞

max
x∈Ū

u(x, t) � u∗. (4.44)

Если, кроме того, u∗ = m∗, то

lim
t→∞max

x∈Ū
|u(x, t)− u∗| = 0. (4.45)

(iii) Предположим, что выполняется либо c2 = 0, либо условие (E2). Тогда

lim inf
t→∞ min

x∈Ū
u(x, t) � u∗. (4.46)

Если, кроме того, u∗ =M∗, то имеем (4.45).
(iv) Следовательно, если либо

(a) c1 = 0 и (E2), либо
(b) c2 = 0 и (E1),
то имеет место (4.45).

Доказательство. Из (4.39) получаем |u(x, t)| � max{|m∗|, |M∗|} для всех (x, t) ∈ Ū × [0,∞).
Объединяя это с (4.34), получаем

|B̃(x, t)| �M2 для всех (x, t) ∈ U × (0,∞), где M2 =M0 max{|m∗|, |M∗|}. (4.47)

Пусть M1 и M2 определены как в (4.35) и (4.47), а s, η∗ и ν определены, как в (4.18). Заметим,
что последние три числа зависят только от c0, M0, M1, m∗, M∗.

Пусть
λ1 > 0 и λ2 < 0 таковы, что λ1 � c1/c0 и λ2 � −c2/c0. (4.48)

Пусть функции Fλj
, j = 1, 2, заданы формулой (3.14) при C = 1, C ′ = 0 и λ = λj. Определим

wj = Fλj
(u) на U × (0,∞). (4.49)

По лемме 3.1 (ii) и (iii) имеем

Lw1 � 0, Lw2 � 0 на U × (0,∞). (4.50)



КЛАСС АНИЗОТРОПНЫХ УРАВНЕНИЙ ДИФФУЗИИ-ПЕРЕНОСА В НЕДИВЕРГЕНТНОЙ ФОРМЕ 679

Ниже, всякий раз, когда мы применяем предложение 4.1 к оператору L, это подразумевает,
что L̃ = L, где b(x, t) = B̃(x, t).

(i) Доказательство (4.43) разделим на три шага.

Шаг 1. Поскольку m∗,M∗ ∈ J, имеем

u(Ū × [0,∞)) ⊂ [m∗,M∗] ⊂ J. (4.51)

Выберем два числа λ1 и λ2, удовлетворяющие условию (4.48). В этом случае в силу (4.51) можно
продолжить функцию (4.49) до wj = Fλ1(u) на Ū × [0,∞), j = 1, 2. Тогда мы по-прежнему
имеем (4.50).

Определим w∗,j = Fλj
(u∗) и w̄j = wj − w∗,j, j = 1, 2, на Ū × [0,∞). Очевидно, w̄j = 0 на

Γ × [0,∞), j = 1, 2. Применяя предложение 4.1 (i) к оператору L и функции w := w̄1, из (4.20)
при t � 0 получаем, что

max
x∈Ū

w̄1(x, t) � η−1
∗ e−νtmax{0,max

Ū
w̄1(x, 0)} � η−1

∗ e−νtmax
Ū

|w̄1(x, 0)|. (4.52)

Аналогично, применяя предложение 4.1 (ii) к оператору L и функции w := w̄2, из (4.23) для всех
t � 0 следует, что

min
x∈Ū

w̄2(x, t) � η−1
∗ e−νtmin{0,min

Ū
w̄2(x, 0)} � −η−1

∗ e−νtmax
Ū

|w̄2(x, 0)|} при t � 0. (4.53)

Шаг 2. Следующий шаг состоит в том, чтобы связать неравенства (4.52) и (4.53) при u(x, t)−u∗.
Для этого обозначим

C1 = min{eλ1P (m∗), eλ2P (M∗)}, C2 = max{eλ1P (M∗), eλ2P (m∗)}.
Для j = 1, 2 имеем

0 < C1 � F ′
λj
(z) = eλjP (z) � C2 при z ∈ [m∗,M∗].

Выше мы использовали свойство возрастания P, см. (3.2). Следовательно, для j = 1, 2

C1|s− u∗| � |Fλj
(s)− Fλj

(u∗)| � C2|s− u∗| при z ∈ [m∗,M∗]. (4.54)

Более конкретно, по теореме о среднем значении для j = 1, 2 имеем:
C1(s− u∗) � Fλj

(s)− Fλj
(u∗) � C2(s− u∗) при s ∈ [u∗,M∗],

C2(s− u∗) � Fλj
(s)− Fλj

(u∗) � C1(s− u∗) при s ∈ [m∗, u∗).
(4.55)

Следовательно, при j = 1 из (4.55) для s ∈ [m∗,M∗] имеем, что

s− u∗ � max{C−1
1 (Fλ1(s)− Fλ1(u∗)), C

−1
2 (Fλ1(s)− Fλ1(u∗))}. (4.56)

При j = 2, для s ∈ [m∗,M∗] имеем:

s− u∗ � min{C−1
2 (Fλ2(s)− Fλ2(u∗)), C

−1
1 (Fλ2(s)− Fλ2(u∗))}. (4.57)

Шаг 3. Теперь, объединяя неравенство (4.56) с оценкой (4.52), получаем для любого t � 0, что

u(x, t)− u∗ � max{C−1
1 (w1(x, t)− w∗,1), C−1

2 (w1(x, t)− w∗,1)} �
� max{C−1

1 η−1
∗ e−νtmax

Ū
|w1(x, 0) − w∗,1|, C−1

2 η−1
∗ e−νtmax

Ū
|w1(x, 0)− w∗,1|} �

� C−1
1 η−1

∗ e−νtmax
Ū

|w1(x, 0)− w∗,1|.
Вместе с (4.54) для оценки последнего максимума это даёт

u(x, t)− u∗ � C−1
1 C2η

−1
∗ e−νtmax

Ū
|u(x, 0) − u∗|. (4.58)

Далее, объединяя неравенство (4.57) с оценкой (4.53), получаем

u(x, t)− u∗ � min{C−1
2 (w2(x, t)− w∗,2), C−1

1 (w2(x, t)− w∗,2)} �
� min{−C−1

2 η−1
∗ e−νtmax

Ū
|w2(x, 0) − w∗,2|,−C−1

1 η−1
∗ e−νtmax

Ū
|w2(x, 0) − w∗,2|} �

� −C−1
1 η−1

∗ e−νtmax
Ū

|w2(x, 0) − w∗,2|.
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Опять же, отсюда с учётом (4.54) получим

u(x, t) − u∗ � −C−1
1 C2η

−1
∗ e−νtmax

Ū
|u(x, 0) − u∗|. (4.59)

Наконец, объединение оценок (4.58) и (4.59) даёт

|u(x, t)− u∗| � C−1
1 C2η

−1
∗ e−νtmax

Ū
|u(x, 0) − u∗|,

что доказывает искомую оценку (4.43).

(ii) Сначала докажем (4.44).

Случай 1: c1 = 0. В этом случае Lu � Lu = 0. Тогда, применяя предложение 4.1 (ii) к оператору
L и функции w := u− u∗, получаем (4.44) из (4.21).

Случай 2: c1 > 0 и выполнено (E1). Имеем диапазон u(Ū × [0,∞)), являющийся подмножеством
J ∪ {m∗}. Пусть λ1 = c1/c0 > 0. Используем расширенное определение функции Fλj

на J ∪ {m∗},
заданное формулой (4.41) с C = 1, C ′ = 0 и λ = λ1. Тогда мы можем определить w∗,1 = Fλ1(u∗)
и w1 = Fλ1(u), w̄1 = wj −w∗,1 на Ū × [0,∞).

Согласно (4.50), имеем Lw̄1 � 0 на U × (0,∞). Согласно предложению 4.1 (i), применённому к
оператору L и функции w̄1, из (4.21) следует, что

lim sup
t→∞

max
x∈Ū

w1(x, t) � w∗,1. (4.60)

Из возрастания и непрерывности Fλ1 по (4.60) следует, что

Fλ1(u∗) = w∗,1 � lim sup
t→∞

max
x∈Ū

Fλ1(u(x, t)) = lim sup
t→∞

Fλ1(max
x∈Ū

u(x, t)) = Fλ1(lim sup
t→∞

max
x∈Ū

u(x, t)).

Поэтому благодаря строгому возрастанию Fλ1 имеем

u∗ � lim sup
t→∞

max
x∈Ū

u(x, t), (4.61)

что доказывает (4.44). Это завершает доказательство (4.44).

Теперь рассмотрим u∗ = m∗. Имеем u(x, t) � u∗, откуда по (4.44) следует, что

lim sup
t→∞

max
x∈Ū

|u(x, t) − u∗| = lim sup
t→∞

max
x∈Ū

(u(x, t) − u∗) � 0.

Таким образом, получаем (4.45).

(iii) Сначала докажем (4.46).

Случай 1: c2 = 0. В этом случае Lu � Lu = 0. Тогда из (4.24) следует (4.46) после применения
предложения 4.1 (iii) к оператору L и функции w := u− u∗.

Случай 2: c2 > 0 и выполнено (E2). Доказательство такое же, как в части (ii), случай 2. Действи-
тельно, имеем u(Ū × [0,∞)) ⊂ J ∪ {M∗}. Пусть λ2 = −c2/c0 < 0, а Fλ2 —расширенная функция
на J ∪ {M∗}, определяемая формулой (4.42) с C = 1, C ′ = 0 и λ = λ2. Определим w∗,2 = Fλ2(u∗)
и w2 = Fλ2(u), w̄2 = wj −w∗,2 на Ū × [0,∞).

Согласно (4.50), имеем Lw̄2 � 0 на U×(0,∞). Тогда, применяя предложение 4.1 (ii) к оператору
L и функции w̄2, из (4.24) получаем, что

lim inf
t→∞ min

x∈Ū
w2(x, t) � w∗,2. (4.62)

Так же, как и в (4.61), из (4.62) имеем, что

u∗ � lim inf
t→∞ min

x∈Ū
u(x, t),

что доказывает (4.46).

Теперь, когда (4.46) уже установлено, рассмотрим u∗ =M∗. Из (4.46) следует, что

lim sup
t→∞

max
x∈Ū

|u(x, t) − u∗| = − lim inf
t→∞ min

x∈Ū
(−|u(x, t)− u∗|) = − lim inf

t→∞ min
x∈Ū

(u(x, t) − u∗) � 0,

следовательно, мы снова получаем (4.45).

(iv) С одной стороны, с учётом (4.31) имеем
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lim sup
t→∞

max
x∈Ū

|u(x, t) − u∗| �
� max{lim sup

t→∞
max
x∈Ū

(u(x, t) − u∗), lim sup
t→∞

max
x∈Ū

(−(u(x, t)− u∗))} =

= max{lim sup
t→∞

max
x∈Ū

(u(x, t) − u∗),− lim inf
t→∞ min

x∈Ū
(u(x, t) − u∗)}. (4.63)

С другой стороны, в обоих случаях (a) и (b) имеем (4.44) и (4.46). Тогда, объединяя (4.63) с (4.44)
и (4.46), получаем (4.45).

В качестве следствия покажем, что экспоненциальная скорость убывания |u(x, t) − u∗| при
t → ∞ зависит только от асимптотического поведения A(x, t) и B(x, t) при t → ∞, но не от
начальных данных u0(x) и матрицы K(x, t).

Следствие 4.1. В предположении 4.3 положим

c′0 = lim inf
t→∞ inf

x∈U
min

ξ∈Rn,|ξ|=1
ξTA(x, t)ξ, (4.64)

и пусть M ′
0, M

′
1 будут двумя положительными числами такими, что

lim sup
t→∞

sup
x∈U

|B(x, t)| < M ′
0, (4.65)

lim sup
t→∞

sup
x∈U

Tr(A(x, t)) < M ′
1. (4.66)

Если m∗,M∗ ∈ J, то существует число ν∗ > 0, зависящее от u∗, c′0, M ′
0, M

′
1, но не от начальных

данных u0(x), такое, что

max
x∈Ū

|u(x, t)− u∗| = O(e−ν∗t) при t→ ∞. (4.67)

Доказательство. Из (4.43) ясно, что

lim
t→∞max

x∈Ū
|u(x, t)− u∗| = 0. (4.68)

Также заметим, что u∗ ∈ J. Согласно (4.64), (4.66), (4.65), (4.68), существуют T > 0 и m′,M ′ ∈ J,
достаточно близкие к u∗, при этом m′ < u∗ < M ′, такие, что

u(x, t) ∈ [m′,M ′] для всех (x, t) ∈ Ū × [T,∞),

|B(x, t)| �M ′
0, Tr(A(x, t)) �M ′

1 для всех (x, t) ∈ U × [T,∞),

ξTA(x, t)ξ � c′0
2
|ξ|2 для всех (x, t) ∈ U × [T,∞), ξ ∈ R

n.

Повторим доказательство теоремы 4.1 (i) при

u := u(x, t+ T ), A := A(x, t+ T ), B := B(x, t+ T ), K := K(x, t+ T ),

c0 := c′0/2, M0 :=M ′
0, M1 := M ′

1, m∗ := m′, M∗ :=M ′

и теми же числами c1, c2. Заметим, что доказательство работает с заменами m∗ := m′ иM∗ := M ′,
как указано выше, хотяm′ иM ′ могут не быть минимальным и максимальным значениями u(x, T )
в Ū . Пусть ν∗ = ν задано формулой 4.18, где M2 заменено на M ′

2 =M ′
0 max{|m′|, |M ′|}, см. (4.47).

Тогда ν∗ зависит только от чисел c′0/2, M ′
0, M

′
1, m

′, M ′, и, следовательно, не зависит от u0(x).
Из (4.43) получаем, что

|u(x, t+ T )− u∗| � C∗e−ν∗tmax
Ū

|u(x, T )− u∗| для некоторого числа C∗ > 0.

Таким образом, получаем оценку (4.67).

Пример 4.1. Используя пример 3.1, рассмотрим случаи (a) с (3.25) и (b) с (3.26), (3.27). Как
при J = [0,∞), так и при J = R всегда имеем m∗,M∗ ∈ J. Следовательно, для любого u∗ ∈ J = J̄
и любого соответствующего решения u из теоремы 4.1 (i) следует оценка (4.43) для всех t � 0.



682 Л. ХОАНГ, А.И. ИБРАГИМОВ

Пример 4.2. Рассмотрим слабосжимаемые жидкости, как в случае (c) из примера 3.1. Имеем
J = (0,∞), u � 0 на Ū × [0,∞) иM∗ � u∗ � m∗ � 0. Учитывая (4.39) и u > 0 на U × (0,∞), имеем
M∗ > 0, т. е. M∗ ∈ J. Учитывая (4.40), ниже рассмотрим только m∗ < M∗.

Случай 1: u∗ > 0. Рассмотрим два подслучая.
Случай 1a: m∗ > 0. Тогда m∗,M∗ ∈ J и из теоремы 4.1 (i) следует оценка (4.43) для всех t � 0.
Случай 1b:m∗ = 0. Тогда выполняется условие (E1). С использованием (4.44) из теоремы 4.1 (ii)

следует оценка u для больших времён, которая не зависит от u0(x). Если, кроме того, c2 = 0, то
из теоремы 4.1 (iv)(b) следует предел (4.45).

Случай 2: u∗ = 0. Тогда m∗ = 0 	∈ J и выполняется условие (E1). Из теоремы 4.1 (ii) получаем
предел (4.45), который запишем как

lim
t→∞max

x∈Ū
u(x, t) = 0. (4.69)

Более того, мы можем даже получить оценки убывания для всего времени. Действительно, можно
взять c1 > 0, λ1 = c1/c0 и следовать случаю 2 доказательства теоремы 4.1 (ii). Можно проверить,
что eλ1P (z) при z > 0 имеет продолжение Eλ1(z) = zλ1 при z � 0. Аналогично полученному
нами результату (3.28), положив m = λ1 + 1 = c1/c0 + 1 и выбрав λ = λ1, C = m, C ′ = sm0
в формуле (4.41), мы можем использовать явную функцию Fλ1(s) = sm при s � 0. Затем на
шаге (4.60) мы используем оценку (4.20) вместо предельного значения (4.21). Получаем при t � 0:

max
x∈Ū

w1(x, t) � η−1
∗ e−νtmax

x∈Ū
w1(x, 0)

что влечёт
max
x∈Ū

um(x, t) � η−1
∗ e−νtmax

x∈Ū
um(x, 0).

Поэтому вместо предела (4.69) мы имеем

max
x∈Ū

u(x, t) � η
−1/m
∗ e−νt/m max

x∈Ū
u(x, 0) для всех t � 0.
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ДИНАМИКА ТЕНЗОРА КОНФОРМАЦИИ В ВЯЗКОУПРУГИХ

МОДЕЛЯХ ПОЛИМЕРОВ FENE

А.П. Чупахин1,2, Е.С. Стецяк1,2,3, Д.С. Чутков2
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Аннотация. В настоящей работе получены и проинтегрированы уравнения, описывающие эво-
люцию инвариантов тензора конформации для модели FENE вязкоупругого полимерного раство-
ра. Найдены явные выражения инвариантов в зависимости от времени вдоль траекторий частиц
жидкости. Указанные инварианты представлены в виде функций от функции Ламберта. Прове-
дён анализ качественного поведения инвариантов в различных режимах деформирования.

Ключевые слова: уравнения полимеров FENE, производная Ли, инварианты тензора конфор-
мации, интегрирование уравнений.
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1. Введение

Многие среды, встречающиеся в природе, особенно растворы полимеров, обладают сложной
реологией, проявляя вязкоупругие свойства. Следовательно, при взаимодействии они проявляют
свойства как жидкостей, так и твёрдых (упругих) тел. К числу важнейших сред с такими свой-
ствами относятся кровь, а также пасты, гели и различные природные жидкости, такие как лава
и лавинный материал. Математическое описание таких сред значительно сложнее ньютоновской
гидродинамики. Математическая гидродинамика неньютоновских сред — интенсивно развиваю-
щееся научное направление в наши дни [13,15, 19, 26].

Чтобы проиллюстрировать сложности изучения моделей вязкоупругих сред, кратко опишем
основные возникающие особенности. В гидродинамике ньютоновские жидкости характеризуются
линейной зависимостью между напряжениями τ и скоростью деформации E: τ s = 2ηsE, где E =
1

2
(∇u+ (∇u)T )— тензор скорости деформации в жидкости, а u = u(t,x)— скорость жидкости.

Постоянный коэффициент ηs называется вязкостью.
Вязкоупругие жидкости реагируют на очень быструю сдвиговую нагрузку как упругое твёрдое

тело, а на медленную— как вязкая жидкость. Реологическое поведение также зависит от скорости
нагружения τ̇ p. Характеристическое реологическое соотношение имеет вид

λ1τ̇ p + τ p = 2ηp(E + λ2Ė), (1.1)
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где величины λ1 и λ2 называются временами релаксации напряжений τ p и скоростей деформа-
ций E, а точка обозначает изменение величины во времени. К этому типу моделей относятся
классические модели Фрёлиха—Сака и Максвелла [13, 15, 19, 26]. Дальнейшее развитие реологии
сложных сред, основанное на статистической механике, привело к построению макроскопиче-
ских уравнений, основанных на принципах статистической механики. В их основе лежит модель,
описывающая движение малых частиц, размеры которых достаточно велики по сравнению с мо-
лекулярными, но достаточно малы, чтобы участвовать в тепловом движении, т. е. они совершают
как макро-, так и микроброуновское движение.

Это модели движения суспензий и полимеров [7, 8, 15]. В растворах полимеров присутствуют
протяжённые полимерные цепи с изменяющейся во времени геометрией, обладающие также вяз-
коупругими свойствами. Адекватное описание таких реологически сложных сред предполагает
использование принципа материальной объективности, согласно которому математические мо-
дели должны быть инвариантны относительно ортогональных преобразований координат Ω и
сдвигов a, являющихся функциями от времени [13,28].

Это требование привело к необходимости замены частных производных в моделях реологиче-
ски сложных сред на более сложный объект — производную Ли векторного поля v [22, 28, 30, 32].
В физике полимеров сегодня существует большое количество моделей, использующих произ-
водные Ли по различным векторным полям и различающихся моделями полимерных цепей и
механизмами их взаимодействия с потоком несущей жидкости [22,28]. Исследованию математи-
ческих моделей вязкоупругих сред в целом и полимерных растворов посвящено множество работ.
Не претендуя на полноту обзора, упомянем работы последних лет, посвящённые исследованию
начально-краевых задач [33], поиску точных решений [6] и изучению качественных свойств ре-
шений, в частности, устойчивости [1, 4, 9].

Настоящая работа оригинальна по своему подходу. В ней исследуется свойство тензора кон-
формации C, характеризующего динамику и геометрию полимерной фазы в течении. Изучение
тензора C потребовало использования алгебраических и геометрических методов тензорной ал-
гебры [13] и аппарата производной Ли [32].

Взаимодействие гибких и растяжимых полимерных цепей с потоком несущей жидкости при-
водит к ряду экспериментально наблюдаемых явлений: снижению сопротивления, упругой тур-
булентности и изменению теплопередачи в конвективных процессах [14]. Тензор конформации C
связывает элементы микро- и макроскопического моделирования. Кратко объясним его проис-
хождение. Полимер в потоке жидкости определяется совокупностью полимерных цепей, состоя-
щих из упругих связей (нитей), соединяющих шарики (молекулы). Геометрия цепи описывается
вектором r = (ri), соединяющим концы полимерной конфигурации. Микроскопическая модель
динамики вектора r описывается уравнением Ланжевена

rt = − 1

2λ
f(r)r +∇u · r +

√
L2

λ
W (t), (1.2)

где u— векторное поле скорости, λ— время релаксации полимера, L2 —параметр, характеризу-
ющий флуктуации, а W (t)—независимый винеровский процесс (белый шум, характерный для
броуновского движения). Функция f(r) характеризует растяжимость полимера, причём макси-
мальному значению этой величины соответствует L2 = |rmax|2. После усреднения уравнения (1.1)
методами статистической механики по всему ансамблю с использованием исчисления Ито выво-
дится макроскопическое уравнение для тензора конформации C = 〈r ⊗ r〉W (t), имеющее вид

Ct + (u ·∇)C − (∇u)T ·C −C · (∇u) + E(c1)(E ·C +C ·E) = − 1

λZ(c1)
[F(c1)C −G(c1)I], (1.3)

где I — единичный тензор 3× 3.
Тензор C в силу своего построения дважды контравариантен: C = (cij) (i, j < 1, 2, 3), симмет-

ричен: CT = C, дифференцируем и положительно определён.
Обсудим отдельные члены уравнения (1.3). Первые четыре члена представляют собой произ-

водную Ли LvC = ∂t + u · ∇ вдоль траектории движения жидкой частицы тензора C. Поло-
жительные безразмерные функции F ,G,Z, зависящие от первого инварианта c1 = trC =

∑
Cii

тензора конформации, определяются параметрами и структурой индивидуальной полимерной
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модели. Величина c1 в физике полимеров также интерпретируется как квадрат расстояния (вы-
тянутости цепи) между концами (бусинами) полимерной цепи, усреднённый по всем состояниям
(конформациям) и нормированный на равновесное состояние.

Модель (1.3) известна в современной литературе как конечно растяжимая нелинейно упругая
модель (finite extensible nonlinear elastic, FENE) [17,21]. Член E(c1)(E ·C+C ·E) в формуле (1.3)
характеризует сопротивление вращению полимерной молекулы в потоке. Функция Z(c1) учиты-
вает зависящее от конформации сопротивление изменению геометрии полимерной структуры.
Наконец, функции F ,G определяют конечную растяжимость полимерной молекулы и её упругие
свойства. В работе [16] представлена таблица значений этих функций для восьми распростра-
нённых моделей вязкоупругих полимеров. В данной работе мы подробно рассмотрим две из них:
FENE-CR [21] и FENE-CD [18].

Как уже отмечалось, влияние полимерных молекул и полимерных цепей на течение раствора
определяется тензором напряжений τ p, который связан с деформацией микроструктуры поли-
мерной фазы. Деформация микроструктуры характеризуется тензором конформации C, а их
связь задаётся уравнением состояния

τ p =
ηp
λ
[F(c1)C − G(c1)I]. (1.4)

Тензор напряжений реологической модели раствора полимера в потоке вязкой жидкости пред-
ставляется в виде суммы двух компонент: τ = τ s+τ p, где τ s — тензор напряжений, соответству-
ющий растворителю, а τ p — тензор напряжений полимера. Растворитель обычно предполагается
ньютоновской жидкостью с постоянной вязкостью, τ s = 2ηsE. В формуле (1.4) постоянный ко-
эффициент ηp характеризует вклад полимера в сдвиговую вязкость при нулевой скорости сдвига,
λ—время релаксации, а функции F и G описаны выше.

В данной работе описывается динамика инвариантов тензора конформации C для моделей
FENE-CR и FENE-CD, а также интегрируются уравнения динамики (1.3) тензора C для сдвиго-
вых течений в квадратуре. Исследовано поведение инвариантов и показано существование двух
режимов поведения. Представленная работа является расширенной и дополненной версией за-
метки [10].

2. Производная Ли

В связи с важной ролью производной Ли и её спецификой в механике сплошных сред, мы
приводим описание конструкции этого понятия, следуя [20, 27]. Производная Ли возникает в
реологических задачах в [28], её применение — в численном моделировании задач механики поли-
меров [12]. Приложения производных Ли различных векторных полей в механике твёрдого тела
рассматриваются в [24].

Движение континуума описывается C
2-диффеоморфизмами ϕt, зависящими от времени как

от параметра: X ∈ D0 → x ∈ Dt, отображающими референтную область D0 лагранжевых пере-
менных X = (X1,X2,X3)T в область Dt эйлеровых переменных x = (x1, x2, x3)T , занимаемую
континуумом в момент времени t. Линейное касательное отображение F , индуцированное ϕt,
определяется как

F =
∂x

∂X
=
∂(ϕt(X))

∂X
.

Скорость среды u в Dt получается путём дифференцирования этого соотношения по времени.
[ d

dt
,
∂

∂X

]
= 0, u(ϕt(X)) =

d(ϕt(X))

dt
,

dF

dt
=

d

dt

(∂(ϕt(X))

∂X

)
=

∂

∂x

(d(ϕt(X))

dt

) ∂x

∂X
=
∂u

∂x
F ,

dF

dt
=
∂u

∂x
F ,

dF−1

dt
= −F−1∂u

∂x
.

Движение континуума можно также описать обратимым дифференцируемым отображением
Φ в четырёхмерном пространстве-времени W следующим образом:

z = Φ(Z), где z =

(
t
x

)

=

(
t
ϕt

)

∈ W .
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Пространство W0 � z = (t,X)T является соответствующим референтным пространством. В
дифференцируемом многообразии пространства-времени W скорость среды задаётся 4-вектора-
ми V = (1,u)T , где u = (u1, u2, u3)T .

В каждой точке W 4-вектор скорости V порождает локальную однопараметрическую группу
преобразований Ли, определяемую отображением

(h,z) ∈ (−ε, ε)×O → Θ(h,z) ∈ W ,

где Θ(h,z) =

(
h+ t

ϕh+t(ϕ
−1
t (x))

)

и O— открытое множество в W , а ε—положительное действи-

тельное число. Поле скорости V —инфинитезимальный оператор однопараметрической группы
преобразований Ли с порождающим отображением Φ. Обозначим Θh(z) = Θ(h,z) как отобра-
жение, действующее по формуле

Θh(z) =

(
h+ t

ϕh+t(X)

)

.

Образ множества O при отображении Θh обозначается как Oh = Θh(O). Рассмотрим тензор-
ное поле T p,q, p раз контравариантное и q раз ковариантное, заданное на векторах касательного
пространства к W и формах кокасательного пространства соответственно (на векторах и ковек-
торах). Это тензор в векторном пространстве T p,q

z (W ). Каждое тензорное поле u, определённое
на W

z ∈ W → T (z) ∈ T p,q
z (W )

связано с локально определённым тензорным полем T h(z) = Θh(T (z)). Обозначим T h = Θh(T ).

Определение 2.1. Производная Ли тензорного поля T по векторному полю, определяемому
оператором v, задаётся как

LvT = lim
h→0

Θh(T (z))− T (z)

h
. (2.1)

В механике сплошных сред производную Ли удобно вычислять в четырёхмерном пространстве
W 0. Пусть Ψ обозначает отображение, обратное к Φ, т. е. Ψ = Φ−1. Пусть T 0(Z)— образ T (z)
при отображении Ψ, что соответствует преобразованию Φ. Тогда формула (2.1), определяющая
LvT , примет вид

LvT (z) = lim
h→0

Φ(Ψ(Θh(T (z))−Ψ(T (z))

h
= lim

h→0
Φ
(T 0(t+ h,X)− T 0(t,X)

h

)
.

Тогда получаем LvT = Φ
(dT 0(t,X)

dt

)
.

Следовательно, имеет место следующая коммутативная диаграмма:

T (z) ∈ T p,q
z (W ) v0 ∈ T p,q

z (W0)

LvT (z)
dT 0(t,X)

dt

Ψ

Lv

d

dt

Φ

Важным свойством производной Ли, используемой в данной работе, является то, что она со-
храняет тип тензора: Lv : T p,q

z (W ) → T p,q
z (W ).

В механике сплошной среды важными объектами, связанными с производной Ли, являются
тензоры, которые движутся вместе с потоком [3, 11].

Определение 2.2. Тензорное поле T в W движется вместе с потоком тогда и только тогда,
когда его образ в пространстве отсчета T 0 ∈ W 0 не зависит от времени.

Классическое утверждение связывает такие тензоры с тензорами, постоянными относительно
производной Ли.

Теорема 2.1 (см. [20]). Тензорное поле движется вместе с потоком (т. е. поле переносится
потоком без деформации) тогда и только тогда, когда производная Ли этого тензорного поля
равна нулю.
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Приведём также формулу в координатах для действия в R
n(x) производной Ли Lv вдоль век-

торного поля v = ξk(x)∂k (k = 1, . . . , n) на тензорном поле T i1...ip
j1...jq

, которое контравариантно
p раз и ковариантно q раз [32]:

LvT
i1...ip

j1...jq
= ξk∂kT

i1...ip
j1...jq

+

p∑

k=1

T
i1...̂ik...ip

j1...jq

∂ξik

∂xik
−

q∑

k=1

T
i1...ip

j1... ̂jk...jq

∂ξjk

∂xjk
, (2.2)

где «крышка» над индексом обозначает фиктивный индекс, изменяющийся от 1 до n.
В теории непрерывных групп преобразований важную роль играет процедура выпрямления

векторного поля ∂t+u ·∇, порождающего производную Ли Lv. Пусть τ —параметр вдоль траек-
тории векторного поля v, выбранный в качестве канонического параметра группы Ли непрерыв-
ных преобразований [5, 23, 29]. Такое преобразование, т. е. замена параметра, всегда может быть
выполнено локально для области (−ε, ε) × O. Здесь интервал (−ε, ε) содержит значение пара-
метра, соответствующего тождественному преобразованию группы, т. е. начальные данные для
соответствующего уравнения Ли, связывающего инфинитезимальный оператор v и порождающее
отображение Φ, приведённые в разделе 2.

3. Общие соотношения для тензора конформации

Вернемся теперь к реологическому уравнению (1.3) для тензора конформации C(t,x) =
(Cij(t,x))i,j=1,...,n, где C

ij = Cji. Заметим, что первые четыре члена в левой части этого уравне-
ния представляют собой производную Ли Lv тензора C по векторному полю v = ∂t + u ·∇, где
u = (u1, u2, u3)T — скорость жидкости, которая является функцией времени t и пространственных
координат x = (x1, x2, x3)T . Согласно (2.2), имеем

LvC
ij = ∂tC

ij + uk
∂Cij

∂xk
− Ckj ∂u

i

∂xk
− Cik ∂u

j

∂xk
(i, j, k = 1, 2, 3).

Выведем выражения для инвариантов ci (i = 1, 2, 3) тензора конформации C как функций
параметра времени t вдоль траектории производного векторного поля Ли v = Lv.

Матрица, полученная из тензора C понижением одного индекса, Ci
j = gikC

kj, удовлетворяет
уравнению Гамильтона—Кэли [2]. Поскольку в данном случае метрика предполагается равной
единице, подробности перехода от дважды контравариантного тензора конформации к матрице
при выводе следующих уравнений будут опущены. Имеем

C3 − c1C
2 + c2C − c3I = 0, (3.1)

где c1 = trC, c2 =
1

2

[
(trC)2 − trC2

]
, c3 = detC обозначают инварианты тензора C. В этом

уравнении степени C2,C3 представляют собой соответствующие свертки тензоров C2 = C · C,
C3 = C ·C2.

Уравнения (1.3) и (3.1) дают систему
⎧
⎨

⎩

LvC = − 1

λZ(c1)
[F(c1)C − G(c1)I],

C3 − c1C
2 + c2C − c3I = 0.

(3.2)

Условия совместности системы (3.2) порождают уравнения для инвариантов ci (i = 1, 2, 3) как
функций параметра времени t вдоль траектории движения частиц жидкости. Выведем эти урав-
нения для некоторых реологических моделей полимеров на основе общих формул.

4. Решения в моделях FENE-CR и FENE-CD

Рассмотрим модели полимеров FENE-CR [21] и FENE-CD [18], которые соответствуют опре-
делённым наборам функций.

Для модели полимера FENE-CR [21] имеем

Z = 1, F(c1) = G(c1) = 1

1− c1/L2
, (4.1)
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где L2 � 1—максимальная длина цепи, так что c1/L2 < 1. Обозначим

g(c1) =
−1

λ
F(c1) =

−1

λ(1− c1/L2)
. (4.2)

Для модели полимера FENE-CD [18] имеем

Z = 1− κ + κ

√
c1/3, F(c1) = G(c1) = 1

1− c1/L2
, (4.3)

Соответствующая функция выглядит следующим образом:

g(c1) =
−F(c1)

λZ(c1)
=

−1

λ(1− c1/L2)(1− κ + κ
√
c1/3)

, (4.4)

где, как и прежде, c1/L2 < 1, а κ—положительный параметр.
Переопределённая система уравнений (3.2) принимает единообразный вид для обеих моделей

FENE:
{
LvC = g(c1)(C − I),

C3 − c1C
2 + c2C − c3I = 0.

(4.5)

Применим производную Ли Lv к уравнению Гамильтона—Кэли, второму уравнению систе-
мы (4.5). Подставим значение производной Ли Lv из первого уравнения системы (4.5) в полу-
ченное дифференциальное уравнение. Фундаментальным аспектом этого алгоритма является то,
что производная Ли LvC является тензором того же типа, что и сам тензор C. Это отличает
производную Ли как от частных, так и от ковариантных производных, которые не сохраняют тип
тензора при действии на него. Для краткости обозначим C ′ = LvC. Применение производной Ли
к уравнению Гамильтона—Кэли даёт дифференциальное уравнение:

3C2C ′ − c1CC ′ + c2C
′ − c1C

2 + c′2C − c′3I = 0. (4.6)

При выводе уравнения (4.6) учтено, что C ′ коммутирует со степенями C, поскольку C ′ выра-
жается полиномом от C (см. [2]). Мы предполагаем, что параметр группы, соответствующий
производной Ли, каноничен, так что LvI = 0 (см. [5]).

Подставляя выражение C ′ = LvC из (4.5) в уравнение (4.6), получаем алгебраическое уравне-
ние третьей степени для тензора C:

3gC3 − (c′1 + 3g + 2gc1)C
2 + (c′2 + 2gc1 + gc2)C − (c′3 + gc2)I = 0. (4.7)

Предположим, что тензор C является тензором общего положения, т. е. единственным алгеб-
раическим уравнением третьей степени для C является уравнение Гамильтона—Кэли. Полагая
g 	= 0, получаем, что уравнение (4.7) совпадает с уравнением Гамильтона—Кэли для тензора C
с точностью до мультипликативного множителя. Записывая условия пропорциональности со-
ответствующих коэффициентов, приходим к следующей системе дифференциальных уравнений
для инвариантов:

⎧
⎪⎨

⎪⎩

c′1 = g(c1 − 3),

c′2 = 2g(c2 − c1),

c′3 = g(3c3 − c2),

(4.8)

где g = g(c1) имеет вид (4.2) или (4.4). Система (4.8) представляет собой условия совместности
переопределённой системы (4.5). Действительно, из системы (4.8) все функции ci (i = 1, 2, 3) одно-
значно определяются по заданным начальным условиям. Более того, для них будут получены яв-
ные формулы. Таким образом, определяются значения функций, при которых переопределённая
система (4.5) совместна. Дифференциальные следствия более высокого порядка не порождают
новых условий совместности, поскольку объединение систем (4.5) и (4.8) совместно.

Теорема 4.1. Система уравнений (4.8) представляет собой условия совместности переопре-
делённой системы (4.5). Система (4.5), (4.8) находится в инволюции, то есть не порождает
новых условий совместности.
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После выбора канонического параметра, описанного в разделе 2, система (4.8) преобразуется
в систему обыкновенных дифференциальных уравнений относительно функций ci = ci(τ,X)
(i = 1, 2, 3) в референтном пространстве W0: Lv = ∂τ

Система (4.8) интегрируется в квадратурах. В первом уравнении системы (4.8) переменные
разделяются, и решение имеет вид

∫
(c1 − L2)

c1 − 3
dc1 =

L2

λ
(τ − τ0),

где τ0 —константа интегрирования. Предположим, что начальные условия при τ = τ0 соответ-
ствуют значению C = I, так что c1 − 3 	= 0 при τ > τ0. Интеграл в левой части этого уравнения
вычисляется в элементарных функциях. Для модели FENE-CR решение определяется по формуле

(3− L2) ln |c1 − 3|+ c1 =
L2

λ
(τ − τ0), (4.9)

где c1 определяется как неявная функция переменной τ.Функция c1 = c1(τ) называется функцией
Ламберта [31].

Для модели FENE-CD решение дается более громоздкой формулой:

(1− κ)
[
c1 + (3− L2) ln |c1 − 3|]+

+
κ√
3

[
2c1

√
c1

3
+ 2(3− L2)

√
c1 + (3− L2) ln

∣
∣
∣
∣
∣

√
c1 −

√
3√

c1 +
√
3

∣
∣
∣
∣
∣

]

=
L2

λ
(τ − τ0). (4.10)

Поскольку переменная c1 не может быть явно выражена как функция τ из уравнений (4.9)
и (4.10), оставшиеся два уравнения системы (4.8) интегрируются путём нахождения инвариантов
c2 и c3 как функций инварианта c1.

Разделив второе и третье уравнения системы (4.8) на первое, получим линейную систему от-
носительно функций cα(α = 2, 3):

⎧
⎪⎨

⎪⎩

dc2
dc1

=
2(c2 − c1)

c1 − 3
,

dc3
dc1

=
3c3 − c2
c1 − 3

.
(4.11)

Система (4.11) интегрируема в элементарных функциях.

Теорема 4.2. Инварианты тензора конформации C в модели FENE-CR (4.1), (4.2) как функ-
ции параметра τ вдоль траектории жидкой частицы определяются следующей системой неяв-
ных уравнений для c1 = c1(τ), c2 = c2(c1), c3 = c3(c1):

⎧
⎪⎪⎨

⎪⎪⎩

(3− L2) ln |c1 − 3|+ c1 =
L2

λ
(τ − τ0),

c2 = α1(c1 − 3)2 + 2c1 − 3,

c3 = α2(c1 − 3)3 + α1(c1 − 3)2 + c1 − 2,

(4.12)

где τ0, α1, α2 —произвольные константы относительно параметра τ. При этом инварианты,
определяемые формулами (4.12), зависят от координат X референтного пространстваW 0 как
от параметров.
Инварианты тензора конформации C в модели FENE-CD (4.3), (4.4) как функции параметра

τ вдоль траектории жидкой частицы определяются следующей системой неявных уравнений
c1 = c1(τ), c2 = c2(c1), c3 = c3(c1):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1− κ)
[
c1 + (3− L2) ln |c1 − 3|]+

+
κ√
3

[
2c1

√
c1

3
+ 2(3 − L2)

√
c1 + (3− L2) ln

∣
∣
∣
∣
∣

√
c1 −

√
3√

c1 +
√
3

∣
∣
∣
∣
∣

]

=
L2

λ
(τ − τ0),

c2 = α1(c1 − 3)2 + 2c1 − 3,

c3 = α2(c1 − 3)3 + α1(c1 − 3)2 + c1 − 2,

(4.13)
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где τ0, α1, α2—произвольные константы. При этом инварианты, определяемые формула-
ми (4.13), зависят от координат X референтного пространства W 0 как от параметров.

Формулы (4.12), (4.13) для инвариантов тензора конформации C дают важную информацию о
поведении полимерных структур в растворе. Они характеризуют динамику этих структур вдоль
траектории движения частиц жидкости. В физике полимеров инварианты ci интерпретируются
как геометрические параметры полимерной структуры: инвариант c1 характеризует её растяжи-
мость, c2 —площадь, а c3 — объём. Качественное поведение этих функций в клинически важной
задаче эмболизации патологических сосудистых образований [2] характеризует эффективность
герметизации и окклюзии дефектного сосудистого узла. Отметим, что формулы, выражающие
инварианты cα = cα(c1), α = 2, 3 для моделей (4.1), (4.3), совпадают. Модели различаются зави-
симостью c1 = c1(τ). В следующем разделе работы исследуется качественное поведение динамики
инвариантов ci (i = 1, 2, 3) для модели FENE-CR.

5. Качественное поведение инвариантов тензора конформации в модели
FENE-CR

Многозначная функция c1 = c1(τ) имеет три ветви (рис. 1), которые можно выразить через
главную ветвь и ветвь −1 функции Ламберта W : z =W (zez). Термины, характеризующие ветви
функции, взяты из [31].

c1(τ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3− L2)W0

(
− exp

(−l (τ−τ0)+3
L2−3

)

L2 − 3

)
+ 3,

(3− L2)W0

( exp
(−l (τ−τ0)+3

L2−3

)

L2 − 3

)
+ 3,

(3− L2)W−1

( exp
(−l (τ−τ0)+3

L2−3

)

L2 − 3

)
+ 3, L2 > 3,

(3− L2)W−1

(
− exp

(−l (τ−τ0)+3
L2−3

)

L2 − 3

)
+ 3, L2 < 3,

(5.1)

где l =
L2

λ
. Эти ветви обозначены римскими цифрами I, II, III на рис. 1.

При L2 < 3 ветвь I является ветвью −1 функции Ламберта, её значения лежат в интервале
(0;L2), она монотонно возрастает и имеет асимптоту при t→ −∞ с наклоном arctg(l).

Ветвь II является главной ветвью функции Ламберта, её значения лежат в интервале (L2; 3),
она монотонно убывает и lim

τ→−∞ c1(τ) = 3.

Ветвь III — главная ветвь функции Ламберта, соответствующая выражению под модулем с
обратным знаком. Её значения лежат на луче (3;+∞), функция монотонно возрастает и имеет
асимптоту при t→ +∞ с наклоном, равным arctg(l).

При L2 > 3 ветвь I является главной ветвью функции Ламберта, её значения лежат в интервале
(0; 3), она монотонно возрастает, lim

τ→+∞ c1(τ) = 3, и имеет асимптоту при t→ −∞ с углом наклона,

равным arctg(l).
Ветвь II также является главной ветвью функции Ламберта и отличается от ветви I выбором

знака в выражении под модулем. Её значения лежат в интервале (3;L2), она монотонно убывает
и lim

τ→+∞ c1(τ) = 3.

Ветвь III является ветвью −1 функции Ламберта, и её значения лежат на луче (L2; +∞), она
монотонно возрастает и имеет асимптоту при t→ +∞ с наклоном arctg(l).

Таким образом, функция Ламберта (5.1) имеет два определяющих параметра. Параметр L2

определяет границу между главной ветвью и ветвью −1 W -функции Ламберта, а параметр l
определяет тангенс угла наклона асимптот ветвей I и III. При L2, близких к 3, ветви приближа-
ются к прямым c1 = 3 и c1 = l(τ − τ0). Функция (5.1) многозначна в соответствующей области.
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(a) (b)

Рис. 1. График функции c1(τ): (a) для L2 < 3, (b) для L2 > 3. Разные ветви
обозначены разными цветами, кривые для разных параметров l и L2 показаны
разной штриховкой.

Fig. 1. Graph of the function c1(τ): (a) for L2 < 3, (b) for L2 > 3. Different branches
are marked with different colors, curves for different parameters l and L2 are separated
by different shading.

6. Динамика инвариантов в фазовом пространстве R
3(c1, c2, c3)

Динамическая система (4.8) в терминах переменных (ci) принимает вид
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(c1 − L2)
dc1
dτ

= l(c1 − 3),

(c1 − L2)
dc2
dτ

= 2l(c2 − c1),

(c1 − L2)
dc3
dτ

= l(3c3 − c2),

(6.1)

где явно выделены определяющие параметры L2 и l.
Система (6.1) имеет две особые точки, лежащие на плоскостях c1 = 3 и c1 = L2.Первая из них —

регулярная особая точка. Плоскость c1 = L2 является особым многообразием для системы (6.1),

поскольку производные всех инвариантов
dci
dτ

→ ∞ при c1 → L2.

Исследуем поведение решений ci = ci(τ) системы (6.1) вблизи этих особенностей.
Особая точка на плоскости c1 = 3 имеет координаты c1 = 3, c2 = 3, c3 = 1. Она является узлом,

отталкивающим при L2 < 3 и притягивающим при L2 > 3.
Плоскость c1 = L2 является особым многообразием всей системы. Поведение траекторий ди-

намической системы (6.1) на плоскости c1 = L2 удобно понять, перейдя к новым переменным:
(c1, c2, c3) → (y1, y2, y3), по формулам

⎧
⎪⎨

⎪⎩

y1 = c1 − 3,

y2 = c2 − 2c1 + 3,

y3 = c3 − c2 + c1 − 1.

(6.2)
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(a) (b)

Рис. 2. Поведение траекторий динамической системы: (a) при L2 < 3, (b) при
L2 > 3, плоскости c1 = 3 и c1 = L2. Кривые для разных начальных данных пока-
заны разной штриховкой.

Fig. 2. Behavior of the trajectories of the dynamic system: (a) for L2 < 3, (b) for
L2 > 3, planes c1 = 3 and c1 = L2. Curves for different initial data are separated by
different shading.

Это соответствует переходу от тензораC к тензору Y = C−I. В этих переменных y1 по-прежнему
определяет W -функцию Ламберта, а формулы для c2 и c3 принимают особенно простой вид:

y2 = α1(y1)
2, y3 = α2(y1)

3, (6.3)

где α1 и α2 —функции переменных X. Следовательно, уравнение

y32 =
α3
1

α2
2

y23 (6.4)

определяет полукубическую параболу Нейла, особенность типа «клюв», в плоскости y1 = const,
т. е. при фиксированном значении независимой переменной. Траектории приближаются к плос-
кости c1 = L2, «протыкая» её в точке, в которой они имеют бесконечные производные разных
знаков по обе стороны от плоскости.

Поведение траекторий системы (6.1) при различных значениях параметра L2 показано на
рис. 2. Отметим, что уравнение (6.4) определяет интеграл динамической системы (6.1).

Функции yi = yi(τ) (i = 1, 2, 3) (6.1), (6.2) определяют кривую Σ в пространстве R
3(y), кри-

визна k и кручение κ которой задаются формулами

k = 2

√
9α2

2y
2
1 + α2

1(1 + 9α2
2y

4
1)

(1 + 4α2
1y

2
1 + 9α2

2y
4
1)

3
, (6.5)

κ =
3α1α2

α2
1 + 9α2

2y
2
1 + 9α2

1α
2
2y

4
1

. (6.6)
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Приведём расчёты, подтверждающие то, что точка c1 = 3, c2 = 3, c3 = 1 является особой
точкой типа «узел» для системы (6.1). Линеаризуем систему, обозначив правые части через Fi:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dc1
dτ

=
l(c1 − 3)

(c1 − L2)
= F1,

dc2
dτ

=
2l(c2 − c1)

(c1 − L2)
= F2,

dc3
dτ

=
l(3c3 − c2)

(c1 − L2)
= F3.

(6.7)

Вычислим частные производные
∂Fi

∂cj
:

∂F1

∂c1
=

l(3− L2)

(c1 − L2)2
,

∂F1

∂c2
=
∂F1

∂c3
= 0,

∂F2

∂c1
=

2l(L2 − c2)

(c1 − L2)2
,
∂F2

∂c2
=

2l

c1 − L2
,

∂F2

∂c3
= 0,

∂F3

∂c1
=
l(c2 − 3c3)

(c1 − L2)2
,

∂F3

∂c2
=

−l
c1 − L2

,
∂F3

∂c3
=

3l

c1 − L2
.

(6.8)

Тогда линеаризация имеет вид:

dF = l

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

3− L2

(c1 − L2)2
0 0

2(L2 − c2)

(c1 − L2)2
2

c1 − L2
0

(c2 − 3c3)

(c1 − L2)2
−1

c1 − L2

3

c1 − L2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎝
dc1
dc2
dc3

⎞

⎠ . (6.9)

В особой точке (3, 3, 1) собственные значения являются диагональными элементами матри-
цы (6.9):

dF |(3,3,1) = l

⎛

⎜
⎜
⎜
⎜
⎝

1

3− L2
0 0

−2

3− L2

2

3− L2
0

0
−1

3− L2

3

3− L2

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎝
dc1
dc2
dc3

⎞

⎠ , (6.10)

μ1 =
l

3/L2 − 1
, μ2 =

2l

3/L2 − 1
, μ3 =

3l

3/L2 − 1
. (6.11)

Поскольку l > 0, то особая точка c1 = 3, c2 = 3, c3 = 1 является притягивающим узлом при
L2 > 3 и отталкивающим узлом при L2 < 3.

Проведённый в разделах 5 и 6 анализ показывает, что формулы (4.12), определяющие решение
задачи динамики конформационных тензорных инвариантов, обусловливают их содержательное
поведение, не противоречащее их физическому смыслу.

Физическая интерпретация полученных решений предполагается предметом отдельной работы.
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