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Аннотация. Настоящая работа посвящена исследованию абстрактной нелокальной краевой за-
дачи с условиями Самарского—Ионкина интегрального типа для дифференциального уравнения
эллиптического типа

−u′′(t) + Au(t) = f(t) (0 � t � T ), u (0) = ϕ, u′ (0) = u′ (T ) +

T∫

0

α (s)u(s)ds+ ψ

в произвольном банаховом пространстве E с положительным оператором A. Устанавливается
корректность этой задачи в различных банаховых пространствах. В приложениях доказывают-
ся теоремы о корректности ряда нелокальных краевых задач для эллиптических уравнений с
условиями Самарского—Ионкина интегрального типа.

Ключевые слова: эллиптическое дифференциальное уравнение, краевая задача, нелокальная
задача, условия Самарского—Ионкина интегрального типа, корректность.
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1. Введение

Эллиптические уравнения в частных производных имеют приложения почти во всех областях
математики, от гармонического анализа до геометрии и теории Ли, а также многочисленные
приложения в физике и технике. Корректность локальной краевой задачи для эллиптического
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2 А. АШЫРАЛЫЕВ, А. ХАМАД

уравнения
−v′′(t) +Av(t) = f(t) (0 � t � T ),

v(0) = v0, v(T ) = vT
(1.1)

в произвольном банаховом пространстве E с положительным оператором A и связанные с ним
приложения изучались многими исследователями (см., например, [9,12,25,34] и приведенную там
библиографию).

В математическом моделировании эллиптические уравнения используются вместе с локальны-
ми граничными условиями, задающими решение на границе области. В некоторых случаях клас-
сические граничные условия не могут точно описать процесс или явление. Поэтому математи-
ческие модели различных физических, химических, биологических или экологических процессов
часто включают неклассические условия. Такие условия обычно определяются как нелокальные
граничные условия и отражают ситуации, когда данные на границе области не могут быть измере-
ны напрямую или когда данные на границе зависят от данных внутри области. Корректность раз-
личных нелокальных краевых задач для уравнений в частных производных и разностных уравне-
ний широко изучалась многими исследователями (см., например, [6–8,10,13–19,22,24,26,31–33,35]
и приведенные там ссылки).

В статье [2] Ионкина исследовалась нелокальная задача для одномерного параболического
уравнения, возникающего при моделировании некоторых неклассических тепловых процессов.
Было доказано существование решений, а затем установлена их устойчивость в [3]. Для парабо-
лического уравнения с одной пространственной переменной Самарский [4] предложил нелокаль-
ную постановку краевой задачи, охватывающую как классические начально-краевые задачи, так
и задачу Ионкина из [2,3]. В последнее время различные нелокальные краевые задачи с условием
Самарского—Ионкина для уравнений в частных производных изучались многими исследовате-
лями (см., например, [1, 20, 21, 23, 27–30,37, 38] и приведенные там ссылки).

В настоящей работе рассматривается нелокальная краевая задача для абстрактного диффе-
ренциального уравнения эллиптического типа с условиями Самарского—Ионкина интегрального
типа

−u′′(t) +Au(t) = f(t), 0 < t < T,

u (0) = ϕ, u′ (0) = u′ (T ) +
T∫

0

α (s)u(s)ds+ ψ
(1.2)

в произвольном банаховом пространстве E с положительным оператором A.
Функция u(t) называется решением задачи (1.2), если выполняются следующие условия:
1. u(t)—дважды непрерывно дифференцируемая на отрезке [0, T ] функция. Производные на

концах отрезка понимаются как соответствующие односторонние производные.
2. Элемент u(t) принадлежит D(A) для всех t ∈ [0, T ], а функция Au(t) непрерывна на отрезке

[0, T ].
3. u(t) удовлетворяет уравнению и граничным условиям (1.2).
Решение задачи (1.2), определенное таким образом, в дальнейшем будет называться решением

задачи (1.2) в пространстве C(E) = C([0, T ], E). Здесь C(E) обозначает банахово пространство
всех непрерывных функций ϕ(t), определенных на [0, T ] со значениями в E, снабженное нормой

||ϕ||C(E) = max
t∈[0,T ]

‖ϕ(t)‖E .

Установлена корректность задачи (1.2) в различных банаховых пространствах. В приложе-
ниях доказаны теоремы о корректности ряда нелокальных краевых задач для эллиптических
уравнений с условиями Самарского—Ионкина интегрального типа.

2. Промежуточные результаты для локальной краевой задачи (1.1)

В этом разделе мы приводим некоторые вспомогательные утверждения из [12], которые бу-
дут полезны в дальнейшем. Оператор B = A

1
2 имеет лучшие спектральные свойства, чем по-

ложительный оператор A. Действительно, оператор (−B) является генератором аналитической
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полугруппы exp {−tB} (t � 0) с экспоненциально убывающей нормой при t −→ +∞, т. е. оценки

‖exp(−tB)‖E→E , ‖tB exp(−tB)‖E→E �M(B)e−α(B)t (t > 0) (2.1)

выполняются для некоторых M(B) ∈ [1,+∞) и α(B) ∈ (0,+∞). Из этого следует, что оператор
I − e−2TB имеет ограниченный обратный

(I − e−2TB)−1 =

∞∑
k=0

e−2kTB

и выполняется оценка
∥∥(I − e−2TB)−1

∥∥
E→E

�M(B)
(
1− e−2Tα(B)

)−1
. (2.2)

Формула

v(t) = (I − e−2TB)−1

{
(e−tB − e−(2T−t)B)v0 + (e−(T−t)B − e−(T+t)B)vT − (2.3)

− (e−(T−t)B − e−(T+t)B)(2B)−1

T∫

0

(e−(T−s)B − e−(T+s)B)f(s)ds

}
+

+ (2B)−1

T∫

0

(e−|t−s|B − e−(t+s)B)f(s)ds

справедлива для точного решения задачи (1.1) при достаточно гладких данных v0, vT и f(t).
Обозначим через Cα(E) (0 < α < 1) банахово пространство, полученное пополнением множе-

ства всех гладких E-значных функций ϕ(t) на [0, T ] по норме

‖ϕ‖Cα(E) = max
0�t�T

||ϕ(t)||E + sup
0�t<t+τ�T

‖ϕ(t+ τ)− ϕ(t)‖E
τα

.

Теорема 2.1. Пусть Av0−f(0), AvT −f(T ) ∈ Eα, f(t) ∈ Cα(E)(0 < α < 1). Если A—положи-
тельный оператор в банаховом пространстве E, то краевая задача (1.1) корректно поставлена
в пространстве Гёльдера Cα(E). Для решения v(t) в Cα(E) краевой задачи выполняется коэр-
цитивное неравенство

‖v′′‖Cα(E) + ‖Av‖Cα(E) + ‖v′′‖C(Eα) �

� M

α(1 − α)
‖f‖Cα(E) +

M

α

[
‖Av0 − f(0)||Eα + ||AvT − f(T )||Eα

]
,

(2.4)

где M не зависит от α, v0, vT и f(t). Здесь банахово пространство Eα = Eα(B,E) (0 < α < 1)
состоит из тех v ∈ E, для которых конечна норма

‖v‖Eα = sup
z>0

z1−α‖B exp{−zB}v‖E + ‖v‖E .

Более того, положительность A является необходимым условием корректности задачи (1.1) в
C(E). Однако задача (1.1) не корректна в C(E) для всех положительных операторов. Оказывает-
ся, что банахово пространство E можно ограничить до банахова пространства E′ (D(A) ⊂ E′ ⊂
E) таким образом, что ограниченная задача (1.1) в E′ будет корректна в C(E′). Роль E′ здесь
будут играть дробные пространства Eα = Eα(B,E) (0 < α < 1).

Теорема 2.2. Пусть A—положительный оператор в банаховом пространстве E и f(t) ∈
C(Eα) (0 < α < 1), v0, vT ∈ Eα. Тогда для решения v(t) в C(Eα) локальной краевой задачи (1.1)
выполняется коэрцитивное неравенство

‖v′′‖C(Eα) + ‖Av‖C(Eα) �

�M
[
‖Av0‖Eα + ‖AvT ‖Eα + α−1(1− α)−1‖f‖C(Eα)

]
,

(2.5)

где M не зависит от α, v0, vT и f(t).
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3. Корректность нелокальной краевой задачи (1.2)

Рассмотрим нелокальную краевую задачу (1.2). Приведем лемму, которая понадобится в даль-
нейшем.

Лемма 3.1. Пусть A—положительный оператор в банаховом пространстве E, и α (t)—
неотрицательная непрерывная функция для любого t ∈ [0, T ] . Тогда оператор⎛

⎝(I − e−TB)2 +B−1

T∫

0

(e−(T−s)B − e−(T+s)B)α (s) ds

⎞
⎠

имеет обратный

Q =

⎛
⎝(I − e−TB)2 +B−1

T∫

0

(e−(T−s)B − e−(T+s)B)α (s) ds

⎞
⎠

−1

,

и справедлива следующая оценка:
‖Q‖E→E �M2(B). (3.1)

Доказательство. Используя свойство непрерывности α (t) , мы можем записать

B−1

T∫

0

(e−(T−s)B−e−(T+s)B)α (s) ds = α (s∗)B−1

T∫

0

(e−(T−s)B−e−(T+s)B)ds = A−1α (s∗) (I−e−TB)2.

Из этого следует, что

(I − e−TB)2 +B−1

T∫

0

(e−(T−s)B − e−(T+s)B)α (s) ds = (I − e−TB)2A−1 (A+ α (s∗) I) .

Тогда оператор ⎛
⎝(I − e−TB)2 +B−1

T∫

0

(e−(T−s)B − e−(T+s)B)α (s) ds

⎞
⎠

имеет обратный

(I − e−TB)−2A (A+ α (s∗) I)−1 = (I − e−TB)−2
(
I − α (s∗) (A+ α (s∗) I)−1

)
.

Лемма 3.1 доказана.

Более того, применяя формулу (2.3) для решения задачи (1.2) при u (0) = ϕ и взяв производную
по t, получаем

u′(t) =
(
I − e−2TB

)−1

{
B
(
−e−tB − e−(2T−t)B

)
ϕ+B

(
e−(T−t)B + e−(T+t)B

)
u (T )−

− 1

2

(
e−(T−t)B + e−(T+t)B

) T∫

0

(
e−(T−s)B − e−(T+s)B

)
f(s)ds

}
+

+
1

2

t∫

0

(
−e−(t−s)B + e−(t+s)B

)
f(s)ds+

1

2

T∫

t

(
e−(s−t)B + e−(t+s)B

)
f(s)ds.

Имеем, что

u′(0) = −B(I − e−2TB)−1(I + e−2TB)ϕ+ 2Be−TB(I − e−2TB)−1u (T ) +

+ (I − e−2TB)−1

T∫

0

(
e−sB − e−(2T−s)B

)
f(s)ds

(3.2)
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и
u′(T ) = −2Be−TB(I − e−2TB)−1ϕ+B(I + e−2TB)(I − e−2TB)−1u (T )−

− (I − e−2TB)−1

T∫

0

(e−(T−s)B − e−(T+s)B)f(s)ds.
(3.3)

Применяя формулу (2.3) для u(0) = ϕ, получаем
T∫

0

α (s)u(s)ds = (I − e−2TB)−1

⎧⎨
⎩

T∫

0

(e−sB − e−(2T−s)B)α (s) dsϕ +

+

T∫

0

(e−(T−s)B − e−(T+s)B)α (s) dsu (T )−

− (2B)−1

T∫

0

(e−(T−s)B − e−(T+s)B)α (s) ds

T∫

0

(e−(T−y)B − e−(T+y)B)f(y)dy

⎫⎬
⎭ +

+ (2B)−1

T∫

0

α (s)

T∫

0

(e−|s−y|B − e−(s+y)B)f(y)dyds. (3.4)

Применяя формулы (3.2)–(3.4) и условие Самарского—Ионкина u′ (0) = u′ (T )+
T∫
0

α (s)u(s)ds+ψ,

получаем
−B(I − e−2TB)−1(I + e−2TB)ϕ+ 2Be−TB(I − e−2TB)−1u (T ) +

+ (I − e−2TB)−1

T∫

0

(
e−sB − e−(2T−s)B

)
f(s)ds =

= −2Be−TB(I − e−2TB)−1ϕ+B(I + e−2TB)(I − e−2TB)−1u (T )−

− (I − e−2TB)−1

T∫

0

(e−(T−s)B − e−(T+s)B)f(s)ds+

+ (I − e−2TB)−1

T∫

0

(e−sB − e−(2T−s)B)α (s) dsϕ+

+ (I − e−2TB)−1

T∫

0

(e−(T−s)B − e−(T+s)B)α (s) dsu (T )−

− (2B)−1(I − e−2TB)−1

T∫

0

(e−(T−s)B − e−(T+s)B)α (s) ds ×
T∫

0

(e−(T−y)B − e−(T+y)B)f(y)dy +

+ (2B)−1

T∫

0

α (s)

T∫

0

(e−|s−y|B − e−(s+y)B)f(y)dyds+ ψ,

или

−(I − e−2TB)−1

⎡
⎣B (I − e−TB

)2
+

T∫

0

(e−(T−s)B − e−(T+s)B)α (s) ds

⎤
⎦u (T ) =

= (I − e−2TB)−1

⎡
⎣B (I − e−TB

)2
+

T∫

0

(e−sB − e−(2T−s)B)α (s) ds

⎤
⎦ϕ−
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− (I − e−2TB)−1

T∫

0

(
e−sB − e−(2T−s)B

)
f(s)ds−

− (I − e−2TB)−1

T∫

0

(e−(T−s)B − e−(T+s)B)f(s)ds−

− (2B)−1(I − e−2TB)−1

T∫

0

(e−(T−s)B − e−(T+s)B)α (s) ds ×
T∫

0

(e−(T−y)B − e−(T+y)B)f(y)dy +

+ (2B)−1

T∫

0

α (s)

T∫

0

(e−|s−y|B − e−(s+y)B)f(y)dyds+ ψ.

По лемме 3.1 существует обратный ограниченный оператор

Q =

⎛
⎝(I − e−TB

)2
+B−1

T∫

0

(e−(T−s)B − e−(T+s)B)α (s) ds

⎞
⎠

−1

для оператора

(
I − e−TB

)2
+B−1

T∫

0

(e−(T−s)B − e−(T+s)B)α (s) ds. (3.5)

Таким образом, получаем

u (T ) = −Q
⎧⎨
⎩
⎡
⎣(I − e−TB

)2
+B−1

T∫

0

(e−sB − e−(2T−s)B)α (s) ds

⎤
⎦ϕ − (3.6)

−B−1

T∫

0

(
e−sB − e−(2T−s)B

)
f(s)ds−B−1

T∫

0

(e−(T−s)B − e−(T+s)B)f(s)ds−

− (2B)−1

T∫

0

(e−(T−s)B − e−(T+s)B)α (s) ds×B−1

T∫

0

(e−(T−y)B − e−(T+y)B)f(y)dy +

+ (I − e−2TB)

⎡
⎣(2B)−1

T∫

0

α (s)B−1

T∫

0

(e−|s−y|B − e−(s+y)B)f(y)dyds +B−1ψ

⎤
⎦
⎫⎬
⎭ .

Итак, легко показать, что функция u(t), заданная на [0, T ] формулами (2.3) при u(0) = ϕ и (3.6),
дает единственное решение в C(E) задачи (1.2), если, например, α(t) ∈ C(1)[0, T ], ϕ ∈ D(A2),

ψ ∈ D(A
3
2 ) и Af (t) ∈ C(E) или f ′ (t) ∈ C(E). Достаточные условия корректности нелокальной

краевой задачи (1.2) можно установить, если рассмотреть эту задачу в некоторых пространствах
гладких E-значных функций, определенных на [0, T ].

Обратим внимание, что для решения задачи (1.2) неравенство коэрцитивности∥∥u′′∥∥
Cα(E)

+ ‖Au‖Cα(E) �MC [‖f‖Cα(E) + ||Aϕ||E + ||Aψ||E ]
не выполняется. Тем не менее, мы имеем следующие результаты о корректности.

Теорема 3.1. Предположим, что Aϕ − f(0), A
1
2ψ ∈ Eα, f(t) ∈ Cα(E) (0 < α < 1). Если A—

положительный оператор в банаховом пространстве E, то краевая задача (1.2) корректно по-
ставлена в пространстве Гёльдера Cα(E) и для решения этой задачи u(t) в Cα(E) выполняется
коэрцитивное неравенство

‖u′′‖Cα(E) + ‖Au‖Cα(E) + ‖u′′‖C(Eα) � (3.7)



О НЕЛОКАЛЬНОЙ КРАЕВОЙ ЗАДАЧЕ ДЛЯ ЭЛЛИПТИЧЕСКИХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ 7

� M

α(1− α)
‖f‖Cα(E) +

M

α

[
‖Aϕ− f(0)‖Eα

+
∥∥∥A 1

2ψ
∥∥∥
Eα

]
,

где M не зависит от α, ϕ, ψ, f(t).

Доказательство. По теореме 2.1 имеем следующую оценку:

‖u′′‖Cα(E) + ‖Au‖Cα(E) + ‖u′′‖C(Eα) � (3.8)

� M

α(1− α)
‖f‖Cα(E) +

M

α

[‖Au(0)− f(0)‖Eα
+ ‖Au(T )− f(T )‖Eα

]

для решения задачи (1.2). Поэтому для доказательства теоремы 3.1 достаточно установить оценки
для ‖Au(T )− f(T )‖Eα

. Применяя формулу (3.6), получаем

Au (T )− f(T ) = −Q
⎧⎨
⎩
⎡
⎣(I − e−TB

)2
+B−1

T∫

0

(e−sB − e−(2T−s)B)α (s) ds

⎤
⎦ (Aϕ− f(0)) +

+

⎡
⎣(I − e−TB

)2
+B−1

T∫

0

(e−sB − e−(2T−s)B)α (s) ds

⎤
⎦ f(0)−

− (I − e−TB
)
f(0)−B

T∫

0

e−sB (f(s)− f(0)) ds+

+

⎡
⎣(I − e−TB

)2
+B−1

T∫

0

(e−(T−s)B − e−(T+s)B)α (s) ds

⎤
⎦ f(T )−

− (I − e−TB
)
f(T )−B

T∫

0

(e−(T−s)B (f(s)− f(T )) ds+

+B

T∫

0

e−(2T−s)Bf(s)ds+B

T∫

0

e−(T+s)B)f(s)ds−

− 2−1

T∫

0

(e−(T−s)B − e−(T+s)B)α (s) ds

T∫

0

(e−(T−y)B − e−(T+y)B)f(y)dy +

+ (I − e−2TB)

⎡
⎣2−1

T∫

0

α (s)

T∫

0

(e−|s−y|B − e−(s+y)B)f(y)dyds +Bψ

⎤
⎦
⎫⎬
⎭ =

5∑
k=1

Jk,

где

J1 = −Q
⎧⎨
⎩
⎡
⎣(I − e−TB

)2
+B−1

T∫

0

(e−sB − e−(2T−s)B)α (s) ds

⎤
⎦ (Aϕ− f(0))

⎫⎬
⎭ ,

J2 = −Q(I − e−2TB)Bψ,

J3 = −Q
⎧⎨
⎩
⎡
⎣(I − e−TB

)2
+B−1

T∫

0

(e−sB − e−(2T−s)B)α (s) ds

⎤
⎦ f(0) −

− (I − e−TB
)
f(0)−B

T∫

0

e−sB (f(s)− f(0)) ds+

+

⎡
⎣(I − e−TB

)2
+B−1

T∫

0

(e−(T−s)B − e−(T+s)B)α (s) ds

⎤
⎦ f(T )−
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− (I − e−TB
)
f(T )−B

T∫

0

(e−(T−s)B (f(s)− f(T )) ds

⎫⎬
⎭ ,

J4 = −Q
⎧⎨
⎩B

T∫

0

e−(2T−s)Bf(s)ds+B

T∫

0

e−(T+s)B)f(s)ds

⎫⎬
⎭ ,

J5 = −Q
⎧⎨
⎩−2−1

T∫

0

(e−(T−s)B − e−(T+s)B)α (s) ds

T∫

0

(e−(T−y)B − e−(T+y)B)f(y)dy +

+ (I − e−2TB)

⎡
⎣2−1

T∫

0

α (s)

T∫

0

(e−|s−y|B − e−(s+y)B)f(y)dyds

⎤
⎦
⎫⎬
⎭ .

Оценим Jk в норме Eα для любых k = 1, 2, 3, 4 и 5 по отдельности. В каждом случае будем ис-
пользовать лемму 3.1 и оценки (2.1), (2.2) и (3.1). Начнем с J1 в норме Eα. Применяя неравенство
треугольника, получим ∥∥∥λ1−αBe−λBJ1

∥∥∥
E
�

� ‖Q‖E→E

⎡
⎣∥∥I − e−TB

∥∥2
E→E

+

T∫

0

2T−s∫

s

∥∥e−yB
∥∥
E→E

dyds max
s∈[0,T ]

|α (s)|
⎤
⎦∥∥∥λ1−αBe−λB [Aϕ− f(0)]

∥∥∥
E
�

�M1 sup
λ>0

∥∥∥λ1−αBe−λB (Aϕ− f(0))
∥∥∥
E
�M1 ‖Aϕ− f(0)‖Eα

для всех λ, λ ∈ (0,∞) . Тогда
‖J1‖Eα

�M1 ‖Aϕ− f(0)‖Eα
.

Таким же образом мы можем получить

‖J2‖Eα
�M2 ‖Bψ‖Eα

.

Теперь оценим J3 в норме пространств Eα. Имеем, что

J3 = −Q
⎧⎨
⎩B−1

T∫

0

(e−sB − e−(2T−s)B)α (s) dsf(0) +B−1

T∫

0

(e−(T−s)B − e−(T+s)B)α (s) dsf(T ) −

− (I − e−TB
)
e−TBf(0)−B

T∫

0

e−sB (f(s)− f(0)) ds−

− (I − e−TB
)
e−TBf(T )−B

T∫

0

(e−(T−s)B (f(s)− f(T )) ds

⎫⎬
⎭ .

Применяя неравенство треугольника и оценки (2.1), (3.1), получаем
∥∥∥λ1−αBe−λBJ3

∥∥∥
E
� ‖Q‖E→E

{
λ1−α

∥∥∥e−λB
∥∥∥
E→E

max
s∈[0,T ]

|α (s)| ×

×
⎡
⎣

T∫

0

∥∥∥e−(T−s)B − e−(T+s)B
∥∥∥
E→E

ds +

T∫

0

∥∥∥e−sB − e−(2T−s)B
∥∥∥
E→E

ds

⎤
⎦ max

t∈[0,T ]
‖f(t)‖E +

+ λ1−α

T∫

0

∥∥∥B2e−(s+λ)B
∥∥∥
E→E

‖f(s)− f(0)‖E ds+ λ1−α

T∫

0

∥∥∥B2e−(T−s+λ)B
∥∥∥
E→E

‖f(s)− f(T )‖E ds+

+
∥∥I − e−TB

∥∥
E→E

λ1−α
∥∥∥Be−(λ+T )B

∥∥∥
E→E

[‖f(0)‖E + ‖f(T )‖E ]
}
�
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�M31(δ) ‖f‖Cα([0,T ],E) +M32

T∫

0

λ1−αsα

(s+ λ)2
ds sup

0<s�T

‖f(s)− f(0)‖E
sα

+

+M33λ
1−α

T∫

0

(T − s)α

(λ+ T − s)2
ds sup

0�s<T

‖f(s)− f(T )‖E
(T − s)α

для всех λ, λ ∈ (0,∞) . Так как
T∫

0

λ1−αsα

(λ+ s)2
ds �

∞∫

0

pα

(1 + p)2
dp �

1∫

0

pαdp +

∞∫

1

pα−2dp =
2

(1 + α) (1− α)
,

имеем, что

‖J3‖Eα
� M3(δ)

1− α
‖f‖Cα([0,T ],E) .

Оценим J4 в норме пространств Eα. Применяя неравенство треугольника и оценки (2.1), (3.1),
получаем ∥∥∥λ1−αBe−λBJ4

∥∥∥
E
�

� ‖Q‖E→E λ
1−α

⎡
⎣

T∫

0

∥∥∥B2e−(2T−s+λ)B
∥∥∥
E→E

ds+

T∫

0

∥∥∥B2e−(T+s+λ)B
∥∥∥
E→E

ds

⎤
⎦ max

t∈[0,T ]
‖f(t)‖E �

�M41λ
1−α

⎡
⎣

T∫

0

1

(λ+ 2T − s)2
ds+

T∫

0

1

(λ+ T + s)2
ds

⎤
⎦ ‖f‖Cα([0,T ],E) �M4 ‖f‖Cα([0,T ],E)

для всех λ, λ ∈ (0,∞) . Поэтому

‖J4‖Eα
�M4 ‖f‖Cα([0,T ],E) .

Оценим J5 в норме интерполяционных пространств Eα. Применяя неравенство треугольника,
получаем

∥∥∥λ1−αBe−λBJ5

∥∥∥
E
� ‖Q‖E→E λ

1−α 1

2

⎧⎨
⎩ max

s∈[0,T ]
|α (s)|

T∫

0

∥∥∥Be−(λ+T−s)B
∥∥∥
E→E

∥∥I − e−2sB
∥∥
E→E

ds ×

× max
t∈[0,T ]

‖f(t)‖E +
∥∥I − e−2sB

∥∥
E→E

×

×
T∫

0

|α (s)|
⎡
⎣

s∫

0

∥∥∥B
(
e−(s−y)B − e−(s+y)B

)∥∥∥
E→E

dy +

T∫

s

∥∥∥B
(
e−(y−s)B − e−(s+y)B

)∥∥∥
E→E

dy

⎤
⎦ ds×

× max
t∈[0,T ]

‖f(t)‖E �M5 (δ) max
t∈[0,T ]

‖f(t)‖E
для всех λ, λ ∈ (0,∞) . Тогда

‖J5‖Eα
�M5(δ) ‖f‖Cα([0,T ],E) .

Объединяя оценки для Jk в норме Eα для любых k = 1, 2, 3, 4 и 5, получаем

‖Au(T )− f(T )‖Eα
�M ‖Aϕ− f(0)‖Eα

+M ‖Bψ‖Eα
+
M3(δ)

1− α
‖f‖Cα([0,T ],E) . (3.9)

Наконец, применяя оценки (3.8) и (3.9), получаем оценку (3.7). Теорема 3.1 доказана.

Теорема 3.2. Пусть A—положительный оператор в банаховом пространстве E и A
1
2ψ,

Aϕ ∈ Eα, f(t) ∈ C(Eα) (0 < α < 1). Тогда для решения u(t) в C(Eα) краевой задачи (1.2)
выполняется коэрцитивное неравенство

‖u′′‖C(Eα) + ‖Au‖C(Eα) �M(μ)[‖Aϕ‖Eα
+
∥∥∥A 1

2ψ
∥∥∥
Eα

+ α−1(1− α)−1‖f‖C(Eα)],

где M(μ) не зависит от α, ϕ, ψ и f(t).
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Доказательство. По теореме 2.2 имеем оценку

‖u′′‖C(Eα) + ‖Au‖C(Eα) �M [‖Au(0)‖Eα + ‖Au(T )‖Eα + α−1(1− α)−1‖f‖C(Eα)]

для решения задачи (1.2). Поэтому для доказательства теоремы 3.2 достаточно установить оценки
для ‖Au(T )‖Eα

. Применяя формулу (3.6), получаем

Au (T ) = −Q
⎧⎨
⎩
⎡
⎣(I − e−TB

)2
+B−1

T∫

0

(e−sB − e−(2T−s)B)α (s) ds

⎤
⎦Aϕ −

−B

T∫

0

(
e−sB − e−(2T−s)B

)
f(s)ds−B

T∫

0

(e−(T−s)B − e−(T+s)B)f(s)ds−

− 1

2

T∫

0

(e−(T−s)B − e−(T+s)B)α (s) dsB

T∫

0

(e−(T−y)B − e−(T+y)B)f(y)dy +

+ (I − e−2TB)

⎡
⎣1
2

T∫

0

α (s)B

T∫

0

(e−|s−y|B − e−(s+y)B)f(y)dyds +Bψ

⎤
⎦
⎫⎬
⎭ .

Используя неравенство треугольника, оценки (2.1), (3.1) и определение пространств Eα, полу-
чаем ∥∥∥λ1−αBe−λBAu(T )

∥∥∥
E
�M1

[‖Aϕ‖Eα
+ ‖Bψ‖Eα

]
+M3

1

α (1− α)
‖f‖C(Eα)

для любого λ > 0. Поэтому

‖Au(T )‖Eα
�M1(μ)

[‖Aϕ‖Eα
+ ‖Bψ‖Eα

]
+M3(μ)

1

α (1− α)
‖f‖C(Eα)

. (3.10)

Теорема 3.2 доказана.

4. Приложения

Теперь рассмотрим приложения теорем 3.1 и 3.2 к эллиптическим уравнениям.

1. Сначала рассмотрим краевые задачи для двумерных эллиптических уравнений⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−∂
2u

∂y2
− ∂

∂x

(
a(x)

∂u

∂x

)
+ δu = f(y, x), 0 < y < T, 0 < x < l,

u(0, x) = ϕ(x),
∂u(0, x)

∂y
=
∂u(T, x)

∂y
+

T∫

0

α(s)u(s, x)ds + ψ(x), 0 < x < l,

u(y, 0) = u(y, l), ux(y, 0) = ux(y, l), 0 � y � T,

(4.1)

где a(x), ϕ(x) и f(y, x)— заданные достаточно гладкие функции, а a(0) = a(l), a(x) > 0, δ > 0—
достаточно большие числа. Введем банаховы пространства Cβ[0, l] (0 < β < 1) всех непрерывных
функций ϕ(x), удовлетворяющих условию Гёльдера, для которых конечны следующие нормы:

‖ϕ‖Cβ [0,l] = ‖ϕ‖C[0,l] + sup
0�x<x+τ�l

|ϕ(x + τ)− ϕ(x)|
τβ

,

где C[0, l]—пространство всех непрерывных на [0, l] функций ϕ(x) с обычной нормой

‖ϕ‖C[0,l] = max
0�x�l

|ϕ(x)|.

Известно, что дифференциальное выражение

Axv = − (a(x)vx(x))x + δv(x)



О НЕЛОКАЛЬНОЙ КРАЕВОЙ ЗАДАЧЕ ДЛЯ ЭЛЛИПТИЧЕСКИХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ 11

определяет положительный оператор Ax, действующий в Cβ[0, l] с областью определения
Cβ+2[0, l] и удовлетворяющий условиям v(0) = v(l), vx(0) = vx(l). Поэтому мы можем заме-
нить краевые задачи (4.1) абстрактной краевой задачей (1.2). Используя результаты теорем 3.1
и 3.2, мы получаем следующий результат.

Теорема 4.1. Для решения краевой задачи (4.1) справедливы следующие коэрцитивные нера-
венства:

‖u‖C2+α(Cμ[0,l]) + ‖u‖Cα(C2+μ[0,l]) �
�M(α)

[‖f‖Cα(Cμ[0,l]) + || − (a(·)ϕx (·))x + δϕ (·)− f(0, ·)||C2α+μ[0,l] + ||ψ(·)||C2+μ [0,l]

]
,

‖u‖C2(C2α+μ[0,l]) + ‖u‖C(C2+2α+μ[0,l]) �
�M(α)

[‖f‖C(C2α+μ[0,l]) + ||ϕ||C2+2α+μ[0,l] + ||ψ||C2+μ[0,l]

]
, 0 < 2α+ μ < 1.

Здесь M(α) не зависит от ϕ(x), ψ(x) и f(y, x).

2. Теперь пусть Ω будет единичным открытым кубом в n-мерном евклидовом пространстве R
n

(0 < xk < 1, 1 � k � n) с границей SΩ = Ω ∪ S. В [0, T ] × Ω рассмотрим смешанную краевую
задачу для многомерного эллиптического уравнения⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂
2u(y, x)

∂y2
−

n∑
r=1

αr(x)
∂2u(y, x)

∂x2r
+ δu(y, x) = f(y, x),

x = (x1, . . . , xn) ∈ Ω, 0 < y < T,

u(0, x) = ϕ(x),
∂u(0, x)

∂y
=
∂u(T, x)

∂y
+

T∫

0

α(s)u(s, x)ds + ψ(x), x ∈ Ω,

u(y, x) = 0, x ∈ S,

(4.2)

где αr(x) (x ∈ Ω) и f(y, x) (y ∈ (0, T ), x ∈ Ω), ϕ(x) (x ∈ Ω)— заданные гладкие функции,
а αr(x) > 0, δ > 0—достаточно большое число. Введем банаховы пространства Cβ

01(Ω) (β =
(β1, . . . , βn), 0 < xk < 1, k = 1, . . . , n) всех непрерывных функций, удовлетворяющих условию
Гёльдера с индикатором β = (β1, . . . , βn), βk ∈ (0, 1), 1 � k � n и весом xβk

k (1 − xk − hk)
βk ,

0 � xk < xk + hk � 1, 1 � k � n, с нормой

‖f‖
Cβ

01(Ω)
= ‖f‖C(Ω)+ sup

0�xk<xk+hk�1,
1�k�n

|f(x1, . . . , xn)−f(x1+h1, . . . , xn+hn)|
n∏

k=1

h−βk
k xβk

k (1−xk−hk)βk ,

где C(Ω)—пространство всех непрерывных функций, определенных на Ω, снабженное нормой

‖f‖C(Ω) = max
x∈Ω

|f(x)|.

Известно, что дифференциальное выражение

Axv = −
n∑

r=1

αr(x)
∂2v(y, x)

∂x2
+ δv(y, x)

определяет положительный оператор Ax, действующий на Cβ
01(Ω) с областью определения

D(Ax) ⊂ C2+β
01 (Ω) и удовлетворяющий условию v = 0 на S. Поэтому мы можем заменить краевые

задачи (4.2) на абстрактные краевые задачи (1.2). Используя результаты теорем 3.1, мы можем
получить следующий результат.

Теорема 4.2. Предположим, что

−
n∑

r=1

αr(x)
∂2ϕ(x)

∂x2
+ δϕ(x) − f(0, x)) = 0, ψ (x) = 0, x ∈ Ω.

Тогда для решения краевой задачи (4.2) справедливо коэрцитивное неравенство

‖u‖C2+α(Cμ
01(Ω)) +

n∑
r=1

∥∥∥∥∂
2u

∂x2r

∥∥∥∥
Cα(Cμ

01(Ω))
�M(α) ‖f‖Cα(Cμ

01(Ω)),
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0 < α < 1, μ = {μ1, . . . , μn}, 0 < μk < 1, 1 � k � n,

где M(α) не зависит от f(y, x).

3. Перейдем к краевой задаче в диапазоне

{0 � y � T, x ∈ R
n}

для многомерных эллиптических уравнений порядка 2m⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−∂
2u

∂y2
+

∑
|r|=2m

ar(x)
∂|τ |u

∂xr11 . . . ∂xrnn
+ δu(y, x) = f(y, x),

0 < y < T, x, r ∈ R
n, |r| = r1 + . . . + rn,

u(0, x) = ϕ(x),
∂u(0, x)

∂y
=
∂u(T, x)

∂y
+

T∫

0

α(s)u(s, x)ds + ψ(x), x ∈ R
n,

(4.3)

где ar(x) и f(y, x), ϕ(x), ψ (x)— заданные достаточно гладкие функции, а αr(x) > 0, δ > 0—
достаточно большие числа. Будем считать, что символ

Bx(ξ) =
∑

|r|=2m

ar(x) (iξ1)
r1 . . . (iξn)

rn , ξ = (ξ1, . . . , ξn) ∈ R
n

дифференциального оператора вида

Bx =
∑

|r|=2m

ar(x)
∂|r|

∂xr11 . . . ∂xrnn
, (4.4)

действующего на функции, определенные на пространстве R
n, удовлетворяет неравенствам

0 < M1|ξ|2m � (−1)mBx(ξ) �M2|ξ|2m <∞
при ξ �= 0. Задача (4.3) имеет единственное гладкое решение. Для формулировки наших резуль-
татов мы вводим банахово пространство Cμ(Rn) (0 < μ < 1) всех непрерывных функций ϕ(x),
определенных на R

n и удовлетворяющих условию Гёльдера, для которого конечна следующая
норма:

‖ϕ‖Cμ(Rn) = ‖ϕ‖C(Rn) + sup
x,z∈Rn, z �=0

|ϕ (x+ z)− ϕ (x)|
|z|μ ,

где C(Rn)—пространство всех непрерывных функций ϕ(x), определенных на R
n с обычной нор-

мой
‖ϕ‖C(Rn) = sup

x∈Rn
|ϕ (x)| .

Теперь сформулируем следующий результат о корректности.

Теорема 4.3. Для решения краевой задачи (4.3) выполняются следующие неравенства коэр-
цитивности:

‖u‖C2+α(Cμ(Rn)) +
∑

|τ |=2m

∥∥∥∥∥
∂|r|u

∂xr11 . . . ∂xrnn

∥∥∥∥∥
Cα(Cμ(Rn))

+

+ ‖u‖C2(C2mα+μ(Rn)) �M(α)

⎡
⎢⎣‖f‖Cα(Cμ(Rn)) +

∥∥∥∥∥∥
∑

|r|=2m

ar(·) ∂|r|ψ(·)
∂xr11 . . . ∂xrnn

∥∥∥∥∥∥
Cμ(Rn)

+

+

∥∥∥∥∥∥
∑

|r|=2m

ar(·) ∂|τ |ϕ(·)
∂xr11 . . . ∂xrnn

+ δϕ(·) − f(0, ·)
∥∥∥∥∥∥
C2mα+μ(Rn)

⎤
⎥⎦ ,

‖u‖C2(C2mα+μ(Rn)) +
∑

|τ |=2m

∥∥∥∥∥
∂|r|u

∂xr11 . . . ∂xrnn

∥∥∥∥∥
C(C2mα+μ(Rn))

�



О НЕЛОКАЛЬНОЙ КРАЕВОЙ ЗАДАЧЕ ДЛЯ ЭЛЛИПТИЧЕСКИХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ 13

�M(α)

⎡
⎣‖f‖C(C2mα+μ(Rn)) +

∑
|τ |=2m

∥∥∥∥∥
∂|r|ϕ

∂xr11 . . . ∂xrnn

∥∥∥∥∥
C2mα+μ(Rn)

+

+
∑

|τ |=2m

∥∥∥∥∥
∂|r|ψ

∂xr11 . . . ∂xrnn

∥∥∥∥∥
Cμ(Rn)

⎤
⎦ , 0 < 2mα+ μ < 1,

где M(α) не зависит от ϕ(x), ψ (x) , и f(y, x).

Доказательство теоремы 4.3 основано на абстрактных теоремах 3.1 и 3.2, положительности
оператора Ax в Cμ(Rn), структуре дробных пространств Eα((A

x)
1
2 , C(Rn)) и неравенстве коэрци-

тивности для эллиптического оператора Ax в Cμ(Rn).

Заключение

В данной статье изучается нелокальная краевая задача для эллиптических уравнений с услови-
ем Самарского—Ионкина интегрального типа. Устанавливается корректность нелокальной кра-
евой задачи для абстрактных эллиптических уравнений с условием Самарского—Ионкина ин-
тегрального типа в банаховом пространстве. В приложениях доказана теорема о корректности
нелокальных краевых задач для эллиптических уравнений с условием Самарского—Ионкина ин-
тегрального типа. Представлены двухшаговые разностные схемы высокого порядка точности для
численного решения дифференциальной задачи с условием Самарского—Ионкина интегрального
типа. Отметим, что операторный метод в [12] позволяет установить корректность этих разност-
ных схем.
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Аннотация. Рассмотрена обратная начально-краевая задача на ограниченном интервале для си-
стем квазилинейных эволюционных уравнений нечетного порядка. В качестве переопределений
выбраны интегральные условия, а в качестве управлений— краевые функции и правые части
уравнений специального вида. Установлены результаты о существовании и единственности реше-
ний при малых входных данных или малом временном интервале.

Ключевые слова: квазилинейные эволюционные уравнения, нечетный порядок, обратная за-
дача, начально-краевая задача, интегральные условия, существование решения, единственность
решения.

Заявление о конфликте интересов. Авторы заявляют об отсутствии конфликта интересов.

Благодарности и финансирование. Второй автор был поддержан грантом Российского науч-
ного фонда (проект № 23-11-00056).

Для цитирования: О.С. Балашов, А. В. Фаминский. Обратная начально-краевая задача для
систем квазилинейных эволюционных уравнений нечетного порядка// Соврем. мат. Фундам. на-
правл. 2025. Т. 71, № 1. С. 18–32. http://doi.org/10.22363/2413-3639-2025-71-1-18-32

1. Введение. Описание основных результатов

В статье рассматривается система квазилинейных уравнений нечетного порядка

ut − (−1)l(a2l+1∂
2l+1
x u+ a2l∂

2l
x u)−

l−1∑
j=0

(−1)j∂jx
[
a2j+1(t, x)∂

j+1
x u+ a2j(t, x)∂

j
xu
]
+

+

l∑
j=0

(−1)j∂jx
[
gj(t, x, u, . . . , ∂

l−1
x u)

]
= f(t, x), l ∈ N, (1.1)

заданная на интервале I = (0, R) (R > 0 произвольно). Здесь u = u(t, x) = (u1, . . . , un)
T , n ∈ N,

— неизвестная вектор-функция, f = (f1, . . . , fn)
T , gj = (gj1, . . . , gjn)

T — также вектор-функции,
a2l+1 = diag(a(2l+1)i), a2l = diag(a(2l)i), i = 1, . . . , n,—постоянные диагональные матрицы размера
n×n, aj(t, x) =

(
ajim(t, x)

)
, i,m = 1, . . . , n, для j = 0, . . . , 2l− 1,—матрицы также размера n×n.
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В прямоугольнике QT = (0, T ) × I для некоторого T > 0 рассмотрим обратную начально-
краевую задачу для системы (1.1) с начальным условием

u(0, x) = u0(x), x ∈ [0, R], (1.2)

и граничными условиями

∂jxu(t, 0) = μj(t), j = 0, . . . , l − 1, ∂jxu(t, R) = νj(t), j = 0, . . . , l, t ∈ [0, T ], (1.3)

где u0 = (u01, . . . , u0n)
T , μj = (μj1, . . . , μjn)

T , νj = (νj1, . . . , νjn)
T .

Предположим, что для любого i = 1, . . . , n функция fi представляется в виде

fi(t, x) ≡ h0i(t, x) +

mi∑
k=1

Fki(t)hki(t, x) (1.4)

для некоторого неотрицательного целого числа mi (если mi = 0, то fi = h0i), где функции hki
даны, а функции Fki неизвестны. Кроме того, предположим, что часть краевых функций νli также
неизвестна. Положим ni = 1, если функция νli неизвестна, и ni = 0, если функция νli дана. Тогда
задача (1.1)–(1.3) дополнена условиями переопределения в интегральной форме: если mi+ni > 0
для некоторого i, то∫

I

ui(t, x)ωki(x) dx = ϕki(t), t ∈ [0, T ], k = 1, . . . ,mi + ni, (1.5)

для некоторых заданных функций ωki и ϕki. В частности, для отдельного i условия переопреде-
ления для функции ui могут отсутствовать, но всегда предполагается, что

N =

n∑
i=1

ni > 0, (1.6)

так что хотя бы одна из краевых функций νli неизвестна (очевидно, что N � n). Положим также

M =

n∑
i=1

mi,

тогда M � 0. Задача состоит в нахождении функций νli (при ni > 0) и функций Fki (при mi > 0),
для которых соответствующее решение u задачи (1.1)–(1.3) удовлетворяет условиям (1.5).
В случае одного (n = 1) уравнения типа (1.1) обратные задачи были, например, рассмотре-

ны в [5]. В частности, в этой статье приведены примеры физических моделей, которые могут
быть описаны уравнениями подобного вида: уравнения Кортевега—де Фриза (КдФ) и Кавахары
с обобщениями, уравнения Кортевега—де Фриза—Бюргерса и Бенни—Лина, уравнение Каупа—
Купершмидта и другие. Однако, наряду с одиночными уравнениями, в реальных физических
ситуациях возникают также системы квазилинейных эволюционных уравнений нечетного поряд-
ка. Среди подобных систем следует упомянуть систему Майды—Биелло (см. [8]){

ut + uxxx + vvx = 0,

vt + αvxxx + (uv)x = 0, α > 0,

и более общие системы уравнений типа КдФ со спаренными нелинейностями (см. [4]). Более
подробно о примерах подобных систем написано, например, в [5].
Важность условий интегрального переопределения в обратных задачах обсуждена, например,

в книге [9]. Изучение обратных задач с интегральным условием переопределения для уравнений
типа КдФ было начато в статье [2] на основе, в частности, идей из [9]. В статье [5] для задачи (1.1)–
(1.3) в случае одного уравнения были рассмотрены две обратные задачи с одним интегральным
условием переопределения типа (1.5). В первой их них в качестве управления была выбрана
правая часть уравнения типа (1.4) (тогда M = 1, N = 0), во второй — граничная функция νl
(тогда M = 0, N = 1). Были установлены результаты о корректности подобных задач либо в
случае малых входных данных, либо малого временного интервала. В статье [6] была рассмотрена
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начально-краевая задача на ограниченном интервале для нелинейного уравнения Шрёдингера
высокого порядка

iut + auxx + ibux + iuxxx + λ|u|pu+ iβ
(|u|pu)

x
+ iγ

(|u|p)
x
u = f(t, x)

(u—комплекснозначная функция) с начальными и краевыми условиями, аналогичными (1.2)-
(1.3), и изучены три обратные задачи с интегральными условиями переопределения. Первые две
из них аналогичны задачам, рассмотренным в [5], с похожими результатами. В третьей задаче
были введены два условия переопределения типа (1.5), а в качестве управлений были рассмот-
рены как правая часть уравнения, так и граничная функция (M = N = 1). Результаты были
аналогичны первым двум случаям.
Заметим также, что обратная задача с двумя интегральными условиями переопределения для

уравнения типа КдФ
ut + uxxx + uux + α(t)u = F (t)g(t)

в периодическом случае при неизвестных функциях α и F была рассмотрена в [7], где были
установлены результаты об однозначной разрешимости для малого временного интервала.
В статье [3] была рассмотрена обратная начально-краевая задача (1.1)–(1.3) с интегральными

условиями переопределения (1.5) в случае, когда управлениями были правые части уравнений
типа (1.4) (M > 0—произвольно, N = 0). Аналогично [5] были установлены результаты о кор-
ректности либо в случае малых входных данных, либо малого временного интервала. Заметим,
что в [3] также была рассмотрена и прямая начально-краевая задача (1.1)–(1.3).
Настоящая работа является продолжением статьи [3] на случай произвольных M � 0 и

N ∈ (0, n] c аналогичными результатами о корректности. Эти результаты являются новыми даже
в случае одного уравнения (тогда N = n = 1) в силу произвола в выбореM. Условия, накладыва-
емые на систему, начальные и краевые данные, аналогичны условиям из [3], но с более сильными
ограничениями на порядок роста нелинейностей (см. замечание 1.2).
Решения рассматриваемой задачи, как и в [3], строятся в специальном пространстве вектор-

функций u = (u1, . . . , un)
T ∈ (X(QT )

)n
, где для любого i = 1, . . . , n

ui(t, x) ∈ X(QT ) = C([0, T ];L2(I)) ∩ L2(0, T ;H
l(I)),

с нормой

‖u‖(X(QT ))n =

n∑
i=1

(
sup

t∈(0,T )
‖ui(t, ·)‖L2(I) + ‖∂lxui‖L2(QT )

)
.

Для r > 0 через Xrn(QT ) обозначим замкнутый шар {u ∈ (X(QT )
)n

: ‖u‖(X(QT ))n � r}.
Слабое решение задачи (1.1)–(1.3) понимается так же, как в [3], в смысле следующего опреде-

ления.

Определение 1.1. Пусть u0 ∈
(
L2(I)

)n
, μj , νj ∈

(
L2(0, T )

)n ∀j, f ∈ (L1(QT )
)n
, aj ∈

(
C(QT )

)n2

∀j. Функция u ∈ (
X(QT )

)n называется слабым решением задачи (1.1)–(1.3), если ∂jxu(t, 0) ≡
μj(t), ∂

j
xu(t, R) ≡ νj(t), j = 0, . . . , l − 1, и для любой пробной функции φ(t, x), такой что

φ ∈ (
L2(0, T ;H

l+1(I))
)n
, φt ∈ (

L2(QT )
)n
, φ
∣∣
t=T

≡ 0, ∂jxφ
∣∣
x=0

= ∂jxφ
∣∣
x=R

≡ 0, j = 0, . . . , l − 1,

∂lxφ
∣∣
x=0

≡ 0, справедливо свойство
(
gj(t, x, u, . . . , ∂

l−1
x u), ∂jxφ

) ∈ L1(QT ), j = 0, . . . , l, и выполнено
интегральное тождество:

∫∫

QT

[
(u, φt)− (a2l+1∂

l
xu, ∂

l+1
x φ) + (a2l∂

l
xu, ∂

l
xφ) +

l−1∑
j=0

(
(a2j+1∂

j+1
x u+ a2j∂

j
xu), ∂

j
xφ
)−

−
l∑

j=0

(
gj(t, x, u, . . . , ∂

l−1
x u), ∂jxφ

)
+ (f, φ)

]
dxdt+

∫

I

(u0, φ
∣∣
t=0

) dx+

T∫

0

(a2l+1νl, ∂
l
xφ
∣∣
x=R

) dt = 0,

(1.7)

где символом (·, ·) обозначено скалярное произведение в пространстве R
n.
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Пусть символы f̂(ξ) ≡ F [f ](ξ) и F−1[f ](x), как обычно, обозначают соответственно прямое и
обратное преобразования Фурье функции f. В частности, для f ∈ S(R)

f̂(ξ) =

∫

R

e−iξxf(x) dx, F−1[f ](x) =
1

2π

∫

R

eiξxf(ξ) dξ.

Для s ∈ R стандартным образом введем пространство Соболева дробного порядка

Hs(R) =
{
f : F−1[(1 + |ξ|s)f̂(ξ)] ∈ L2(R)

}
и для любого T > 0 обозначим через Hs(0, T ) пространство сужений на интервал (0, T ) функций
из Hs(R) с естественной нормой. Для описания свойств граничных функций μj , νj при j < l
будем использовать следующее функциональное пространство также с естественной нормой:

(Bl−1(0, T )
)n

=
(l−1∏
j=0

H(l−j)/(2l+1)(0, T )
)n
.

На коэффициенты линейной части системы будем накладывать следующие условия:

a(2l+1)i > 0, a(2l)i � 0, i = 1, . . . , n, (1.8)

и для любых 0 � j � l − 1, i,m = 1, . . . n

∂kxa(2j+1)im ∈ C(QT ), k = 0, . . . , j + 1, ∂kxa(2j)im ∈ C(QT ), k = 0, . . . , j. (1.9)

Пусть ym = (ym1, . . . , ymn) для m = 0, . . . , l − 1. На функции gj(t, x, y0, . . . , yl−1) при любом
0 � j � l будем накладывать следующие условия: для i = 1, . . . , n

gji, gradyk gji ∈ C(QT × R
ln), j = 0, . . . , l − 1, gji(t, x, 0, . . . , 0) ≡ 0, (1.10)

∣∣gradyk gji(t, x, y0, . . . , yl−1)
∣∣ � c

l−1∑
m=0

(|ym|b1(j,k,m) + |ym|b2(j,k,m)
)
, k = 0, . . . , l − 1,

∀(t, x, y0, . . . , yl−1) ∈ QT × R
ln, (1.11)

где 0 < b1(j, k,m) � b2(j, k,m), |ym| = (ym, ym)1/2.
Наконец, функции ωki будут всегда удовлетворять следующим условиям:

ω ∈ H2l+1(I), ω(m)(0) = 0, m = 0, . . . , l, ω(m)(R) = 0, m = 0, . . . , l − 1, (1.12)

для всех ωki (где здесь ω ≡ ωki).
Теперь сформулируем основные результаты работы.

Теорема 1.1. Пусть матрицы aj, j = 0, . . . , 2l + 1, удовлетворяют условиям (1.8), (1.9), а
функции gj, j = 0, . . . , l, удовлетворяют условиям (1.10), (1.11), где при j < l

b2(j, k,m) �

⎧⎪⎪⎨
⎪⎪⎩

2l − 2k + 1

2m+ 1
, m+ k < l,

l − k

m
, m+ k � l,

(1.13)

а при j = l

b2(l, k,m) � 2l − 2k

2m+ 1
. (1.14)

Пусть u0 ∈ (L2(I)
)n
, (μ0, . . . , μl−1), (ν0, . . . , νl−1) ∈

(Bl−1(0, T )
)n
, νli ∈ L2(0, T ), если ni = 0, h0 =

(h01, . . . , h0n)
T ∈ (L1(0, T ;L2(I)) ∩ L2(0, T ;L1(I))

)n для некоторого T > 0. Предположим, что
выполнено условие (1.6) и для любого i = 1, . . . , n, для которого mi+ni > 0, при k = 1, . . . mi+ni
функции ωki удовлетворяют условию (1.12); ϕki ∈ H1(0, T ) и

ϕki(0) =

∫

I

u0i(x)ωki(x) dx; (1.15)
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hki ∈ C([0, T ];L2(I)) для k = 1, . . . ,mi если mi > 0. Положим для k = 1, . . . ,mi + ni в случае
mi > 0

ψkji(t) ≡
∫

I

hji(t, x)ωki(x) dx, j = 1, . . . ,mi, (1.16)

а в случае ni = 1

ψk(mi+1)i(t) = ψk(mi+1)i ≡ a(2l+1)iω
(l)
ki (R), (1.17)

и предположим, что

Δi(t) ≡ det
(
ψkji(t)

) �= 0 ∀ t ∈ [0, T ], k, j = 1, . . . ,mi + ni. (1.18)

Положим

c0 = ‖u0‖(L2(I))n + ‖(μ0, . . . , μl−1)‖(Bl−1(0,T ))n + ‖(ν0, . . . , νl−1)‖(Bl−1(0,T ))n +
∑

i:ni=0

‖νli‖L2(0,T ) +

+ ‖h0‖(L1(0,T ;L2(I)))n + ‖h0‖(L2(0,T ;L1(I)))n +
∑

i:mi+ni>0

mi+ni∑
k=1

‖ϕ′
ki‖L2(0,T ). (1.19)

Тогда существует δ > 0, для которого при условии c0 � δ существуют функции Fki ∈ L2(0, T ),
i : mi > 0, k = 1, . . . ,mi, функции νli ∈ L2(0, T ), i : ni = 1, и соответствующее слабое реше-
ние u ∈ (X(QT )

)n задачи (1.1)–(1.3), удовлетворяющее свойствам (1.5), где функция f задана
формулой (1.4). Более того, существует r > 0, для которого это решение u единственно в
шаре Xrn(QT ) с соответствующими единственными функциями Fki ∈ L2(0, T ) и νli ∈ L2(0, T ),
причем отображение(

u0, (μ0, . . . , μl−1), (ν0, . . . , νl−1), {νli : ni = 0}, h0, {ϕ′
ki}
)→ (u, {Fki}, {νli : n1 = 1}) (1.20)

Липшиц-непрерывно в замкнутом шаре радиуса δ в пространстве
(
L2(I)

)n×(Bl−1(0, T )
)n ×(Bl−1(0, T )

)n×(L2(0, T )
)n−N×(L1(0, T ;L2(I))∩L2(0, T ;L1(I))

)n×(L2(0, T )
)M+N в пространство(

X(QT )
)n × (L2(0, T )

)M+N
.

Теорема 1.2. Пусть выполнены условия теоремы 1.1, более того, в (1.13), (1.14) нестрогие
неравенства при оценках b2 заменены на строгие. Тогда справедливы следующие утверждения.
1. Для фиксированного произвольного δ > 0 существует T0 > 0, для которого при c0 � δ и
T ∈ (0, T0] существуют единственные функции Fki ∈ L2(0, T ), i : mi > 0, k = 1, . . . ,mi,
единственные функции νli ∈ L2(0, T ), i : ni = 1, и соответствующее единственное слабое
решение u ∈ (X(QT )

)n задачи (1.1)–(1.3), удовлетворяющее условиям (1.5), где функция f
задана формулой (1.4).

2. Для фиксированного произвольного T > 0 существует δ > 0, для которого при условии
c0 � δ существуют единственные функции Fki ∈ L2(0, T ), i : mi > 0, k = 1, . . . ,mi, един-
ственные функции νli ∈ L2(0, T ), i : ni = 1, и соответствующее единственное слабое
решение u ∈ (X(QT )

)n задачи (1.1)–(1.3), удовлетворяющее условиям (1.5), где функция f
задана формулой (1.4).

Более того, отображение (1.20) Липшиц-непрерывно в замкнутом шаре радиуса δ аналогично
теореме 1.1.

Замечание 1.1. Теорема 1.2 справедлива для неоднородного аналога приведенной выше си-
стемы Майды—Биелло. Теорема 1.1 справедлива, например, для ее обобщения вида{

ut + uxxx +
(
g11(u, v)

)
x
+ g01(u, v) = f1,

vt + αvxxx +
(
g12(u, v)

)
x
+ g02(u, v) = f2, α > 0,

при
|∂ykg1i(y1, y2)| � c

(|y1|b1 + |y2|b1 + |y1|b2 + |y2|b2
)
, k, i = 1, 2,

где 0 < b1 � b2 � 2, например, если g11(y1, y2) = cy32, g12(y1, y2) = c1y
2
1y2 + c2y1y

2
2,

|∂ykg0i(y1, y2)| � c
(|y1|b1 + |y2|b1 + |y1|b2 + |y2|b2

)
, k, i = 1, 2,

где 0 < b1 � b2 � 3.
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Замечание 1.2. По сравнению с результатами настоящей работы аналогичные результаты в
статье [3] в случае N = 0 получены при более слабых условиях на нелинейность

b2(j, k,m) � 4l − 2j − 2k

2m+ 1

для любого 0 � j � l (с аналогичной заменой на строгое неравенство в аналоге теоремы 1.2).

Статья организована следующим образом. Раздел 2 содержит некоторые интерполяционные
неравенства и вспомогательные результаты для соответствующей линейной задачи, в разделе 3
приведены доказательства основных результатов.

2. Вспомогательные утверждения

В дальнейшем мы будем использовать следующие интерполяционные неравенства: для неко-
торой константы c = c(R, l, b) и любых функций v,w ∈ X(QT )

1. если j ∈ [0, l], k,m ∈ [0, l − 1], b ∈ (0, (4l − 2j − 2k)/(2m + 1)], то∥∥|∂mx v|b∂kxw∥∥L2l/(2l−j)(0,T ;L2(I))
� c
(
T ((4l−2j−2k)−(2m+1)b)/(4l) + T (2l−j)/(2l)

)‖v‖bX(QT )‖w‖X(QT ); (2.1)

2. если k,m ∈ [0, l − 1], m+ k < l, b ∈ (1, (2l − 2k + 1)/(2m + 1)], то∥∥|∂mx v|b∂kxw∥∥L2(0,T ;L1(I))
� c
(
T 2l−2k+1−(2m+1)b)/(4l) + T 1/2

)‖v‖bX(QT )‖w‖X(QT ); (2.2)

3. если k,m ∈ [0, l − 1] и либо m+ k < l, b ∈ (0, 1], либо m+ k � l, b ∈ (0, (l − k)/m], то∥∥|∂mx v|b∂kxw∥∥L2(0,T ;L1(I))
� c
(
T (l−k−mb)/(2l) + T 1/2

)‖v‖bX(QT )‖w‖X(QT ), (2.3)

которые доказаны в [5, лемма 3.3] (неравенство (2.1)) и [5, леммы 4.3, 4.4] (неравенства (2.2), (2.3))
на основе следующего простого неравенства (см., например, [1]): для некоторой константы c =
c(R, l, p) и любых ϕ ∈ H l(I), целого m ∈ [0, l) и p ∈ [2,+∞]

‖ϕ(m)‖Lp(I) � c‖ϕ(l)‖2sL2(I)
‖ϕ‖1−2s

L2(I)
+ c‖ϕ‖L2(I), s = s(p, l,m) =

2m+ 1

4l
− 1

2lp
.

Кроме нелинейной системы (1.1) рассмотрим ее линейный аналог

ut − (−1)l(a2l+1∂
2l+1
x u+ a2l∂

2l
x u)−

l−1∑
j=0

(−1)j∂jx
[
a2j+1(t, x)∂

j+1
x u+ a2j(t, x)∂

j
xu
]
=

= f(t, x) +
l∑

j=0

(−1)j∂jxGj(t, x), (2.4)

Gj = (Gj1, . . . , Gjn)
T . Понятие слабого решения соответствующей начально-краевой задачи ана-

логично определению 1.1. В частности, соответствующее интегральное тождество (для тех же
пробных функций, что и в определении 1.1) записывается следующим образом:

∫∫

QT

[
(u, φt)− (a2l+1∂

l
xu, ∂

l+1
x φ) + (a2l∂

l
xu, ∂

l
xφ) +

l−1∑
j=0

(
(a2j+1∂

j+1
x u+ a2j∂

j
xu), ∂

j
xφ
)
+

+
(
f(t, x), φ

)
+

l∑
j=0

(
Gj(t, x), ∂

j
xφ
)]
dxdt +

∫

I

(u0, φ
∣∣
t=0

) dx+

T∫

0

(a2l+1νl, ∂
l
xφ
∣∣
x=R

) dt = 0. (2.5)

Теорема 2.1. Пусть матрицы aj удовлетворяют условиям (1.8), (1.9), u0 ∈ (
L2(I)

)n
,

(μ0, . . . , μl−1), (ν0, . . . , νl−1) ∈ (Bl−1(0, T )
)n
, νl ∈ (

L2(0, T )
)n
, f ∈ (

L1(0, T ;L2(I))
)n
, Gj ∈(

L2l/(2l−j)(0, T ;L2(I))
)n
, j = 0, . . . , l. Тогда существует единственное слабое решение u ∈(

X(QT )
)n задачи (2.4), (1.2), (1.3) и для любого t ∈ (0, T ]

‖u‖(X(Qt))n � c(T )
[
‖u0‖(L2(I))n + ‖(μ0, . . . , μl−1)‖(Bl−1(0,t))n + ‖(ν0, . . . , νl−1)‖(Bl−1(0,t))n +
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+ ‖νl‖(L2(0,t))n + ‖f‖(L1(0,t;L2(I)))n +
l∑

j=0

‖Gj‖(L2l/(2l−j)(0,t;L2(I)))n

]
. (2.6)

Доказательство. Это утверждение доказано в [3, теорема 2.3].

Введем некоторые дополнительные обозначения. Пусть

u = S(u0, (μ0, . . . , μl−1), (ν0, . . . , νl−1), νl, f, (G0, . . . , Gl))

является слабым решением задачи (2.4), (1.2), (1.3) из пространства
(
X(QT )

)n в условиях теоре-
мы 2.1. Положим также

W = (u0, (μ0, . . . , μl−1), (ν0, . . . , νl−1)),

S̃W = S(W, 0, 0, (0, . . . , 0)), S̃ :
(
L2(I)× Bl−1(0, T ) ×Bl−1(0, T )

)n → (
X(QT )

)n
,

Slνl = S(0, (0, . . . , 0), (0, . . . , 0), νl, 0, (0, . . . , 0)), Sl :
(
L2(0, T )

)n → (
X(QT )

)n
,

S0f = S(0, (0, . . . , 0), (0, . . . , 0), 0, f, (0, . . . , 0)), S0 :
(
L1(0, T ;L2(I))

)n → (
X(QT )

)n
,

S̃jGj = S(0, (0, . . . , 0), (0, . . . , 0), 0, 0, (0, . . . , Gj , . . . , 0)), Sj :
(
L2l/(2l−j)(0, T ;L2(I))

)n → (
X(QT )

)n
,

j = 0, . . . , l.

Пусть H̃1(0, T ) = {ϕ ∈ H1(0, T ) : ϕ(0) = 0}. Очевидно, что ‖ϕ′‖L2(0,T ) является эквивалентной
нормой в этом пространстве.
Пусть ω ∈ C(I). На пространстве функций u(t, x), лежащих в L1(I) для всех t ∈ [0, T ], опреде-

лим линейный оператор Q(ω) формулой (Q(ω)u)(t) = q(t;u, ω), где

q(t;u, ω) ≡
∫

I

u(t, x)ω(x) dx, t ∈ [0, T ]. (2.7)

Лемма 2.1. Пусть выполнены условия теоремы 2.1 и дополнительно f ∈ (L2(0, T ;L1(I))
)n
,

Gj ∈
(
L2(0, T ;L1(I))

)n
, j = 0, . . . , l, а функция ω удовлетворяет условиям (1.12). Тогда для функ-

ции u = (u1 . . . , un)
T = S(W,νl, f, (G0, . . . , Gl)) соответствующая функция q(·;ui, ω) = Q(ω)ui,

заданная формулой (2.7), принадлежит пространству H1(0, T ), i = 1, . . . , n, и для почти всех
t ∈ (0, T )

q′(t;ui, ω) = r(t;ui, ω) ≡ νli(t)a(2l+1)iω
(l)(R) +

+

l−1∑
k=0

(−1)l+k
[
νki(t)

(
a(2l+1)iω

(2l−k)(R)− a(2l)iω
(2l−k−1)(R)

)
−

− μki(t)
(
a(2l+1)iω

(2l−k)(0)− a(2l)iω
(2l−k−1)(0)

)]

+

n∑
m=1

l−1∑
j=0

j−1∑
k=0

(−1)j+k
[
νkm(t)

(
(a(2j+1)imω

(j))(j−k)(R)− (a(2j)imω
(j))(j−k−1)(R)

)
−

− μkm(t)
(
(a(2j+1)imω

(j))(j−k)(0) − (a(2j)imω
(j))(j−k−1)(0)

)]
+

+ (−1)l+1

∫

I

ui(t, x)
(
a(2l+1)iω

(2l+1) − a(2l)iω
(2l)
)
dx+

+

n∑
m=1

l−1∑
j=0

(−1)j+1

∫

I

um(t, x)
[
(a(2j+1)imω

(j))(j+1) − (a(2j)imω
(j))(j)

]
dx+

+

∫

I

fi(t, x)ω dx+

l∑
j=0

∫

I

Gji(t, x)ω
(j) dx. (2.8)

Кроме того,
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‖q′(·;ui, ω)‖L2(0,T ) � c(T )
[
‖u0‖(L2(I))n + ‖(μ0, . . . , μl−1)‖(Bl−1(0,T ))n + ‖(ν0, . . . , νl−1)‖(Bl−1(0,T ))n +

+ ‖νl‖(L2(0,T ))n + ‖f‖(L1(0,T ;L2(I)))n + ‖f‖(L2(0,T ;L1(I)))n +

+
l∑

j=0

(‖Gj‖(L2l/(2l−j)(0,T ;L2(I)))n + ‖Gj‖(L2(0,T ;L1(I)))n
)]
, (2.9)

где константа c не убывает по T.

Доказательство. Формула (2.8) была доказана при более слабых предположениях в [3, лем-
ма 2.4]. Так как в условиях настоящей леммы, поскольку ω ∈ C2l[0, R], то r ∈ L2(0, T ), и в
силу (2.8) q′(t;ui, ω) = r(t;ui, ω) ∈ L2(0, T ),

‖q′‖L2(0,T ) � c
[ l−1∑
j=0

‖μj‖(L2(0,T ))n +

l∑
j=0

‖νj‖(L2(0,T ))n + ‖f‖(L2(0,T ;L1(I)))n +

+

l∑
j=0

‖Gj‖(L2(0,T ;L1(I)))n + ‖u‖(L2(0,T ;L2(I)))n

]
.

Так как ‖u‖(L2(0,T ;L2(I))n � T 1/2‖u‖(C([0,T ];L2(I)))n � T 1/2‖u‖(X(QT ))n , применяя неравенство (2.6),
завершаем доказательство леммы.

Лемма 2.2. Пусть для матриц aj выполнены условия (1.8), (1.9) и условие (1.6). Пусть для
любого i = 1, . . . , n, для которого mi+ni > 0, при k = 1, . . . ,mi+ni функции ωki удовлетворяют
условию (1.12), ϕki ∈ H̃1(0, T ), функции hki ∈ C([0, T ];L2(I)) в случае mi > 0 и для соответ-
ствующих функций ψkji выполнены условия (1.18). Тогда существуют единственное множе-
ство M функций F = {Fki(t) ∈ L2(0, T ), i : mi > 0, k = 1, . . . ,mi} и единственное множество
N функций Φ = {νli(t) ∈ L2(0, T ), i : ni > 0}, таких что для функций f = (f1, . . . , fn)

T ≡ HF и
νl = (νl1, . . . , νln)

T ≡ JΦ, где при mi > 0

fi(t, x) =

mi∑
k=1

Fki(t)hki(t, x),

fi(t, x) ≡ 0 при mi = 0, νli(t) ≡ 0 при ni = 0, соответствующая функция

u = S0f + Slνl = (S0 ◦H)F + (Sl ◦ J)Φ (2.10)

удовлетворяет всем условиям (1.5). Более того, если положить

(F,Φ) = Γ{ϕki, i : mi + ni > 0, k = 1, . . . ,mi + ni},
то линейный оператор Γ :

(
H̃1(0, T )

)M+N → (
L2(0, T )

)M+N ограничен и его норма не убывает
по T.

Доказательство. Прежде всего заметим, что в силу (1.16)–(1.18) ψkji ∈ C[0, T ] и

|Δi(t)| � Δ0 > 0, |ψkji(t)| � ψ0, t ∈ [0, T ]. (2.11)

На пространстве
(
L2(0, T )

)M+N введем M +N линейных операторов Λki(F,Φ) = Q(ωki)◦ [(S0 ◦
H)F + (Sl ◦ J)Φ]. Пусть Λ = {Λki}. Тогда, поскольку HF ∈ (L2(0, T ;L2(I))

)n
, JΦ ∈ (L2(0, T )

)n
,

из теоремы 2.1 и леммы 2.1 следует, что оператор Λ действует из пространства
(
L2(0, T )

)M+N в
пространство

(
H̃1(0, T )

)M+N и ограничен.
Заметим, что набор равенств ϕki = Λki(F,Φ), i : mi + ni > 0, k = 1, . . . ,mi + ni, для (F,Φ) ∈(
L2(0, T )

)M+N очевидно означает, что набор функций (F,Φ) является искомым.
Положим для каждого i, для которого mi + ni > 0,

r̃(t;ui, ωki) ≡ (−1)l+1

∫

I

ui(t, x)
(
a(2l+1)iω

(2l+1)
ki − a2lω

(2l)
ki

)
dx+
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+
n∑

m=1

l−1∑
j=0

(−1)j+1

∫

I

um(t, x)
[
(a(2j+1)imω

(j)
ki )

(j+1) − (a(2j)imω
(j)
ki )

(j)
]
dx ∈ C[0, T ], (2.12)

где u = (u1, . . . , un)
T = (S0◦H)F+(Sl◦J)Φ. Тогда из равенства (2.8) следует, что для q(t;ui, ωki) =(

Λki(F,Φ)
)
(t)

q′(t;ui, ωki) = r̃(t;ui, ωki) +

mi∑
j=1

Fji(t)ψkji(t) + niνli(t)ψk(mi+1)i ∈ L2(0, T ), (2.13)

где функции ψkji заданы формулами (1.16), (1.17). Положим

yki(t) ≡ q′(t;ui, ωki)− r̃(t;ui, ωki) ∈ L2(0, T ), k = 1, . . . ,mi + ni (2.14)

и обозначим через Δ̃ki(t) определитель матрицы размера (mi + ni) × (mi + ni), где по сравне-
нию с матрицей

(
ψkji(t)

)
k-й столбец заменен столбцом

(
y1i(t), . . . , y(mi+ni)i(t)

)T
. Тогда из равен-

ства (2.13) следует, что

Fki(t) =
Δ̃ki(t)

Δi(t)
, k = 1, . . . ,mi, νli(t) =

Δ̃(mi+1)i(t)

Δi(t)
, ni = 1. (2.15)

Положим
zki(t) ≡ ϕ′

ki(t)− r̃(t;ui, ωki) ∈ L2(0, T ), k = 1, . . . ,mi + ni, (2.16)
и обозначим через Δki(t) определитель матрицы размера (mi + ni)× (mi + ni), где по сравнению
с Δ̃ki(t) k-й столбец

(
y1i(t), . . . , y(mi+ni)i(t)

)T заменен столбцом
(
z1i(t), . . . , z(mi+ni)i(t)

)T
.

Введем операторы Aki : L2(0, T ) → L2(0, T ) формулой

(Aki(F,Φ))(t) ≡ Δki(t)

Δi(t)
, i : mi + ni > 0, k = 1, . . . ,mi + ni, (2.17)

и пусть A(F,Φ) = {Aki(F,Φ)}, A :
(
L2(0, T )

)M+N → (
L2(0, T )

)M+N
.

Докажем, что ϕki = Λki(F,Φ), i : mi + ni > 0, k = 1, . . . ,mi + ni, тогда и только тогда, когда
A(F,Φ) = (F,Φ).
Действительно, если ϕki = Λki(F,Φ), то ϕ′

ki(t) ≡ q′(t;ui, ωki) для функции q(t;ui, ωki) ≡(
Λki(F,Φ)

)
(t), и тогда из равенств (2.14)–(2.17) следует, что Δki(t) ≡ Δ̃ki(t). Поэтому A(F,Φ) =

(F,Φ).

Обратно, если A(F,Φ) = (F,Φ), то Δki(t) ≡ Δ̃ki(t) и из условия Δi(t) �= 0 следует, что
zki(t) ≡ yki(t), а тогда ϕ′

ki(t) ≡ q′(t;ui, ωki). Поскольку ϕki(0) = q(0;ui, ωki) = 0, мы получаем, что
q(t;ui, ωki) ≡ ϕki(t).
Теперь покажем, что оператор A является сжимающим при подходящем выборе специальной

нормы в пространстве
(
L2(0, T )

)M+N
.

Пусть (F1,Φ1), (F2,Φ2) ∈
(
L2(0, T )

)M+N
, um ≡ (S0 ◦H)Fm + (Sl ◦ J)Φm, m = 1, 2. Обозначим

через Δ∗
ki(t) определитель матрицы размера (mi + ni)× (mi + ni), где по сравнению с матрицей(

ψkji(t)
)
k-й столбец заменен на столбец, в котором на j-й строке стоит элемент r̃(t;u1i, ωji) −

r̃(t;u2i, ωji) = r̃(t;u1i − u2i, ωji). Тогда

(
Aki(F1,Φ1)

)
(t)− (Aki(F2,Φ2)

)
(t) = −Δ∗

ki(t)

Δi(t)
. (2.18)

В силу неравенства (2.6) для t ∈ [0, T ]

‖u1(t, ·)−u2(t, ·)‖(L2(I))n � c(T )
[ ∑
i:mi>0

mi∑
j=1

‖hji‖C([0,T ];L2(I))‖F1ji−F2ji‖L2(0,t)+
∑

i:ni>0

‖ν1li−ν2li‖L2(0,t)

]
.

(2.19)
Пусть γ > 0, тогда с учетом (2.11), (2.12), (2.18) и (2.19)

‖e−γt(A(F1,Φ1)−A(F2,Φ2))‖(L2(0,T ))M+N �
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�
c
({‖ωji‖H2l+1(I)}, ψ0

)
Δ0

( T∫

0

e−2γt‖u1(t, ·) − u2(t, ·)‖2(L2(I))n
dt
)1/2

�

� c
(
T,
({‖ωji‖H2l+1(I)}, ψ0,Δ

−1
0 , {‖hji‖C([0,T ];L2(I))}

)[ T∫

0

e−2γt

t∫

0

( ∑
i:mi>0

mi∑
j=1

(F1ji(τ)− F2ji(τ))
2 +

+
∑

i:ni>0

(ν1li(τ)− ν2li(τ))
2
)
dτdt

]1/2
=

= c
[ T∫

0

( ∑
i:mi>0

mi∑
j=1

(F1ji(τ)− F2ji(τ))
2 +

∑
i:ni>0

(ν1li(τ)− ν2li(τ))
2
)( T∫

τ

e−2γt dt
)
dτ
]1/2

�

� c

(2γ)1/2
‖e−γτ ((F1,Φ1)− (F2,Φ2))‖(L2(0,T ))M+N . (2.20)

Осталось выбрать достаточно большое γ.
Таким образом, для любого набора функций ϕki ∈

(
H̃1(0, T )

)M+N существует единственный
набор функций (F,Φ) ∈ (L2(0, T )

)M+N
, для которого A(F,Φ) = (F,Φ), т. е. ϕki = Λki(F,Φ). Это

означает, что оператор Λ обратим, и тогда из теоремы Банаха следует, что обратный оператор
Γ = Λ−1 :

(
H̃1(0, T )

)M+N → (
L2(0, T )

)M+N непрерывен. В частности,

‖Γ{ϕki}‖(L2(0,T ))M+N � c(T )‖{ϕ′
ki}‖(L2(0,T ))M+N . (2.21)

Наконец, если для произвольного T1 > T продолжить функции ϕki константами ϕki(T ) на
интервал (T, T1), то аналог неравенства (2.21) на интервале (0, T1) для таких функций очевидно
выполнен для константы c(T1) � c(T ). Это означает, что норма оператора Γ не убывает по T.

В следующей теореме приводится решение обратной задачи для линейной системы в общем
случае.

Теорема 2.2. Пусть для матриц aj выполнены условия (1.8), (1.9) для некоторого T > 0.

Предположим, что u0 ∈ (L2(I)
)n
, (μ0, . . . , μl−1), (ν0, . . . , νl−1) ∈

(Bl−1(0, T )
)n
, νli ∈ L2(0, T ) если

ni = 0 и положим ν̃l = (ν̃l1, . . . , ν̃ln)
T , где ν̃li = 0 при ni = 1, ν̃li = νli при ni = 0. Пусть h0 =

(h01, . . . , h0n)
T ∈ (L1(0, T ;L2(I))∩L2(0, T ;L1(I))

)n
, Gj ∈

(
L2l/(2l−j)(0, T ;L2(I))∩L2(0, T ;L1(I))

)n
,

j = 0, . . . , l. Предположим, что выполнено условие (1.6) и для любого i = 1, . . . , n, для которого
mi + ni > 0, при k = 1, . . . mi + ni функции ωki удовлетворяют условию (1.12); ϕki ∈ H1(0, T ) и
выполнено условие (1.15); hki ∈ C([0, T ];L2(I)) для k = 1, . . . ,mi если mi > 0. Предположим, что
выполнено условие (1.18), где функции ψkji заданы формулами (1.16), (1.17). Тогда существуют
единственное множество M функций F = {Fki(t) ∈ L2(0, T ), i : mi > 0, k = 1, . . . ,mi}, един-
ственное множество N функций νli(t) ∈ L2(0, T ), i : ni = 1} и соответствующее единственное
слабое решение u ∈ (X(QT )

)n задачи (2.4), (1.2), (1.3), удовлетворяющее условиям (1.5), где

f ≡ h0 +HF, νl ≡ ν̃l + JΦ, (2.22)

(F,Φ) = Γ
{
ϕki −Q(ωki)

(
S̃W + Slν̃l + S0h0 +

l∑
j=0

S̃jGj

)
i
, i : mi + ni > 0, k = 1, . . . ,mi + ni

}
,

(2.23)

u = S̃W + Slνl + S0f +

l∑
j=0

S̃jGj . (2.24)

Доказательство. Положим

v ≡ S(u0, (μ0, . . . , μl−1), (ν0, . . . , νl−1), ν̃l, h0, (G0, . . . , Gl)) = S̃W + Slν̃l + S0h0 +
l∑

j=0

S̃jGj .
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В силу леммы 2.1 Q(ωki)vi ∈ H1(0, T ). Более того, согласно (1.15) Q(ωki)vi
∣∣
t=0

= ϕki(0). Положим

ϕ̃ki ≡ ϕki −Q(ωki)vi,

тогда ϕ̃ki ∈ H̃1(0, T ). В свою очередь, из леммы 2.2 следует, что функции (F,Φ) ≡ Γ{ϕ̃ki} и
u ≡ v+(Sl ◦J)Φ+(S0 ◦H)F по формулам (2.22) и (2.24) дают искомое решение рассматриваемой
задачи. Единственность также следует из леммы 2.2.

3. Доказательство основных результатов

Доказательство теоремы 1.1. На пространстве
(
X(QT )

)n введем отображение Θ

u = Θv ≡ S̃W + Slν̃l + S0h0 −
l∑

j=0

S̃jgj(t, x, v, . . . , ∂
l−1
x v) + (Sl ◦ J)Φ + (S0 ◦H)F, (3.1)

(F,Φ) ≡ Γ
{
ϕki −Q(ωki)

(
S̃W + Slν̃l + S0h0 −

l∑
j=0

S̃jgj(t, x, v, . . . , ∂
l−1
x v)

)
i

}
. (3.2)

Заметим, что в силу условий (1.10), (1.11) для i = 1, . . . , n

|gji(t, x, v, . . . , ∂l−1
x v)| � c

l−1∑
k=0

l−1∑
m=0

(|∂mx v|b1(j,k,m) + |∂mx v|b2(j,k,m)
)|∂kxv|. (3.3)

Положим при j < l

e(bi(j, k,m)) =

⎧⎪⎪⎨
⎪⎪⎩

2l − 2k + 1− (2m+ 1)bi(j, k,m)

4l
, bi(j, k,m) > 1,

l − k −mbi(j, k,m)

2l
, bi(j, k,m) � 1,

(3.4)

а при j = l

e(bi(l, k,m)) =
2l − 2k − (2m+ 1)bi(l, k,m)

4l
; (3.5)

в частности, в силу (1.13), (1.14) все величины e(bi(j, k,m)) � 0. Заметим, что если j < l, то
2l − 2k + 1

2m+ 1
<

4l − 2j − 2k

2m+ 1
,

более того, если m+ k � l, то
l − k

m
� 2l − 2k + 1

2m+ 1
.

Тогда из условий (1.13), (1.14) и неравенства (2.1) следует, что

gji(t, x, v, . . . , ∂
l−1
x v) ∈ L2l/(2l−j)(0, T ;L2(I)),

более того,

‖gj(t, x, v, . . . , ∂l−1
x v)‖(L2l/(2l−j)(0,T ;L2(I)))n � c

l−1∑
k=0

l−1∑
m=0

2∑
i=1

(T e(bi(j,k,m)) + T (2l−j)/(2l))‖v‖bi(j,k,m)+1
(X(QT ))n .

(3.6)
В свою очередь, из условий (1.13)-(1.14) и неравенств (2.2)-(2.3) следует, что gji(t, x, v, . . . , ∂l−1

x v)∈
L2(0, T ;L1(I)), более того,

‖gj(t, x, v, . . . , ∂l−1
x v)‖(L2(0,T ;L1(I)))n � c

l−1∑
k=0

l−1∑
m=0

2∑
i=1

(T e(bi(j,k,m)) + T 1/2)‖v‖bi(j,k,m)+1
(X(QT ))n . (3.7)

Тогда в силу теоремы 2.2 отображение Θ существует. Пусть

b1 = min
j,k,m

b1(j, k,m), b2 = max
j,k,m

b2(j, k,m), 0 < b1 � b2, (3.8)

тогда из неравенств (3.6) и (3.7) следует, что при 0 � j � l

‖gj(t, x, v, . . . , ∂l−1
x v)‖(L2l/(2l−j)(0,T ;L2(I)))n + ‖gj(t, x, v, . . . , ∂l−1

x v)‖(L2(0,T ;L1(I)))n �
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� c(T )
(
‖v‖b1+1

(X(QT ))n + ‖v‖b2+1
(X(QT ))n

)
. (3.9)

Применим леммы 2.1 и 2.2, тогда для функций (F,Φ) из равенства (3.2) следует оценка

‖(F,Φ)‖(L2(0,T ))M+N � c(T )
[
‖u0‖(L2(I))n +‖(μ0, . . . , μl−1)‖(Bl−1(0,T ))n +‖(ν0, . . . , νl−1)‖(Bl−1(0,T ))n +

+ ‖ν̃l‖(L2(0,T ))n + ‖h0‖(L1(0,T ;L2(I)))n + ‖h0‖(L2(0,T ;L1(I)))n + ‖{ϕ′
ki}‖(L2(0,T ))M+N +

+ ‖v‖b1+1
(X(QT ))n + ‖v‖b2+1

(X(QT ))n

]
. (3.10)

Поскольку также очевидно, что

‖HF‖(L2(0,T ;L2(I)))n � max
i:mi>0,k=1,...,mi

(‖hki‖C([0,T ];L2(I))

)‖F‖(L2(0,T ))M ,

‖JΦ‖(L2(0,T ))n = ‖Φ‖(L2(0,T ))N ,

то из неравенства (2.6) следует, что

‖Θv‖(X(QT ))n � c(T )c0 + c(T )
(
‖v‖b1+1

(X(QT ))n + ‖v‖b2+1
(X(QT ))n

)
. (3.11)

Далее, для произвольных функций v1, v2 ∈
(
X(QT )

)n
|gji(t, x, v1, . . . , ∂l−1

x v1)− gji(t, x, v2, . . . , ∂
l−1
x v2)| �

� c

l−1∑
k=0

l−1∑
m=0

(
|∂mx v1|b1(j,k,m) + |∂mx v2|b1(j,k,m) + |∂mx v1|b2(j,k,m) + |∂mx v2|b2(j,k,m)

) ∣∣∂kx(v1 − v2)
∣∣, (3.12)

поэтому, аналогично (3.9)

‖gj(t, x, v1, . . . , ∂l−1
x v1)− gj(t, x, v2, . . . , ∂

l−1
x v2)‖(L2l/(2l−j)(0,T ;L2(I)))n +

+ ‖gj(t, x, v1, . . . , ∂l−1
x v1)− gj(t, x, v2, . . . , ∂

l−1
x v2)‖(L2(0,T ;L1(I)))n �

� c(T )
(
‖v1‖b1(X(QT ))n + ‖v2‖b1(X(QT ))n + ‖v1‖b2(X(QT ))n + ‖v2‖b2(X(QT ))n

)
‖v1 − v2‖(X(QT ))n . (3.13)

Поскольку

Θv1 −Θv2 = −
l∑

j=0

S̃j

[
gj(t, x, v1, . . . , ∂

l−1
x v1)− gj(t, x, v2, . . . , ∂

l−1
x v2)

]
+

+ (Sl ◦ J)(Φ1 − Φ2) + (S0 ◦H)(F1 − F2), (3.14)

где

(F1,Φ1)− (F2,Φ2) = Γ
{
Q(ωki)

( l∑
j=0

S̃j

[
gj(t, x, v1, . . . , ∂

l−1
x v1)− gj(t, x, v2, . . . , ∂

l−1
x v2)

])
i

}
, (3.15)

то аналогично (3.11)

‖Θv1 −Θv2‖(X(QT ))n �

� c(T )
(
‖v1‖b1(X(QT ))n + ‖v2‖b1(X(QT ))n + ‖v1‖b2(X(QT ))n + ‖v2‖b2(X(QT ))n

)
‖v1 − v2‖(X(QT ))n . (3.16)

Теперь выберем r > 0 так, чтобы

rb1 + rb2 � 1

4c(T )
, (3.17)

а затем δ > 0 так, чтобы
δ � r

2c(T )
. (3.18)

Тогда из неравенств (3.11) и (3.16) следует, что на шаре Xrn(QT ) отображение Θ является сжима-
ющим. Его единственная неподвижная точка u ∈ (X(QT )

)n является искомым решением. Более
того, в силу теоремы 2.2 функции (F,Φ) в (3.2) (для v ≡ u) определяются единственным образом.
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Липшиц-непрерывная зависимость решения от входных данных устанавливается аналогич-
но (3.11), (3.16).

Доказательство теоремы 1.2. В основном, доказательство повторяет доказательство теоре-
мы 1.1. Искомое решение строится как неподвижная точка отображения Θ, заданного формула-
ми (3.1), (3.2). Однако в силу того, что в условиях (1.13), (1.14) нестрогие неравенства заменены
на строгие, здесь все величины e(bi(j, k,m)) > 0. Положим

σ = min
j,k,m

e(b2(j, k,m)) > 0. (3.19)

Тогда из неравенств (3.6), (3.7) получаем, что в отличие от (3.9)

‖gj(t, x, v, . . . , ∂l−1
x v)‖(L2l/(2l−j)(0,T ;L2(I)))n + ‖gj(t, x, v, . . . , ∂l−1

x v)‖(L2(0,T ;L1(I)))n �

� c(T )T σ
(
‖v‖b1+1

(X(QT ))n + ‖v‖b2+1
(X(QT ))n

)
, (3.20)

а тогда, используя также оценку (3.10), выводим аналогично (3.11), что

‖Θv‖(X(QT ))n � c(T )c0 + c(T )T σ
(
‖v‖b1+1

(X(QT ))n + ‖v‖b2+1
(X(QT ))n

)
. (3.21)

Также аналогично (3.16) находим, что

‖Θv1 −Θv2‖(X(QT ))n �

� c(T )T σ
(
‖v1‖b1(X(QT ))n + ‖v2‖b1(X(QT ))n + ‖v1‖b2(X(QT ))n + ‖v2‖b2(X(QT ))n

)
‖v1 − v2‖(X(QT ))n . (3.22)

Далее для доказательства первого утверждения теоремы при фиксированном δ выберем T0 > 0
так, чтобы

4c(T0)T
σ
0

(
(2c(T0)δ)

b1 + (2c(T0)δ)
b2
)
� 1, (3.23)

а затем для любого T ∈ (0, T0] выберем произвольное r, для которого

r � 2c(T )δ, 4c(T )T σ(rb1 + rb2) � 1 (3.24)

(это множество непусто согласно (3.23), поскольку величина c(T ) не убывает по T ). Тогда отоб-
ражение Θ является сжимающим на шаре Xrn(QT ).
Для второго утверждения теоремы доказательство того факта, что в случае фиксированного

T отображение Θ является сжимающим на шаре Xrn(QT ), ничем не отличается от аналогичного
доказательства для теоремы 1.1.
Для того, чтобы доказать единственность решения во всем пространстве в обоих случаях,

заметим, что для достаточно большого r величина T0 может быть выбрана настолько малой,
что решение рассматриваемой задачи u ∈ (X(QT0)

)n будет единственной неподвижной точкой
сжимающего отображения Θ в шаре Xrn(QT0).

СПИСОК ЛИТЕРАТУРЫ

1. Бесов О.В., Ильин В.П., Никольский С.М. Интегральные представления функций и теоремы вло-
жения. —М.: Наука, 1996.

2. Фаминский А.В. О задачах управляемости для уравнения Кортевега—де Фриза с интегральным
переопределением// Дифф. уравн. — 2019. — 55, № 1. —С. 123–133.

3. Balashov O. S., Faminskii A.V. On direct and inverse problems for systems of odd-order quasilinear
evolution equations// Eurasian Math. J. — 2024.— 15, № 4. —С. 33–53.

4. Bona J. L., Cohen J., Wang G. Global well-posedness for a system of KdV-type equations with coupled
quadratic nonlinearities// Nagoya Math. J. — 2014.— 215. — С. 67–149.

5. Faminskii A.V. On inverse problems for odd-order quasilinear evolution equations with general nonlinea-
rity// J. Math. Sci. (N.Y.). — 2023. — 271, № 3. —С. 281–299.

6. Faminskii A.V., Martynov E.V. Inverse problems for the higher order nonlinear Schrödinger equation//
J. Math. Sci. (N.Y.). — 2023. — 274, № 4. —С. 475–492.

7. Lu S., Chen M., Lui Q. A nonlinear inverse problem of the Korteweg–de Vries equation// Bull. Math.
Sci. — 2019. — 9, № 3. — 1950014.

8. Majda A. J., Biello J. A. The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves//
J. Atmos. Sci. — 2003. — 60. — С. 1809–1821.



Contemporary Mathematics. Fundamental Directions, 2025, Vol. 71, No. 1, 18–32 31

9. Prilepko A. I., Orlovsky D.G., Vasin I.A.Methods for solving inverse problems in mathematical physics. —
New York—Basel: Marcel Dekker Inc., 1999.

О.С. Балашов
Российский университет дружбы народов, Москва, Россия
E-mail: balashovos@s1238.ru

А.В. Фаминский
Российский университет дружбы народов, Москва, Россия
E-mail: faminskiy-av@pfur.ru

UDC 517.956.6
DOI: 10.22363/2413-3639-2025-71-1-18-32
EDN: STIIBB

Inverse initial-boundary value problem for systems of quasilinear evolution

equations of odd order

O. S. Balashov and A. V. Faminskii

RUDN University, Moscow, Russia

Abstract. An inverse initial-boundary value problem on a bounded interval for systems of quasilinear
evolution equations of odd order is considered. Integral conditions are chosen as overdeterminations,
and boundary functions and right-hand sides of equations of a special type are chosen as controls.
Results on the existence and uniqueness of solutions for small initial data or a small time interval are
established.

Keywords: quasilinear evolution equations, odd order, inverse problem, initial-boundary value
problem, integral conditions, existence, uniqueness.

Conflict-of-interest. The authors declare no conflicts of interest.

Acknowledgments and funding. The second author was supported by a grant from the Russian
Science Foundation (project No. 23-11-00056).

For citation: O. S. Balashov, A. V. Faminskii, “Inverse initial-boundary value problem for systems of
quasilinear evolution equations of odd order,” Sovrem. Mat. Fundam. Napravl., 2025, vol. 71, No. 1,
18–32. http://doi.org/10.22363/2413-3639-2025-71-1-18-32

REFERENCES

1. O. V. Besov, V. P. Il’in, and S. M. Nikol’skii, Integral’nye predstavleniya funktsiy i teoremy vlozheniya
[Integral’nye predstavleniya funktsiy i teoremy vlozheniya], Nauka, Moscow, 1996 (in Russian).

2. A. V. Faminskii, “O zadachakh upravlyaemosti dlya uravneniya Kortevega—de Friza s integral’nym pere-
opredeleniem” [On controllability problems for the Korteweg–de Vries equation with integral overdetermi-
nation], Diff. Uravn. [Differ. Equ.], 2019, 55, No. 1, 123–133 (in Russian).

3. O. S. Balashov and A. V. Faminskii, “On direct and inverse problems for systems of odd-order quasilinear
evolution equations,” Eurasian Math. J., 2024, 15, No. 4, 33–53.

4. J. L. Bona, J. Cohen, and G. Wang, “Global well-posedness for a system of KdV-type equations with
coupled quadratic nonlinearities,” Nagoya Math. J., 2014, 215, 67–149.

© O. S. Balashov, A. V. Faminskii, 2025

This work is licensed under a Creative Commons 4.0 International License
https://creativecommons.org/licenses/by-nc/4.0/



32 Contemporary Mathematics. Fundamental Directions, 2025, Vol. 71, No. 1, 18–32

5. A. V. Faminskii, “On inverse problems for odd-order quasilinear evolution equations with general
nonlinearity,” J. Math. Sci. (N. Y.), 2023, 271, No. 3, 281–299.

6. A. V. Faminskii and E. V. Martynov, “Inverse problems for the higher order nonlinear Schrödinger equation,”
J. Math. Sci. (N. Y.), 2023, 274, No. 4, 475–492.

7. S. Lu, M. Chen, and Q. Lui, “A nonlinear inverse problem of the Korteweg–de Vries equation,” Bull. Math.
Sci., 2019, 9, No. 3, 1950014.

8. A. J. Majda and J. A. Biello, “The nonlinear interaction of barotropic and equatorial baroclinic Rossby
waves,” J. Atmos. Sci., 2003, 60, 1809–1821.

9. A. I. Prilepko, D. G. Orlovsky, and I. A. Vasin, Methods for Solving Inverse Problems in Mathematical
Physics, Marcel Dekker Inc., New York—Basel, 1999.

O. S. Balashov
RUDN University, Moscow, Russia
E-mail: balashovos@s1238.ru

A. V. Faminskii
RUDN University, Moscow, Russia
E-mail: faminskiy-av@pfur.ru



Современная математика. Фундаментальные направления. Том 71, № 1 (2025). С. 33–54

Contemporary Mathematics. Fundamental Directions. ISSN 2413-3639 (print), 2949-0618 (online)

УДК 517.984.5
DOI: 10.22363/2413-3639-2025-71-1-33-54
EDN: TPUIIY

СПЛАЙНЫ, БИГАРМОНИЧЕСКИЙ ОПЕРАТОР И ПРИБЛИЖЕННОЕ

СОБСТВЕННОЕ ЗНАЧЕНИЕ

М. Бен-Арци

Institute of Mathematics, The Hebrew University, Иерусалим, Израиль

Аннотация. Бигармонический оператор играет центральную роль в широком спектре физиче-
ских моделей, таких как теория упругости и формулировка функции потока уравнений Навье—
Стокса. Его спектральная теория была тщательно изучена. В частности, одномерный случай (на
интервале) служит базовой моделью задачи Штурма—Лиувилля высокого порядка. Потребность
в соответствующих численных симуляциях привела к многочисленным работам. Этот обзор фо-
кусируется на дискретном бигармоническом исчислении. Основным объектом этого исчисления
является компактный дискретный бигармонический оператор (ДБО) высокого порядка. ДБО
строится в терминах дискретной эрмитовой производной. Отмечается удивительно сильная связь
между кубическими сплайн-функциями (на интервале) и ДБО. В частности, ядро обратного дис-

кретного оператора (с точностью до масштабирования) равно сеточной оценке ядра
[( d

dx

)4]−1

.

Этот факт влечет за собой вывод о том, что собственные значения ДБО сходятся (с «оптималь-
ной» скоростью O(h4)) к непрерывным. Другим следствием является справедливость принципа
сравнения. Хорошо известно, что для уравнения четвертого порядка не существует принципа
максимума. Однако имеет место положительность как для непрерывного, так и для дискретного
бигармонического уравнения, а это означает, что в обоих случаях ядра сохраняют порядок.

Ключевые слова: кубические сплайны, эрмитова производная, дискретный бигармонический
оператор, собственные значения, ядро Грина.
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1. Введение

Целью данной статьи является обзор некоторых недавних результатов, касающихся удиви-
тельной связи между кубическими сплайн-функциями и дискретным приближением одномерного
бигармонического оператора.

Оператор
( d
dx

)4
на интервале [0, 1], безусловно, является простейшим мыслимым примером эл-

липтического одномерного оператора четвертого порядка. Как таковая, его спектральная теория
очень хорошо изучена [10, гл. 5] или [14]. В классической терминологии его изучение обозначается
как «теория Штурма—Лиувилля четвертого порядка». В более общем смысле можно рассмотреть
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спектральную структуру операторов вида
( d
dx

)4
+

d

dx

(
A(x)

d

dx

)
+ B(x). Для таких операторов

было доказано в [8], что изоспектральное множество (коэффициентов A(x), B(x)) является бес-
конечномерным вещественно-аналитическим многообразием (при условии, что спектр является
простым).
Эллиптические операторы четвертого порядка, и в частности бигармонический оператор, игра-

ют важную роль в различных физических моделях, таких как теория упругости, формулировка
функции потока уравнений Навье—Стокса [4] или квази-геострофические течения в океане [21].
Существует обширная литература, посвященная различным дискретным приближениям к ре-

шениям уравнений четвертого порядка. Поскольку в этом обзоре мы сосредоточимся на одно-
мерной задаче на собственные значения, мы будем ссылаться только на исследования, которые
тесно связаны с этой проблемой.
Численная оценка собственных значений была фундаментальной целью в развитии численного

анализа и, как таковая, предметом многочисленных исследований. В качестве показательных
примеров можно упомянуть метод выборки «типа Шеннона» в [7], «матричные методы» в [24],
методы конечных элементов в [2] и 7-диагональный метод конечных разностей в [9]. Целью этих
работ было получение собственных значений непрерывного оператора с помощью подходящей
процедуры аппроксимации.
Здесь мы выделяем приближение «высокого порядка» собственных значений одномерного би-

гармонического оператора. Однако подход, адаптированный здесь, основан на «дискретной эл-
липтической теории», как недавно было изложено в [5]. Он включает в себя построение дискрет-
ных эллиптических операторов, которые, как можно показать, обладают классическими эллип-
тическими свойствами, такими как коэрцитивность и регулярность. Фундаментальным дискрет-
ным оператором здесь является дискретный бигармонический оператор (ДБО) δ4x (см. (2.9)).
Идея состоит в том, чтобы рассматривать этот ДБО как конечномерное операторное приближе-

ние к
( d
dx

)4
и сделать вывод, что собственные значения последнего являются пределами (при

измельчении сетки) собственных значений первого.
Хорошо известно, что сходимость конечномерных приближений к бесконечномерному, неогра-

ниченному дифференциальному оператору не влечет за собой сходимости соответствующих спек-
тров. Поэтому требуется более глубокая связь между дискретными и непрерывными оператора-
ми. Мост между двумя операторами достигается с помощью классических кубических сплайн-
функций.
Базовым инструментом дискретного эллиптического исчисления является дискретная эрмито-

ва производная на интервале, которая дает точную аппроксимацию четвертого порядка производ-
ной гладкой функции. Она стала краеугольным камнем в построении ДБО [15] и ее расширения
до полной задачи Штурма—Лиувилля четвертого порядка [5].
Структура данной обзорной статьи следующая.
В разделе 2 мы напоминаем определения дискретных конечно-разностных операторов и, в

частности, вводим эрмитову производную и дискретный бигармонический оператор δ4x.
В пункте 3.1 мы напоминаем базовую (классическую) конструкцию кубических сплайн-

функций на интервале.
В пункте 3.2 мы впервые устанавливаем равенство эрмитовой производной и производной ин-

терполяционного кубического сплайна. Это фундаментальный факт, связывающий два нелокаль-
ных приближения четвертого порядка производной.
Затем представлена связь между дискретным бигармоническим оператором δ4x и интерполи-

рующей кубической сплайн-функцией. Фактически, это главная цель данной статьи. Напомним,
что кубические сплайны являются функциями C2 с конечными скачками производных третьего
порядка в точках сетки. Основной результат здесь (предложение 3.2) состоит в том, что размеры
этих скачков определяются ДБО, действующим на значения сетки. Мы не смогли найти такой
результат в «литературе по сплайнам», возможно, из-за того, что ДБО там явно не рассматри-
вается.
Эта связь позволяет нам вспомнить в разделе 4 результаты о положительности для непре-

рывных и дискретных операторов четвертого порядка (см. предложение 4.1 и предложение 4.2).
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Напомним, что для оператора четвертого порядка не существует принципа максимума-минимума,
так что свойство «сохранения порядка» может служить заменой в некоторых случаях.
В разделе 5 мы сначала приводим явный вид ядра (функции Грина) непрерывного опера-

тора. В первом случае это ядро действует в L2(0, 1). Затем мы представляем его расширение
на отрицательное пространство Соболева H−2(0, 1). Это пространство включает все конечные
меры и, в частности, все сеточные функции (идентифицированные как линейные комбинации
дельта-функций в узлах сетки). Используя связь с кубическими сплайн-функциями, получаем
замечательный результат: дискретная резольвента (а именно, ядро (δ4x)

−1) является просто се-
точной оценкой непрерывного ядра с точностью до масштабирования. Действительно, это можно
рассматривать как альтернативное, очень естественное определение компактного дискретного
бигармонического оператора.
Наконец, раздел 6 посвящен предмету данного обзора, а именно, взаимосвязи между собствен-

ными значениями непрерывных и дискретных операторов. Связь между дискретными и непре-
рывными ядрами подразумевает, что дискретные собственные значения фактически получаются
с помощью метода Нистрома [26].
Именно вышеупомянутая связь между ядрами влечет за собой не только простую сходимость

дискретных собственных значений к непрерывным, но и то, что эта сходимость происходит с
«оптимальной» скоростью четвертого порядка (теорема 6.1). Хотя мы не приводим полных де-
талей доказательства, мы указываем, как этот результат получается путем объединения двух
ингредиентов:
1. Подходящая адаптация (лемма 6.1) более общей абстрактной теоремы о сходимости [18,20].
Однако мы решили предоставить самодостаточное, гораздо более простое доказательство,
которое строится на аналитической теории конечномерных возмущений, изложенной в клас-
сической книге Като [17].

2. Возможность оценки разностей непрерывных и дискретных операторов, включая оптималь-
ные скорости сходимости, в терминах разностей их соответствующих ядер, см. предложе-
ние 6.2.

2. Определение дискретных операторов

Снабдим интервал Ω = [0, 1] равномерной сеткой

xj = jh, 0 � j � N, h =
1

N
.

Аппроксимация осуществляется сеточным функциями v, определенными на {xj, 0 � j � N} .
Пространство этих сеточных функций обозначим через l2h. Для их компонент используем либо
vj, либо v(xj).
Для каждой гладкой функции f(x) мы определяем связанную с ней сеточную функцию

f∗j = f(xj), 0 � j � N. (2.1)

Дискретное скалярное произведение l2h определяется как

(v,w)h = h

N∑
j=0

vjwj ,

а соответствующая норма

|v|2h = h

N∑
j=0

v2j . (2.2)

Для линейных операторов A : l2h → l2h мы используем |A|h для обозначения нормы оператора.
Дискретная sup-норма определяется как

|v|∞ = max
0�j�N

{|vj |} . (2.3)

Дискретное однородное пространство сеточных функций определяется как

l2h,0 = {v, v0 = vN = 0} . (2.4)
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Учитывая v ∈ l2h,0, введем основные (центральные) операторы конечных разностей

(δxv)j =
1

2h
(vj+1 − vj−1), 1 � j � N − 1,

(δ2xv)j =
1

h2
(vj+1 − 2vj + vj−1), 1 � j � N − 1,

(2.5)

Краеугольным камнем нашего подхода к операторам конечных разностей является введение
эрмитовой производной [5] v ∈ l2h,0, которая заменит δx. Она будет служить не только для ап-
проксимации (до четвертого порядка точности) производных первого порядка, но и в качестве
фундаментального строительного блока при построении аппроксимаций конечных разностей для
производных более высокого порядка.
Сначала мы введем оператор Симпсона

(σxv)j =
1

6
vj−1 +

2

3
vj +

1

6
vj+1, 1 � j � N − 1. (2.6)

Обратите внимание на операторное отношение (действительно в l2h,0)

σx = I +
h2

6
δ2x, (2.7)

так что σx является «приближением к тождеству».
Эрмитова производная vx теперь определяется как

(σxvx)j = (δxv)j , 1 � j � N − 1. (2.8)

Замечание 2.1. В определении (2.8) необходимо указать значения (vx)j , j = 0, N, чтобы ле-
вая часть имела смысл (для j = 1, N − 1). Если не указано иное, в дальнейшем мы будем пред-
полагать, что vx ∈ l2h,0, а именно

(vx)0 = (vx)N = 0.

В частности, линейное соответствие l2h,0 � v → vx ∈ l2h,0 корректно определено, но δx имеет
нетривиальное ядро.

Дискретный бигармонический оператор (ДБО) задается выражением (при v, vx ∈ l2h,0)

δ4xv =
12

h2
[δxvx − δ2xv]. (2.9)

Погрешность усечения ДБО составляет O(h4) во внутренних точках, но только O(h) в точ-
ках вблизи границы [4, предложение 10.8]. Однако полная («оптимальная») точность четвертого
порядка достигается обратным оператором (см. (2.15) ниже). Это фундаментальный факт в на-
стоящем исследовании.
Далее мы вводим замену четвертого порядка для оператора δ2x (см. [4, уравнение (10.50)(c)]),

(δ̃2xv)j = 2(δ2xv)j − (δxvx)j , 1 � j � N − 1. (2.10)

Обратите внимание, что в соответствии с замечанием 2.1 оператор δ̃2x определен на сеточных
функциях v ∈ l2h,0, так что также vx ∈ l2h,0.
Связь между двумя операторами разности для производной второго порядка определяется

соотношением

−δ̃x2 = −δ2x +
h2

12
δ4x. (2.11)

Замечание 2.2. Очевидно, что операторы δx, δ
2
x, δ

4
x зависят от h, но для простоты записи эта

зависимость явно не указывается.

Тот факт, что бигармонический дискретный оператор δ4x является положительным (в част-
ности, симметричным), доказан в [4, леммы 10.9, 10.10]. Следовательно, его обратный оператор(
δ4x

)−1
также является положительным. Фактически, он удовлетворяет свойству сильной коэр-

цитивности, что также установлено в вышеупомянутой ссылке.
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Другой способ (ближе к эрмитовому подходу) определения операторов конечных разностей
δ̃x

2
и δ4x заключается в использовании «полиномиального подхода» [4, пункт 10.3] следующим

образом.
Пусть q(x)—многочлен четвертого порядка, такой что

q(xj) = vj, q(xj±1) = vj±1, q′(xj±1) = (vx)j±1.

Тогда
(δ̃x

2
v)j = q′′(xj), (δ4xv)j = q(4)(xj). (2.12)

Дискретный бигармонический оператор дает очень точное приближение к непрерывному опера-
тору («оптимальная точность 4-го порядка»), как видно из следующего утверждения [4, теоре-
ма 10.19].

Утверждение 2.1. Пусть f(x) ∈ C4(Ω), Ω = [0, 1]. Пусть u(x) удовлетворяет уравнению( d
dx

)4
u(x) = f(x) (2.13)

с однородными граничными условиями

u(0) =
d

dx
u(0) = u(1) =

d

dx
u(1) = 0. (2.14)

Тогда
|u∗ − (δ4x)

−1f∗|∞ = O(h4). (2.15)

Замечание 2.3. Запись «O(h4)» здесь означает, что существует константа C > 0, зависящая
только от f, такая, что для всех целых чисел N > 1

|u∗ − (δ4x)
−1f∗|∞ � Ch4, h =

1

N
.

Заметим, что сеточные функции в этой оценке определены на сетке с (переменным) размером
ячейки h.

3. Сплайны, эрмитовы производные и дискретный бигармонический оператор

3.1. Необходимые сведения о кубических сплайнах. В этом подразделе мы напомним
основные факты о кубических сплайнах, которые будут иметь важное значение в данном иссле-
довании.
Как и в разделе 2, рассмотрим интервал Ω = [0, 1] с равномерной сеткой

xj = jh, 0 � j � N, h =
1

N
.

Зафиксируем вектор f = {fj}Nj=0 так, что f0 = fN = 0, а именно f ∈ l2h,0 (см. (2.4)), и рассмотрим
семейство

A =
{
u ∈ H2

0 (Ω), uj = fj, j = 0, 1, . . . , N
}
.

Пространство H2
0 (Ω) представляет собой пространство функций, имеющих первую и вторую

(дистрибутивную) производные в L2(Ω) и обращающихся в нуль вместе со своими производными
первого порядка в конечных точках.
Хорошо известно, что норму в H2

0 (Ω) можно определить как

‖u‖2H2
0 (Ω) =

1∫

0

|u′′(x)|2dx,

и в дальнейшем мы будем использовать эту норму.
Мы рассматриваем функционал

I(u) =

1∫

0

|u′′(x)|2dx, u ∈ H2
0 (Ω).

Нас интересует минимизатор этого функционала на множестве A.
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Утверждение 3.1. Функционал имеет единственный минимизатор на A, который мы обо-
значаем как sf,

I(sf) < I(g), sf �= g ∈ A.
Доказательство этого классического факта может быть получено стандартными методами ва-

риационного исчисления [13,23]. Чисто алгебраическое доказательство можно найти в [1, теоре-
ма 3.4.3] или [11, гл. IV]. Читатель также может найти доказательство следующего утверждения
в этих последних ссылках.

Утверждение 3.2.
1. sf— кубический полином в каждом интервале [xj, xj+1], j = 0, 1, . . . , N − 1.
2. sf ∈ C2

0 (Ω).
3. Предыдущие два свойства, дополненные ограничениями sf(xj) = fj, j = 1, . . . , N − 1, и
sf(x0) = s′f(x0) = sf(xN ) = s′f(xN ) = 0, определяют sf однозначно.

Определение 3.1. Функция sf называется кубическим сплайном (первого типа), соответству-
ющим ограничениям

sf(xj) = fj, j = 1, . . . , N − 1, sf(x0) = s′f(x0) = sf(xN ) = s′f(xN ) = 0.

Утверждение 3.3. Рассмотрим векторы f = {fj}Nj=0 такие, что f0 = fN = 0, а именно f ∈
l2h,0 (см. (2.4)). Тогда отображение f ↪→ sf ∈ H2

0 (Ω) является взаимно однозначным и линейным.

Замечание 3.1. Свойство положительности кубического сплайна установлено в следствии 4.1
ниже.

3.2. Кубические сплайны и дискретный бигармонический оператор. Используем здесь
обозначения раздела 2.
Пусть u ∈ l2h,0— сеточная функция, обращающаяся в нуль в конечных точках, а su ∈ H2

0 (Ω)—
соответствующая сплайн-функция (утверждение 3.3).
Мы используем такое же обозначение uj = u(xj).
Пусть ux — эрмитова производная u, и в конечных точках положим

ux(x0) = s′u(x0) = 0, ux(xN ) = s′u(xN ) = 0. (3.1)

Замечательный факт о равенстве эрмитовой производной и производной сплайн-функции
сформулирован в следующем предложении (доказательство см. в [6]).

Предложение 3.1. Для всех внутренних узлов выполняется s′u(xj) = ux(xj), 1 � j � N − 1.

Аналогично u ∈ l2h,0, пусть v ∈ l2h,0 будет сеточной функцией, равной нулю в конечных точках,
и пусть sv будет соответствующей сплайн-функцией. В конечных точках мы снова накладываем
граничные условия (3.1).

Утверждение 3.4. Отображение (u, v) →
1∫
0

s′′u(x)s′′v(x)dx является скалярным произведени-

ем на l2h,0.

Доказательство. Ввиду утверждения 3.3 отображение является билинейным. Более того, если
1∫
0

|s′′u(x)|2dx = 0, то s′′u ≡ 0, и поскольку su ∈ H2
0 , то также su ≡ 0, что влечёт u = 0.

Обозначим через δ4xu действие ДБО на u (см. (2.9)). Глубокая связь между δ4xu и производными
su дается в следующем предложении (см. доказательство в [6]).

Предложение 3.2. Пусть u, ux, v, vx ∈ l2h,0.

1. Дискретное скалярное произведение δ4xu и v удовлетворяет условию

(δ4xu, v)h =

1∫

0

s′′u(x)s
′′
v(x)dx. (3.2)
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2. Скачок производных третьего порядка кубических сплайнов в узлах определяется выраже-
нием

s′′′u (x
+
j )− s′′′u (x

−
j ) = h(δ4xu)j, j = 1, . . . , N − 1. (3.3)

Замечание 3.2. В литературе (например, [1, 11]) можно найти различные выражения для
скачка производных третьего порядка кубического сплайна. Однако уравнение (3.3) дает новое
выражение, которое можно интерпретировать как «производную четвертого порядка» функции
в узле.

3.3. Сравнение конечно-элементных и ДБО-подходов к
( d
dx

)4
u(x) = f(x). Связь ДБО

с кубическими сплайн-функциями, выраженная в предложении 3.2, поднимает вопрос о связи
между «дискретным функциональным исчислением» и конечно-элементными подходами к ап-
проксимации непрерывного бигармонического уравнения. В последующем обсуждении мы про-
ясним различие между ними.
Если кубические сплайны взять в качестве «базисных функций», то вариационная формули-

ровка с использованием методологии конечных элементов [19,23] означает, что мы ищем сеточную
функцию u, которая удовлетворяет

1∫

0

s′′u(x)s
′′
v(x)dx =

1∫

0

sf∗(x)sv(x)dx, для всех сеточных функций v ∈ l2h,0. (3.4)

С другой стороны, используемый здесь дискретный функциональный подход подразумевает, что
мы ищем сеточную функцию u, которая удовлетворяет условию

(δ4xu, v)h = (f∗, v)h для всех сеточных функций v ∈ l2h,0. (3.5)

В то время как левые части в уравнениях (3.4) и (3.5) равны (предложение 3.2), это в общем
случае неверно для правых частей. Это показывает, что, несмотря на связь между ДБО и кубиче-
скими сплайнами, изложенную выше, схема ДБО не эквивалентна конечно-элементному методу,
основанному на этих сплайнах.

4. Положительность

Хорошо известно, что (в общем случае) не существует принципа максимума для эллиптических
частных дифференциальных операторов порядка выше двух. Для бигармонического уравнения в
многомерных областях существуют версии этого принципа, которые включают оценки градиента
решения, см. [22] и приведенную там библиографию. При граничных условиях Дирихле (един-
ственных, которые здесь рассматриваются) свойство сохранения положительности означает,
что Δ2u � 0 ⇒ u � 0. На самом деле это свойство области. Принцип максимума подразумевает
сохранение положительности, но, конечно, не наоборот.
В одномерном случае общее исследование линейных дифференциальных неравенств дано в [25].

В многомерном случае (исключая одномерный случай) мы ссылаемся на [16] и приведенную там
библиографию.
В нашем одномерном случае мы имеем следующее предложение. Помимо того, что оно са-

мо по себе представляет интерес, оно мотивирует требование, чтобы дискретные аппроксимации
обладали тем же свойством (которому удовлетворяет ДБО, см. предложение 4.2 ниже). Доказа-
тельство этого свойства в дискретном случае, в свою очередь, подразумевает свойство положи-
тельности кубических сплайнов (следствие 4.1 ниже).

Предложение 4.1. Пусть ( d
dx

)4
u(x) = f(x),

где u ∈ H4(Ω) ∩ H2
0 (Ω). Тогда справедлив следующий принцип сравнения: если f(x) � 0, x ∈ Ω,

то также u(x) � 0, x ∈ Ω.

Доказательство. Предположим противное, что для некоторого y ∈ (0, 1) мы имеем u(y) < 0. Мы
можем предположить, что y является точкой минимума для u, так что

u′(y) = 0, u′′(y) � 0.
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Поскольку u′ обращается в нуль в конечных точках, мы заключаем, что существуют точки

ξ ∈ (0, y), η ∈ (y, 1),

такие что
u′′(ξ) = u′′(η) = 0.

Пусть
a = inf

{
ξ ∈ Ω, u′′(ξ) = 0

}
,

b = sup
{
η ∈ Ω, u′′(η) = 0

}
.

(4.1)

Рассмотрим функцию v(x) = u′′(x). Она удовлетворяет в интервале [a, b] неравенству

v′′(x) = f(x) � 0,

а также v(a) = v(b) = 0 и v(y) � 0. Стандартный принцип максимума теперь дает

v(x) ≡ 0, x ∈ [a, b],

следовательно, также u′(x) ≡ u′(y) = 0, x ∈ [a, b].
Если a > 0, то получаем противоречие, так как существует точка ξ ∈ (0, a) с u′′(ξ) = 0. Ана-

логично в случае b < 1. Мы заключаем, что u′(x) ≡ 0, x ∈ [0, 1], следовательно, u(x) ≡ u(y) < 0,
x ∈ [0, 1]. Однако это противоречит граничному условию u(0) = u(1) = 0.

Замечание 4.1. В разделе 5 ниже мы выводим выражение для резольвентного ядра (5.3).
Поскольку легко видеть, что ядро неотрицательно, мы получаем еще одно доказательство пред-
ложения 4.1.

4.1. Положительность дискретного бигармонического оператора. Теперь покажем, что
то же свойство положительности справедливо и для дискретного бигармонического оператора.

Предложение 4.2. Пусть
δ4xu = f,

где u, ux ∈ l2h,0. Тогда справедлив следующий принцип сравнения: если fj � 0, 0 � j � N, то
также uj � 0, 0 � j � N.

Доказательство. Предположим противное, что uj0 < 0 для некоторого индекса 1 � j0 � N − 1.
Пусть su ∈ C2

0 (Ω) будет соответствующей сплайн-функцией. Поскольку su(xj0) = uj0 < 0, то
отсюда следует, что существует минимальная точка y ∈ Ω, такая что

su(y) = min {su(x), x ∈ Ω} < 0.

Имеем, что
s′u(y) = 0, s′′u(y) � 0. (4.2)

Поскольку s′u обращается в нуль в конечных точках, мы заключаем, что существуют точки

ξ ∈ (0, y), η ∈ (y, 1),

такие, что
s′′u(ξ) = u′′(η) = 0.

Пусть
a = inf

{
ξ ∈ Ω, s′′u(ξ) = 0

}
,

b = sup
{
η ∈ Ω, s′′u(η) = 0

}
.

(4.3)

Пусть w(x) = s′′u(x). Функция w непрерывна и линейна в интервалах сетки. Ввиду предложе-
ния 3.2 получаем, в смысле распределений,

w′′ = h

N−1∑
j=1

fjδxj � 0, (4.4)

где δy —мера Дирака в точке y.
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Поскольку w(a) = w(b) = 0, стандартный принцип максимума дает

w(x) ≡ 0, x ∈ [a, b],

следовательно,
s′u(x) ≡ s′u(y) = 0, x ∈ [a, b],

и в частности s′u(a) = s′u(b) = 0.
Как и в доказательстве предложения 4.1, мы заключаем, что a = 0 и b = 1, и, следовательно,

su(x) ≡ su(y) < 0, x ∈ [0, 1],

что противоречит граничным условиям.

Следствие 4.1. Пусть u удовлетворяет условиям предложения 4.2, а su— соответствую-
щая сплайн-функция. Тогда

su(x) � 0, x ∈ [0, 1].

Доказательство. Предположение о существовании точки y ∈ (0, 1) такой, что su(y) < 0, приводит
к противоречию; это следует из доказательства предложения 4.2.

5. Непрерывное и дискретное резольвентное ядро

Оператор L = d4/dx4 с однородными граничными условиями (φ ∈ D(L) ⇒ φ(0) = φ′(0) =
φ(1) = φ′(1) = 0) является положительно определенным (в частности, самосопряженным) с обла-
стью определения D(L) = H4([0, 1])∩H2

0 ([0, 1]. Теперь рассмотрим ядро L−1, а именно, функцию
Грина бигармонической задачи

Lu =
( d
dx

)4
u(x) = f(x), (5.1)

где u ∈ H4(Ω) ∩H2
0 (Ω). Стандартное вычисление приводит к следующему утверждению.

Утверждение 5.1. Решение (5.1) задается выражением

u(x) =

1∫

0

K(x, y)f(y)dy, (5.2)

где

K(x, y) =

⎧⎪⎨
⎪⎩

1

6
(1− x)2y2[2x(1 − y) + x− y], y < x,

1

6
x2(1− y)2[2y(1− x) + y − x], x < y.

(5.3)

Доказательство. По общей теории мы получаем, что в смысле распределений для каждого фик-
сированного y как функции от x ( d

dx

)4
K(x, y) = δy,

где δy —мера Дирака в точке y. Кроме того, K(x, y) симметрична относительно x, y и удовлетво-
ряет однородным граничным условиям (как функция от x).

5.1. Расширение ядра до H−2(Ω). Областью определения
( d
dx

)4
как самосопряженного опе-

ратора в L2(Ω), подчиненного однородным граничным условиям, является H2
0 (Ω) ∩H4(Ω). При

расширении (в смысле распределений) области определения до H2
0 (Ω), оператор отображает ее в

двойственное пространство H−2(Ω) (см. [13, гл. 5]). С другой стороны, общая теория (или прямое
рассмотрение выражения (5.3)) гарантирует, что для каждого фиксированного x ∈ Ω, мы имеем
K(x, ·) ∈ H2

0 (Ω). Из этого следует, что уравнение (5.2) можно распространить на все u ∈ H2
0 (Ω)

(или, альтернативно, на все f ∈ H−2(Ω)) следующим образом:

u(x) =< K(x, y), f(y) >, (5.4)

где < ·, · >— спаривание
(
H2

0 (Ω), H
−2(Ω)

)
.
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Как следует из уравнения (3.3), действие оператора
( d
dx

)4
на сплайны задается комбинацией

дельта-функций Дирака в узлах xj, а именно, его можно записать в виде равенства сеточных
функций ( d

dx

)4
su = hδ4xu.

Правая часть в этом уравнении представляет собой конечную меру, и мы помним, что в силу
теоремы вложения Соболева все конечные меры содержатся в H−2(Ω).
Таким образом, уравнение (5.4) принимает здесь вид

uj = h

N−1∑
i=1

K(xi, xj)(δ
4
xu)i, j = 1, 2, . . . , N − 1. (5.5)

Следствие 5.1. Дискретный оператор (δ4x)
−1 : l2h,0 → l2h,0 задан матрицей

{
Kh

i,j

}
1�i,j�N−1

,

определенной по формуле
Kh

i,j = hK(xi, xj), 1 � i, j � N − 1, (5.6)

где K(x, y)— это резольвентное ядро
( d
dx

)4
, как в уравнении (5.3).

6. Непрерывные и дискретные собственные значения

В этом разделе мы переходим к основной цели этой статьи, а именно, рассмотрению сходимо-
сти дискретных собственных значений (ДБО) к собственным значениям непрерывного оператора( d
dx

)4
. Продолжая обсуждение из пункта 3.3, важно провести различие между нашим подходом

«дискретного функционального исчисления» и тесно связанным подходом конечных элементов.
Для последнего мы ссылаемся на обширный обзор [3].

В методе конечных элементов, если задан размер сетки h =
1

N
, собственное значение μh и

связанная с ним собственная функция suh(x) получаются с помощью уравнения (сравним с урав-
нением (3.4))

1∫

0

s′′uh(x)s
′′
v(x)dx = μh

1∫

0

suh(x)sv(x)dx для всех сеточных функций v ∈ l2h,0. (6.1)

С другой стороны, в подходе, используемом здесь, мы ищем собственное значение λh и сеточную
функцию uh ∈ l2h,0, которые удовлетворяют

(δ4xuh, v)h = λh(uh, v)h для всех сеточных функций v ∈ l2h,0. (6.2)

В то время как левые части равны, ввиду предложения 3.2, это неверно в общем случае для пра-
вых частей. По этой причине мы не можем ссылаться на хорошо развитую теорию спектрального
приближения в конечно-элементной теории [3], чтобы получить сходимость собственных значений
в нашей постановке.

6.1. Непрерывный оператор. Оператор L, представленный в разделе 5, имеет компактную
резольвенту, а ядро K оператора L−1 приведено в утверждении 5.1. Спектр оператора L состоит
из возрастающей последовательности положительных простых собственных значений, которую
мы обозначаем как {0 < λ1 < λ2 < . . . < λk < . . .} .
Поскольку эти собственные значения играют важную роль в дальнейшем, мы приводим ниже

подробности их получения, повторяя доказательство леммы 5.5.4 из [10].
Пусть φ ∈ H4([0, 1]) ∩H2

0 ([0, 1]) будет действительной собственной функцией

d4

dx4
φ = λφ, λ ∈ {0 < λ1 � . . . � λk . . .} .

Очевидно, эта функция должна иметь вид

φ(x) = A cos(βx) +B sin(βx) + C ch(βx) +D sh(βx), (6.3)
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где β —действительное число, а β4 = λ.
Условия φ(0) = φ′(0) = 0 явно влекут

A = −C, B = −D,
и φ(1) = 0 дает

A(cos β − ch β) = −B(sin β − sh β). (6.4)

Оставшееся условие φ′(1) = 0 дает

−B(cos β − ch β) = A(− sin β − shβ).

Перемножая два уравнения и применяя стандартные тождества, получаем

cos β ch β = 1, (6.5)

которое следует рассматривать как уравнение, определяющее дискретные собственные значения.
Изменяя β на −β, мы можем оставить A,C без изменений, но поменять знаки B,D. Следова-

тельно, для −β < 0 (решение (6.5)) мы получаем ту же собственную функцию (6.3), что и для
β > 0, и мы можем рассматривать только положительные β.
Таким образом, мы получаем полный набор собственных функций (для β > 0, решая (6.5))

φ(x) = A cos(βx) +B sin(βx)−A ch(βx)−B sh(βx), (6.6)

где A,B удовлетворяют (6.4).
Для того чтобы оценить расположение собственных значений, достаточно рассмотреть поло-

жительные решения (6.5). Следующее утверждение легко проверить.

Утверждение 6.1. Уравнение (6.5) имеет следующую последовательность положительных
решений: ⎧⎪⎨

⎪⎩
β0 ∈ (3π/2, 2π),

β
(1)
k ∈ (2kπ, (2k + 1/2)π), k = 1, 2, . . . ,

β
(2)
k ∈ ((2k + 3/2)π, (2(k + 1)π), k = 1, 2, . . .

(6.7)

Соответствующие собственные значения λ0 = β40 , λ
(1)
k = (β

(1)
k )4, λ

(2)
k = (β

(2)
k )4 L являются

простыми.

Обозначим через {φ1, . . . , φk . . .} ортонормированный набор связанных собственных функций.

6.2. Оценки собственных значений. Упростим приведенную выше запись и обозначим че-
рез {0 < λ1 < λ2 < . . . < λk < . . .} (бесконечную) последовательность собственных значений опе-
ратора L =

( d
dx

)4
.

При условии h =
1

N
пусть

Λh = {0 < λh,1 � λh,2 � . . . � λh,N−1}
будет конечной последовательностью собственных значений δ4x.
Обозначим через Γ сумму

Γ =

∞∑
i=1

λ−1
i ,

и пусть

Γh =
N−1∑
i=1

λ−1
h,i .

Предложение 6.1. Существует константа C > 0, не зависящая от h, такая что

|Γ− Γh| � Ch4. (6.8)
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Доказательство. Введем (бесконечный) набор обратных величин собственных значений L,
а именно, собственных значений ядра K(x, y) (см. (5.3))

Λ−1 =
{
λ−1
1 > λ−1

2 > . . . > λ−1
k . . . > 0

}
, (6.9)

в то время как
Λ−1
h =

{
λ−1
h,1 � λ−1

h,2 � . . . � λ−1
h,N−1 > 0

}
(6.10)

— набор собственных значений (δ4x)
−1, соответствующих дискретному ядру Kh (см. (5.6)).

По стандартной формуле следа следует, что

Γ =

1∫

0

K(x, x)dx, Γh = h
N−1∑
i=1

K(xi, xi). (6.11)

Поскольку K(x, x) =
1

3
x3(1− x)3, числовые значения Γ и C можно легко вычислить, и оказыва-

ется, что

Γ =
1

420
. (6.12)

С другой стороны

Γh =
h

3

N−1∑
i=1

(ih)3(1− ih)3 =
1

420
+

1

180
h4 − 1

126
h6, (6.13)

так что (6.8) доказано (и даже с явной константой).

Замечание 6.1. Заметим, что Γh— это дискретное трапециевидное приближение к интегралу
для Γ. По стандартной оценке для формулы трапеций получаем

|Γ− Γh| � Ch2 (6.14)

с константой C =
1

12
max
0�x�1

∣∣∣
( d
dx

)2
K(x, x)

∣∣∣ = 1

96
.

Оценка четвертого порядка (6.8) очевидно является результатом особых свойств ядра K.

«Коллективная» оценка (6.8) не подразумевает, что оценка вида λ−1
i − λ−1

h,i = O(h4) верна для
любого фиксированного значения индекса i. Однако следующее предложение дает более слабое
утверждение в этом направлении. Оно играет ключевую роль в окончательной, более сильной
теореме 6.1 ниже.

Предложение 6.2. Для любого фиксированного целого числа i � 1 существуют положи-

тельные константы C, h0 > 0 такие, что для любого 0 < h =
1

N
< h0 имеем

dist {λ−1
i , Λ−1

h } � Ch4, (6.15)

где Λ−1
h —набор обратных величин, введенных в (6.10).

Доказательство. Пусть φi(x) ∈ H2
0 (Ω)—нормализованная собственная функция

( d
dx

)4
, соот-

ветствующая λi. Вспомним, что φi ∈ C∞ и
( d
dx

)−4
φi = λ−1

i φi. Следовательно,

λ−1
i φi(x) =

1∫

0

K(x, y)φi(y)dy, x ∈ Ω.

Для простоты обозначим через {xj = jh, 0 � j � N} точки сетки, опуская очевидную зависи-
мость от h.
Пусть φ∗i = {φi(x0), . . . , φi(xk), . . . , φi(xN )} будет соответствующей сеточной функцией.
Ввиду утверждения 2.1 и следствия 5.1 имеем для всех 0 � k � N

∣∣∣λ−1
i φi(xk)− h

N∑
j=0

K(xk, xj)φi(xj)
∣∣∣ � Ch4,
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где здесь и ниже C > 0—константа, зависящая только от φi, которая меняется от одной оценки
к другой. Используя обозначения из (5.6), это можно переписать как

∣∣∣λ−1
i φ∗i (xk)−

N∑
j=0

Kh
k,jφ

∗
i (xj)

∣∣∣ � Ch4, (6.16)

то есть ∣∣∣(λ−1
i − (δ4x)

−1)φ∗i
∣∣∣
h
� Ch4.

С другой стороны, гладкость нормализованного φi дает

|φ∗i |h � 1− Ch.

Последние две оценки влекут следующую оценку нормы оператора:∣∣∣
(
λ−1
i − (δ4x)

−1
)−1∣∣∣

h
� 1− Ch

Ch4
� Ch−4 (6.17)

при h < h0. Стандартный результат относительно резольвент самосопряженных операторов те-
перь дает

dist {λ−1
i , Λ−1

h } =
∣∣∣
(
λ−1
i − (δ4x)

−1
)−1∣∣∣−1

h
,

что завершает доказательство предложения.

Замечание 6.2. Предложение 6.2 показывает, что в любой окрестности λ−1
i существует дис-

кретное собственное значение λ−1
h,k при условии, что h > 0 достаточно мало. Отметим, однако,

что мы не можем утверждать, что даже наибольшее собственное значение (L−1) λ−1
1 является

пределом при h→ 0 наибольшего дискретного собственного значения λ−1
h,1 (δ

4
x)

−1).

Замечание 6.3. Ввиду следствия 5.1 дискретные собственные значения в Λ−1
h получаются

«методом Нистрома» [26], а именно, собственные значения дискретизированного ядра. Тот факт,
что для любого фиксированного целого числа i � 1

lim
h→0

dist {λ−1
i ,Λ−1

h } = 0,

следует из [26, теорема 3]. Предложение 6.2 устанавливает «оптимальную» скорость O(h4) для
этой сходимости.

6.3. Первое собственное значение. Наша цель — сходимость отдельных собственных значе-
ний. Начнем с общих рассуждений и применим их для первого собственного значения.
Выберем для φ ∈ {φ1, . . . , φk . . .} нормализованную собственную функцию L с соответствую-

щим собственным значением λ ∈ {0 < λ1 < λ2 < . . . < λk < . . .} .
Применим оператор L

Lφ = λφ, λ ∈ {0 < λ1 < . . . < λk . . .} . . . ,
получаем

d8

dx8
φ = λ2φ.

Поскольку φ нормализован, то имеем

‖ d
8

dx8
φ‖L2[0,1] = λ2, (6.18)

и продолжая таким образом, мы видим, что все производные φ ограничены некоторой степенью
λ, и поэтому в приведенных ниже оценках мы имеем общую константу C > 0, зависящую только
от λ.
Пусть φ∗ — соответствующая сеточная функция, φ∗(xi) = φ(xi), 0 � i � N.
Пусть v ∈ l2h,0 удовлетворяет

δ4xv = λφ∗,
где также vx ∈ l2h,0.
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Из точности четвертого порядка (2.15) мы знаем, что

|v− φ∗|∞ � Ch4, (6.19)

где C не зависит от N = h−1, но, конечно, зависит от φ.
Из этого следует, что

δ4xv = λv+w, |w|h � Ch4. (6.20)
Поскольку φ нормализовано, погрешность усечения при интегрирования методом трапеций

дает

|φ∗|2h = h

N−1∑
i=1

[φ∗i ]
2 = ‖φ‖2L2[0,1] +O(h2) = 1 +O(h2), (6.21)

следовательно,
|1− |v|2h| � Ch2. (6.22)

Пусть v̄ =
v

|v|h , тогда из (6.20) следует

δ4xv̄ = λv̄+ w̄, |w̄|h � Ch4. (6.23)

Что касается первого собственного значения, то теперь мы можем показать, что λh,1 может
превышать λ1 не более чем на O(h4).

Утверждение 6.2. Пусть λ1 будет первым собственным значением L (λ1 = β40 из (6.7)).
Тогда существует константа C > 0, зависящая от собственной функции φ1, но не от h, такая,
что

λh,1 � λ1 + Ch4. (6.24)

Доказательство. Рассмотрим (6.23) с λ = λ1. По вариационному принципу минимума для пер-
вого собственного значения мы знаем, что

λh,1 = min
|z|h=1

(δ4xz, z)h,

следовательно,
λh,1 � (δ4xv̄, v̄)h � λ1 + Ch4, (6.25)

что доказывает утверждение.

Замечание 6.4. Точное первое собственное значение λ1 = 500.5639017404. Численные рас-
четы фактически показывают, что λh,1 � λ1, и что λh,1 увеличивается с уменьшением h, как
показано на рис. 1. Это остается открытой проблемой.

Замечание 6.5. Обратим внимание, что в утверждении 6.2 отсутствует соответствующий
нижний предел, а именно, что λh,1 больше λ1 − O(h4). Это очевидно из численных результа-
тов, показанных на рис. 2. Доказательство этого факта отложено до теоремы 6.1 ниже, где мы
показываем, что сходимость всех дискретных собственных значений к соответствующим непре-
рывным является «оптимальной», а именно, со скоростью O(h4).

6.4. Сходимость дискретных собственных значений λh,k, k � 1. Теперь рассмотрим схо-
димость всех дискретных собственных значений к их непрерывным аналогам.
Численное моделирование показывает, что если мы зафиксируем индекс k, то

|λk − λh,k| � Ch4 при h→ 0,

где C > 0 завит от k. Это показано на рис. 3 (для N = 16) и рис. 4 (для N = 64). Мы благода-
рим Жана-Пьера Круазиля за оба рисунка. Таким образом, даже очень грубое разрешение дает
превосходное приближение собственных значений.
При рассмотрении сходимости всех собственных значений оказывается, что нельзя исполь-

зовать подход, основанный на методе Рэлея—Ритца. Мы рассмотрим здесь совершенно другой
подход, который даст не только сходимость ко всем собственным значениям, но и, более того,
оптимальную скорость сходимости O(h4).
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Рис. 1. Первое дискретное собственное значение как функция количества точек
сетки на [0, 1].

Fig. 1. First discrete eigenvalue as a function of the number of grid points in [0, 1].

Рис. 2. Логарифмический график погрешности первого дискретного собственного
значения λ1−λh,1 как функции числа N точек сетки в [0, 1]. Наклон равен −4, что
указывает на скорость сходимости O(N−4) = O(h4).

Fig. 2. Log-log graph of the error of first discrete eigenvalue λ1 − λh,1 as function of
the number N of grid points in [0, 1]. The slope is −4, indicating a convergence rate
O(N−4) = O(h4).

Введем кусочно-постоянное ядро Kh(x, y) по формуле

Kh(x, y) = K(xi, yj), x ∈
(
xi − h

2
, xi +

h

2

)
, y ∈

(
yj − h

2
, yj +

h

2

)
, 0 � i, j � N. (6.26)

Очевидно, что для i = 0 конечная точка x0 − h

2
заменяется на x0, и аналогично для других

конечных точек.
Обозначим через L−1

h оператор (на L2[0, 1]), ядром которого является Kh. Очевидно, что этот
оператор компактен и положительно определен. Фактически, следующее утверждение говорит о
том, что он имеет только конечное число положительных собственных значений (конечно, зави-
сящих от h).

Утверждение 6.3. Множество собственных значений L−1
h — это конечное множество Λ−1

h ,
определенное в (6.10).
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Рис. 3. График собственных значений в логарифмическом масштабе: k— гори-

зонтальный, lg λk (×), lg λh,k (◦), h =
1

N
=

1

16
— вертикальный.

Fig. 3. Graph of eigenvalues in logarithmic scale: k—horizontal, log λk (×), log λh,k (◦),
h =

1

N
=

1

16
— vertical.

Рис. 4. График собственных значений в логарифмическом масштабе: k— гори-

зонтальный, lg λk (×), lg λh,k (◦), h =
1

N
=

1

64
— вертикальный.

Fig. 4. Graph of eigenvalues in logarithmic scale: k—horizontal, log λk (×), log λh,k (◦),
h =

1

N
=

1

64
— vertical.

Доказательство. Пусть u ∈ L2[0, 1]— собственная функция L−1
h . Таким образом, для некоторого

μ > 0 имеем

μu(x) =

1∫

0

Kh(x, y)u(y)dy, x ∈ [0, 1].

В частности, u является кусочно-постоянной

u(x) = u(xi), x ∈
(
xi − h

2
, xi +

h

2

)
, i = 0, 1, . . . , N.

Следовательно (с Kh как в следствии 5.1),

μu(xi) =

N∑
j=0

Kh
i,ju(xj), 0 � i � N, (6.27)

где включены граничные значения u(x0) = u(xN ) = 0.
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Таким образом, μ является собственным значением (δ4x)
−1, следовательно, μ = λ−1

h,k для неко-
торого 1 � k � N − 1.

Теперь приступим к установлению сходимости всех дискретных собственных значений к соот-
ветствующим непрерывным. Фактически, следующая лемма является частным случаем теоремы
Маркуса [20, следствие 5.3] о разностях собственных значений самосопряженных операторов. По-
добная общая теорема была доказана (гораздо позже) Като [18]. Однако общность теоремы Като
требовала «расширенного перечисления» собственных значений, добавляя значения граничных
точек существенных спектров.
Для удобства читателя мы приводим здесь простое доказательство леммы, следуя доказатель-

ству (конечномерной) теоремы 6.11 в [17, раздел II.6].

Лемма 6.1. Пусть h =
1

N
, и пусть

Λ−1 =
{
λ−1
1 > λ−1

2 > . . . > λ−1
k . . . > 0

}
,

Λ−1
h =

{
λ−1
h,1 � λ−1

h,2 � . . . � λ−1
h,N−1 > 0

}

—множества, введенные в (6.9), (6.10), соответственно.
Тогда существует константа C > 0, не зависящая от h, такая что

N−1∑
k=1

|λ−1
k − λ−1

h,k|2 +
∞∑

k=N

λ−2
k �

1∫

0

1∫

0

|K(x, y)−Kh(x, y)|2dxdy � Ch2. (6.28)

Доказательство. Обратим внимание, что оба оператора L−1, L−1
h являются положительными

операторами Гильберта—Шмидта (следовательно, компактными).
При t ∈ [0, 1] введем оператор

L−1
t,h = (1− t)L−1 + tL−1

h ,

который также является компактным, положительным и самосопряженным оператором. В част-
ности, его спектр состоит из убывающей последовательности положительных собственных зна-
чений {

μ−1
1 (t) � μ−1

2 (t) � . . . � μ−1
N−1(t) � μ−1

N (t) � . . . μ−1
N+p(t) � . . . > 0

}
, 0 � t � 1.

Ввиду обсуждения в [17, гл. VII.3.2], функции μ−1
k (t), 1 � k < ∞, являются непрерывными,

кусочно-аналитическими по t и удовлетворяют равенствам

μ−1
k (0) = λ−1

k , 1 � k <∞, (6.29)

и

μ−1
k (1) =

{
λ−1
h,k, 1 � k < N,

0, k � N.
(6.30)

Кроме того, существует (для каждого фиксированного t ∈ [0, 1]) соответствующий набор ор-
тонормированных функций (в L2(0, 1))

{φ1(x; t), φ2(x; t), . . . , φN (x; t), . . . , φk(x; t), . . .} , 0 � t � 1.

Выберем индекс k � 1. Собственное значение μ−1
k (t) непрерывно (по t ∈ [0, 1]) и кусочно-

аналитично с конечным числом особенностей. Соответствующая собственная функция φk(x; t)
кусочно-аналитична по t с тем же конечным числом особенностей. Таким образом, уравнение[

(1− t)L−1 + tL−1
h − μ−1

k (t)
]
φk(x; t) = 0 (6.31)

можно продифференцировать по t (исключая особенности), тогда получим
[
L−1
h − L−1 − d

dt
μ−1
k (t)

]
φk(x; t) +

[
(1− t)L−1 + tL−1

h − μ−1
k (t)

] d
dt
φk(x; t) = 0. (6.32)
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Взяв скалярное произведение с φk(x; t), заключаем, что

d

dt
μ−1
k (t) =

(
(L−1

h − L−1)φk(x; t), φk(x; t)
)
L2(0,1)

, t ∈ [0, 1]. (6.33)

Интегрируя это уравнение и принимая во внимание (6.29) и (6.30), получаем
1∫

0

(
(L−1

h − L−1)φk(x; t), φk(x; t)
)
L2(0,1)

dt =

{
λ−1
h,k − λ−1

k , 1 � k < N,

−λ−1
k , k � N.

(6.34)

Самосопряженный оператор A = L−1
h −L−1 является оператором Гильберта—Шмидта, следова-

тельно, компактен. Пусть {γ1, γ2, . . .}—последовательность его ненулевых собственных значений
(повторенных в соответствии с кратностью) с соответствующей ортонормированной последова-
тельностью собственных функций {χ1(x), χ2(x), . . .} ⊆ L2(0, 1).

Так как φk(x; t) =
∞∑
j=1

(φk(x; t), χj(x))L2(0,1)χj(x), уравнение (6.34) влечет за собой

∞∑
j=1

σj,kγj =

{
λ−1
h,k − λ−1

k , 1 � k < N,

−λ−1
k , k � N,

(6.35)

где σj,k =
1∫
0

(φk(x; t), χj)
2
L2(0,1)dt, 1 � j, k <∞.

Из ортонормальности функций (по x) имеем

0 � σj,k � 1,

∞∑
j=1

σj,k � 1,

∞∑
k=1

σj,k � 1.

Пусть Φ— вещественная выпуклая функция на вещественной прямой, причем Φ(0) = 0. Из нера-
венства Йенсена получаем

Φ
( ∞∑

j=1

σj,kγj

)
�

∞∑
j=1

σj,kΦ(γj), k = 1, 2, . . . ,

и суммирование по k дает
∞∑
k=1

Φ
( ∞∑

j=1

σj,kγj

)
�

∞∑
j=1

Φ(γj). (6.36)

В частности, взяв Φ(ξ) = ξ2 и принимая во внимание (6.35), получаем
N−1∑
k=1

|λ−1
k − λ−1

h,k|2 +
∞∑

k=N

λ−2
k �

∞∑
j=1

γ2j .

Сумма в правой части — это квадрат нормы Гильберта—Шмидта A, которая равна
1∫
0

1∫
0

|K(x, y)−
Kh(x, y)|2dxdy, что доказывает (6.28).

Замечание 6.6. Обратим внимание, что (6.28) дает, в частности, равномерную оценку
N−1∑
k=1

|λ−1
k − λ−1

h,k|2 � Ch2. (6.37)

Эта оценка верна одновременно для всех N − 1 собственных значений. Зафиксировав индекс k,
мы получим, в частности,

|λk − λh,k|
λh,k

� Cλkh. (6.38)

Ввиду утверждения 6.1 имеем λk ≈ k4. Таким образом, (6.38) дает только сходимость O(h).
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Таб. 1. Первые 4 собственных значения (верхний ряд) и их численные аппрокси-
мации с использованием сетки из N = 10–60 узлов.

Tab. 1. First 4 eigenvalues (top row) and their numerical approximations using a grid
of N = 10–60 nodes.

k = 1 k = 2 k = 3 k = 4
точное собствен-
ное значение /
exact eigenvalue

500.563902 3803.537080 14617.630131 39943.799006

N = 10 500.521885 3800.689969 14567.617771 39493.816015
N = 20 500.561614 3803.398598 14615.468848 39926.599754
N = 30 500.563462 3803.511145 14617.236978 39940.722654
N = 40 500.563764 3803.529031 14617.509451 39942.881883
N = 50 500.563845 3803.533813 14617.581402 39943.430972
N = 60 500.563874 3803.535512 14617.606815 39943.623511

Однако, как видно из таб. 1, даже при небольшом количестве точек сетки первые дискретные
собственные значения очень хорошо приближают непрерывные. Мы доказываем в теореме 6.1
ниже, что сходимость действительно «оптимальна».

Теперь приступим к доказательству «оптимальной» оценки.

Теорема 6.1 (оптимальная скорость сходимости дискретных собственных значений).
Зафиксируем целое число k � 1 и рассмотрим дискретное собственное значение λh,k как функ-

цию h =
1

N
, N = k + 1, k + 2, . . . Тогда существует константа C > 0, зависящая только от k,

такая, что
|λk − λh,k| � Ch4, 0 < h < h0. (6.39)

Доказательство. Зафиксируем k. Если j �= k, то из (6.37) получим

|λ−1
h,j − λ−1

k | �
∣∣∣λ−1

j − λ−1
k

∣∣∣−
∣∣∣λ−1

j − λ−1
h,j

∣∣∣ �
∣∣∣λ−1

j − λ−1
k

∣∣∣− C
1
2h.

Следовательно, если η = min
j �=k

∣∣∣λ−1
j − λ−1

k

∣∣∣ , то для h < h0 =
1

2
ηC− 1

2 имеем

j �= k ⇒ |λ−1
h,j − λ−1

k | � 1

2
η.

В сочетании с предложением 6.2 мы заключаем, что единственный элемент Λ−1
h , который может

быть «близок» к λ−1
k , это λ−1

h,k, при этом

|λ−1
k − λ−1

h,k| � Ch4,

тем самым завершается доказательство теоремы.

Замечание 6.7. Обратим внимание, что в доказательстве теоремы 6.1 мы опирались на спе-
циальные свойства ядра из предложения 6.2. Без использования такой информации мы получили
бы «субоптимальные» оценки. Например, (6.28) подразумевает

∞∑
k=N

λ−2
k � CN−2,

что не является оптимальным ввиду утверждения 6.1. Сравните также с оценкой в (6.8), которую
можно записать как ∣∣∣∣∣

∞∑
i=1

λ−1
i −

N−1∑
i=1

λ−1
h,i

∣∣∣∣∣ � Ch4.
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Замечание 6.8. Скорость сходимости O(h4), как указано в теореме 6.1, можно сравнить с
методом коллокационной аппроксимации [12]. В последнем случае достижение аналогичной ско-
рости сходимости требует построения интерполирующей C3 кусочно-полиномиальной функции
пятого порядка, а затем использования коллокации в гауссовых точках. Результаты здесь были
получены с использованием дискретизированного ядра (обратного оператора). Благодаря на-
блюдаемой связи между этим ядром и классическими (C2) кубическими сплайнами, аппрок-
симирующие собственные значения фактически являются собственными значениями производ-
ной четвертого порядка (распределения) интерполирующего кубического сплайна в точках сетки
(предложение 3.2).
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Abstract. The biharmonic operator plays a central role in a wide array of physical models, such as
elasticity theory and the streamfunction formulation of the Navier–Stokes equations. Its spectral theory
has been extensively studied. In particular the one-dimensional case (over an interval) serves as the
basic model of a high order Sturm-Liouville problem. The need for corresponding numerical simulations
has led to numerous works. This review focuses on a discrete biharmonic calculus. The primary object
of this calculus is a high-order compact discrete biharmonic operator (DBO). The DBO is constructed
in terms of the discrete Hermitian derivative. The surprising strong connection between cubic spline
functions (on an interval) and the DBO is recalled. In particular the kernel of the inverse of the discrete

operator is (up to scaling) equal to the grid evaluation of the kernel of
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. This fact entails the

conclusion that the eigenvalues of the DBO converge (at an “optimal” O(h4) rate) to the continuous
ones. Another consequence is the validity of a comparison principle. It is well known that there is no
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25. J. Schröder, “On linear differential inequalities,” J. Math. Anal. Appl., 1968, 22, 188–216.
26. A. Spence, “On the convergence of the Nyström method for the integral equation eigenvalue problem,”

Numer. Math., 1975, 25, 57–66.

Matania Ben-Artzi
Institute of Mathematics, The Hebrew University, Jerusalem, Israel
E-mail: mbartzi@math.huji.ac.il



Современная математика. Фундаментальные направления. Том 71, № 1 (2025). С. 55–70

Contemporary Mathematics. Fundamental Directions. ISSN 2413-3639 (print), 2949-0618 (online)

УДК 517.958
DOI: 10.22363/2413-3639-2025-71-1-55-70
EDN: TRQNDY

АСИМПТОТИЧЕСКИЕ РЕШЕНИЯ КИНЕТИЧЕСКИХ УРАВНЕНИЙ

ВЛАСОВА—ПУАССОНА—ЛАНДАУ

А. В. Бобылев, И.Ф. Потапенко

Институт прикладной математики им. М.В. Келдыша РАН, Москва, Россия

Аннотация. Работа посвящена аналитическому и численному исследованию решений кинети-
ческих уравнений Власова—Пуассона—Ландау (ВПЛ) для функций распределения с длиной L
таких, что ε = rD/L� 1, где rD — дебаевский радиус. Предполагается также, что число Кнудсе-
на Kn = l/L = O(1), где l—длина свободного пробега электронов. Мы используем стандартную
модель плазмы электронов с пространственно-однородным нейтрализующим фоном бесконечно
тяжелых ионов. Начальные данные всегда предполагаются близкими к нейтральным. Мы изучаем
асимптотическое поведение системы при малых ε > 0. Известно, что формальный предел урав-
нений ВПЛ при ε = 0 не описывает быстро осциллирующую часть электрического поля. Наша
цель — изучить поведение «истинного» электрического поля вблизи этого предела. Мы рассмат-
риваем задачу со стандартными изотропными по скоростям максвелловскими начальными усло-
виями и показываем, что в бесстолкновительном случае затухание этих колебаний практически
отсутствует. Выводится приближенная формула для электрического поля, которая затем подтвер-
ждается численно с использованием упрощенной модели Бхатнагара—Гросса—Крука (БГК) для
уравнений ВПЛ. Также рассматривается другой класс начальных условий, который приводит к
сильным колебаниям с амплитудой порядка O(1/ε). Численные решения этого класса изучаются
для различных значений параметров ε и Kn.

Ключевые слова: Кинетические уравнения Власова—Пуассона—Ландау, функция распределе-
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1. Введение

Уравнения Власова—Пуассона—Ландау (ВПЛ) описывают эволюцию по времени горячей
столкновительной плазмы. Известно, что интеграл столкновений Ландау [1, 11] можно рассмат-
ривать как малое возмущение уравнений Власова—Пуассона (см., например, [12]). Поэтому ин-
тегралы столкновений часто игнорируются, и тогда в литературе рассматриваются бесстолкно-
вительные модели плазмы. Однако это может быть верно только для относительно коротких
промежутков времени. Цель настоящей статьи — показать важность столкновительных эффек-
тов в некоторых процессах. Очевидно, что уравнения Власова—Пуассона—Ландау содержат два
различных микроскопических масштаба длины: радиус Дебая rD и длину свободного пробега
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l � rD. Кроме того, типичные граничные или начальные условия могут вводить третий макро-
скопический масштаб длины L такой, что L � l � rD. Эти три различных масштаба делают
общую картину кинетической эволюции плазмы довольно сложной. Целью данной работы явля-
ется изучение различных стадий этой эволюции на большом времени как аналитическими, так
и численными методами. Основное внимание уделяется (1) роли начальных условий и (2) важ-
ности столкновительных эффектов. Мы используем в основном упрощенный оператор столкно-
вений типа Бхатнагара—Гросса—Крука (БГК), поскольку все основные свойства приближенных
уравнений совпадают с аналогичными свойствами истинных кинетических уравнений Власова—
Пуассона—Ландау. Наша главная цель — описать как аналитическими, так и численными мето-
дами качественную картину эволюции системы.

Статья организована следующим образом. Раздел 2 посвящен постановке задачи для уравнений
ВПЛ и анализу малых параметров, временных масштабов и различных классов начальных усло-
вий. Асимптотические решения относительно малого параметра ε обсуждаются в разделах 3-4.
Показано, что безразмерное электрическое поле не может иметь предела при ε = 0 из-за быст-
рых колебаний с частотой порядка O(1/ε). Этот вывод подтверждается численным решением.
Колебания имеют величину порядка O(1) при ε → 0. Они затухают со временем только за счет
столкновений, и этот факт показывает важность столкновительных эффектов в плазме. Все эти
факты подтверждаются численным моделированием для упрощенного модельного уравнения со
столкновительным членом типа БГК в разделе 5. Упрощение позволяет уменьшить размерность
задачи до d = 2 и, следовательно, минимизировать затраты на вычисления. Численная схема и
результаты расчетов подробно обсуждаются в разделе 5.

Следует подчеркнуть, что кинетические уравнения Власова—Пуассона—Ландау с математиче-
ской точки зрения достаточно сложны. Поэтому они пока недостаточно изучены. В частности,
для этих уравнений до сих пор не доказаны теоремы о глобальном существовании решений за-
дачи Коши и подобные результаты. В то же время они широко используются в приложениях к
физике. Основная цель настоящей работы— прояснить некоторые тонкие математические вопро-
сы, связанные со многими работами физиков по асимптотическим свойствам этих кинетических
уравнений. Поэтому работа написана на формальном уровне математической строгости. Неяв-
но предполагается, что классические решения задачи Коши рассматриваемых уравнений суще-
ствуют на любом временном интервале и обладают всеми необходимыми свойствами. Основное
внимание уделено таким эффектам, которые не были отмечены в публикациях физиков (в част-
ности, существование быстрых и очень медленно затухающих колебаний электрического поля).
Результаты подтверждены точными численными исследованиями.

2. Уравнение Власова—Пуассона—Ландау для плазмы

Рассмотрим плазму из электронов с электрическим зарядом (−e) и массойm и ионов с зарядом
Ze и массой M, где e > 0— элементарный заряд электрона. Ниже для простоты полагаем, что
Z = 1. Условие слабого взаимодействия:

e2ρ
−1/3
0 � T0, (2.1)

где ρ0 и T0 — соответственно типичные постоянные плотность и абсолютная температура элек-
тронов.

Пусть f(x, v, t)—распределение электронов, а ионы равномерно распределены в пространстве
с постоянной плотностью ρ0. Тогда самосогласованное электрическое поле выражается формулой

E(x, t) =
∂

∂x
e

∫

R3

dy
ρ(y, t)− ρ0
|x− y| , x ∈ R

3. (2.2)

В равенстве (2.2) предполагается, что на бесконечности плазма находится в состоянии равновесия,
а также

ρ(x, t) −−−−→
|x|→∞

ρ0 = const

достаточно быстро, чтобы гарантировать сходимость интеграла.
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Уравнение Власова—Ландау для f(x, v, t) выглядит так:

(∂t + v · ∂x − eE · ∂v)f = 2π
e4

m2
Λ [QL(f, f) +Q(L)(f, fi)],

где fi(x, v, t)—функция распределения ионов, Λ—постоянная кулоновского логарифма,

QL(f, f) =
∂

∂vα

∫

R3

dw|u|−3(|u|2δαβ − uαuβ)

(
∂

∂vβ
− ∂

∂wβ

)
f(v)f(w),

Q(L)(f, fi) =
∂

∂vα

∫

R3

dw |u|−3(|u|2δαβ − uαuβ)

(
∂

∂vβ
− m

M

∂

∂wβ

)
f(x, v, t)fi(x,w, t),

ρ0 =

∫

R3

dv fi(x, v, t) = const, u = v − w, α, β = 1, 2, 3.

Мы рассматриваем формальный предел очень тяжелых ионов с M → ∞, предполагая, что их
кинетическая энергия остается конечной. Тогда типичная скорость иона очень мала и поэтому
u ≈ v в подынтегральном выражении Q(L)(f, fi). Следовательно,

Q(L)(f, fi) = ρ0
∂

∂vα
(|v|2δαβ − uαuβ)

∂f

∂vβ
= ρ0K(f)

в пределе приM → ∞.Поэтому упрощенное кинетическое уравнение для функции распределения
электронов f(x, v, t) имеет вид

(∂t + v · ∂x − eE · ∂v)f = 2π
e4

m2
Λ [QL(f, f) + ρ0K(f)]. (2.3)

Самосогласованное электрическое поле E(x, t) задается уравнением (2.2). Его также можно рас-
сматривать как решение уравнений Максвелла в нерелятивистском пределе c = ∞

divE = 4π e (ρ0 − ρ), curlE = 0, (2.4)

или, что то же самое, градиент решения ϕ(x, t) уравнения Пуассона

� ϕ = 4π e (ρ0 − ρ), E = �ϕ, (2.5)

с нулевыми условиями на бесконечности. Кинетическое уравнение (2.3) в паре с уравнением (2.4)
или, что то же самое, с уравнением (2.5) называются уравнениями Власова—Пуассона—Ландау.

Заметим, что это уравнение было выведено выше в предположении (2.1) слабого взаимодей-
ствия между электронами. Параметры ρ0 и T0 в (2.1) соответствуют типичной электронной плот-
ности и абсолютной температуре (выраженной в единицах энергии) на бесконечности. Рассмот-
рим задачу Коши для t > 0 во всем пространстве (x, v) ∈ R

3 × R
3 с начальными условиями

f |t=0 = ρ0 θ
−3/2
0 f̃0

(
x

L
,

v

θ
1/2
0

)
, θ0 =

T0
m
.

Заметим, что длина L рассматривается здесь как свободный параметр. Она не предполагается
большой с самого начала. Обычно мы также предполагаем, что

f̃0(x̃, ṽ) −−−−→
|x̃|→∞

M(|ṽ|) = (2π)−3/2 exp(−|ṽ|2/2).

Более того, та же самая константа Максвелла M(|ṽ|) на бесконечности для безразмерной задачи
предполагается для всех t > 0. Это предположение будет рассматриваться ниже как граничное
условие на бесконечности. Для постановки безразмерной задачи обозначим

f(x, v, t) = ρ0 θ
−3/2
0 f̃(x̃, ṽ, t̃), F (f) = mF0 F̃ (f̃), C(f) = C0 C̃(f̃),

с соответствующими константами F0 для силы и C0, и положим

x̃ = x/L, ṽ = v/θ
1/2
0 , t̃ = t/t0, t0 = L/θ

1/2
0 .
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Также определим безразмерное электронное поле Ẽ = E/E0 в (2.3), (2.4) таким образом, что
полученные уравнения для Ẽ не содержат никаких параметров. Тогда безразмерные уравнения
для f̃ и Ẽ будут иметь вид

ft + v · fx −AE · fv = B C(f), C(f) = QL(f, f) +K(f),

divE = 1− ρ, curlE = 0, (2.6)

где тильды опущены. Эти уравнения содержат только два безразмерных параметра

A =

(
L

rD

)2

, B =
L

l
=

1

Kn
, (2.7)

где Kn обозначает число Кнудсена,

rD =

(
4πρ0e

2

T0

)−1/2

, l =

√
2πT 2

0

e4ρ0Λ
, Λ = ln

rDT0
e2

обозначают соответственно радиус Дебая, среднюю длину свободного пробега электронов и ку-
лоновский логарифм.

Важно ясно понимать, что параметры A и B в уравнениях (2.6) не являются независимыми.
Действительно, кинетическое уравнение (2.6) было формально выведено в предположении (2.1)
слабого взаимодействия. Традиционный малый параметр δ в физике плазмы (см., например, [10])
равен обратному числу частиц в сфере или кубе Дебая. Неравенство

δ =
1

ρ0r3D
=

(
4πe2ρ

1/3
0

T0

)3/2

� 1, (2.8)

очевидно, эквивалентно неравенству (2.1). Следовательно,

Λ ≈ ln
1

δ
� 1,

l

rD
= c1

1

δΛ
≈ c1

(
δ ln

1

δ

)−1

� 1,

и
A

B
=
L l

r2D
≈

(
δ ln

1

δ

)−1 L

rD
� 1, если L � rD,

где c1 — абсолютная константа. Это неравенство подтверждает, что член столкновения Ландау
следует рассматривать как малый поправочный член в уравнении Власова.

Имеется также второе условие применимости уравнения Ландау—Власова, а именно неравен-
ство L� d, где d— эффективный радиус действия потенциала. В случае плазмы можно положить
d ≈ rD и ввести второй (вместе с δ из (2.8)) параметр, а именно

ε = A−1/2 =
rD
L

� 1.

Число Кнудсена в уравнениях (2.6), (2.7) можно выразить через ε и δ как

Kn =
l

L
=

l

rD
ε ≈ c1

ε

δ ln 1/δ
.

В следующем разделе мы рассмотрим некоторые асимптотические решения уравнений (2.6) вбли-
зи предела ε→ 0, предполагая, что Kn ограничено.

3. Асимптотические решения уравнений ВПЛ

Сделаем еще одно упрощение и предположим, что начальные данные f0 и решение f зада-
чи (2.6) зависят только от одной пространственной переменной. Для краткости сохраним ниже
прежние обозначения x, полагая, что x ∈ R, v ∈ R

3, t ∈ R+. Введем также безразмерное элек-
трическое поле

Eε(x, t) = E(x, t)/ε2, ε2 = A−1.

Замечание 3.1. Конечно, мы имеем в виду, что «истинное» электрическое поле Ẽ ∈ R
3 — это

вектор Ẽ = (E, 0, 0), параллельный (или антипараллельный) оси x. Ниже, с некоторой долей зло-
употребления обозначениями, символами типа Ex, fx, . . . обозначим частные производные по x,
тогда как через vx будем обозначать x-компоненту вектора v ∈ R

3.
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Получаем из (2.6):

f εt + vxf
ε
x − Eε · f εvx =

1

Kn
C(f ε), Eε

x =
1

ε2
(1− ρε), ε > 0, (3.1)

где мы добавили верхние индексы к f, ρ, чтобы подчеркнуть их ε-зависимость. Типичное началь-
ное условие имеет вид

f ε|t=0 = [2πT0(x)]
−3/2 exp[−|v|2/2T0(x)], T0(|x|) −−−−→|x|→∞

1. (3.2)

Обозначим
ρε = 〈f ε, 1〉, jε = 〈f ε, vx〉, где 〈f, ψ〉 =

∫

R3

dvf(v)ψ(v).

Теперь мы можем рассмотреть формальный предел уравнений ВПЛ при ε→ 0 при некоторых
предположениях о «хорошем поведении» f ε(x, v, t) и Eε(x, t) для ε → 0. Полученные уравнения
имеют следующий вид.

Предложение 3.1. Предельные функции f0(x, v, t) и E0(x, v, t) удовлетворяют уравнениям

f0t + vxf
0
x − E0f0vx =

1

Kn
C(f0), (3.3)

E0 =
1

Kn
〈C(f0), vx〉 − 〈f0, v2x〉x, f0|t=0 = f0, (3.4)

что влечёт
ρ0(x, t) = 〈f0, 1〉 = 1, j0(x, t) = 〈f0, vx〉 = 0.

Доказательство. Формальное доказательство предложения 3.1 очевидно. Уравнение (3.1) для E
приводит к равенству ρ0 = 1. Это, в свою очередь, возможно только при j0 = 0 из-за уравнения
непрерывности и граничных условий на бесконечности. Наконец, формула для E0 следует из
уравнения j0t = 0.

Предельные уравнения (3.3), (3.4) изучались аналитическими и численными методами во мно-
гих работах, в частности, в [2,5–7,9]. Можно сказать, что в этом случае уравнение Пуассона для
электрического поля заменяется явной формулой (3.4) для E0, которая следует из условий ква-
зинейтральности. Конечно, аналогичный формальный предел может быть определен и для более
сложного случая двухкомпонентной плазмы с ионами, имеющими конечную массу и произволь-
ный электрический заряд. В данной работе мы рассматриваем только упрощенную модель, чтобы
избежать некоторых менее важных деталей.

4. Поведение Eε(x, t) при ε→ 0

Начнем с первого вопроса и предположим, что существует «хорошее» решение задачи (3.1),
(3.2) для малых ε. Затем умножим уравнение (3.1) для Eε(x, t) на ε2 и продифференцируем
по переменной t. Уравнение непрерывности и граничные условия на бесконечности приводят к
уравнению

ε2 Eε
t = jε, jε = 〈f ε, vx〉.

Затем дифференцируем первое уравнение ещё раз и после несложных преобразований полу-
чаем на основе уравнений (3.1), (3.2) следующую задачу:

ε2Eε
tt + Eε = Sε(x, t) = −〈f ε, v2x〉x +

1

Kn
〈C(f ε), vx〉+ ε2EεEε

x; (4.1)

Eε|t=0 = Eε
t |t=0 = 0. (4.2)

Задача (4.1), (4.2) может быть формально «решена» преобразованием Лапласа по t. Тогда мы
получим

Eε(x, t) =

t/ε∫

0

dτ(sin τ)Sε(x, t− ετ) = Sε(x, t)− Sε(x, 0) cos
t

ε
− ε

t/ε∫

0

dτ(cos τ)Sε
t (x, t− ετ). (4.3)

Теперь мы можем доказать следующую оценку.
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Предложение 4.1. Если

|Sε
tt(x, t) | � C(x), 0 � t � T, x ∈ R, (4.4)

где C не зависит от ε при ε→ 0, то справедлива следующая асимптотическая формула:

Eε(x, t) = Sε(x, t)− Sε(x, 0) cos
t

ε
+ εΔ(x, t),

|Δ(x, t)| � |Sε
t (x, 0)| + C(x) t, 0 � t � T. (4.5)

Доказательство. Достаточно оценить последний интеграл в (4.3). Интегрируя по частям, полу-
чаем

Δ(x, t) = −
t/ε∫

0

dτ(sin τ)′ Sε
t (x, t− ετ) = −Sε

t (x, 0) sin
t

ε
− ε

t/ε∫

0

dτ(sin τ)Sε
tt(x, t− ετ).

Оценка (4.5) следует непосредственно из этого равенства и предположения (4.4) предложения 4.1.
Тем самым доказательство завершено.

Заметим, что S0(x, t) = E0(x, t) в обозначениях уравнения (3.4). Таким образом, Eε(x, t) быст-
ро осциллирует при ε → 0 с частотой ωε = 1/ε вблизи своего среднего E0(x, t) с амплитудой
|E0(x, 0)| = O(1). Например, E0(x, 0) = −T0′(x) для начального локального максвеллиана с тем-
пературой T0(x).

Вероятно, дополнительный член в кинетическом уравнении (3.3) приводит лишь к небольшому
возмущению f0(x, v, t) из-за быстрых колебаний. Но он важен для понимания поведения Eε(x, t).

Конечно, предположение (4.4) предложения 4.1 остается недоказанным. Однако оно выгля-
дит реалистичным для «хорошего» решения f0(x, v, t) уравнения (3.3) с Eε(x, t) (без остаточного
члена) из предложения 4.1. С другой стороны, асимптотическую формулу для Eε(x, t) можно
проверить численно для общего случая или даже аналитически для линеаризованного бесстолк-
новительного случая (см. [3]).

Следует отметить, что быстрые колебания электрического поля для бесстолкновительных
уравнений Власова—Пуассона ранее изучались в литературе (см., в частности, важную статью [8]
Гренье). Наше уравнение (4.1) для Kn = ∞ можно рассматривать как одномерную версию урав-
нения (27) из [8] (после интегрирования и очевидной смены обозначений). Методы этой статьи
основаны на специальном представлении решений (уравнение (12) из [8]), которое удобно только
для уравнений типа Власова и вряд ли может быть использовано для уравнений ВПЛ.

5. Модельные уравнения Власова—Пуассона—БГК и численные примеры

В начале мы дадим краткое описание численного алгоритма и конечно-разностной схемы, с
помощью которых решается упрощенная модель уравнений ВПЛ. Затем мы покажем несколько
графиков, представляющих расчет для двух типов исходных данных и различных входных ха-
рактеристик. В частности, расчеты качественно иллюстрируют полученные выше аналитические
результаты.

Для численного моделирования возьмем упрощенную одномерную по скорости v ∈ R и ко-
ординате x ∈ R модель 1V1D-версии уравнений (3.1) и (3.4), (4.1) (опуская нижний индекс x в
vx, Ex)

∂f

∂t
+ Îx f − Îv f =

1

Kn
Ĉ(f); Îx f = v

∂f

∂x
, Îv f = E

∂f

∂v
; (5.1)

ε2
∂2E

∂t2
+ ρE = −∂p

∂x
+

1

Kn
J(x, t ), ε �= 0, (5.2)

E =
1

ρ

[
−∂p
∂x

+
1

Kn
J(x, t )

]
, ε = 0,

с начальными условиями

f |t=0 =f
0(x, v), ρ|t=0 =ρ

0(x), E|t=0 =E
0(x), ε2

∂E

∂t

∣∣∣
t=0

= j0(x).
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Здесь J(x, t) =
〈
Ĉ(f), v

〉
, ρ(x, t) = 〈f, 1〉 , p(x, t) = 〈

f, v2
〉
, где используется модель типа БГК

Ĉ(f) = fc(x, v, t) − f(x, v, t), fc(x, v, t) =
ρ

[2π(p/ρ)]1/2
exp

[
− |v|2
2 (p/ρ)

]
(5.3)

для члена столкновений Ĉ(f). Угловые скобки 〈· · · 〉 обозначают в этом разделе интеграл по R.
Упрощенные уравнения (5.1)–(5.3) рассматриваются на отрезке [0, 2π] с периодическими гра-
ничными условиями f(2π, v, t) = f(0, v, t), E(2π, t) = E(0, t). Для построения 1V1D конечно-
разностной схемы для (5.1)–(5.3) бесконечный интервал скорости заменяется на v ∈ [−vm, vm].
Граничные значения дискретной скорости ±vm выбираются достаточно большими, чтобы обес-
печить равенство нулю распределения f(x, ±vm, t) � 0. В рассматриваемой области введем
пространственно-временную сетку ω = ωx × ωv × ωt с шагами дискретизации Δx, Δv и Δt:

ωx = {xl+1 = xl +Δx, l = 0, 1, . . . , L− 1, x0 = 0, xL = 2π},
ωv = {vk+1 = vk +Δv, k = 0, 1, . . . ,K − 1, v0 = −vm, vK = vm},
ωt = {tn+1 = tn +Δt, n = 0, 1, . . . , t0 = 0},

обозначая fnl,k = f(lΔx, k
v, n
t), En
l = E(lΔx, n
t). Интегралы определяются суммами

ρnl =
∑
k

fnl,kΔv, jnl =
∑
k

fnl,kvkΔv,

pnl =
∑
k

fnl,kv
2
kΔv, Jn

l =
∑
k

Ĉn
l,kvkΔv,

где Ĉn
l,k = fnc l,k − fnl,k в обозначениях уравнения (5.3).

Используя консервативную дискретизацию для уравнений (5.1), получаем конечно-разностные
операторы

Îx f
n
l,k =

(vfn)l+ 1
2
,k − (vfn)l− 1

2
,k

Δx
,

Îv f
n
l,k =

(En+1fn)l,k+ 1
2
− (En+1fn)l,k− 1

2

Δv
с потоками

(vfn)l+ 1
2
,k = vk

(
fnl,k + fnl+1,k

2

)
− |vk|

(
fnl+1,k − fnl,k

2

)
,

(En+1fn)l,k+ 1
2
= En+1

l

(
fnl,k + fnl,k+1

2

)
+ |En+1

l |
(
fnl,k+1 − fnl,k

2

)
.

Из уравнения (5.2) получаем его дискретный аналог для определения электрического поля. Тогда
система (5.1), (5.2) принимает вид

fn+1
l,k − fnl,k

Δt
+ Îx f

n
l,k − Îvf

n
l,k =

1

Kn
Cn
l,k; (5.4)

ε2
En+1

l − 2En
l + En−1

l

Δt2
+ ρnl E

n+1
l =

Jn
l,k

Kn
− Δpnl

Δx
, ε �= 0; (5.5)

En+1
l =

1

ρnl

(
Jn
l,k

Kn
− Δpnl

Δx

)
, ε = 0. (5.6)

Учитывая равенства

∑
k

fn+1
l,k − fnl,k

Δt
vkΔv =

Δjn+1

Δt
,

Δjn+1

Δt
= ε2

En+1
l − 2En

l + En−1
l

Δt2
,

∑
k

(Îv f
n
l,k) vkΔv = −En+1

l

∑
k

fnl,kΔv = −En+1
l ρnl ,

∑
k

Îxf
n
l,k vkΔv =

Δpnl
Δx

,
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мы видим, что уравнения (5.5), (5.6) можно получить из уравнения (5.4). Квазинейтральный
предел формально можно получить, если в уравнениях (5.2), (5.5) ε равен нулю: ε = 0, E0(x) = 0,
j = 0. Тогда осциллирующая во времени часть электрического поля в (5.6) обращается в нуль.
Кроме того, в этой численной формуле отсутствует шаг по времени.

Таким образом, уравнения (5.4)–(5.6) задают численную схему первого порядка. Вычислитель-
ный алгоритм следующий:

1. На каждом временном шаге tn+1 все необходимые члены вычисляются с использованием fnl,k.
2. Затем электрическое поле En+1

l получается для (n+ 1)-го временного шага из

En+1
l =

1

1 + σρnl

[
−σ

[
Δpnl
Δx

− Jn
l,k

Kn

]
+

(
2En

l − En−1
l

)]
(5.7)

с использованием уравнения (5.6) для формального предела при ε = 0. Здесь σ = Δt2/ε2.
3. Функция распределения вычисляется из уравнения

fn+1
l,k = Δtfnl,k −ΔtÎx f

n
l,k +Δt Îvf

n
l,k +Δt

1

Kn
Cn
l,k. (5.8)

В следующей части раздела представлены численные эксперименты по изучению эволюции
электрического поля для параметров 0 � ε � 1 и 0 � Kn � 0.01. Скорость изменяется от −vm =
−20 до vm = 20 с шагом скорости Δv = 0.1, шаг пространственной сетки обычно равен Δx � 0.1.
Шаг по времени зависит от ε. Его следует брать достаточно малым, поскольку грубые шаги не
улавливают самые быстрые временные масштабы. Ниже рассматриваются два типа начальных
данных:

f01,2(x, v) =
a1,2(x, v)

[2πT 0
1,2(x)]

1/2
exp

[
− |v|2
2T 0(x)

]
,

где
(I) a1 = 1, (II) a2 = 1 +

v cos x

T 0(x) + v2
,

с двумя различными типами начальных условий для E(x, t):

ρ01 = 1, E0
1(x) = 0,

∂E1

∂t

∣∣
t=0

= 0, j01 = 0; (I)

ρ02 = 1, E0
2(x) = 0, ε2

∂E2

∂t

∣∣
t=0

= j02 . (II)

Представленные ниже численные результаты сравниваются с приближенной формулой для элек-
трического поля E(x, t) из [4]

E(x, t) ≈ −∂p(x, t)
∂x

+
∂p(x, 0)

∂x
e−λt cos

t

ε
, λ =

β

Kn
, β = const. (5.9)

При отсутствии столкновений Kn = ∞ имеем C(f) = J(f) = 0 в (5.6)–(5.8) и λ = 0 в (5.9).
В начале мы рассмотрим эволюцию функции f01 (x, v) для начальных условий (I) с темпера-

турой, распределенной как T 0
1 (x) = 1 − A cos x, A = 0.5. Отметим, что амплитуда колебаний

электрического поля пропорциональна A и зависит от этого параметра возмущения линейно че-
рез ∂p/∂x. Несколько расчетов выполнены для набора значений параметра 0 � ε � 1. Численные
результаты на рис. 1 и 2 иллюстрируют зависимость колебаний электрического поля от времени.
Напомним, что ε = 1 соответствует периодическому в пространстве решению с периодом 2πrD
(масштаб пространства равен радиусу Дебая rD). Условие ε = 0 соответствует квазинейтраль-
ному пределу, см. (5.6). Эта формула удобна для долговременного моделирования, поскольку
нет ограничений на временной шаг, за исключением обычных численных ограничений. В этом
случае колебания поля исчезают, и электрическое поле становится равным нулю после короткой
начальной стадии t � π/2 (рис. 1, ε = 0). Этот формальный подход не улавливает реального по-
ведения электрического поля, но он приближенно описывает среднее значение E(x, t) для любых
малых значений ε� 1. В [3] было показано, что длинноволновые колебания электрического поля
в бесстолкновительной плазме могут существовать без затухания очень долгое время (см. (5.9)).
Этот факт подтверждается на рис. 1. Чем меньше параметр ε, тем слабее затухание колебаний.
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Рис. 1. Электрическое поле E(1.5π, t) как функция времени для различных зна-
чений параметра 0 � ε � 1.

Fig. 1. Electric field E(1.5π, t) as a function of time for different values of parameter
0 � ε � 1.

Для оценки затухания колебаний E(x, t) вводится амплитуда колебаний ΔE(x, t; ε), вычислен-
ная за период колебаний Tosc:

ΔE(x, t; ε) = |Emax − Emin |
mTosc�t�(1+m)Tosc

; Tosc = 2π ε, m = 1, 2, . . . . (5.10)

Эта характеристика ΔE(x, t; ε) представлена на рис. 2 для x = π/2 и различных значений пара-
метра ε.

Замечание 5.1. В принципе, параметр ε(t) может менять свое значение в ходе численного
решения больших по времени физических задач. Поскольку грубый шаг по времени не сохра-
няет правильную эволюцию поля, важно учитывать зависимость Δt от ε такую, что Δt/ε � 1.
Несмотря на возможно небольшое влияние на саму функцию распределения, ошибка в оценке
поля может играть важную роль для некоторых задач динамики плазмы.

Вторую серию численных расчетов для второго типа начальных данных f2(x, v) с начальными
условиями (II)

ρ02 = 1, E0
2 = 0, ε2

∂E(x, 0)

∂t
= j02(x)

и распределением температуры
T 0
2 (x) = 1 +A(1− cos x)

начинаем с бесстолкновительного случая Kn = ∞. Переход от начальных условий (I) к бо-
лее общим ограничениям (II) существенно увеличивает величину осциллирующей части поля
E(x, t � 0) � 1/ε (см. [4]).

Графики 3 и 4 дают общий вид эволюции электрического поля E(x, t) для ε = 0.04 от времени
для x = π, 1.5π. На рис. 4 показаны графики E и ∂p/∂x, увеличенные для лучшей наглядности.

На рис. 5 и 6 представлены два результата вычислений для второго варианта в бесстолкнови-
тельном (Kn = ∞) и столкновительном (Kn = 1) случаях, ε = 0.01. Зависимость ∂p/∂x от времени
во втором варианте более подробно представлена на рис. 5.
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Рис. 2. ΔE(π/2, t; ε) как функция времени для различных значений параметра
0 � ε � 1, Kn = ∞.

Fig. 2. ΔE(π/2, t; ε) as a function of time for different values of parameter 0 � ε � 1,
Kn = ∞.

Рис. 3. Электрическое поле E(x, t), x = π — светло-серая линия, и x = 3π/2—
темно-серая линия, ∂p/∂x, x = 3π/2—черная линия; Kn = ∞, ε = 0.04 и A = 0.5.

Fig. 3. Electric field E(x, t), x = π— light grey line, and x = 3π/2—dark grey line,
∂p/∂x, x = 3π/2—black line; Kn = ∞, ε = 0.04 and A = 0.5.

Для сравнения результатов двух вариантов начальных данных на рис. 7 представлены расче-
ты колебаний электрического поля в столкновительном случае, Kn = 1, для первого варианта:
начальная функция f01 с начальными условиями (II) и начальным распределением температуры
T 0
2 (x). Длительность затухания электрического поля в обоих случаях сопоставима, но амплитуда

колебаний в первом случае пренебрежимо мала.
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Рис. 4. Электрическое поле E(x, t)— темно-серая линия, −∂p/∂x—черная линия
частично изображены в большем масштабе; x = 3π/2, Kn = ∞, ε = 0.04 и A = 0.5.

Fig. 4. Electric field E(x, t)—dark grey line, −∂p/∂x—black line are partially
depicted at a larger scale; x = 3π/2, Kn = ∞, ε = 0.04 and A = 0.5.

Рис. 5. Зависимость электрического поля E(x, t) от времени; Kn = ∞— серые
линии; Kn = 1—черные линии, x = π.

Fig. 5. Electric field E(x, t) dependence on time; Kn = ∞— grey lines; Kn = 1—black
lines, x = π.

В следующих примерах сравниваются столкновительные режимы для второго варианта при
различных числах Кнудсена, которые принимаются в качестве параметра. Ищем зависимость за-
тухания колебаний от величины Kn. На рис. 8 показана зависимость E(π/2, t), ε = 0.001 для трех
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Рис. 6. Зависимость от времени электрического поля E(x, t) и ∂p/∂x: Kn = ∞—
серые линии; Kn = 1—черные линии. x = π/2.

Fig. 6. Electric field E(x, t) and ∂p/∂x dependence on time: Kn = ∞— grey lines;
Kn = 1—black lines. x = π/2.

Рис. 7. Временная зависимость ∂p/∂x для Kn = ∞ и Kn = 1, x = π/2.

Fig. 7. Time dependence of ∂p/∂x for Kn = ∞ and Kn = 1, x = π/2.

чисел Кнудсена Kn = 0.1, 0.05, 0.025. Очевидно, что чем меньше число Кнудсена, тем медленнее
E(x, t) сходится к нулю при больших t.

Фактически, рис. 9 описывает переход к гидродинамическому режиму. Видно, что через неко-
торое время, пропорциональное Kn−1, колебания исчезают. Также видно, что чем меньше число
Кнудсена, тем выше проходят линии E(x, t).
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Рис. 8. E(x, t) для начальной функции f01 с начальными условиями (I) и T 0
2 (x).

Fig. 8. E(x, t) for the initial function f01 with the initial conditions (I) and T 0
2 (x).

Рис. 9. Электрическое поле E(x, t) для Kn = 0.1, 0.05, 0.025; ε = 10−3, A = 5,
x = 3π/2—пунктирная линия, π/2— сплошная линия.

Fig. 9. Electric field E(x, t) for Kn = 0.1, 0.05, 0.025; ε = 10−3, A = 5, x = 3π/2—
dotted line, π/2— solid line.
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6. Заключение

В этой работе мы изучили класс таких решений уравнений ВПЛ, для которых типичная длина
L намного больше радиуса Дебая rD. Принимая формальный предел такой, что ε = rD/L → 0,
Kn = l/L остается ограниченным, мы получаем кинетическое уравнение, которое численно изу-
чалось в нескольких публикациях. Нашей целью было прояснить некоторые математические во-
просы, связанные с этим пределом. В частности, было показано, что предельное уравнение дает,
вероятно, правильные результаты для функции распределения, но не для самосогласованного
электрического поля. Причина в том, что поле содержит быстро осциллирующие члены, про-
порциональные exp(±it/ε) при ε → 0. Это новое наблюдение показывает, что с предельными
уравнениями нужно проявлять осторожность.

Мы считаем, что эти свойства уравнений ВПЛ могут быть строго доказаны, все они подтвер-
ждены в [3] более явным изучением линеаризованного уравнения Власова—Пуассона и в насто-
ящей статье точными численными решениями модельных уравнений Власова—Пуассона—БГК.
Численные результаты для случая сильных колебаний электрического поля (см. рис. 5 и 6) под-
нимают много интересных вопросов, которые требуют дальнейшего исследования.
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1. Введение

Вариационные принципы сыграли основополагающую роль в становлении и развитии меха-
ники (см., например, монографию [8] и библиографию в ней). В [2–4, 8, 24] изложены класси-
ческие и современные методы решения основных задач динамики. Исследование вариационно-
сти дифференциальных уравнений является важной и актуальной задачей. Отметим, что этому
вопросу посвящено значительное количество работ: например, для обыкновенных дифференци-
альных уравнений и дифференциальных уравнений с частными производными [1,9–14,16–21,23,
28,29], дифференциально-разностных уравнений [5–7], стохастических дифференциальных урав-
нений [25–27], дифференциальных уравнений с производными дробного порядка [15, 22] и др.
В перечисленных работах предложены конструктивные приемы построения прямых и косвенных
вариационных формулировок дифференциальных уравнений. Для этого используются локаль-
ные и нелокальные билинейные формы, в том числе и билинейные формы со свертками, а также
исследуются вопросы существования вариационных множителей как в виде функций, так и в
виде операторов, в том числе и матричных. При этом соответствующие действия по Гамильто-
ну (Гамильтону—Остроградскому) строятся с использованием как эйлеровых, так и неэйлеровых
классов функционалов.
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Представляет значительный интерес распространение некоторых изложенных в этих работах
методов на исследование вопросов представимости дифференциальных уравнений с производны-
ми высших порядков в форме уравнений Лагранжа—Остроградского, построение соответству-
ющих функционалов — действий по Гамильтону—Остроградскому. В связи с этим вопрос о ва-
риационности одной системы обыкновенных дифференциальных уравнений приобретает особую
важность, что и определило актуальность данной работы.
Основная цель настоящей работы — получить необходимые и достаточные условия потенци-

альности оператора одной системы обыкновенных дифференциальных уравнений и построить
соответствующее действие по Гамильтону—Остроградскому.
В дальнейшем мы будем использовать обозначения и терминологию работ [8, 17].
Предположим, что U, V —линейные нормированные пространства над полем действительных

чисел R.
Для дальнейшего нам понадобятся следующие определение и теорема.

Определение 1.1 (см. [8]). Оператор N : D(N) ⊂ U → V называется потенциальным на
множестве D(N) относительно билинейной формы Φ(·, ·) : V × V → R, если существует диффе-
ренцируемый по Гато функционал FN : D(FN ) = D(N) → R такой, что

δFN [u, h] = Φ(N(u), h) ∀u ∈ D(N), ∀h ∈ D(N ′
u).

В этом случае говорят, что соответствующее уравнение N(u) = 0 допускает прямую вариаци-
онную формулировку.
Заметим, чтоN ′

u —производная Гато оператора N в точке u ∈ D(N).Множество D(N ′
u) состоит

из таких элементов h ∈ U, что (u+ εh) ∈ D(N) для любого достаточно малого значения ε.

Теорема 1.1 (см. [8]). Пусть дифференцируемый по Гато оператор N : D(N) ⊂ U → V
и билинейная форма Φ(·, ·) : V × V → R таковы, что для любых фиксированных элементов
u ∈ D(N), g, h ∈ D(N ′

u) функция ψ(ε) = Φ(N(u+ εh), g) принадлежит классу C1[0, 1]. Тогда для
потенциальности оператора N на выпуклом множестве D(N) относительно рассматриваемой
билинейной формы необходимо и достаточно, чтобы выполнялось условие

Φ
(
N ′

uh, g
)
= Φ

(
N ′

ug, h
) ∀u ∈ D (N) , ∀h, g ∈ D

(
N ′

u

)
. (1.1)

При этом потенциал оператора N определяется формулой

FN [u] =

1∫

0

Φ(N(u0 + λ(u− u0)), u − u0) dλ+ FN [u0], (1.2)

где u0 —фиксированный элемент D(N).

2. Условия потенциальности

Рассмотрим систему уравнений

N(u) ≡ A(t)u(4)(t) +B(t)u′′′(t) + C(t)u′′(t) +D(t)u′(t) + E(t)u(t) = 0, t ∈ (t0, t1). (2.1)

Здесь u(t) = (u1(t), u2(t), . . . , un(t))
T —неизвестная вектор-функция, A(t) = (aij(t))

n
i,j=1, B(t) =

(bij(t))
n
i,j=1, C(t) = (cij(t))

n
i,j=1, D(t) = (dij(t))

n
i,j=1, E(t) = (eij(t))

n
i,j=1 — заданные матрицы, при-

чем aij ∈ C4[t0, t1], bij ∈ C3[t0, t1], cij ∈ C2[t0, t1], dij ∈ C1[t0, t1], eij ∈ C[t0, t1], i, j = 1, n.
Зададим область определения оператора N (2.1) в виде

D(N) =

{
u ∈ U = C4[t0, t1] : ui(t0) = ϕi1, ui(t1) = ϕi2, u

′
i(t0) = ϕi3, u

′
i(t1) = ϕi4, i = 1, n

}
, (2.2)

где ϕik (i = 1, n, k = 1, 4)— заданные постоянные.
В данном случае

D(N ′
u) =

{
h ∈ U = C4[t0, t1] : hi(t0) = 0, hi(t1) = 0, h′i(t0) = 0, h′i(t1) = 0, i = 1, n

}
(2.3)

и V = C[t0, t1].
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Введем билинейную форму

Φ(v, g) =

t1∫

t0

(v(t))T g(t)dt =

t1∫

t0

n∑
i=1

vi(t)gi(t)dt, (2.4)

где v(t) = (v1(t), v2(t), . . . , vn(t))
T , g(t) = (g1(t), g2(t), . . . , gn(t))

T .
Отметим, что

t1∫

t0

(v(t))T g(t)dt =

t1∫

t0

(g(t))T v(t)dt,

т. е.
Φ(v, g) = Φ(g, v).

Теорема 2.1. Оператор N (2.1) является потенциальным на множестве D(N) (2.2) отно-
сительно билинейной формы (2.4) тогда и только тогда, когда ∀t ∈ [t0, t1] выполнены следующие
условия:

(A(t))T −A(t) = 0, (2.5)
(B(t))T − 4A′(t) +B(t) = 0, (2.6)

(C(t))T − 6A′′(t) + 3B′(t)− C(t) = 0, (2.7)
(D(t))T − 4A′′′(t) + 3B′′(t)− 2C ′(t) +D(t) = 0, (2.8)

(E(t))T −A(4)(t) +B′′′(t)− C ′′(t) +D′(t)− E(t) = 0. (2.9)

Доказательство. Производная Гато оператора N (2.1) имеет вид

N ′
uh = A(t)h(4)(t) +B(t)h′′′(t) + C(t)h′′(t) +D(t)h′(t) + E(t)h(t).

Далее,

Φ
(
N ′

uh, g
)
=

t1∫

t0

(A(t)h(4)(t) +B(t)h′′′(t) + C(t)h′′(t) +D(t)h′(t) +E(t)h(t))T g(t)dt =

=

t1∫

t0

[
(h(4)(t))T (A(t))T g(t) + (h′′′(t))T (B(t))T g(t) + (h′′(t))T (C(t))T g(t) +

+ (h′(t))T (D(t))T g(t) + (h(t))T (E(t))T g(t)
]
dt.

Интегрируя по частям и принимая во внимание, что h и g принадлежат D(N ′
u) (2.3), получаем

t1∫

t0

(h(4)(t))T (A(t))T g(t)dt =

=

t1∫

t0

(h(t))T [(A(4)(t))T g(t) + 4(A′′′(t))T g′(t) + 6(A′′(t))T g′′(t) + 4(A′(t))T g′′′(t) + (A(t))T g(4)(t)]dt,

t1∫

t0

(h′′′(t))T (B(t))T g(t)dt =

=

t1∫

t0

−(h(t))T [(B′′′(t))T g(t) + 3(B′′(t))T g′(t) + 3(B′(t))T g′′(t) + (B(t))T g′′′(t)]dt,

t1∫

t0

(h′′(t))T (C(t))T g(t)dt =
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=

t1∫

t0

(h(t))T [(C ′′(t))T g(t) + 2(C ′(t))T g′(t) + (C(t))T g′′(t)]dt,

t1∫

t0

(h′(t))T (D(t))T g(t)dt =

t1∫

t0

−(h(t))T [(D′(t))T g(t) + (D(t))T g′(t)]dt.

Следовательно,

Φ
(
N ′

uh, g
)
=

t1∫

t0

{
(h(t))T (A(t))T g(4)(t) + (h(t))T

[
4(A′(t))T − (B(t))T

]
g′′′(t) +

+ (h(t))T
[
6(A′′(t))T − 3(B′(t))T + (C(t))T

]
g′′(t) +

+ (h(t))T
[
4(A′′′(t))T − 3(B′′(t))T + 2(C ′(t))T − (D(t))T

]
g′(t) +

+ (h(t))T
[
(A(4)(t))T − (B′′′(t))T + (C ′′(t))T − (D′(t))T + (E(t))T

]
g(t)

}
dt.

С другой стороны,

Φ
(
N ′

ug, h
)
=

t1∫

t0

(A(t)g(4)(t) +B(t)g′′′(t) + C(t)g′′(t) +D(t)g′(t) + E(t)g(t))T h(t)dt =

=

t1∫

t0

[
(h(t))TA(t)g(4)(t)+(h(t))TB(t)g′′′(t)+(h(t))TC(t)g′′(t)+(h(t))TD(t)g′(t)+(h(t))TE(t)g(t)

]
dt.

В данном случае критерий потенциальности (1.1) принимает вид

Φ
(
N ′

uh, g
) − Φ

(
N ′

ug, h
)
=

t1∫

t0

{
(h(t))T

[
(A(t))T −A(t)

]
g(4)(t) + (h(t))T

[
4(A′(t))T − (B(t))T −

−B(t)
]
g′′′(t) + (h(t))T

[
6(A′′(t))T − 3(B′(t))T + (C(t))T − C(t)

]
g′′(t) + (h(t))T

[
4(A′′′(t))T−

−3(B′′(t))T + 2(C ′(t))T − (D(t))T −D(t)
]
g′(t) + (h(t))T

[
(A(4)(t))T − (B′′′(t))T + (C ′′(t))T −

− (D′(t))T + (E(t))T − E(t)
]
g(t)

}
dt = 0 ∀h, g ∈ D(N ′

u).

Это тождественно выполняется тогда и только тогда, когда

(A(t))T −A(t) = 0, (2.10)

4(A′(t))T − (B(t))T −B(t) = 0, (2.11)

6(A′′(t))T − 3(B′(t))T + (C(t))T − C(t) = 0, (2.12)

4(A′′′(t))T − 3(B′′(t))T + 2(C ′(t))T − (D(t))T −D(t) = 0, (2.13)

(A(4)(t))T − (B′′′(t))T + (C ′′(t))T − (D′(t))T + (E(t))T − E(t) = 0. (2.14)

Заметим, что условия (2.10)–(2.14) сводятся к условиям (2.5)–(2.9).

3. Построение функционала

Теорема 3.1. Если оператор N (2.1) является потенциальным на множестве D(N) (2.2)
относительно билинейной формы (2.4), то действие по Гамильтону—Остроградскому имеет
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вид

FN [u] =
1

2

t1∫

t0

(
(u′′(t))TA(t)u′′(t) + (u′′(t))T (B(t)− 2A′(t))u′(t)− (u′(t))T (3A′′(t)− 2B′(t) +

+ C(t))u′(t) + (u′(t))T (A′′′(t)−B′′(t) + C ′(t)−D(t))u(t) + (u(t))T (E(t))T u(t)

)
dt.

(3.1)

Доказательство. Формула (1.2) в данном случае принимает вид

FN [u] =

1∫

0

t1∫

t0

(
A(t)ũtttt(t, λ) +B(t)ũttt(t, λ) + C(t)ũtt(t, λ) +D(t)ũt(t, λ) +

+ E(t)ũ(t, λ)
)T

(u(t)− u0(t))dtdλ+ FN [u0],

(3.2)

где ũ(t, λ) = u0(t) + λ
(
u(t)− u0(t)

)
, u0(t)—фиксированный элемент из D(N).

Обозначим

JA[u] =

1∫

0

t1∫

t0

(
A(t)ũtttt(t, λ)

)T
(u(t) − u0(t))dtdλ.

Интегрируя по частям и учитывая, что (u− u0) ∈ D(N ′
u) (2.3), получаем

JA[u] =

1∫

0

t1∫

t0

(
ũtttt(t, λ)

)T
(A(t))T (u(t)− u0(t))dtdλ =

=

1∫

0

t1∫

t0

((
ũtt(t, λ)

)T
(A′′(t))T (u(t)− u0(t)) + 2

(
ũtt(t, λ)

)T
(A′(t))T (u(t)− u0(t))

′+

+
(
ũtt(t, λ)

)T
(A(t))T (u(t)− u0(t))

′′
)
dtdλ =

=

1∫

0

t1∫

t0

(
− (

ũt(t, λ)
)T

(A′′′(t))T (u(t)− u0(t))−
(
ũt(t, λ)

)T
(A′′(t))T (u(t)− u0(t))

′+

+ 2
(
ũtt(t, λ)

)T
(A′(t))T (u(t)− u0(t))

′ +
(
ũtt(t, λ)

)T
(A(t))T (u(t)− u0(t))

′′
)
dtdλ.

(3.3)

Аналогично

JB [u] =

1∫

0

t1∫

t0

(
B(t)ũttt(t, λ)

)T
(u(t)− u0(t))dtdλ =

1∫

0

t1∫

t0

(
ũttt(t, λ)

)T
(B(t))T (u(t) − u0(t))dtdλ =

=

1∫

0

t1∫

t0

(
− (

ũtt(t, λ)
)T

(B′(t))T (u(t)− u0(t)) −
(
ũtt(t, λ)

)T
(B(t))T (u(t)− u0(t))

′
)
dtdλ =

=

1∫

0

t1∫

t0

((
ũt(t, λ)

)T
(B′′(t))T (u(t) − u0(t)) +

(
ũt(t, λ)

)T
(B′(t))T (u(t)− u0(t))

′−

− (
ũtt(t, λ)

)T
(B(t))T (u(t) − u0(t))

′
)
dtdλ,

(3.4)
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JC [u] =

1∫

0

t1∫

t0

(
C(t)ũtt(t, λ)

)T
(u(t)− u0(t))dtdλ =

1∫

0

t1∫

t0

(
ũtt(t, λ)

)T
(C(t))T (u(t)− u0(t))dtdλ =

=

1∫

0

t1∫

t0

(
− (

ũt(t, λ)
)T

(C ′(t))T (u(t)− u0(t))−
(
ũt(t, λ)

)T
(C(t))T (u(t) − u0(t))

′
)
dtdλ,

(3.5)

JD[u] =

1∫

0

t1∫

t0

(
D(t)ũt(t, λ)

)T
(u(t) − u0(t))dtdλ =

1∫

0

t1∫

t0

(
ũt(t, λ)

)T
(D(t))T (u(t)− u0(t))dtdλ, (3.6)

JE [u] =

1∫

0

t1∫

t0

(
E(t)ũ(t, λ)

)T
(u(t)− u0(t))dtdλ =

1∫

0

t1∫

t0

(
ũ(t, λ)

)T
(E(t))T (u(t)− u0(t))dtdλ. (3.7)

Подставляя (3.3)–(3.7) в (3.2), получим

FN [u]− FN [u0] =

1∫

0

t1∫

t0

((
ũtt(t, λ)

)T
(A(t))T (u(t)− u0(t))

′′+

+
(
ũtt(t, λ)

)T [
2(A′(t))T − (B(t))T

]
(u(t)− u0(t))

′+

+
(
ũt(t, λ)

)T [− (A′′(t))T + (B′(t))T − (C(t))T
]
(u(t) − u0(t))

′+

+
(
ũt(t, λ)

)T [− (A′′′(t))T + (B′′(t))T − (C ′(t))T + (D(t))T
]
(u(t)− u0(t))+

+
(
ũ(t, λ)

)T
(E(t))T (u(t)− u0(t))

)
dtdλ.

(3.8)

Отметим, что
1∫

0

t1∫

t0

(
ũtt(t, λ)

)T
(A(t))T (u(t)− u0(t))

′′dtdλ =

1∫

0

t1∫

t0

(
ũtt(t, λ)

)T
(A(t))T ũttλ(t, λ)dtdλ =

=

1∫

0

t1∫

t0

[
∂

∂λ

((
ũtt(t, λ)

)T
(A(t))T ũtt(t, λ)

)
− (

(u(t)− u0(t))
′′)T (A(t))T ũtt(t, λ)

]
dtdλ =

=

1∫

0

t1∫

t0

[
∂

∂λ

((
ũtt(t, λ)

)T
(A(t))T ũtt(t, λ)

)
− (

ũtt(t, λ)
)T
A(t)(u(t) − u0(t))

′′
]
dtdλ =

=

1∫

0

t1∫

t0

[
∂

∂λ

((
ũtt(t, λ)

)T
(A(t))T ũtt(t, λ)

)
− (

ũtt(t, λ)
)T

(A(t))T (u(t)− u0(t))
′′
]
dtdλ

(здесь учтено условие (2.5)). Следовательно,
1∫

0

t1∫

t0

(
ũtt(t, λ)

)T
(A(t))T (u(t) − u0(t))

′′dtdλ =
1

2

1∫

0

t1∫

t0

∂

∂λ

((
ũtt(t, λ)

)T
(A(t))T ũtt(t, λ)

)
dtdλ =

=
1

2

t1∫

t0

((
u′′(t)

)T
A(t)u′′(t)− (

u′′0(t)
)T
A(t)u′′0(t)

)
dt. (3.9)
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Рассмотрим интеграл

1∫

0

t1∫

t0

(
ũtt(t, λ)

)T (
2(A′(t))T − (B(t))T

)
(u(t)− u0(t))

′dtdλ. (3.10)

Введем обозначение

H(t) = 2A′(t)−B(t).

С учетом условий (2.5), (2.6) получим

(H(t))T =
(
2A′(t)−B(t)

)T
= 2(A′(t))T − (B(t))T = 2A′(t)− 4A′(t) +B(t) =

= −2A′(t) +B(t) = −H(t).
(3.11)

Интегрируя по частям и принимая во внимание, что (u − u0) ∈ D(N ′
u) (2.3), а также усло-

вие (3.11), интеграл (3.10) представим в виде

1∫

0

t1∫

t0

(
ũtt(t, λ)

)T (
2(A′(t))T − (B(t))T

)
(u(t)− u0(t))

′dtdλ =

=
1

2

1∫

0

t1∫

t0

(
ũtt(t, λ)

)T
(H(t))T ũtλ(t, λ)dtdλ +

1

2

1∫

0

t1∫

t0

(
ũtt(t, λ)

)T
(H(t))T (u(t)− u0(t))

′dtdλ =

=
1

2

1∫

0

t1∫

t0

∂

∂λ

((
ũtt(t, λ)

)T
(H(t))T ũt(t, λ)

)
dtdλ− 1

2

1∫

0

t1∫

t0

(
(u(t)− u0(t))

′′)T (H(t))T ũt(t, λ)dtdλ −

− 1

2

1∫

0

t1∫

t0

(
ũt(t, λ)

)T
(H ′(t))T (u(t)− u0(t))

′dtdλ− 1

2

1∫

0

t1∫

t0

(
ũt(t, λ)

)T
(H(t))T (u(t) − u0(t))

′′dtdλ =

=
1

2

t1∫

t0

[(
u′′(t)

)T
(H(t))Tu′(t)− (

u′′0(t)
)T

(H(t))T u′0(t)
]
dt−

− 1

2

1∫

0

t1∫

t0

(
ũt(t, λ)

)T
H(t)(u(t) − u0(t))

′′dtdλ− 1

2

1∫

0

t1∫

t0

(
ũt(t, λ)

)T
(H ′(t))T (u(t)− u0(t))

′dtdλ−

− 1

2

1∫

0

t1∫

t0

(
ũt(t, λ)

)T
(H(t))T (u(t)− u0(t))

′′dtdλ =

=
1

2

t1∫

t0

[(
u′′(t)

)T
(H(t))Tu′(t)− (

u′′0(t)
)T

(H(t))T u′0(t)
]
dt−

− 1

2

1∫

0

t1∫

t0

(
ũt(t, λ)

)T
(H ′(t))T (u(t)− u0(t))

′dtdλ. (3.12)

Далее, интеграл

1∫

0

t1∫

t0

(
ũt(t, λ)

)T (− (A′′(t))T + (B′(t))T − (C(t))T
)
(u(t) − u0(t))

′dtdλ



78 С. А. БУДОЧКИНА, Т.Х. ЛЫУ

запишем в виде

1∫

0

t1∫

t0

(
ũt(t, λ)

)T
(G(t))T (u(t)− u0(t))

′dtdλ, (3.13)

где

G(t) = −A′′(t) +B′(t)− C(t).

С учетом условий (2.5)–(2.7) имеем

(G(t))T =
(−A′′(t) +B′(t)− C(t)

)T
= −A′′(t) + 4A′′(t)−B′(t)− 6A′′(t) + 3B′(t)− C(t) =

= −3A′′(t) + 2B′(t)− C(t) = −A′′(t) +B′(t)− C(t)− 2A′′(t) +B′(t) = G(t)−H ′(t).
(3.14)

В соответствии с условием (3.14) интеграл (3.13) можно переписать следующим образом:

1∫

0

t1∫

t0

(
ũt(t, λ)

)T
(G(t))T (u(t) − u0(t))

′dtdλ =

1∫

0

t1∫

t0

(
ũt(t, λ)

)T
(G(t))T ũtλ(t, λ)dtdλ =

=

1∫

0

t1∫

t0

[
∂

∂λ

((
ũt(t, λ)

)T
(G(t))T ũt(t, λ)

)
− (

(u(t)− u0(t))
′)T (G(t))T ũt(t, λ)

]
dtdλ =

=

1∫

0

t1∫

t0

∂

∂λ

((
ũt(t, λ)

)T
(G(t))T ũt(t, λ)

)
dtdλ−

1∫

0

t1∫

t0

(
(u(t)− u0(t))

′)T (G(t)−H ′(t)
)
ũt(t, λ)dtdλ =

=

1∫

0

t1∫

t0

∂

∂λ

((
ũt(t, λ)

)T
(G(t))T ũt(t, λ)

)
dtdλ−

1∫

0

t1∫

t0

(
(u(t) − u0(t))

′)TG(t)ũt(t, λ)dtdλ+

+

1∫

0

t1∫

t0

(
(u(t)− u0(t))

′)TH ′(t)ũt(t, λ)dtdλ =

=

t1∫

t0

(
(u′(t))T (G(t))T u′(t)− (u′0(t))

T (G(t))T u′0(t)
)
dt−

−
1∫

0

t1∫

t0

(
ũt(t, λ)

)T
(G(t))T (u(t)− u0(t))

′dtdλ+

1∫

0

t1∫

t0

(
ũt(t, λ)

)T
(H ′(t))T (u(t)− u0(t))

′dtdλ.

Отсюда получаем

1∫

0

t1∫

t0

(
ũt(t, λ)

)T
(G(t))T (u(t)− u0(t))

′dtdλ =

=
1

2

t1∫

t0

(
(u′(t))T (G(t))T u′(t)− (u′0(t))

T (G(t))T u′0(t)
)
dt+

+
1

2

1∫

0

t1∫

t0

(
ũt(t, λ)

)T
(H ′(t))T (u(t)− u0(t))

′dtdλ. (3.15)
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Рассмотрим интеграл
1∫

0

t1∫

t0

(
ũt(t, λ)

)T (− (A′′′(t))T + (B′′(t))T − (C ′(t))T + (D(t))T
)
(u(t) − u0(t))dtdλ.

Обозначим

L(t) = −A′′′(t) +B′′(t)−C ′(t) +D(t).

Из условий (2.5)–(2.8) следует, что

(L(t))T =
(−A′′′(t) +B′′(t)− C ′(t) +D(t)

)T
=

= −A′′′(t) + 4A′′′(t)−B′′(t)− 6A′′′(t) + 3B′′(t)− C ′(t) + 4A′′′(t)− 3B′′(t) + 2C ′(t)−D(t) =

= A′′′(t)−B′′(t) + C ′(t)−D(t) = −L(t). (3.16)

Таким образом, интегрируя по частям и принимая во внимание, что (u− u0) ∈ D(N ′
u) (2.3), а

также условие (3.16), получим
1∫

0

t1∫

t0

(
ũt(t, λ)

)T (
L(t)

)T
(u(t)− u0(t))dtdλ =

1∫

0

t1∫

t0

(
ũt(t, λ)

)T (
L(t)

)T
ũλ(t, λ)dtdλ =

=

1∫

0

t1∫

t0

∂

∂λ

((
ũt(t, λ)

)T (
L(t)

)T
ũ(t, λ)

)
dtdλ−

1∫

0

t1∫

t0

((
ũtλ(t, λ)

)T (
L(t)

)T
ũ(t, λ)dtdλ =

=

t1∫

t0

((
u′(t)

)T
(L(t))Tu(t)− (

u′0(t)
)T

(L(t))Tu0(t)

)
dt+

+

1∫

0

t1∫

t0

(
u(t)− u0(t)

)T (
L′(t)

)T
ũ(t, λ)dtdλ+

1∫

0

t1∫

t0

(
u(t)− u0(t)

)T (
L(t)

)T
ũt(t, λ)dtdλ =

=

t1∫

t0

((
u′(t)

)T
(L(t))Tu(t)− (

u′0(t)
)T

(L(t))Tu0(t)

)
dt+

+

1∫

0

t1∫

t0

(
u(t)− u0(t)

)T (
L′(t)

)T
ũ(t, λ)dtdλ−

1∫

0

t1∫

t0

(
ũt(t, λ)

)T (
L(t)

)T
(u(t)− u0(t))dtdλ.

Отсюда следует, что

1∫

0

t1∫

t0

(
ũt(t, λ)

)T (
L(t)

)T
(u(t)− u0(t))dtdλ =

=
1

2

t1∫

t0

((
u′(t)

)T
(L(t))Tu(t)− (

u′0(t)
)T

(L(t))Tu0(t)

)
dt−

− 1

2

1∫

0

t1∫

t0

(
ũ(t, λ)

)T (
L′(t)

)T (
u(t)− u0(t)

)
dtdλ. (3.17)

Из условия потенциальности (2.9) имеем
(
E(t)

)T
= A(4)(t)−B′′′(t) + C ′′(t)−D′(t) + E(t) = −L′(t) + E(t) = (L′(t))T + E(t),
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поэтому интеграл
1∫

0

t1∫

t0

(
ũ(t, λ)

)T
(E(t))T (u(t) − u0(t))dtdλ

может быть представлен в виде
1∫

0

t1∫

t0

(
ũ(t, λ)

)T
(E(t))T (u(t)− u0(t))dtdλ =

1∫

0

t1∫

t0

(
ũ(t, λ)

)T
(E(t))T ũλ(t, λ)dtdλ =

=

1∫

0

t1∫

t0

∂

∂λ

((
ũ(t, λ)

)T
(E(t))T ũ(t, λ)

)
dtdλ−

1∫

0

t1∫

t0

(
u(t)− u0(t)

)T (
(L′(t))T +E(t)

)
ũ(t, λ)dtdλ =

=

t1∫

t0

(
(u(t))T (E(t))T u(t)− (u0(t))

T (E(t))Tu0(t)
)
dt−

−
1∫

0

t1∫

t0

(
u(t)− u0(t)

)T
(L′(t))T ũ(t, λ)dtdλ −

1∫

0

t1∫

t0

(
u(t)− u0(t)

)T
E(t)ũ(t, λ)dtdλ =

=

t1∫

t0

(
(u(t))T (E(t))T u(t)− (u0(t))

T (E(t))Tu0(t)
)
dt+

+

1∫

0

t1∫

t0

(
ũ(t, λ)

)T
(L′(t))T (u(t)− u0(t))dtdλ−

1∫

0

t1∫

t0

(
ũ(t, λ)

)T
(E(t))T (u(t)− u0(t))dtdλ.

Отсюда находим

1∫

0

t1∫

t0

(
ũ(t, λ)

)T
(E(t))T (u(t)− u0(t))dtdλ =

1

2

t1∫

t0

(
(u(t))T (E(t))T u(t)− (u0(t))

T (E(t))Tu0(t)
)
dt+

+
1

2

1∫

0

t1∫

t0

(
ũ(t, λ)

)T
(L′(t))T (u(t)− u0(t))dtdλ. (3.18)

Подставляя (3.9), (3.12), (3.15), (3.17), (3.18) в (3.8), получим

FN [u] =
1

2

t1∫

t0

(
(u′′(t))TA(t)u′′(t) + (u′′(t))T (H(t))Tu′(t) +

+ (u′(t))T (G(t))T u′(t) + (u′(t))T (L(t))Tu(t) + (u(t))T (E(t))Tu(t)

)
dt.

(3.19)

Таким образом, принимая во внимание (3.11), (3.14), (3.16), из (3.19) получаем функцио-
нал (3.1).

4. Случай одного обыкновенного дифференциального уравнения

Рассмотрим обыкновенное дифференциальное уравнение четвертого порядка

N(u) ≡ a(t)u(4)(t) + b(t)u′′′(t) + c(t)u′′(t) + d(t)u′(t) + e(t)u(t) = 0, t ∈ (t0, t1). (4.1)

Здесь u = u(t)—неизвестная функция, a ∈ C4[t0, t1], b ∈ C3[t0, t1], c ∈ C2[t0, t1], d ∈ C1[t0, t1],
e ∈ C[t0, t1]— заданные функции.
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Зададим область определения оператора N (4.1) в виде

D(N) =

{
u ∈ U = C4[t0, t1] : u(t0) = ϕ1, u(t1) = ϕ2, u

′(t0) = ϕ3, u
′(t1) = ϕ4

}
, (4.2)

где ϕk (k = 1, 4)— заданные постоянные.
Отметим, что

D(N ′
u) =

{
h ∈ U = C4[t0, t1] : h(t0) = 0, h(t1) = 0, h′(t0) = 0, h′(t1) = 0

}

и V = C[t0, t1].
Введем билинейную форму

Φ(v, g) =

t1∫

t0

v(t)g(t)dt. (4.3)

В данном случае теоремы 2.1 и 3.1 формулируются следующим образом.

Теорема 4.1. Оператор N (4.1) является потенциальным на множестве D(N) (4.2) отно-
сительно билинейной формы (4.3) тогда и только тогда, когда ∀t ∈ [t0, t1] выполнены следующие
условия:

b(t)− 2a′(t) = 0,

d(t) + a′′′(t)− c′(t) = 0.

Теорема 4.2. Если оператор N (4.1) является потенциальным на множестве D(N) (4.2)
относительно билинейной формы (4.3), то действие по Гамильтону—Остроградскому имеет
вид

FN [u] =
1

2

t1∫

t0

(
a(t)(u′′(t))2 + (a′′(t)− c(t))(u′(t))2 + e(t)(u(t))2

)
dt.

5. Заключение

В работе исследована прямая представимость одной системы обыкновенных дифференциаль-
ных уравнений в форме уравнений Лагранжа—Остроградского. Одним из возможных направ-
лений дальнейшего развития полученных результатов является разработка методов нахождения
первых интегралов рассматриваемой системы обыкновенных дифференциальных уравнений, ос-
нованных на применении теории преобразований переменных для установления инвариантно-
сти как самих уравнений, так и соответствующего функционала — действия по Гамильтону—
Остроградскому.
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1. Введение

В последние десятилетия появилось много статей, посвященных особому поведению решений
следующих классов полулинейных эллиптических уравнений:

−Δv + εvp = 0 в B1 \ {0} ⊂ R
N , (1.1)

где p > 1, ε = ±1 и vp = |v|p−1v. Первые исследования радиальных решений уравнения Лейна—
Эмдена (ε = −1) принадлежат Дж. Лейну и Р. Эмдену, и довольно хорошее изложение можно
найти в [7, с. 84–182]. В этой книге большое место также отведено уравнению Эмдена

Δv + eu = 0 в B1 \ {0} ⊂ R
N . (1.2)

Этот дробный аналог этого уравнения не рассматривается в настоящей статье (современное иссле-
дование уравнения (1.2) см. в [2]). Уравнение Эмдена—Фаулера (ε = 1) было подробно рассмотре-
но Р. Фаулером в радиальном случае [13]. Дальнейшие исследования принадлежат Зоммерфельду

в теории атомов Томаса—Ферми [16,20]. Случай p =
N + 2

N − 2
в основном известен из-за его связей

с конформной деформацией римановой метрики с ε = −1 в рамках положительной кривизны [17]
или ε = 1 в гиперболическом пространстве [18].
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Поведение сингулярных решений (1.1) в N -мерной области зависит от трех критических пока-
зателей:

p1 =
N

N − 2
, p2 =

N + 2

N − 2
при N � 3, p3 =

N + 1

N − 3
при N � 4. (1.3)

Основными инструментами анализа поведения решений вблизи изолированной сингулярности
являются:
1. Существование универсальной априорной оценки: благодаря конструкции Келлера—Оссер-

мана оценку просто получить при ε = 1, гораздо сложнее при ε = −1 с помощью метода
Бернштейна и неравенства Гарнака, и это только в диапазоне 1 < p < p2. Более того,
универсальная оценка невозможна, если p = p3.

2. Асимптотическая радиальность при ε = −1 и 1 < p � p2 имеет место благодаря работе
Каффарелли, Гидаса и Шпрука [4].

3. Существование явных радиальных решений в виде v(x) = ΛN,p|x|−
2

p−1 для ε = 1 при условии
1 < p < p1 и для ε = −1 при условии p > p1.

4. Методы динамических систем при p �= p2: функция Ляпунова, характеристика возможных
предельных множеств и использование теории аналитических функционалов Л. Саймона
при ε = −1 (см. [2,19]). Для такой задачи уравнение в B1\{0} преобразуется в эллиптическое
уравнение в бесконечном цилиндре R− × SN−1 благодаря преобразованию

w(t, σ) = r
2

p−1 v(r, σ), t = ln r, σ ∈ SN−1. (1.4)

Следовательно, (1.1) превращается в

wtt +ΘN,pwt +ΔSN−1w +ΛN,pw − εwp = 0 в R− × SN−1, (1.5)

где

ΘN,p = N − 2
p + 1

p − 1
, ΛN,p =

2

p− 1

(
2

p− 1
+ 2−N

)
.

Роль p1 и p2 становится очевидной, поскольку если p = p1, то ΛN,p = 0, и если p = p2,
то ΘN,p = 0. Обращение в нуль этих двух коэффициентов кардинально меняет поведение
решений (1.5).

Работы по полулинейной модели (1.1) дали начало многочисленным расширениям, в которых
лапласиан заменяется другим оператором диффузии, таким как p-лапласиан, билапласиан или
дробный лапласиан. В этой статье мы представляем случай, когда диффузия смещается дроб-
ным лапласианом, и подчеркиваем подход, основанный на гармоническом или s-гармоническом
расширении. Многие результаты, представленные ниже, были получены в сотрудничестве с Х. Че-
ном [11].
Если s ∈ (0, 1), дробный Лапласиан (−Δ)s в R

N \ {0} определен на функциях v ∈ C2(RN \
{0}) ∩ L1

μs
(RN ), где μs(x) = (1 + |x|)−N−2s, выражением

(−Δ)sv(x) = cN,s lim
ε→0

∫

|x−y|>ε

v(x) − v(y)

|x− y|N+2s
dy для x ∈ R

N \ {0}, (1.6)

где cN,s = 22sπ−
N
2
Γ(N+2s

2 )

Γ(1− s)
. Задача о сингулярности для дробных уравнений Эмдена в проколотой

области Ω, содержащей B1, имеет вид

(−Δ)sv + εvp = 0 в Ω \ {0},
v = 0 в Ωc,

(1.7)

где ε = ±1 и Ωc = R
N \ Ω. Мы сталкиваемся с тремя критическими значениями показателя

степени p:

p0,s = 1 +
2s

N
, p1,s =

N

N − 2s
, p2,s =

N + 2s

N − 2s
при N − 2s > 0. (1.8)

В случае ε = −1 доказаны следующие расширения оценки Гидаса и Шпрука [15].
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Теорема 1.1 (см. [24, 25]). Пусть ε = −1. Если p1,s < p < p2,s, любое положительное реше-
ние (1.7) либо является регулярным, либо удовлетворяет для некоторого универсального c > 0
неравенству

c−1|x|− 2s
p−1 � v(x) � c|x|− 2s

p−1 ∀x ∈ B 1
2
. (1.9)

Более того, асимптотическая радиальность, как в конструкции Каффарелли, Гидаса и Шпру-
ка [4], также верна в [5].

Теорема 1.2 (см. [5]). Пусть ε = −1. Если p = p2,s, то имеет место предыдущий результат
и существует радиальное решение v̄ уравнения (1.7) такое, что

v(x) = v̄(|x|)(1 + o(1)) при x→ 0. (1.10)

В случае ε = 1 несколько результатов были получены Ченом и Вероном [9] при изучении
проблемы с мерой μ в правой части

(−Δ)sv + vp = μ в Ω,

v = 0 в Ωc.
(1.11)

Теорема 1.3 (см. [9]). Если 1 < p < p1,s, для любой положительной ограниченной меры су-
ществует единственное решение vμ для (1.11). Если μ = kδ0, то

vkδ0 = kcN,s|x|2s−N (1 + o(1)) при x→ 0. (1.12)

Отображение �→ vkδ0 — возрастающее и имеет предел (конечный или бесконечный) v∞δ0 .

Теорема 1.4 (см. [10]). При предыдущих предположениях:
1. если 0 < p � p0,s, то v∞δ0(x) = ∞ для всех x ∈ Ω;
2. если p0,s < p < p1,s, то v∞δ0 является положительным решением задачи

(−Δ)sv + vp = 0 в Ω \ {0},
v = 0 в Ωc,

(1.13)

удовлетворяющим

v∞δ0 = ΛN,p,s|x|−
2s

p−1 (1 + o(1)), (1.14)

где

ΛN,p,s =
2s

p− 1

(
2s

p− 1
+ 2s −N

)
. (1.15)

Если p � p1,s, то для решения (1.11) необходимы емкостные условия на μ, как в случае s = 1.

2. Продолжение Каффарелли—Сильвестра

Определение (−Δ)
1
2 через продолжение гармонических функций является классическим (см.,

например, [21]). В 2007 году Каффарелли и Сильвестр ввели в [6] обобщение гармонического
расширения через вырожденные эллиптические операторы. С этим расширением задача (1.7)
наследует следующую форму: в R

N+1
+ =

{
ξ = (x, z) : x ∈ R

N , z > 0
}
изучение (1.7) заменяется на

div(z1−2s∇u) = 0 в R
N+1
+ ,

∂νsu(·, 0) + εu(·, 0)p = 0 в Ω \ {0},
u(·, 0) = 0 в R

N \ Ω,
(2.1)

и
v = u(·, 0) в R

N ,

так как
(−Δ)sv(x) = − lim

z→0
z1−2suz(x, z) := ∂νsu(x, 0). (2.2)
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Если s =
1

2
, задача (2.1) сводится к нелинейной задаче Дирихле—Неймана

Δξu = 0 в R
N+1
+ ,

uν(·, 0) + εu(·, 0)p = 0 в Ω \ {0},
u(·, 0) = 0 в R

N \Ω.
(2.3)

В случае ε = 1 это уравнение изучается в [3].
Функция u, определенная в R

N+1
+ , называется s-гармонической, если она удовлетворяет усло-

вию
div(z1−2s∇u) = 0 в R

N+1
+ . (2.4)

Следующая теорема дает важный инструмент, доказанный в [11].

Теорема 2.1. Если 0 < s < 1, то любая положительная s-гармоническая функция, опреде-
ленная в R

N+1
+ , допускает след на ∂RN+1

+ , который является борелевской мерой μ � 0 такой,
что ∫

RN

dμ

(1 + |x|)N+2s
<∞. (2.5)

Вторым важным результатом относительно задачи (2.1) является априорная оценка в случае
ε = 1, 0 < s < 1 (см. [11]). Метод доказательства объединяет технику blow-up и приведенную
выше теорему о следе. Заметим, что в отличие от случая ε = 1, s = 1, этот результат не может
быть получен путем построения локальных суперрешений.

Теорема 2.2. Если ε = 1 и p > p0,s, любое положительное решение u уравнения (2.2) с Ω = B1

удовлетворяет с некоторой универсальной константой c > 0 неравенству

u(x, z) � cρ−
2s

p−1 ∀(x, z)) ∈ B̃+
1
2

, (2.6)

где ρ =
√|x|2 + z2 и B̃+

1
2

= {(x, z) ∈ R
N+1
+ : ρ < 1}.

Заметим, что такая оценка невозможна, если 1 < p < p0,s.

3. Самоподобные решения

Уравнение (2.2) с Ω = R
N инвариантно относительно преобразования подобия Tλ (λ > 0),

определяемого формулой

Tλ[u](x) = λ
2s

p−1u(λx) для всех x �= 0.

Рассмотрим сферические координаты в R
N+1
+ :=

{
ξ = (ρ, σ) : ρ > 0, σ ∈ S

N
+

}
, где

S
N
+ =

{
σ = (x, z) = (σ′ cosφ, sinφ) : σ′ ∈ S

N−1, φ ∈
[
0,
π

2

]}
.

Самоподобные решения (2.1) имеют следующий вид:

u(x, z) = u(ρ, σ) = ρ−
2s

p−1ω(σ) для всех (ρ, σ) ∈ R+ × S
N
+ . (3.1)

Пусть As — вырожденный эллиптический оператор на N -сфере S
N , определяемый формулой

As[w] =
1

λs(φ)(cos φ)N−1

(
λs(φ)(cos φ)

N−1 wφ

)
φ
+

1

cos2 φ
ΔSN−1w, (3.2)

где
λs(φ) = (sinφ)1−2s.

С точностью до поворота и соответствующего выбора сферических переменных функция ω в (3.1)
удовлетворяет условию

As[ω] + ΛN,p,sω = 0 в S
N
+ ,

∂ω

∂νs
+ ε|ω|p−1ω = 0 в S

N−1,
(3.3)
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где ΛN,p,s определено в (1.15), а
∂

∂νs
—конормальная внешняя производная на ∂SN+ = S

N−1, со-

ответствующая As, если инвариантная мера dS, полученная изометрическим вложением S
N в

R
N+1, равна

dS(σ) = (cosφ)N−1dS′(σ′)dφ.
Мы называем Eε (соответственно, E+

ε ) множеством решений (соответственно, множеством
положительных решений) (3.3). В следующих теоремах, доказанных в [11], мы даем структуру
Eε и E+

ε .

Теорема 3.1. Пусть s ∈ (0, 1), ε = 1 и p > 1.

1. Если p � p1,s, то E1 = {0}.
2. Если 1 < p � p0,s, то E+

1 = {0}.
3. Если p0,s < p < p1,s, то E+

1 = {0, ω1}, где ω1—положительное решение (3.3).

Доказательство. Используемые методы являются адаптациями s = 1 к дробному случаю.

1. Несуществование по монотонности: если p � p1,s, мы умножаем уравнение на ω, интегрируем
по S

N
+ с весовой функцией λs(φ) и используем тот факт, что ΛN,p,s � 0.

2. Существование получается путем минимизации функционала

J(w) =
1

2

∫

S
N
+

(
w2
φ +

1

cos2 φ
|∇′w|2 − ΛN,p,sw

2
)
λs(φ)dS +

1

p+ 1

∫

SN−1

|γ0(w)|p+1dS′

в пространстве W (SN+ ) функций w таких, что B[w,w] < +∞, где

B[w, v] =
∫

S
N
+

(
wφvφ +

1

cos2 φ
∇′w · ∇′v

)
λs(φ)dS,

а γ0 обозначает оператор следа из W (SN+ ) в L2(SN−1), отождествляемый с w(0, θ).

3. Для доказательства единственности положительных решений предположим, что ω и ω̃—два
таких решения. Тогда

0 =

∫

S
N
+

(As[ω]

ω
− As[ω̃]

ω̃

)
(ω2 − ω̃2)λsdS =

=

∫

SN−1

(
∂φsω

(
ω − ω̃2

ω

)
− ∂φs ω̃

(
ω̃ − ω2

ω̃

))
dS′ −

(
B
[
ω, ω − ω̃2

ω

]
− B

[
ω̃, ω̃ − ω2

ω̃

])
= A+B.

Технические вычисления A и B дают

A =

∫

SN−1

[
−ωp

(
ω − ω̃2

ω

)
+ ω̃p

(
ω̃ − ω2

ω̃

)]
dS′ =−

∫

SN−1

(
ω2 − ω̃2

)(
ωp−1 − ω̃p−1

)
dS′,

тогда A � 0 и

B = −
∫

SN−1

[( 1

ω2
+

1

ω̃2

)(
ωω̃φ − ω̃ωφ

)2
+

1

cos2 φ

∣∣ω∇′ω̃ − ω̃∇′ω
∣∣2
]
λs(φ)dS

′,

тогда B � 0. Поэтому ω = ω̃.

Как и в случае s = 1, единственность общего решения сохраняется в небольшом диапазоне
показателя p, что можно доказать, убедившись, что ω совпадает со своим сферическим средним
(см. [11]).

Теорема 3.2. При предположениях теоремы 3.1 относительно s и ε, существует p∗s ∈
(1, p1,s) такое, что если p∗s � p < p1,s, то E1 = {0, ω1,−ω1}.
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Явное значение p∗s не является простым, поскольку имеем

p∗s =
N + 2s+

√
N2 + 4N(1− s) + 4(s2 − 1)

N − 2s+
√
N2 + 4N(1− s) + 4(s2 − 1)

,

но если s = 1, мы восстанавливаем оптимальное значение, полученное в [22], которое равно

p∗1 =
N + 1

N − 1
.

Доказательство теоремы 3.2 длинное и включает несколько различных шагов, которые мы
представим ниже.

Лемма 3.1. Если p1,s > p � p∗s, то любой элемент E1 зависит только от азимутальной
переменной φ.

Доказательство. Обозначим через (φ, σ) ∈
(
0,
π

2

)
× SN−1 сферические координаты на SN

+ , а

через ω̄(φ)—функцию, которая является SN−1-средним решения ω, то есть

ω̄(φ) =
1

|SN−1|
∫

SN−1

ω(φ, σ′)dS(σ′).

Усредняя (3.3) по SN−1, мы имеем, что

As[ω] + ΛN,p,sω = 0 в S
N
+ ,

∂ω

∂νs
+ ωp = 0 в S

N−1,

где
As[ω] =

1

λs(φ)(cos φ)N−1

(
λs(φ)(cos φ)

N−1ωφ

)
φ
.

Используя неравенство Виртингера, получаем

(ΛN,p,s + 1−N)

∫

S
N
+

(ω − ω)2λs(φ)dS � 2−p

∫

SN−1

|ω − ω|p+1dS′.

Условие на p подразумевает, что ΛN,p,s + 1−N � 0, таким образом, ω = ω.

Поскольку при условии p∗s � p < p1,s решение ω зависит только от переменной φ, естествен-
но ввести соответствующее дифференциальное уравнение, которому оно удовлетворяет. В более
общем виде мы доказываем методом Коши—Липшица—Пикара следующую лемму.

Лемма 3.2. Пусть Λ �= 0. Тогда для любого a �= 0 существует единственная функция ωa,

удовлетворяющая в
(
0,
π

2

)

ωa(φ) = a− Λ

φ∫

0

(sin σ)2s−1(cos σ)1−N

π
2∫

σ

ωa(θ)(sin θ)
1−2s(cos θ)N−1dθdσ. (3.4)

Кроме того, ωa

(π
2

)
= a и ωa = aω1. Наконец, если a > 0 и Λ < 0 (соответственно, Λ > 0), то

ωa положительна и возрастает (соответственно, убывает).

Доказательство теоремы 3.2. Мы рассматриваем только решения, зависящие от φ. Такое реше-
ние ω удовлетворяет

− (
(sin φ)1−2s(cos φ)N−1ωφ

)
φ
= ΛN,p,s(sinφ)

1−2s(cos φ)N−1ω− lim
φ→0

(sinφ)1−2sωφ(φ)+ω
p(0) = 0. (3.5)

Поскольку ωφ

(π
2

)
= 0, равенство (3.5) эквивалентно

ωa(φ) = ω
(π
2

)
− ΛN,p,s

φ∫

0

(sin σ)2s−1(cos σ)1−N

π
2∫

σ

ωa(θ)(sin θ)
1−2s(cos θ)N−1dθdσ. (3.6)
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Тогда a = ω
(π
2

)
— это параметр метода стрельбы. Поскольку ωa = aω1, задача сводится к поиску

a > 0 такого, что

F ∗(a) = − lim
φ→0

(sinφ)1−2sωaφ(φ) + ωp
a(0) = a

(
lim
φ→0

(sinφ)1−2sω1φ(φ) + ap−1ωp
1(0)

)
= 0. (3.7)

Результат следует из того, что a �→ a−1F ∗(a) является непрерывной, возрастающей, отрицатель-
ной при a = 0 и стремится к бесконечности при a→ ∞.

Аналогичным образом описываем множество E−1.

Теорема 3.3. Пусть s ∈ (0, 1), ε = −1 и p > 1.

1. Если p � p1,s, то E+
−1 = {0}.

2. Если p > p1,s, то E+
−1 = {0, ω2}, где ω2—положительное решение (3.3), зависящее только

от одной переменной.

Обратите внимание, что утверждение 2 теоремы 3.3 доказывается не методом леммы 3.1, а
адаптацией метода движущихся плоскостей [14].

4. Сингулярность решений

Энергетический метод не зависит от значения ε. Положим

u(ξ) = u(ρ, σ) = r−
2s

p−1w(t, σ), t = ln ρ, (4.1)

и w(t, σ) = w(t, σ′, φ). Тогда w удовлетворяет задаче

wtt +ΘN,p,swt + ΛN,p,sw +As[w] = 0 в R× S
N
+ ,

∂w

∂νs
+ ε|w|p−1w = 0 в R× S

N−1,
(4.2)

где ΘN,p,s = N − 2s
p+ 1

p− 1
, а ΛN,p,s уже определены в (1.15).

∂w

∂νs
(t, σ′) = − lim

φ→0

(
sinφ)1−2swφ(t, σ

′, φ)
)
.

Заметим, что ΘN,p,s = 0 тогда и только тогда, когда p = p2,s (консервативный случай). Определим
пространство X =

{
ζ ∈ Cs(SN+ ) : ζ(·, 0) ∈ C2(SN−1)

}
и предельные множества траектории как

Γ−[w] =
⋂
t�0

(⋃ {w(τ, ·), τ � t}X
)
(т. е. сингулярность) и Γ+[w] =

⋂
t�0

(⋃ {w(τ, ·), τ � t}X
)
(т. е.

поведение на бесконечности).

Теорема 4.1. Предположим, что s ∈ (0, 1), p ∈ (1,+∞)\{p2,s}, ε = ±1 и пусть u ∈ C(RN+1
+ \

{(0, 0)}) ∩ C2(RN+1
+ ) будет решением (2.1) таким, что

|u(x, z)| � c
(|x|2 + z2

)− s
p−1 при 0 < |x| < 1 (или при |x| > 1) (4.3)

для некоторого c > 0. Тогда Γ−[w] (соответственно, Γ+[w]) является непустым компактным
связным подмножеством множества Eε, определяемым уравнением (3.3).

Доказательство. Энергетический метод стандартен, мы приводим доказательство при t → −∞
(случай сингулярности). Положим

Iε[w](t) = 1

2

∫

S
N
+

(|∇′w|2 − ΛN,p,sw
2 − w2

t

)
dμs − ε

p+ 1

∫

SN−1

|w|pdS′.

Тогда w ограничена в C2(SN+ × (−∞,−1]) и выполняется

d

dt
Iε[w](t) =

(
p− 2s(p+ 1)

p− 1

)∫

S
N
+

w2
t dμs = ΘN,p,s

∫

S
N
+

w2
t dμs. (4.4)
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Так как p �= p2,s, то ΘN,p,s �= 0, и мы имеем оценку затухания
−1∫

−∞

∫

S
N
+

w2
t dμsdt < +∞.

Используя равномерную непрерывность, получим, что wt(t, .) → 0. С помощью оценок регуляр-
ности и простых манипуляций получаем, что wtt(t, .) → 0.

В качестве следствий этого общего результата, с учетом теорем 3.1 и 3.2 получим описание
изолированных особенностей положительных решений (2.1).

Следствие 4.1 (уравнения Эмдена—Фаулера). Пусть s ∈ (0, 1), ε = 1. Если u ∈ C1
(
R
N+1
+ \

{(0, 0)}) ∩ C2(RN+1
+ ) удовлетворяет (2.1) и (4.3), v = u(·, 0), и если w определено как (4.2), то

при t→ −∞ выполняется:
1. Если p � p1,s, то w(t, ·) → 0 равномерно в S

N
+ , следовательно, функция v ≡ 0 и функция u

являются гладкими.
2. Если p0,s < p < p1,s и u � 0, то w(t, ·) сходится равномерно в S

N
+ либо к ω1, либо к 0.

3. Если p∗s � p <
N

N − 2s
, то w(t, ·) сходится равномерно в S

N
+ к � ∈ {0, ω1,−ω1}.

4. Если 1 < p � p0,s, и u � 0, то w(t, ·) → 0 равномерно в S
N
+ .

5. Пусть 1 < p < p1,s, u � 0. Если w(t, ·) → 0 равномерно в S
N
+ , то существует k ∈ R+ такое,

что
e(N− 2s

p−1
)tw(t, σ′, φ) → k sin2s(φ) равномерно в S

N
+ .

Если k = 0, то функция w ≡ 0 и функция u являются гладкими.

Следствие 4.2 (уравнения Лейна—Эмдена). Пусть s ∈ (0, 1), ε = −1, u ∈ C1
(
R
N+1
+ \

{(0, 0)}) ∩C2(RN+1
+ ) неотрицательны и удовлетворяют (2.1) и (4.3), v = u(·, 0). Пусть w опре-

деляется как (4.2). Если p �= p2,s, то при t→ −∞ выполняется:
1. Если p > p1,s, то w(t, ·) сходится в L∞(SN+ ) либо к ω1, либо к 0.

2. Если 1 < p � p1,s, то w(t, ·) → 0 в L∞(SN+ ).

3. Если p > p1,s и w(t, ·) сходится к 0, то u является гладкой функцией в R
N+1
+ , и v тоже.

4. Если 1 < p < p1,s, то существует k � 0 такое, что

e
(N− 2s

p−1
)t
w(t, σ′, φ) → k(sinφ)2s равномерно в S

N
+ .

Тонкой частью доказательства следствия 4.2 является утверждение 3. Мы адаптируем метод,
разработанный в [8], чтобы доказать от противного, что существует ε > 0 такое, что

lim
t→∞ ‖w(t, .)‖L∞(SN+ ) = 0 =⇒ ∃ε > 0, ∃c > 0 : w(t, σ) � ceεt при t � −1.

Затем технический итеративный «каскадный процесс» позволяет улучшить эту оценку до

w(t, .) � ce
2s

p−1
t
.

Оставшаяся часть доказательства представляет собой просто анализ типа Фурье с оценками
компонент w(t, .) на собственных пространствах −ΔSN .

В утверждении 2 при p = p1,s скорость убывания w(t, .) может быть уточнена. Если s = 1,
аналогичный вопрос решен П. Авилесом в [1]. Следующий результат доказан в [12, 23].

Теорема 4.2. Пусть s ∈ (0, 1), ε = −1, p = p1,s а функция u неотрицательна, принадлежит
C1

(
R
N+1
+ \ {(0, 0)}) ∩ C2(RN+1

+ ) и удовлетворяет (2.1), (4.3). Тогда либо u гладкая, либо

lim
x→0

|x|N−2s(− ln |x|)N−2s
2s v(x) = C(N, s)

для некоторой явной константы C(N, s).
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9. Chen H., Véron L. Semilinear fractional elliptic equations involving measures// J. Differ. Equ. — 2014. —
257. — C. 1457–1486.
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1. Введение

Пусть Ω ⊂ R
n, n = 2, 3,— ограниченная область границей ∂Ω класса C2. Рассматривается

следующая краевая задача:

n∑
i=1

ui
∂v

∂xi
− νΔv − 2κDiv

(
n∑

i=1

vi
∂E(v)
∂xi

)
+ grad p = f, x ∈ Ω; (1.1)

u = (I − α2Δ)−1v, x ∈ Ω; (1.2)
div v = 0, x ∈ Ω; v|∂Ω = 0. (1.3)

Здесь v(x)— вектор-функция скорости, u(x)— вектор-функция модифицированной скорости дви-
жения частицы среды, определяемая равенством (1.2), p(x)—функция давления, f(x)—плот-
ность внешних сил, ν > 0—кинематический коэффициент вязкости, а κ > 0— время запаз-
дывания (время релаксации деформаций), α > 0— скалярный параметр, E = (Eij(v))— тензор
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скоростей деформации, Eij(v) = 1

2

( ∂vi
∂xj

+
∂vj
∂xi

)
, DivA—дивергенция тензора A, т. е. вектор

DivA =

⎛
⎝ n∑

j=1

∂a1j(t, x)

∂xj
, · · · ,

n∑
j=1

∂anj(t, x)

∂xj

⎞
⎠ .

Изучаемая в работе задача описывает стационарное движение растворов полимеров. Данная
модель имеет реологическое (определяющее тип жидкости) соотношение вида

σ = 2νE + 2κ
dE
dt
,

где σ—девиатор тензора напряжений. Данная модель также получила название модель
Кельвина—Фойгта (см. работы [4, 9, 20–22]). Группа ученых из Санкт-Петербурга провела экс-
перименты и доказала, что именно данное реологическое соотношение описывают течение слабо
концентрированных водных растворов полимеров, например, растворов полиэтиленоксида и по-
лиакриламида, растворов полиакриламида и гуаровой смолы [2, 12]. Поэтому рассматриваемую
модель также часто называют моделью движения водных растворов полимеров.
Также отметим, что первая теоретическая модель движения водных растворов полимеров,

учитывающая их релаксационные свойства, была сформулирована в работе Я.И. Войткунского,
В.Б. Амфилохиева и В.А. Павловского [3]. Авторы исходили из варианта модели максвеллов-
ского типа для вязкоупругой жидкости. Затем в работе В.А. Павловского [12] эта модель была
упрощена и использовалась для описания турбулентного пограничного слоя в предельном случае
малых времен релаксации. Поэтому рассматриваемую модель также часто называют моделью
Павловского (см. [13]).
Краевая задача (1.1)–(1.3) является альфа-моделью I класса. Альфа-модели представляют со-

бой своего рода регуляризованные приближенные системы, которые зависят от некоторого поло-
жительного параметра α, причем регуляризация осуществляется путем некоторой фильтрации
вектора скорости, который стоит в аргументе нелинейного члена. Параметр α отражает ши-
рину шкалы пространственной фильтрации для модифицированной скорости. В качестве ядра
фильтрации наиболее часто используют оператор Гельмгольца I−α2Δ. Выбор такого оператора
связан с его хорошими математическими свойствами. Идея использования такого рода аппрок-
симаций впервые возникла в работе Ж. Лере [19] (в данной работе Ж. Лере использовал общий
вид ядра фильтрации) для доказательства существования слабого решения системы уравнений
Навье—Стокса. С одной стороны, интерес к изучению альфа-моделей связан с изучением исход-
ных моделей, с другой стороны, в последнее время альфа-модели стали изучаться как независи-
мые системы и применяться к исследованию эффектов турбулентности для потоков жидкости и
в численных исследованиях. Альфа-модели представляют больший интерес для прикладных уче-
ных, производства и промышленности, чем исходные модели, ввиду более простого численного
исследования.
Однако большая часть работ по исследованию разрешимости альфа-моделей посвящена мо-

делям движения идеальной или ньютоновской жидкости (см. [16–18]). Только за последние
несколько лет появились работы, посвященные альфа-моделям для неньютоновской жидкости
(см. [5–7]). Данная работа продолжает исследования разрешимости альфа-моделей для неньюто-
новских жидкостей, а именно, для модели, описывающей движение водных растворов полимеров.
Работа организована следующим образом. Второй раздел посвящен описанию используемых

функциональных пространств, введению определения слабого решения для изучаемой краевой
задачи и формулировке основного результата работы. В третьем разделе вводится аппроксима-
ционная задача и изучается ее разрешимость. Для этого в пункте 3.1 доказываются необходимые
априорные оценки решений аппроксимационной задачи, а в пункте 3.2 применяется теория то-
пологической степени Лере—Шаудера для вполне непрерывных векторных полей. В четвертом
разделе доказывается предельный переход к решению исходной задачи. Пятый раздел посвящен
обобщению полученных результатов на случай неограниченной области Ω.
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2. Постановка задачи и формулировка результатов

Через D(Ω)n будем обозначать пространство функций на Ω со значениями в R
n класса C∞

с компактным носителем, содержащимся в Ω; V = {v : v ∈ D(Ω)n, div v = 0}—подмноже-
ство соленоидальных функций пространства D(Ω)n; H — замыкание V по норме пространства
L2(Ω)

n; V — замыкание V по норме пространства W 1
2(Ω)

n; X — замыкание V по норме простран-
ства W 3

2(Ω)
n.

Определение 2.1. Пусть f ∈ V ∗. Слабым решением краевой задачи (1.1)–(1.3) называется
функция v ∈ V, удовлетворяющая для любого ϕ ∈ X равенству:

ν

∫

Ω

∇v : ∇ϕdx−
∫

Ω

n∑
i,j=1

(Δ−1
α v)ivj

∂ϕj

∂xi
dx−

− κ

∫

Ω

n∑
i,j,k=1

vk
∂vi
∂xj

∂2ϕj

∂xi∂xk
dx− κ

∫

Ω

n∑
i,j,k=1

vk
∂vj
∂xi

∂2ϕj

∂xi∂xk
dx =

∫

Ω

fϕdx.

Здесь через Δα : V → V ∗ обозначим оператор Δα = (J + α2A), где J = PI, I — тождественный
оператор, P —оператор Лере. В силу [10, лемма 4.4.4] оператор Δα обратим. Применив проек-
тор Лере P : L2(Ω)

n → H к обеим частям равенства v = (I − α2Δ)u, выразим из последнего
равенства u: u = (J + α2A)−1v = Δ−1

α v.

Одним из основных результатов данной работы является следующая теорема.

Теорема 2.1. Пусть Ω— ограниченная область пространства Rn и n = 2, 3. Тогда для любого
f ∈ V ∗ краевая задача (1.1)–(1.3) имеет хотя бы одно слабое решение v∗ ∈ V.

Доказательство данной теоремы 2.1 состоит из нескольких частей. Сначала на основе аппрокси-
мационно-топологического подхода к исследованию математических задач гидродинамики, раз-
работанного профессором В. Г. Звягиным (см. [8]), доказывается существование слабых решений
исследуемой задачи. Для этого вводится семейство вспомогательных задач, зависящих от малого
параметра ε > 0, доказываются априорные оценки решений и на основе теории топологической
степени Лере—Шаудера доказывается существование слабых решений вспомогательной задачи.
Далее для доказательства разрешимости исходной задачи на основе необходимых оценок уста-
навливается предельный переход.
Полученный результат можно обобщить на случай неограниченной области.

Теорема 2.2. Пусть Ω—произвольная область пространства Rn и n = 2, 3. Тогда для любого
f ∈ V ∗ краевая задача (1.1)–(1.3) имеет хотя бы одно слабое решение v∗ ∈ V.

Доказательство данной теоремы 2.2 приведено в разделе 5.

3. Аппроксимационная задача

Рассмотрим следующую аппроксимационную задачу с малым параметром.

Задача 3.1. Пусть f ∈ V ∗. Найти функцию v ∈ X, удовлетворяющую для любого ϕ ∈ X
равенству:

ε

∫

Ω

∇ (Δv) : ∇ (Δϕ) dx−
∫

Ω

n∑
i,j=1

(Δ−1
α v)ivj

∂ϕj

∂xi
dx+ ν

∫

Ω

∇v : ∇ϕdx−

− κ

∫

Ω

n∑
i,j,k=1

vk
∂vi
∂xj

∂2ϕj

∂xi∂xk
dx− κ

∫

Ω

n∑
i,j,k=1

vk
∂vj
∂xi

∂2ϕj

∂xi∂xk
dx =

∫

Ω

fϕdx. (3.1)

Здесь ε—некоторое фиксированное положительное число.

Для исследования аппроксимационной задачи перейдем к операторной трактовке. Определим
операторы A,N,B1, B2, B3 с помощью следующих равенств:

A : V → V ∗, 〈Av,ϕ〉 =
∫

Ω

∇v : ∇ϕdx, v, ϕ ∈ V ;
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N : X → X∗, 〈Nv,ϕ〉 =
∫

Ω

∇(Δv) : ∇(Δϕ) dx, v, ϕ ∈ X;

B1 : L4(Ω)
n → V ∗, 〈B1(v), ϕ〉 =

∫

Ω

n∑
i,j=1

(Δ−1
α v)ivj

∂ϕj

∂xi
dx, v ∈ L4(Ω)

n, ϕ ∈ V ;

B2 : V → X∗, 〈B2(v), ϕ〉 =
∫

Ω

n∑
i,j,k=1

vk
∂vi
∂xj

∂2ϕj

∂xi∂xk
dx, v ∈ V, ϕ ∈ X;

B3 : V → X∗, 〈B3(v), ϕ〉 =
∫

Ω

n∑
i,j,k=1

vk
∂vj
∂xi

∂2ϕj

∂xi∂xk
dx, v ∈ V, ϕ ∈ X.

Замечание 3.1. Заметим, что V вложено в L4(Ω)
n для n = 2, 3, значит, B1 можно рассматри-

вать и как отображение B1 : V → V ∗, а поскольку X вложено в V, то операторы A,Bi, i = 1, 2, 3,
можно рассматривать и как отображения A,B1, B2, B3 : X → X∗. При этом, чтобы не нагромож-
дать обозначения, будем использовать одну и ту же букву для обозначения операторов, опреде-
ленных одной и той же формулой, но действующих в разных функциональных пространствах,
когда из контекста ясно, в каких функциональных пространствах действуют операторы в данном
месте текста.

В силу произвольности ϕ ∈ X в задаче 3.1 равенство (3.1) эквивалентно следующему опера-
торному уравнению:

εNv + νAv −B1(v) − κB2(v)− κB3(v) = f. (3.2)

Таким образом, каждое решение задачи 3.1 является решением операторного уравнения (3.2)
и обратно.
Также введём операторы при помощи следующих равенств:

Lε : X → X∗, Lε(v) = εNv;

K : X → X∗, K(v) = νAv −B1(v)− κB2(v)− κB3(v).

В этих обозначениях уравнение (3.2) записывается в виде:

Lε(v) +K(v) = f. (3.3)

Для дальнейшего нам необходимо исследовать свойства операторов A,Lε, B1, B2, B3,K.

Лемма 3.1. Для оператора A имеют место следующие свойства:
1. Оператор A : V → V ∗ непрерывен, и для него имеет место оценка

‖Av‖V ∗ � ‖v‖V . (3.4)

2. Оператор A : X → X∗ вполне непрерывен.

Доказательство.
1. Достаточно показать ограниченность линейного оператора A. По определению имеем

|〈Av,ϕ〉| =
∣∣∣∣∣∣
∫

Ω

∇v : ∇ϕdx
∣∣∣∣∣∣ � ‖v‖V ‖ϕ‖V .

Отсюда и следует неравенство (3.4) и непрерывность оператора A.
2. Докажем вполне непрерывность оператора A, действующего из X в X∗. Из первого пункта

этой леммы имеем, что оператор A : V → V ∗ непрерывен, а в композиции отображений X ⊂
V

A−→ V ∗ ⊂ X∗ первое вложение вполне непрерывно. Учитывая, что отображение A и последнее
вложение непрерывны, получаем, что отображение A : X → X∗ вполне непрерывно.

Лемма 3.2. Оператор Lε = εN : X → X∗ непрерывен, обратим, и для него имеет место
оценка

||Lεv||X∗ = ||(εN)v‖X∗ � ε‖v‖X . (3.5)



100 А. В. ЗВЯГИН

Кроме того, обратный оператор L−1
ε = (εN)−1 : X∗ → X непрерывен.

Доказательство. В силу линейности оператора Lε для доказательства его непрерывности доста-
точно показать его ограниченность. Имеем

|〈(εN)v, ϕ〉| =
∣∣∣∣∣∣ε
∫

Ω

∇(Δv) : ∇(Δϕ)dx

∣∣∣∣∣∣ � ε‖v‖X‖ϕ‖X .

Отсюда и следует оценка (3.5). Таким образом, оператор Lε : X → X∗ ограничен и, следовательно,
непрерывен.
Для доказательства обратимости воспользуемся проекционной теоремой из [14, c. 28]. Приведем

её формулировку.

Теорема 3.1 (проекционная теорема). Пусть W — сепарабельное вещественное гильбертово
пространство (с нормой ‖ · ‖W ), и пусть a(u, v)—непрерывная билинейная форма на W ×W,
которая коэрцитивна, т. е. существует α > 0, такое что

a(u, u) � α‖u‖2W ∀u ∈W.

Тогда для каждого l из W ∗—пространства, сопряженного к W,— существует один и только
один элемент u ∈W, такой что

a(u, v) = 〈l, v〉 ∀v ∈W.

Для того чтобы применить данную теорему, нам достаточно показать, что непрерывная били-
нейная форма

a(u, v) = 〈(εN)u, v〉 = ε

∫

Ω

∇(Δu) : ∇(Δv) dx

коэрцитивна.
Действительно, для любого v ∈ X имеем, что

a(v, v) = 〈(εN)v, v〉 = ε

∫

Ω

∇(Δv) : ∇(Δv) dx = ε‖v‖2X � ε‖v‖2X , ε > 0.

Отсюда следует, что Lε : X → X∗ —изоморфизм.
Итак, имеем линейный непрерывный оператор εN, который отображает все банахово простран-

ство X на все банахово пространство X∗ взаимно-однозначно. Отсюда по теореме Банаха следует,
что существует линейный непрерывный оператор L−1

ε , обратный оператору Lε, отображающий
X∗ на X.

Лемма 3.3. Для отображения B1 имеют место следующие свойства:
1. Отображение B1 : L4(Ω)

n → V ∗ непрерывно, и для него имеет место оценка

‖B1(v)‖V ∗ � C0‖v‖2L4(Ω)n . (3.6)

2. Для любой функции v ∈ X функция B1(v) ∈ X∗, а отображение B1 : X → X∗ вполне
непрерывно.

Доказательство.
1. Для любых v ∈ L4(Ω) и ϕ ∈ V, используя неравенство Гельдера, получим

|〈B1(v), ϕ〉| =
∣∣∣∣

n∑
i,j=1

∫

Ω

(Δ−1
α v)ivj

∂ϕj

∂xi
dx

∣∣∣∣ �
n∑

i,j=1

(∫

Ω

|(Δ−1
α v)ivj|2 dx

) 1
2
(∫

Ω

∣∣∣∣∂ϕj

∂xi

∣∣∣∣
2

dx

) 1
2

�

�
n∑

i,j=1

(∫

Ω

|(Δ−1
α v)i|4 dx

) 1
4
(∫

Ω

|vj |4 dx
) 1

4

‖ϕ‖V � C0‖v‖2L4(Ω)n‖ϕ‖V = C0‖v‖2L4(Ω)n‖ϕ‖V .

Откуда следует неравенство (3.6). Отметим, что здесь мы воспользовались следующей известной
оценкой (см. [1, 15]):

‖Δ−1
α v‖Lp(Ω)n = ‖(I − α2Δ)−1v‖Lp(Ω)n � C‖v‖Lp(Ω)n , p > 1.
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Покажем непрерывность отображения B1 : L4(Ω)
n → V. Для произвольных vm, v0 ∈ L4(Ω)

n

имеем

|〈B1(v
m), ϕ〉 − 〈B1(v

0), ϕ〉| =
∣∣∣∣
∫

Ω

n∑
i,j=1

(Δ−1
α vm)iv

m
j

∂ϕj

∂xi
dx−

∫

Ω

n∑
i,j=1

(Δ−1
α v0)iv

0
j

∂ϕj

∂xi
dx

∣∣∣∣ �

�
n∑

i,j=1

‖(Δ−1
α vm)iv

m
j − (Δ−1

α v0)iv
0
j ‖L2(Ω)n

∥∥∥∥∂ϕj

∂xi

∥∥∥∥
L2(Ω)n

�

� ‖ϕ‖V
n∑

i,j=1

‖(Δ−1
α vm)iv

m
j − (Δ−1

α v0)iv
0
j ‖L2(Ω)n =

= ‖ϕ‖V
( n∑

i,j=1

‖(Δ−1
α vm)iv

m
j − (Δ−1

α vm)iv
0
j + (Δ−1

α vm)iv
0
j − (Δ−1

α v0)iv
0
j ‖L2(Ω)n

)
�

� ‖ϕ‖V
( n∑

i,j=1

‖(Δ−1
α vm)iv

m
j − (Δ−1

α vm)iv
0
j ‖L2(Ω)n +

n∑
i,j=1

‖(Δ−1
α vm)iv

0
j − (Δ−1

α v0)iv
0
j ‖L2(Ω)n

)
�

� C1‖ϕ‖V
( n∑

j=1

‖Δ−1
α vm‖L4(Ω)n‖vmj − v0j ‖L4(Ω)n +

n∑
j=1

‖Δ−1
α (vm − v0)‖L4(Ω)n‖v0j ‖L4(Ω)n

)
�

� C1‖ϕ‖V
( n∑

j=1

‖vm‖L4(Ω)n‖vmj − v0j ‖L4(Ω)n +

n∑
j=1

‖vm − v0‖L4(Ω)n‖v0j ‖L4(Ω)n

)
�

� C1(‖vm‖L4(Ω)n‖vm − v0‖L4(Ω)n + ‖vm − v0‖L4(Ω)n‖v0‖L4(Ω)n)‖ϕ‖V =

= C1(‖vm‖L4(Ω)n + ‖v0‖L4(Ω)n)‖vm − v0‖L4(Ω)n‖ϕ‖V .
Таким образом,

‖B1(v
m)−B1(v

0)‖V −1 � C1(‖vm‖L4(Ω)n + ‖v0‖L4(Ω)n)‖vm − v0‖L4(Ω)n .

Полагая vm → v0 в L4(Ω)
n, получаем, что отображение B1 : L4(Ω)

n → V ∗ является непрерывным.

2. Так как в силу теоремы вложения Соболева мы имеем компактное вложение X ⊂ L4(Ω)
n

для n = 2, 3, то имеем: X ⊂ L4(Ω)
n B1−−→ V ∗ ⊂ X∗, где первое вложение вполне непрерывно,

а отображение B1 и последнее вложение — непрерывны. Таким образом получили, что для любой
функции v ∈ X функция B1(v) ∈ X∗, а отображение B1 : X → X∗ вполне непрерывно.

Лемма 3.4. Для операторов B2 и B3 имеют место следующие свойства:

1. Для i = 2, 3 операторы Bi : V → X∗ непрерывны, и для них имеет место оценка

‖Bi(v)‖X∗ � C2‖v‖2V . (3.7)

2. Для i = 2, 3 и любой функции v ∈ X значения Bi(v) ∈ X∗, а отображения Bi : X → X∗
вполне непрерывны.

Доказательство. Мы докажем данную лемму для оператора B2. Доказательство в случае опе-
ратора B3 полностью аналогично.

1. Для любых v ∈ V, ϕ ∈ X в силу определения оператора B2 имеем

| 〈B2(v), ϕ〉| =
∣∣∣∣∣∣
∫

Ω

n∑
i,j,k=1

vk
∂vi
∂xj

∂2ϕj

∂xi∂xk
dx

∣∣∣∣∣∣ �
n∑

i,j,k=1

‖vk‖L4(Ω)

∥∥∥∥ ∂vi∂xj

∥∥∥∥
L2(Ω)

∥∥∥∥ ∂2ϕj

∂xi∂xk

∥∥∥∥
L4(Ω)

�

� C3‖v‖L4(Ω)n‖v‖V ‖ϕ‖X � C4‖v‖2V ‖ϕ‖X .
Отсюда и следует требуемая оценка (3.7).
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Покажем непрерывность отображения B2 : V → X∗. Для произвольных vm, v0 ∈ V имеем:

| 〈B2(v
m), ϕ〉 − 〈B2(v

0), ϕ〉| =
∣∣∣∣∣∣
∫

Ω

n∑
i,j,k=1

vmk
∂vmi
∂xj

∂2ϕj

∂xi∂xk
dx−

∫

Ω

n∑
i,j,k=1

v0k
∂v0i
∂xj

∂2ϕj

∂xi∂xk
dx

∣∣∣∣∣∣ �

�
n∑

i,j,k=1

∥∥∥∥vmk ∂v
m
i

∂xj
− v0k

∂v0i
∂xj

∥∥∥∥
L4/3(Ω)

∥∥∥∥ ∂2ϕj

∂xi∂xk

∥∥∥∥
L4(Ω)

�
n∑

i,j,k=1

∥∥∥∥vmk ∂v
m
i

∂xj
− v0k

∂v0i
∂xj

∥∥∥∥
L4/3(Ω)

‖ϕ‖X .

Преобразуем правую часть неравенства следующим образом:
n∑

i,j,k=1

∥∥∥∥vmk ∂v
m
i

∂xj
− v0k

∂v0i
∂xj

∥∥∥∥
L4/3(Ω)

=

n∑
i,j,k=1

∥∥∥∥vmk ∂v
m
i

∂xj
− vmk

∂v0i
∂xj

+ vmk
∂v0i
∂xj

− v0k
∂v0i
∂xj

∥∥∥∥
L4/3(Ω)

�

�
n∑

i,j,k=1

∥∥∥∥vmk ∂v
m
i

∂xj
− vmk

∂v0i
∂xj

∥∥∥∥
L4/3(Ω)

+

n∑
i,j,k=1

∥∥∥∥vmk ∂v
0
i

∂xj
− v0k

∂v0i
∂xj

∥∥∥∥
L4/3(Ω)

�

�
n∑

i,j,k=1

‖vmk ‖L4(Ω)

∥∥∥∥∂v
m
i

∂xj
− ∂v0i
∂xj

∥∥∥∥
L2(Ω)

+
n∑

i,j,k=1

∥∥∥∥∂v
0
i

∂xj

∥∥∥∥
L2(Ω)

∥∥vmk − v0k
∥∥
L4(Ω)

�

� C5‖vm‖L4(Ω)n‖vm − v0‖V +C5‖v0‖V ‖vm − v0‖L4(Ω)n �
� C6

(‖vm‖V + ‖v0‖V
) ‖vm − v0‖V .

Отсюда следует, что

‖B2(v
m)−B2(v

0)‖X∗ � C6

(‖vm‖V + ‖v0‖V
) ‖vm − v0‖V .

Итак, если последовательность {vm} ⊂ V сходится к некоторой предельной функции v0 ∈ V,
то из последнего неравенства следует непрерывность отображения B2 : V → X∗.
2. Для доказательства утверждения этого пункта мы уже имеем: X ⊂ V

B2−−→ X∗. Здесь первое
вложение вполне непрерывно, а отображение B2 непрерывно. Таким образом, для любой функции
v ∈ X получим, что функция B2(v) ∈ X∗, а отображение B2 : X → X∗ вполне непрерывно.

Лемма 3.5. Оператор K : X → X∗ —вполне непрерывен.

Доказательство. Вполне непрерывность оператора K : X → X∗ следует из вполне непрерывно-
сти операторов A : X → X∗ по лемме 3.1; B1 : X → X∗ по лемме 3.3; B2 : X → X∗ по лемме 3.4;
B3 : X → X∗ по лемме 3.4.

3.1. Априорные оценки. Вместе с уравнением (3.3) мы будем рассматривать следующее се-
мейство операторных уравнений

Lε(v) + λK(v) = λf, λ ∈ [0, 1], (3.8)

которое совпадает с (3.3) при λ = 1.

Теорема 3.2. Если v ∈ X —решение операторного уравнения (3.8) для некоторого λ ∈ [0, 1],
то для него имеет место оценка

ε‖v‖2X � C7, (3.9)

где C7 =
‖f‖2V ∗

2ν
. Более того, при λ = 1 имеет место оценка

ν‖v‖2V � C8, (3.10)

где C8 =
‖f‖2V ∗

ν
.

Доказательство. Пусть v ∈ X —решение (3.8), тогда для него при любом ϕ ∈ X имеет место
равенство

ε

∫

Ω

∇ (Δv) : ∇ (Δϕ) dx− λ

∫

Ω

n∑
i,j=1

(Δ−1
α v)ivj

∂ϕj

∂xi
dx+ λν

∫

Ω

∇v : ∇ϕdx−
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− λκ

∫

Ω

n∑
i,j,k=1

vk
∂vi
∂xj

∂2ϕj

∂xi∂xk
dx− λκ

∫

Ω

n∑
i,j,k=1

vk
∂vj
∂xi

∂2ϕj

∂xi∂xk
dx = λ

∫

Ω

fϕdx. (3.11)

Заметим, что∫

Ω

n∑
i,j,k=1

vk
∂vi
∂xj

∂2ϕj

∂xi∂xk
dx+

∫

Ω

n∑
i,j,k=1

vk
∂vj
∂xi

∂2ϕj

∂xi∂xk
dx = 2

∫

Ω

n∑
i,j,k=1

vk Eij(v) ∂2ϕj

∂xi∂xk
dx =

= −2

∫

Ω

n∑
i,j,k=1

vk
∂Eij(v)
∂xk

∂ϕj

∂xi
dx− 2

∫

Ω

n∑
i,j,k=1

∂vk
∂xk

Eij(v)∂ϕj

∂xi
dx = −2

∫

Ω

n∑
i,j,k=1

vk
∂Eij(v)
∂xk

∂ϕj

∂xi
dx.

Тогда (3.11) можно переписать в виде

ε

∫

Ω

∇ (Δv) : ∇ (Δϕ) dx− λ

∫

Ω

n∑
i,j=1

(Δ−1
α v)ivj

∂ϕj

∂xi
dx+ λν

∫

Ω

∇v : ∇ϕdx+

+ 2λκ

∫

Ω

n∑
i,j,k=1

vk
∂Eij(v)
∂xk

∂ϕj

∂xi
dx = λ

∫

Ω

fϕdx.

Поскольку последнее равенство имеет место при всех ϕ ∈ X, то оно имеет место и при ϕ = v:

ε

∫

Ω

∇ (Δv) : ∇ (Δv) dx− λ

∫

Ω

n∑
i,j=1

(Δ−1
α v)ivj

∂vj
∂xi

dx+ λν

∫

Ω

∇v : ∇v dx+

+ 2λκ

∫

Ω

n∑
i,j,k=1

vk
∂Eij(v)
∂xk

∂vj
∂xi

dx = λ

∫

Ω

fv dx. (3.12)

Преобразуем слагаемые в левой части (3.12) следующим образом:

ν

∫

Ω

∇v : ∇v dx = ν‖v‖2V ; ε

∫

Ω

∇ (Δv) : ∇ (Δv) dx = ε‖v‖2X ;

∫

Ω

n∑
i,j=1

(Δ−1
α v)ivj

∂vj
∂xi

dx =
1

2

∫

Ω

n∑
i,j=1

(Δ−1
α v)i

∂(vjvj)

∂xi
dx = −1

2

∫

Ω

n∑
i,j=1

∂(Δ−1
α v)i
∂xi

vjvj dx = 0;

2

∫

Ω

n∑
i,j,k=1

vk
∂Eij(v)
∂xk

∂vj
∂xi

dx = 2

∫

Ω

n∑
i,j,k=1

vk
∂Eij(v)
∂xk

Eij(v) dx =

=

∫

Ω

n∑
i,j,k=1

vk
∂ (Eij(v)Eij(v))

∂xk
dx = −

∫

Ω

n∑
i,j,k=1

∂vk
∂xk

Eij(v)Eij(v) dx = 0.

Здесь мы воспользовались симметричностью тензора скоростей деформаций E .
Заметим, что правую часть равенства (3.12) можно оценить сверху

λ

∫

Ω

fv dx � λ‖f‖V ∗‖v‖V � λ
‖f‖2V ∗

2δ
+ λ

δ‖v‖2V
2

.

Здесь мы воспользовались неравенством Коши:

bc � δb2

2
+
c2

2δ
.

Таким образом, для δ = ν получили

ε‖v‖2X + λν‖v‖2V � λ
‖f‖2V ∗

2ν
+ λ

ν‖v‖2V
2

,

ε‖v‖2X + λ
ν‖v‖2V

2
� λ

‖f‖2V ∗

2ν
,
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ε‖v‖2X � λ
‖f‖2V ∗

2ν
� ‖f‖2V ∗

2ν
.

Аналогично при λ = 1 получаем:

ν‖v‖2V � ‖f‖2V ∗

ν
.

Отсюда и следуют требуемые оценки (3.9) и (3.10).

3.2. Существование решений аппроксимационной задачи.

Теорема 3.3. Операторное уравнение (3.3) имеет хотя бы одно решение v ∈ X.

Доказательство. Для доказательства данной теоремы воспользуемся теорией топологической
степени Лере—Шаудера для вполне непрерывных векторных полей. В силу априорной оцен-
ки (3.9) все решения семейства уравнений (3.8)

Lε(v) + λK(v) = λf, где λ ∈ [0, 1],

лежат в шаре BR радиуса R = C7+1 с центром в нуле. И, следовательно, все решения семейства
уравнений v = λL−1

ε [f −K(v)] = 0, где λ ∈ [0, 1], лежат в том же шаре BR. В силу леммы 3.5
отображение [f − K(·)] : X → X∗ является вполне непрерывным. А из леммы 3.2 следует, что
оператор L−1

ε : X∗ → X непрерывен.
Таким образом, отображение L−1

ε [f −K(·)] : X → X вполне непрерывно. Тогда отображение
G : [0, 1] × X → X, G(λ, v) = λL−1

ε [f −K(v)] вполне непрерывно по совокупности переменных
λ и v.
Из вышесказанного имеем, что вполне непрерывное векторное поле Φ(λ, v) = v − G(λ, v)

невырождено на границе шара BR. Следовательно, для него определена степень Лере—Шаудера
degLS(Φ, BR, 0). По свойству гомотопической инвариантности степени получим, что

degLS(Φ(0, ·), BR, 0) = degLS(Φ(1, ·), BR, 0).

Вспомним, что Φ(0, ·) = I и выполнено равенство degLS(I,BR, 0) = 1. Отсюда

degLS(Φ(1, ·), BR, 0) = 1.

Таким образом, получили, что существует хотя бы одно решение v ∈ X уравнения

v + L−1
ε [f −K(v)] = 0

и, следовательно, уравнения (3.3).

Поскольку существует решение v ∈ X уравнения (3.3), то из вышеприведенных рассуждений
следует, что аппроксимационная задача (3.1) имеет хотя бы одно слабое решение v ∈ X.

4. Доказательство разрешимости в ограниченной области краевой
задачи (1.1)–(1.3)

В силу теоремы 3.3 при каждом ε задача 3.1 имеет слабое решение. Рассмотрим сходящуюся
к нулю последовательность εm. Покажем, что полученная последовательность решений vm зада-
чи 3.1 будет сходиться к слабому решению краевой задачи (1.1)–(1.3). Для этого положим в (3.1)

εm =
1

m
. В силу выбора последовательность {εm} сходится к нулю при m → ∞. В силу теоре-

мы 3.3 при каждом εm существует vm ∈ X ⊂ V — слабое решение аппроксимационной задачи 3.1.
Таким образом, каждое vm удовлетворяет уравнению:

εm

∫

Ω

∇(Δvm) : ∇(Δϕ) dx −
∫

Ω

n∑
i,j=1

(Δ−1
α vm)i(vm)j

∂ϕj

∂xi
dx+ ν

∫

Ω

∇vm : ∇ϕdx−

− κ

∫

Ω

n∑
i,j,k=1

(vm)k
∂(vm)i
∂xj

∂2ϕj

∂xi∂xk
dx− κ

∫

Ω

n∑
i,j,k=1

(vm)k
∂(vm)j
∂xi

∂2ϕj

∂xi∂xk
dx =

∫

Ω

fϕdx. (4.1)
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В силу существования априорной оценки (3.10) (и в силу рефлексивности пространства V )
{vm} будет слабо сходиться к некоторому элементу v∗ ∈ V. Тогда при m → ∞ в силу определения
слабой сходимости

ν

∫

Ω

∇vm : ∇ϕdx→ ν

∫

Ω

∇v∗ : ∇ϕdx.

Далее заметим:

lim
m→∞

∣∣∣∣∣∣εm
∫

Ω

∇(Δvm) : ∇ (Δϕ) dx

∣∣∣∣∣∣ = lim
m→∞

√
εm

∣∣∣∣∣∣
√
εm

∫

Ω

∇(Δvm) : ∇ (Δϕ) dx

∣∣∣∣∣∣ =

= lim
m→∞

√
εm lim

m→∞

∣∣∣∣∣∣
√
εm

∫

Ω

∇(Δvm) : ∇ (Δϕ) dx

∣∣∣∣∣∣ .

Без ограничения общности в силу оценки (3.9) теоремы 3.2 получаем:

εm

∫

Ω

∇(Δvm) : ∇(Δϕ) dx→ 0 при m→ ∞.

Так как V вполне непрерывно вложено в L4(Ω)
n для n = 2, 3, учитывая оценку (3.10), без

ограничения общности можно считать, что vm → v∗ сильно в L4(Ω)
n. Отсюда следует, что

∫

Ω

n∑
i,j=1

(Δ−1
α vm)i(vm)j

∂ϕj

∂xi
dx→

∫

Ω

n∑
i,j=1

(Δ−1
α v∗)i(v∗)j

∂ϕj

∂xi
dx.

В оставшихся интегралах имеем

κ

∫

Ω

n∑
i,j,k=1

(vm)k
∂(vm)i
∂xj

∂2ϕj

∂xi∂xk
dx→ κ

∫

Ω

n∑
i,j,k=1

(v∗)k
∂(v∗)i
∂xj

∂2ϕj

∂xi∂xk
dx,

κ

∫

Ω

n∑
i,j,k=1

(vm)k
∂(vm)j
∂xi

∂2ϕj

∂xi∂xk
dx→ κ

∫

Ω

n∑
i,j,k=1

(v∗)k
∂(v∗)j
∂xi

∂2ϕj

∂xi∂xk
dx.

Действительно, здесь последовательность vm сходится к v∗ сильно в L4(Ω)
n, а ∇(vm) сходится

к ∇v∗ слабо в L2(Ω)
n. Поэтому их произведение сходится слабо к v∗∇v∗ в L4/3(Ω)

n.
Таким образом, переходя в равенстве (4.1) к пределу при m → +∞, получим, что предельная

функция v∗ удовлетворяет равенству

ν

∫

Ω

∇v∗ : ∇ϕdx−
∫

Ω

n∑
i,j=1

(Δ−1
α v∗)i(v∗)j

∂ϕj

∂xi
dx− κ

∫

Ω

n∑
i,j,k=1

(v∗)k
∂(v∗)i
∂xj

∂2ϕj

∂xi∂xk
dx−

− κ

∫

Ω

n∑
i,j,k=1

(v∗)k
∂(v∗)j
∂xi

∂2ϕj

∂xi∂xk
dx =

∫

Ω

fϕdx.

Вспоминаем, что v∗ ∈ V. Это и завершает доказательство теоремы 2.1.

5. Случай неограниченной области

Рассмотрим теперь задачу (1.1)–(1.3) в случае, когда Ω—произвольная область в простран-
стве R

n, n = 2, 3, возможно, неограниченная. Аналогично случаю с ограниченной областью для
задачи (1.1)–(1.3) вводятся понятия слабого решения (аналогично определению 2.1) и аппрокси-
мационной задачи (аналогично задаче 3.1).
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Определение 5.1. Пусть Ω—произвольная область пространства R
n, n = 2, 3, и f ∈ V ∗.

Слабым решением краевой задачи (1.1)–(1.3) называется функция v ∈ V, удовлетворяющая для
любого ϕ ∈ V равенству

ν

∫

Ω

∇v : ∇ϕdx−
∫

Ω

n∑
i,j=1

(Δ−1
α v)ivj

∂ϕj

∂xi
dx− κ

∫

Ω

n∑
i,j,k=1

vk
∂vi
∂xj

∂2ϕj

∂xi∂xk
dx−

− κ

∫

Ω

n∑
i,j,k=1

vk
∂vj
∂xi

∂2ϕj

∂xi∂xk
dx =

∫

Ω

fϕdx. (5.1)

Задача 5.1. Пусть Ω—произвольная область пространства R
n, n = 2, 3, и f ∈ V ∗. Найти

функцию v ∈ X, удовлетворяющую для любого ϕ ∈ V равенству:

ε

∫

Ω

∇ (Δv) : ∇ (Δϕ) dx−
∫

Ω

n∑
i,j=1

(Δ−1
α v)ivj

∂ϕj

∂xi
dx+ ν

∫

Ω

∇v : ∇ϕdx−

− κ

∫

Ω

n∑
i,j,k=1

vk
∂vi
∂xj

∂2ϕj

∂xi∂xk
dx− κ

∫

Ω

n∑
i,j,k=1

vk
∂vj
∂xi

∂2ϕj

∂xi∂xk
dx =

∫

Ω

fϕdx. (5.2)

Для доказательства теоремы 2.2 обозначим через Ωm пересечение Ω с шаром Bm с центром в
нуле радиуса m в пространстве R

n,m = 1, 2, . . . Введем новые обозначения.
Через Lp(Ωm)n, 1 � p < ∞, будем обозначать множество всех измеримых функций u : Ωm →

R
n, суммируемых с p-й степенью. D(Ωm)n —пространство функций на Ωm со значениями в R

n

класса C∞ с компактным носителем, содержащимся в Ωm; V(Ωm) = {v : v ∈ D(Ωm)n, div v = 0}—
подмножество соленоидальных функций пространства D(Ωm)n; V (Ωm)— замыкание V(Ωm) по
норме пространства W 1

2(Ωm)n; X(Ωm)— замыкание V(Ωm) по норме пространства W 3
2(Ωm)n.

Аналогично введем обозначения V (Bk) и L4(Bk), где Bk —шар с центром в нуле и радиусом k.
Следуя [11, с. 117], можно рассмотреть сужение f на Ωm : f |Ωm ∈ V ∗(Ωm), которое задается

формулой
〈f |Ωm , ϕ〉 = 〈f, ϕ̃〉,

где ϕ—произвольная функция из V, а ϕ̃—продолжение ϕ нулем на все Ω. Очевидно,

||f |Ωm ||V ∗(Ωm) � ||f ||V ∗(Ω).

На каждой области Ωm рассмотрим задачу 5.1. Заменим в (5.2) f на f |Ωm , и пусть ε =
1

m
.

По теореме 2.1 эти задачи имеют хотя бы одно решение vm. Обозначим через ṽm продолжение vm
нулем на все Ω. По теореме 3.2 нормы ||ṽm||V (Ω) = ||vm||V (Ωm) равномерно ограничены. Поэтому
при m → ∞ без ограничения общности можно считать, что ṽm ⇀ ṽ0 слабо в V. Покажем, что ṽ0
есть решение задачи (5.1).
Возьмем произвольное ϕ ∈ V. При некотором k носитель ϕ лежит в Ωk. Обозначим через v∗m

продолжение ṽm нулем за пределы Ω, суженное на Bk. Ясно, что v∗m → v∗0 слабо в V (Bk), и значит,
сильно в L4(Bk).

Поэтому все слагаемые (5.2) с ε =
1

m
и v = ṽm

1

m

∫

Ω

∇(Δṽm) : ∇ (Δϕ) dx−
∫

Ω

n∑
i,j=1

(Δ−1
α ṽm)i(ṽm)j

∂ϕj

∂xi
dx+ ν

∫

Ω

∇ṽm : ∇ϕdx−

− κ

∫

Ω

n∑
i,j,k=1

(ṽm)k
∂(ṽm)i
∂xj

∂2ϕj

∂xi∂xk
dx− κ

∫

Ω

n∑
i,j,k=1

(ṽm)k
∂(ṽm)j
∂xi

∂2ϕj

∂xi∂xk
dx =

∫

Ω

fϕdx

сходятся к соответствующим слагаемым (5.1):

−
∫

Ω

n∑
i,j=1

(Δ−1
α ṽ0)i(ṽ0)j

∂ϕj

∂xi
dx+ ν

∫

Ω

∇ṽ0 : ∇ϕdx− κ

∫

Ω

n∑
i,j,k=1

(ṽ0)k
∂(ṽ0)i
∂xj

∂2ϕj

∂xi∂xk
dx−
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− κ

∫

Ω

n∑
i,j,k=1

(ṽ0)k
∂(ṽ0)j
∂xi

∂2ϕj

∂xi∂xk
dx =

∫

Ω

fϕdx,

причем без ограничения общности в силу оценки (3.9) теоремы 3.2 получаем:

1

m

∫

Ω

∇ (Δ(ṽm)) : ∇ (Δϕ) dx→ 0 при m→ ∞.

Итак, ṽ0 удовлетворяет тождеству (5.1) при всех ϕ ∈ V. Значит, ṽ0 является слабым решением
задачи (1.1)–(1.3).
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Аннотация. Изучается следующая обратная задача для уравнения в частных производных: най-
ти геометрический параметр области нестационарной задачи, который соответствует численному.
Важной особенностью является то, что интересующий нас блок дискретизации содержит источ-
ник (трещины), генерирующий поток в пористой среде. С индустриальной точки зрения мы стро-
им аппарат для сшивания численно найденного давления в резервуаре с аналитическим. Наша
цель состоит в том, чтобы получить значение функции давления на трещине (или вблизи тре-
щины) в зависимости от расстояния между множественными трещинами (ср. [14]). Для этого мы
обобщаем вероятностный метод Эйнштейна (см. [5]) для броуновского движения для изучения
транспорта жидкостей в пористой среде. Мы обобщаем парадигму Эйнштейна, связывая средние
изменения плотности жидкости со скоростью жидкости, и выводим уравнение анизотропной диф-
фузии в недивергентной форме, которое содержит член конвекции. Затем мы применяем закон
Дарси и основные законы для потока сжимаемой жидкости и получаем нелинейные уравнения
в частных производных для функции плотности. Мы используем преобразование Бернштейна
для сведения исходной нелинейной задачи к линейной. Используемый метод позволяет использо-
вать аналитическое решение стационарного состояния для интерпретации численно найденного
давления на трещине, зависящего от времени, учитывающей одномерную геометрию потока в
направлении «длинной» трещины.

Ключевые слова: поток в пористой среде, материальный баланс Эйнштейна, радиус блока
скважины Писмана, параболическое уравнение в недивергентной форме.
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1. Введение

В данной статье мы опишем парадигму материального баланса (МБ) в виде алгебраического
набора уравнений и укажем предполагаемое применение для интерпретации численного распреде-
ления давления вдоль искусственной трещины, производящей пластовую жидкость. Математиче-
ски эта проблема полностью понятна для вертикальной скважины и приводит к так называемому
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радиусу блока скважины Писмана (см. недавнюю публикацию [9]; см. также [3,12–15,20,21]), где
представлен подробный обзор в классическом круговом случае). Это не означает, что решение
уже найдено, но дает один из способов доказательства.
В этой статье мы рассматриваем численное моделирование потока и ставим цель интерпре-

тировать численное решение с помощью аналитического решения, основанного на качественном
понимании процесса течения жидкости к трещине-источнику. Пусть PM,N,K — 3D-матрица рас-
пределения давления в пласте, полученная в результате некоторого моделирования (численного
решения). Задача иллюстрируется картиной течения к системе множественных трещин, пред-
ставленной на рис. 1 (см. [11]).
Пусть симулятор резервуара на заданной сетке дает данные о резервуаре в ячейках Bm,n,k для

некоторых m,n, k, и пусть характерный размер ячейки будет Δ. В целом понятно, что при Δ → 0
решение PM,N,K → u(x, y, z, t) сходится поточечно. Во многих случаях так оно и есть или ожида-
ется, что так будет (см. обзор сходимости). Для этого требуется, чтобы сетка аппроксимировала
границу области и граничные данные численного решения аппроксимировали граничные данные.
Этого не наблюдается для многих задач в приближении подземных областей. В то же время,
вдали от границы внутри области численное решение в каждой ячейке близко к аналитическому
решению в центре ячейки. Большая проблема возникает, когда ячейка содержит возмущение в
виде искусственной трещины. Предполагается, что скорость добычи жидкости фиксирована на
участке трещины, и цель состоит в том, чтобы оценить давление и сравнить его с фактическим
значением давления на трещине.
Задача состоит в следующем: найти геометрическое расстояние относительно источника, та-

кое, чтобы значение давления удовлетворяло уравнению материального баланса. Эта проблема
была хорошо изучена в случае радиального течения к скважине как к стоку (см. [9]). В случае
потоков, не описываемых радиальной моделью, в некоторых симуляторах задача приближает-
ся суперпозицией радиальных (см. [22]). Очевидно, это приводит к значительным ошибкам. В
настоящей статье мы решаем эту проблему, используя аналитическое решение, которое сводит
поток к трещинам к квази-одномерному. Наша мотивация основана на недавней статье, которая
качественно описывает составные потоки к семейству трещин (см. [11]).
В некотором смысле наш подход основан на наборах семейств решений, каждый из которых

представляет качественное поведение потока. Мы считаем, что это многообещающий подход, ко-
торый обеспечивает правильную интерпретацию моделируемых данных. Мы разбиваем область
потока на ячейки, некоторые из которых содержат трещины как источник потока, а другие яв-
ляются просто субъектами уравнения материального баланса. Наша цель — интерпретировать
численное решение на ячейке в зависимости от местоположения трещины в ячейке (см. [11]).
В данной работе мы выводим уравнение переноса однофазной изотермической жидкости в

пористой среде на основе парадигмы Эйнштейна броуновского движения частиц. С нашей точки
зрения, это лучше соответствует нашей процедуре интерпретации.
Моделирование фильтрации в пористой среде имеет долгую историю изучения и традиционно

базируется на «трех китах» (см. [10]).
1. Уравнение неразрывности (уравнение материального баланса, в дивергентной форме), свя-

зывающее скорость и плотность жидкости:

∂ρ

∂t
+∇ · (ρ�v) = 0. (1.1)

2. Основное уравнение, связывающее скорость и градиент давления:

F (�v,∇p) = 0. (1.2)

3. Функциональное уравнение состояния, которое функционально связывает два основных па-
раметра — давление и плотность:

F (ρ; p) = 0. (1.3)

Это приводит к параболическому (линейному или квазилинейному, вырожденному) уравнению
относительно функции давления в дивергентной форме (см. [1]). Все три ограничения выше мо-
гут быть подвержены стохастическим возмущениям. Например, принято рассматривать (см. [16])
возмущение скорости из-за неоднородности в среде, и можно использовать методы Монте-Карло
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Рис. 1. Качественная схема явления
Fig. 1. Qualitative picture of interest

вдоль основного тренда для генерации случайных данных. Алгоритм Монте-Карло и его обоб-
щение используются для моделирования случайности в термодинамическом уравнении (см. [18]),
однако это не является темой нашего исследования. Мы следуем недооцененной работе Эйн-
штейна с целью построения потока в среде на основе мысленного эксперимента над концепцией
скачков частицы, которые для нас являются событиями.
В данной работе мы построим уравнение материального баланса случайного блуждания частиц

в среде, подверженной диффузии и дрейфу. Для этого мы описываем материальный баланс с по-
мощью уравнения типа Эйнштейна, в котором плотность частиц в пространственной переменной
в фиксированной точке в фиксированное время будет функцией зависимых переменных, которые
будут ключевыми характеристиками. Согласно парадигме Эйнштейна, события заключаются в
длине скачков за интервал времени τ как входной коэффициент и их частоте ϕτ (�Δ(x, t)). Следуя
парадигме Эйнштейна, мы предлагаем модель переноса жидкости в виде совокупности частиц,
составляющих жидкость в среде, характеризующейся функцией плотности, которая в любой мо-
мент времени t изменяется в пространстве x случайным образом в пределах интервала времени τ.
Параметр τ как входная переменная размерности времени фиксирован и остается неизменным
в любой момент времени и в любой точке пространства x. Функция распределения плотности
вероятности (РПВ) ϕτ (�Δ(x, t)) характеризует как перенос (конвекцию или дрейф) в некотором
направлении, так и диффузию с помощью коэффициентов матрицы. Функция РПВ— это еще
один параметр, который зависит от τ и определяет движение жидкости F в среде M. Как мы
уже упоминали, жидкость F и среда M сами могут быть подвержены случайности, но в ста-
тье это не рассматривается. Продолжая мысленный эксперимент Эйнштейна, после нескольких
шагов мы приходим к уравнению недивергентного типа с дрейфом для гладкой функции ρ(x, t)
с коэффициентами, образующими составной оператор с матрицей диффузии и конвекции вида

Lρ(x, t) = ∂ρ

∂t
− 〈τ−1A,D2ρ

〉− Δe

τ
· ∇ρ.

Выше D2ρ—матрица Гессе, а 〈·, ·〉 обозначает скалярное произведение в R
n2 между двумя мат-

рицами n× n. Здесь A(x, t) и Δe —функции от ((x, t); . . .) ; они представляют собой стандартное
отклонение и ожидаемое значение случайного процесса «скачков» частиц, которые приводят к из-
менению плотности и, очевидно, зависят от ϕτ (x, t). Поэтому естественно исследовать уравнение
с внешней силой: Lρ = R(x, t).
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Одной из целей этого проекта является построение модели в терминах параболического урав-
нения в недивергентной форме и применение методов, разработанных Ландисом, для изучения
качественных свойств решения этого уравнения. Детали формулировки модели уравнения в част-
ных производных представлены в разделе 2. Мы вводим основные предположения в пункте 2.2.
Одно из них — гипотеза 2.1 о том, что скорость жидкости в среде «матрично пропорциональна»
ожидаемому значению длины прыжков частиц:

M0�v =
1

τ

∫
�Δϕτ (�Δ(x, t))dΔ1 . . .Δn.

Далее мы накладываем условие неотрицательности на матрицу M0 (см. [6]). Эта гипотеза позво-
ляет связать микроскопический транспорт с макроскопическим, что является ключом к понима-
нию и разработке различных типов моделей.
В данной статье мы рассматриваем постулат Дарси для макроскопических потоков и связы-

ваем скорость потока только с функцией плотности. При таком предположении мы приходим к
квазилинейному параболическому уравнению для функции плотности с квадратичной нелиней-
ностью градиента. Используя нелинейную подстановку типа Коула—Хопфа, мы сводим исходное
уравнение, нелинейное относительно как градиента, так и решения, к нелинейному, но только
относительно самого решения. Парадигма Эйнштейна хорошо представлена в [6].

Замечание 1.1. Авторы осознают недостатки предложенной модели. Очевидно, для подтвер-
ждения мысленного эксперимента требуется больше данных и опытов. Возможно, он слишком
амбициозен, можно сравнить это с так называемой теорией корневого давления, где методы ин-
терпретации существуют уже много десятилетий, но по-прежнему требуются дополнительные
исследования чтобы понять, почему высокое дерево может транспортировать воду наверх к ли-
стьям (см. [19]). Мысленный эксперимент Эйнштейна дает возможный ответ на этот вопрос.
А именно, предположим, что в течение временного интервала T0 каналы из-за капиллярного
давления транспортируют воду от корней к высоте дерева на уровне H0. Затем она «расширит-
ся» из-за диффузии по каналам внутри дерева во всех направлениях и создаст мини-резервуар
U0 высотой порядка H0. Затем процесс транспортировки продолжится до следующего уровня H1

и т. д. Конечно, потребуется больше экспериментальных подтверждений этого гипотетического
процесса, мы просто выдвигаем эту идею для изучения научным сообществом.

Статья организована следующим образом. В разделе 2 мы поэтапно выводим модель: самое
общее уравнение (2.8), уравнение диффузии с конвективным членом (2.16) при гипотезе 2.1,
частные уравнения пористой среды (2.18), (2.17) с учетом анизотропного закона Дарси (2.13).
В следующем разделе мы предлагаем метод для реализации качественного поведения потока:
одномерного по направлению к трещине и радиального вдали от системы трещины в целом.
Мы предполагаем, что на поток не действуют силы гравитации, и сводим исходное уравнение

к недивергентному линейному уравнению (см. [6]).

2. Вывод моделей

2.1. Общие уравнения. Предположим, что ρ(x, t)—функция плотности в единичном объеме
в точке x в момент времени t (−∞ < t <∞), где x ∈ R

n.
Пусть τ > 0— временной интервал в качестве входного параметра в момент наблюдения в

точке x, и этот параметр одинаков для всего времени и пространства.
Пусть ρ(x+Δ, t)—изменение плотности, которое приводит к изменению в момент времени t в

точке пространства x из-за перемещения на расстояние Δ частиц, составляющих материю.

Предположение 2.1. Пусть ρ(x, t±τ)— значение плотности в точке x в момент времени t±τ.
Знак перед параметром τ выбирается в зависимости от того, является ли «жидкость» (или любой
интересующий нас объект) «средофобной» («+») или «средофильной» («−») в данной среде.

Процесс на отрезке времени [t, t+τ ] характеризуется многомерной РПВ, которую можно пред-
ставить другим способом.
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Предположение 2.2. Пусть φ(x, t,Δ; τ) для Δ = (Δ1, . . . ,Δn) ∈ R
n —распределение плотно-

сти вероятности процесса движения, и∫

Rn

φ(x, t,Δ; τ)dζ = 1.

Для определенности предположим, что перед τ стоит знак «+». Тогда уравнение материаль-
ного баланса Эйнштейна принимает вид

ρ(x, t+ τ) =

∫

Rn

ρ(x+Δ, t)φ(x, t,Δ; τ)dΔ. (2.1)

Замечание 2.1. Обратим внимание, что уравнение Эйнштейна представляет собой модель
случайного процесса, определяемого относительно входных параметров τ и функции плотности
вероятности φ. В общем случае параметр τ зависит от t и x. Но, как мы увидим далее, это при-
ведет к слишком большому усложнению, поскольку τ находится внутри неизвестной функции
плотности (ρ(x, t+ τ)). Поэтому мы предполагаем, что τ является входной характеристикой жид-
кости и ее фильтрационной способностью в среде, поскольку время и пространство являются
независимыми параметрами.

Предположение 2.3. Далее предположим, что τ фиксировано и достаточно мало, так что
для всех t

τ
∂ρ

∂t
≈ ρ(x, t+ τ)− ρ(x, t). (2.2)

Кроме того, для заданного τ > 0 скалярная функция РПВ φτ (ζ, x, t, . . .) зависит от многих
переменных и такова, что:
1. параметр τ является основным, он характеризует жидкость;
2. функция РПВ φτ (x, t, ζ) как функция событий характеризует пористую среду относительно

заданной жидкости, текущей и «сжимающейся» внутри среды (длина движения частиц,
составляющих нашу жидкость), и является функцией вектора ζ;

3. эта функция РПВ может характеризовать:
• неоднородность среды,
• геометрию потока,
• диффузию вдоль движения,
• кинетику движения и ее зависимость от градиента давления,
• и т. д.;

4. все моменты выше 2-го игнорируются относительно первого и второго моментов.

Для простоты обозначим φ(x, t, ζ) = φ(x, t, ζ; τ).

Определение 2.1. Введем функции коэффициентов

āij(x, t) =

∫

Rn

ζiζjφ(x, t, ζ)dζ, 1 � i, j � n, (2.3)

матрицу размера n× n

Ā(x, t) = (āij(x, t))1�i,j�n (2.4)
и вектор

E(x, t) =

∫

Rn

φ(x, t, ζ)ζdζ. (2.5)

Обратим внимание, что матрица Ā(x, t) симметрична, и для ξ = (ξ1, . . . , ξn) ∈ R
n имеем

n∑
i,j=1

ξiāij(x, t)ξj =

∫

Rn

|ξ · ζ|2φ(x, t, ζ)dζ � 0.

Следовательно, матрица Ā(x, t) является положительно полуопределенной.
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Замечание 2.2. Рассмотрим случай взаимно независимых событий для скачков, когда

φ(x, t, ζ) = φ1(x, t, ζ1) . . . φn(x, t, ζn), ζ = (ζ1, ζ2, . . . , ζn) (2.6)

при
∫
R

φi(x, t, s)ds = 1, для i = 1, 2, . . . , n. Тогда

āij =

{
σiσj при i 	= j,

σ̄2i при i = j,

где

σi(x, t) =

∫

R

sφi(x, t, s)ds, σ̄i(x, t) =

⎛
⎝
∫

R

s2φi(x, t, s)ds

⎞
⎠

1/2

. (2.7)

Предположим, кроме того, что каждая функция φi(s, x, t), 1 � i � n, четна относительно s. То-
гда каждое σi = 0 и, следовательно, Ā(x, t) является диагональной матрицей diag[σ̄1, σ̄2, . . . , σ̄n].
Поскольку каждое σ̄i положительно, в этом случае матрица Ā(x, t) положительно определена.
Более того, получаем, что E(x, t) = 0.

Предположим, что ρ ∈ C3(Rn). Рассмотрим малое τ и предположим, что носитель функции
ζ 
→ φ(x, t, ζ) находится в малом шаре с центром в начале координат. С помощью разложения
Тейлора функции ζ 
→ ρ(x + ζ, t) для малых |ζ| с точностью до квадратичных членов имеем
приближение

ρ(x+ ζ, t) ≈ ρ(x, t) + ζ · ∇ρ(x, t) + 1

2

n∑
i,j=1

ζiζjρxixj(x, t).

Тогда

ρ(x, t+ τ) =

∫

R�

ρ(x+ ζ, t)φ(τ, ζ, x, t)dζ ≈
∫

R�

ρ(x, t)φ(τ, ζ, x, t)dζ +

+

∫

R�

ζ · ∇ρ(x, t)φ(τ, ζ, x, t)dζ + 1

2

n∑
i,j=1

∫

R�

ζiζjρxixj(x, t)φ(τ, ζ, x, t)dζ =

= ρ(x, t) +E · ∇ρ+ 1

2

n∑
i,j=1

āij(x, t)
∂2ρ

∂xi∂xj
.

Объединяя это с (2.2) и заменяя приближенное равенство точным, получаем

τ
∂ρ

∂t
=

1

2

n∑
i,j=1

āij(x, t)
∂2ρ

∂xi∂xj
+ E · ∇ρ. (2.8)

Аналогичное уравнение можно получить с помощью стохастических методов (см. [17]).

Замечание 2.3. Параметр τ может зависеть от самого решения, и это может привести к
такому явлению, как конечная скорость распространения (подробнее см. в [8]).

2.2. Основное предположение.

Гипотеза 2.1. Предположим, что ожидаемое значение плотности потока относительно пара-
метра τ пропорционально скорости потока жидкости:

M0v(x, t) =
E(x, t)

τ
. (2.9)

Здесь M0(x, t)— безразмерная константа, которую для простоты мы предполагаем равной 1.

Фактически, матрицаM0 может зависеть от РПВ φ(x, t, . . .) через усреднение и само ожидаемое
значение. Обратим внимание, что это фундаментальная гипотеза, которая связывает микроско-
пические особенности переноса частиц в среде и макроскопические свойства потока, такие как
скорость в среде и/или на открытом пространстве.
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Из (2.8) и (2.9) получим

∂ρ

∂t
=

n∑
i,j=1

1

2τ
āij(x, t)

∂2ρ

∂xi∂xj
+ (M0v) · ∇ρ. (2.10)

Для 1 � i, j � n положим aij(x, t) = (2τ)−1āij(x, t) и определим матрицу

A(x, t) = (aij(x, t))1�i,j�n =
1

2τ
Ā(x, t). (2.11)

Тогда
∂ρ

∂t
= 〈A(x, t),D2ρ〉+ (M0(x, t)v(x, t)) · ∇ρ. (2.12)

В этом уравнении слагаемое 〈A(x, t),D2ρ〉 представляет диффузию в недивергентной форме, а
слагаемое (M0(x, t)v(x, t)) · ∇ρ представляет конвекцию/перенос.

2.3. Движение жидкости в пористой среде (закон Дарси). Учтем анизотропный закон
Дарси:

v = −K̄(x, t)∇p, (2.13)

где K̄(x, t)—матрица размера n× n. Из (2.12) и (2.13) получим

∂ρ

∂t
= 〈A(x, t),D2ρ〉 − (K(x, t)∇p) · ∇ρ, (2.14)

где
K(x, t) =M0(x, t)K̄(x, t), B(x, t) =M0(x, t)K̄(x, t)�g. (2.15)

Учтем основной закон:
p = P (ρ),

тогда
∂ρ

∂t
= 〈A(x, t),D2ρ〉 − P ′(ρ)(K∇ρ) · ∇ρ+ ρB · ∇ρ. (2.16)

Случай слабосжимаемых жидкостей. Имеем

1

ρ

dρ

dp
= κ = const � 1.

Тогда
∂ρ

∂t
= 〈A(x, t),D2ρ〉 − 1

κρ
(K(x, t)∇ρ) · ∇ρ+ ρB(x, t) · ∇ρ. (2.17)

Случай изоэнтропического течения газа. Имеем p = cργ с удельной теплоемкостью γ � 1,

∂ρ

∂t
= 〈A(x, t),D2ρ〉 − γργ−1(K(x, t)∇ρ) · ∇ρ+ ρB(x, t) · ∇ρ. (2.18)

Замечание 2.4. Сравнение со стандартным уравнением пористой среды: при m > 1

ut = Δ(um) = ∇ · (mum−1∇u) = mum−1Δu+m(m− 1)um−2|∇u|2.
Обратим внимание, что здесь член |∇u|2 имеет положительный коэффициент m(m−1), тогда как
в нашей модели он имеет отрицательный коэффициент. Это серьезное отклонение от стандартных
моделей. Авторы, по сути, не полностью могут объяснить эту особенность модели. Однако, по-
скольку вывод настолько естествен и прямолинеен, мы просто выдвигаем эту идею для изучения
научным сообществом.

В следующих двух разделах мы сосредоточимся исключительно на математическом аспекте
уравнения (2.16).
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Предположение 2.4. Далее предположим, что τ фиксировано и достаточно мало, так что
для всех t

τ
∂ρ

∂t
≈ ρ(τ, x, t+ τ)− ρ(τ, x, t). (2.19)

Более того, функция ρ является гладкой, а функция φ такова, что константы M и m удовлетво-
ряют ограничениям ∣∣∣∣

∫
Δ2k+1φ(Δ, . . .)

∣∣∣∣�
∣∣∣∣
∫

Δφ(Δ, . . .)

∣∣∣∣ для всех k � 1, (2.20)
∣∣∣∣
∫

Δ2kφ(Δ, . . .)

∣∣∣∣�
∫

Δ2φ(Δ, . . .) для всех k � 2. (2.21)

При всех предположениях 2.4 из разложения Тейлора следует, что уравнение материального
баланса Эйнштейна можно аппроксимировать в виде

τ
∂ρ

∂t
=
σ(x, t, τ)

2
(ρxx + ρyy + . . .) + �Δe(x, t, τ) · ∇ρ. (2.22)

Здесь

D = D(x, t, τ) =
1

τ

σ(x)

2
, (2.23)

σ(x, t, τ) =

∫
�Δ · �Δφ(τ,Δ, x, t)dΔ, (2.24)

�Δe(x, t, τ) =

∫
�Δ · φ(τ,Δ, x, t)dΔ. (2.25)

Предположение 2.5. В общем случае функция плотности однокомпонентной однофазной
жидкости зависит от давления и температуры. Здесь мы предполагаем, что жидкость изотер-
мична и плотность ρ является функцией только давления p:

ρ = ρ(p), (2.26)

тогда уравнение 2.22 примет вид

ρpτ
∂p

∂t
= ρp · σ(x, t, τ)

2
∇ · ∇p+ ρpp · σ(x, t, τ)

2
(∇p · ∇p) + �Δe(x)ρp · ∇p. (2.27)

2.4. Специальная линеаризация для класса уравнений в частных производных (2.27).
Пусть

A(p) =
ρpp
ρp
. (2.28)

Обратим внимание, что чисто математически имеется простое соотношение, позволяющее уда-
лить член |∇xp|2 в уравнении (2.27). Другие коэффициенты (параметры) процесса, как можно
увидеть, могут быть весьма нелинейными и зависеть от пространственных переменных.
Обозначим

D = D(x, t, . . .) =
σ(x, t, . . .)

2τ
	= 0 и b =

Δe

τ
. (2.29)

Тогда уравнение (2.27) можно переписать в виде L0(p, p) = 0:

L0(p, ·) = ∂ (·)
∂t

−D∇ · ∇ (·)−DA(p)∇ (·)∇ (·)−�b · ∇ (·) . (2.30)

Очевидно, гладкая функция p(x, t) (p 	= const) является решением уравнения

L0(p, p) = 0

тогда и только тогда, когда
∂p

∂t
−D∇ · ∇p−�b · ∇p = DA(p)∇p · ∇p. (2.31)

Пусть функция f такова, что

A(p)
df(p)

dp
− d2f(p)

dp2
= 0. (2.32)
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Тогда функция u(x, t) = f
(
p(x, t)

)
является решением квазилинейного уравнения

Lu(u) =
∂u

∂t
−D∇ · ∇u−�b · ∇u = 0 (2.33)

тогда и только тогда, когда

L0(p, p) = 0. (2.34)

В общем случае, если
p∫

0

A(s)ds <∞, (2.35)

то мы имеем следующее представление u как решения при условии, что функция p является
решением уравнения L0(p, p) = 0:

u = f(p) = exp
( p∫

0

A(s)ds
)
. (2.36)

Например, если жидкость слабо сжимаема, то u = Ceκp и p =
1

κ
lnu + const. Здесь p � 0

и u � 1. Многие построения, которые используются далее в этой статье, хорошо работают для
класса уравнений в частных производных, которые могут быть получены из результатов этого
раздела 2.4. Сформулируем вышеприведенное наблюдение в терминах следующей теоремы.

Теорема 2.1. Предположим, что
p∫

0

A(s)ds <∞. (2.37)

Пусть p является решением уравнения

L0(p, p) =
∂p

∂t
−D∇ · ∇p−DA(p)∇p · ∇p−�b · ∇p = 0. (2.38)

Тогда функция

u = f(p) (2.39)

является решением уравнения

Lu(u) =
∂u

∂t
−D∇ · ∇u−�b · ∇u = 0 (2.40)

тогда и только тогда, когда

A(s)
df(s)

ds
− d2f(s)

ds2
= 0. (2.41)

Доказательство. Пусть

u = f(p),

тогда доказательство теоремы следует из цепочки тождеств

∂u

∂t
−D∇ · ∇u−�b · ∇u =

df

dp

[
∂u

∂t
−D∇ · ∇u−�b · ∇u

]
−D

d2f

dp2
· ∇u · ∇u =

= DA(p)
df

dp
· (∇u · ∇u)−D

d2f

dp2
· (∇u · ∇u) =

(
A(p) · df

dp
− d2f

dp2

)
·D (∇u · ∇u) .
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2.5. Уравнение Дарси для скорости без учета глобальных сил. В этом пункте мы, ча-
стично повторяя приведенные выше построения, наглядно устанавливаем связь между подходом
Эйнштейна и классическим методом, основанным на уравнении непрерывности (см. [10]).
Предположим, что поле скоростей �b подчиняется классическому уравнению Дарси без учета

гравитации

�b = �v = −k
μ
∇p, (2.42)

где k—проницаемость, а μ— вязкость.
Рассмотрим давление p(x, t) как функцию плотности:

p = F0(ρ) = Φ−1(ρ), (2.43)

или как функцию от вспомогательной функции u:

p = F (u) = f−1(u). (2.44)

Тогда функция давления p(x, t) удовлетворяет уравнению

∂p

∂t
−D∇ · ∇p− k

μ
∇p · ∇p = DA(p)∇p · ∇p. (2.45)

Мы доказали в теореме 2.1, что уравнение для давления можно свести к уравнению для матема-
тической функции u, определенной в (2.39). Когда мы говорим «математическая функция», мы
имеем в виду, что она не имеет физического смысла.
Тогда это уравнение примет вид

Lu(u) =
∂u

∂t
−D∇ · ∇u− 1

df
dp

∣∣
p=F (u)

∇u · ∇u = 0. (2.46)

Перепишем уравнение (2.46) в коэффициентной форме

Lu(u) =
∂u

∂t
−D∇ · ∇u−B(u)∇u · ∇u = 0. (2.47)

Здесь B(u) определяется как структурная функция

B(u) =
1

df
dp

∣∣
p=F (u)

. (2.48)

Теорема 2.2. Предположим, что u является ограниченным решением квазилинейного урав-
нения (2.47). Тогда w(x, t) = W (u) является функцией от (x, t), где W (u) является функцией
от u, а также удовлетворяет уравнению диффузии

∂w

∂t
−D∇2w = 0 (2.49)

тогда и только тогда, когда W (u) является решением уравнения

B(u)
dW

du
−D

d2W

du2
= 0. (2.50)

Доказательство. Доказательство следует из цепочки равенств

∂W

∂t
−D∇ · ∇W =

dW

du

∂u

∂t
− dW

du
D∇ · ∇u− d2W

du2
D∇u · ∇u =

= (∇u · ∇u)B(u)
dW

du
− d2W

du2
D (∇u · ∇u) = ∇u · ∇u

[
B(u)

dW

du
− d2W

du2
D

]
. (2.51)

Тогда утверждение теоремы следует из предположения, что W (u) является решением уравне-
ния (2.50).
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3. Одномерный поток в направлении трещины для псевдостационарных
и стационарных потоков

Мы показали, что моделирование потоков жидкости в пористых средах после линеаризации
может быть сведено к линейному параболическому уравнению. Это позволяет нам применить
аппарат, разработанный в [7]. Предположим, что D = 1, тогда моделирование течения к тре-
щине качественно можно считать одномерным. Благодаря сведению к линейному параболиче-
скому уравнению мы можем рассматривать дискретизацию области потока вблизи трещины как
одномерную сетку. Мы введем два типа процессов: стационарное состояние (СС) и псевдостацио-
нарное состояние (ПСС). Модельную задачу стационарного состояния в области течения можно
записать как

∂2

∂x2
p = 0 в области U (3.1)

с граничными условиями для модельного случая: скорость добычи на трещине x = 0 равна 1, а
давление p(x) = u(x) на внешней границе области задано. Краевая задача может быть записана
следующим образом:

∂2

∂x2
u = 0 в области U. (3.2)

Здесь U = [0, Re], и соответствующие краевые условия для уравнения (3.2) имеют вид

u(Re) = pe, (3.3)
ux = −1. (3.4)

Тогда решение краевой задачи получим в форме

u(x) = −x+ pe. (3.5)

Уравнение материального баланса в случае стационарного состояния записывается в виде

MBss(p) =
p(Δ2 )− 2p(Δ2 +Δ) + p(Δ2 + 2Δ)

Δ2
= 0, (3.6)

то есть
p
(
Δ
2

)− 2p
(
3Δ
2

)
+ p
(
5Δ
2

)
Δ2

= 0. (3.7)

В случае стационарного состояния цель состоит в том, чтобы найти Rss
0 такое, чтобы

решение задачи (3.2)–(3.4) удовлетворяло материальному балансу вида

u(Rss
0 )− 2u(Δ2 +Δ) + u(Δ2 + 2Δ)

Δ2
= 0. (3.8)

Нетрудно видеть, что для одномерного случая в силу уравнения (3.5)

Rss
0 =

Δ

2
. (3.9)

Очевидно, что случай стационарного состояния не учитывает интерференцию между трещинами,
поэтому требуется более точная интерпретация потока в направлении множественных трещин.
По-видимому, это может быть учтено так называемым псевдостационарным режимом добычи,
когда в «середине» между двумя продуктивными трещинами как источниками поток отсутствует.
В этом случае уравнение аналитической задачи имеет вид

∂2

∂x2
w =

1

Re
в области U. (3.10)

Здесь U = [0, Re], и соответствующие краевые условия для уравнения (3.2) примут вид

wx

∣∣∣
x=Re

= 0, (3.11)

wx

∣∣∣
x=0

= −1. (3.12)
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Уравнение материального баланса для случая ПСС в терминах конечно-разностной аппрокси-
мации с учетом геометрии течения принимает вид

MBpss(p) =
p(Δ2 )− 2p(Δ2 +Δ) + p(Δ2 + 2Δ)

Δ2
= α

1

Re
. (3.13)

Подчеркнем еще раз, что конечно-разностное уравнение материального баланса не включает гра-
ничные данные, считается фиксированным для любой Δ и сходится к аналитическому решению
при Δ → 0. Решение в случае ПСС по определению ищется для уравнения в области течения с
конкретным граничным условием, и поэтому имеет вид

w(x) = Ax2 +Bx, (3.14)

где

A =
1

2Re
, (3.15)

B

A
= −2Re, B = −1. (3.16)

И снова, как и в случае стационарного состояния, задача ставится следующим образом:

В случае псевдостационарного состояния требуется найти Rpss
0 такое, что стационарная

часть ПСС является решением

w(R(0,pss))− 2w(Δ2 +Δ) + w(Δ2 + 2Δ)

Δ2
= α

1

Re
. (3.17)

Учитывая (3.14), получим

A · (R(0,pss)

)2
+B · (R(0,pss)− 2

(
A

(
3Δ

2

)2

+B
3Δ

2

)
+A

(
5Δ

2

)2

+B

(
5Δ

2

)
= α

Δ2

Re
. (3.18)

Принимая во внимание (3.16), отсюда будем иметь

− 1

2Re

(
R(0,pss)

)2
+R(0,pss)−2

(
− 1

2Re

(
3Δ

2

)2

+
3Δ

2

)
− 1

2Re

(
5Δ

2

)2

+

(
5Δ

2

)
+α

Δ2

1 · Re
= 0. (3.19)

По сути, мы имеем квадратное уравнение относительно x = R(0,pss):

ax2 + bx+ c = 0, (3.20)

где

a = − 1

2Re
, (3.21)

b =
1

1
= 1, (3.22)

c = −2

(
− 1

2Re

(
3Δ

2

)2

+
3Δ

2

)
− 1

2Re

(
5Δ

2

)2

+

(
5Δ

2

)
+ α

Δ2

1 · Re
. (3.23)

Следовательно, корень можно представить в виде

x = R(0,pss) =
−b+√

b2 − 4ac

2a
= −Re ·

[
−1 +

√
D(α,Re,Δ)

]
. (3.24)

Здесь дискриминант выражается как

D(α,Re,Δ) = 1− 4
1

−2Re

[
−2

(
− 1

2Re

(
3Δ

2

)2

+
3Δ

2

)
− 1

2Re

(
5

2
Δ

)2

+
5

2
Δ + α

Δ2

Re

]
=

= 1−Δ ·Re +
Δ2

4
(8α − 7). (3.25)

Тогда мы придем к следующему утверждению.
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Предложение 3.1.

R(0,pss) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Δ− Δ2

4Re
(8α − 7)

1 +
√

1− Δ
Re

+ Δ2

4R2
e
(8α− 7)

, α 	= 1;

Δ

2
, α = 1.

(3.26)

Замечание 3.1. Отметим, что уравнение материального баланса Эйнштейна не связано с гра-
ничными условиями, поэтому константа α в (3.17) не связана с граничным условием.

В заключение отметим, что в этой работе можно использовать ПСС-решение для интерпре-
тации величины давления в точках блока, содержащего трещину, и в отличие от СС-решения
оно будет учитывать влияние расстояния на величину давления. Это имеет решающее значение
для более точной оценки результата численного моделирования процесса гидрогенизационного
восстановления на основе качественной картины потоков вблизи источника добычи.
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Abstract. We are studying the following inverse PDE problem: to find geometric parameter of
the domain of the time-dependent problem that match numerical one. Important feature is that
discretization box of the interest contains source (fractures) generating transport in the porous media.
From industrial point of view, we are building a machinery of the sewing the simulated pressure in
the reservoir with analytical one. The goal is to obtain the value of the pressure function on the
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transport in porous media. We generalize Einstein’s paradigm to relate the average changes in the
fluid density with the velocity of fluid and derive an anisotropic diffusion equation in nondivergence
form that contains a convection term. This is then combined with the Darcy and the constitutive laws
for compressible fluid flows to yield a nonlinear partial differential equations for the density function.
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с переменными показателями нелинейностей и локально суммируемой правой частью. Установ-
лено свойство устойчивости и как следствие доказано существование локального ренормализо-
ванного решения задачи Дирихле в произвольной неограниченной области.
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Введение

Пусть Ω—произвольная область пространства R
n = {x = (x1, x2, . . . , xn)}, Ω ⊂ R

n, n � 2.
Для квазилинейного эллиптического уравнения второго порядка с переменным ростом и локально
суммируемой функцией f рассматривается задача Дирихле

−div a(x,∇u) + b(x, u) = f, x ∈ Ω, (0.1)

u
∣∣∣
∂Ω

= 0. (0.2)

Понятие ренормализованных решений является мощным инструментом для изучения широких
классов вырождающихся эллиптических уравнений с данными в виде меры. Первоначальное
определение приведено в работе [6] для уравнения

−div a(x,∇u) = μ (0.3)

и распространено М.-Ф. Бидо-Верон [4] в локальную и очень полезную форму для уравнения
с p-лапласианом, поглощением и мерой Радона μ:

−Δpu+ |u|p0−2u = μ, p ∈ (1, n), 0 < p− 1 < p0. (0.4)
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В частности, М.-Ф. Бидо-Верон доказала существование в пространстве R
n локального ренор-

мализованного решения уравнения (0.4) c μ ∈ L1,loc(R
n). В монографии [13] Л. Верон обобщил

понятие локального ренормализованного решения для уравнения со степенными нелинейностями
вида

−div a(x,∇u) + b(x, u,∇u) = μ.

Следует отметить, что в работе [10] доказана эквивалентность a-супергармонических функций и
локально ренормализованных решений уравнения (0.3) в случае неотрицательных мер Радона μ.
В настоящей работе понятие локального ренормализованного решения адаптируется на урав-

нение (0.1) c переменными показателями роста. В качестве примера можно привести уравнение

−Δp(x)u+ |u|p0(x)−2u = f, 0 < p(·)− 1 < p0(·), f ∈ L1,loc(Ω).

Автором установлено свойство устойчивости локальных ренормализованных решений зада-
чи (0.1), (0.2). Следствием результата устойчивости является теорема существования локального
ренормализованного решения задачи (0.1), (0.2) в произвольной неограниченной области Ω.

1. Пространства Лебега, Соболева с переменными показателями

В этом разделе будут приведены необходимые сведения из теории пространств с переменными
показателями. Пусть Q ⊆ Ω (Q может совпадать с Ω).
Обозначим

L+
∞(Q) = {p ∈ L∞(Q)

∣∣ 1 � p− � p+ < +∞},
где p− = vrai inf

x∈Q
p(x), p+ = vrai sup

x∈Q
p(x). Пусть p(·) ∈ L+∞(Q), определим лебегово простран-

ство Lp(·)(Q) с переменным показателем как множество измеримых на Q вещественнозначных
функций v таких, что:

ρp(·),Q(v) =
∫

Q

|v(x)|p(x)dx <∞,

с нормой Люксембурга

‖v‖Lp(·)(Q) = ‖v‖p(·),Q = inf
{
k > 0

∣∣∣ ρp(·)(v/k) � 1
}
.

Для v ∈ Lp(·)(Q) справедливы следующие соотношения:

‖v‖p−p(·),Q − 1 � ρp(·),Q(v) � ‖v‖p+p(·),Q + 1.

Ввиду выпуклости имеет место неравенство:

|y + z|p(x) � 2p+−1(|y|p(x) + |z|p(x)), z, y ∈ R, x ∈ Q. (1.1)

При p− > 1 справедливо неравенство Юнга:

|zy| � |y|p(x) + |z|p′(x), z, y ∈ R, p′(·) = p(·)
p(·)− 1

, x ∈ Q, (1.2)

и неравенство Гельдера∣∣∣∣∣∣∣
∫

Q

u(x)v(x)dx

∣∣∣∣∣∣∣
� 2‖u‖p′(·),Q‖v‖p(·),Q, u ∈ Lp′(·)(Q), v ∈ Lp(·)(Q). (1.3)

Определим пространство Соболева с переменным показателем

W 1
p(·)(Q) = {v ∈ Lp(·)(Q)

∣∣ |∇v| ∈ Lp(·)(Q)}
с нормой

‖v‖1p(·),Q = ‖v‖p(·),Q + ‖∇v‖p(·),Q.
Пространство W̊ 1

p(·)(Q) определим как пополнение пространства C∞
0 (Q) по норме ‖·‖W 1

p(·)(Q). Про-

странства Lp(·)(Q), W 1
p(·)(Q), W̊ 1

p(·)(Q) являются сепарабельными, банаховыми и рефлексивными
для p− > 1 (см. [7, Ch. 3, §3.2, §3.4, §8.1]).
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Интересная особенность пространства Соболева c переменным показателем

W̊1
p(·)(Q) = {v ∈ W̊ 1

1 (Q) : ρp(·),Q(|∇v|) <∞}
заключается в том, что гладкие функции не плотны в нем без дополнительных предположений
о степени p(·). Это было отмечено В.В. Жиковым [2] в связи с эффектом Лаврентьева. Однако,
если модуль непрерывности показателя p(·) удовлетворяет логарифмическому условию:

|p(x)− p(y)| � − K

ln|x− y| , x, y ∈ Q, |x− y| � 1

2
,

то гладкие функции плотны в пространстве W̊1
p(·)(Q).

В настоящей работе предполагаем, что p ∈ C+(Q) = {p ∈ C(Q)
∣∣ 1 < p− � p+ < +∞}, где

p− = inf
x∈Q

p(x), p+ = sup
x∈Q

p(x). Для двух ограниченных функций q(·), r(·) ∈ C(Q) будем писать

q(·) < r(·), если inf
x∈Q

(r(x)− q(x)) > 0.

Лемма 1.1 (см. [8]). Пусть Q ограничена, p(·), q(·) ∈ C+(Q), p+ < n, q(·) < p∗(·) = np(·)
n− p(·) .

Тогда имеет место непрерывное и компактное вложение W 1
p(·)(Q) ↪→ Lq(·)(Q).

2. Предположения и определение ренормализованного решения

Условие P . Предполагаем, что функции

a(x, s) = (a1(x, s), . . . , an(x, s)) : Ω× R
n → R

n, b(x, s0) : Ω× R → R,

входящие в уравнение (0.1), каратеодориевы. Пусть существуют неотрицательная функция Φ ∈
Lp′(·),loc(Ω), положительные числа â, a такие, что при п.в. x ∈ Ω, для всех s, t ∈ R

n справедливы
неравенства:

|a(x, s)| � â
(
|s|p(x)−1 +Φ(x)

)
; (2.1)

(a(x, s) − a(x, t)) · (s− t) > 0, s 	= t; (2.2)

a(x, s) · s � a|s|p(x). (2.3)

Здесь s · t =
n∑

i=1
siti, s = (s1, . . . , sn), t = (t1, . . . , tn).

Кроме того, пусть существуют неотрицательная функция Φ0 ∈ L1,loc(Ω), непрерывная неубы-
вающая функция b̂ : R+ → R

+, положительное число b такие, что при п.в. x ∈ Ω, для всех s0 ∈ R

справедливы неравенства:
|b(x, s0)| � b̂(|s0|)Φ0(x); (2.4)

b(x, s0)s0 � b|s0|p0(x)+1, p(·)− 1 < p0(·). (2.5)
При этом предполагаем, что функции p, p0 ∈ C+(Ω) и p+ < n.

Следуя [3, 12], введем обозначения: q0(·) =
p∗(·)
p′+

, q3(·) =
q0(·)

p(·)− 1
, q1(·) =

q0(·)
q0(·) + 1

p(·), q2(·) =

q0(·)
q0(·) + 1

p′(·), q4(·) = p0(·)
1 + p0(·)p

′(·), где p′+ =
p−

p− − 1
. Пусть выполнено дополнительное условие

p(·)− 1 < q0(·). (2.6)

Тогда можно определить q′2(·) =
q0(·)p(·)

q0(·) + 1− p(·) .
Определим срезку Tk(r) = max(−k,min(k, r)). Через Lip0(R) обозначим пространство всех

липшицевых непрерывных функций на R, производная которых имеет компактный носитель.

Определение 2.1. Пусть область Ω ограничена. Измеримая конечная почти всюду функция
u : Ω → R называется ренормализованным решением задачи (0.1), (0.2) с f ∈ L1(Ω), если выпол-
няются следующие условия:
a) Tk(u) ∈ W̊ 1

p(·)(Ω) при любом k > 0;
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b) b(x, u) ∈ L1(Ω);
c) |∇u|p(·)−1 ∈ Lq(·)(Ω), 1 � q(·) < q2(·);
d) |u|p(·)−1 ∈ Lq(·)(Ω), 1 � q(·) < q3(·);
e) для любой функции h ∈ Lip0(R) и любой ϕ ∈ W 1

r(·)(Ω), r(·) > q′2(·), такой, что ϕh(u) ∈
W̊ 1

p(·)(Ω), имеем∫

Ω

(b(x, u)− f)h(u)ϕdx +

∫

Ω

a(x,∇u) · (∇uh′(u)ϕ+∇ϕh(u))dx = 0. (2.7)

Определим L∞,loc(Ω), L1,loc(Ω), W̊
1
p(·),loc(Ω) как пространства, состоящие из функций v, опре-

деленных в Ω, для которых при любой ограниченной Q � Ω имеет место принадлежность
v ∈ L∞(Q), L1(Q), V̊ 1

p(·)(Q) = W̊ 1
p(·)(Ω) ∩W 1

p(·)(Q), соответственно.

Определение 2.1-loc. Измеримая конечная почти всюду функция u : Ω → R называется
локальным ренормализованным решением задачи (0.1), (0.2) c f ∈ L1,loc(Ω), если выполняются
следующие условия:
a-loc) Tk(u) ∈ W̊ 1

p(·),loc(Ω) при любом k > 0;

b-loc) b(x, u) ∈ L1,loc(Ω);

c-loc) |∇u|p(·)−1 ∈ Lq(·),loc(Ω), 1 � q(·) < q2(·);
d-loc) |u|p(·)−1 ∈ Lq(·),loc(Ω), 1 � q(·) < q3(·);
e-loc) для любой функции h ∈ Lip0(R) и любой ϕ ∈W 1

r(·)(Ω), r(·) > q′2(·) с компактным носите-
лем такой, что ϕh(u) ∈ W̊ 1

p(·)(Ω), справедливо тождество (2.7).

Отметим, что в работе [3] впервые для уравнения с p(·)-ростом было сформулировано опреде-
ление ренормализованного решения и доказано его существование.
Пусть u—локальное ренормализованное решение задачи (0.1), (0.2). Для любого k > 0 имеем

∇Tk(u) = χ{Ω:|u|�k}∇u ∈ (Lp(·),loc(Ω))n. (2.8)

Применяя (1.1), из неравенства (2.1) выводим оценку:

|a(x, s)|p′(x) � Â|s|p(x) +Ψ(x) (2.1′)

с неотрицательной функцией Ψ ∈ L1,loc(Ω). Из (2.8), (2.1′) следует, что для любого k > 0

χ{Ω:|u|�k}a(x,∇u) = χ{Ω:|u|�k}a(x,∇Tk(u)) ∈ (Lp′(·),loc(Ω))n. (2.9)

Замечание 2.1. Каждый интеграл в (2.7) корректно определен. Пусть suppϕ ∩ Ω = K.
Несложно проверить, что q′2(·) � n, поэтому справедливы вложения W 1

r(·)(K) ⊂ W 1
q′2(·)(K) ⊂

W 1
n(K) ⊂ C(K). Действительно, первое слагаемое конечно благодаря условию b-loc), f ∈ L1,loc(Ω)

и принадлежности h(u)ϕ ∈ L∞(K). Поскольку supp h′ ⊆ [−M,M ] для некоторого M > 0, то вто-
рое слагаемое может быть записано в виде∫

K

a(x,∇u) · (∇uh′(u)ϕ+∇ϕh(u))dx =

∫

K

a(x,∇TM (u)) · ∇TM (u)h′(u)ϕdx +

∫

K

a(x,∇u) · ∇ϕh(u)dx.

Благодаря (2.8), (2.9) и принадлежности h ∈ Lip0(R), ϕ ∈ C(K) первый интеграл определен и
конечен. Поскольку a(x,∇u) ∈ (Lq(·)(K))n для любого q(·) < q2(·) и ∇ϕ ∈ (Lr(·)(K))n для любого
r(·) > q′2(·), получаем, что произведение a(x,∇u) · ∇ϕh(u) интегрируемо в K.

В настоящей работе доказана следующая теорема.

Теорема 2.1. Пусть выполнены условия P, последовательность функций {fξ}ξ∈N ⊂ L1,loc(Ω)

сходится к f в L1,loc(Ω), и {uξ}ξ∈N —последовательность локальных ренормализованных реше-
ний задачи

−div a(x,∇u) + b(x, u) = fξ, x ∈ Ω, (2.10)
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с краевым условием (0.2). Тогда существует подпоследовательность последовательности
{uξ}ξ∈N (обозначим ее так же), сходящаяся почти всюду к локальному ренормализованному
решению задачи (0.1), (0.2).

Следствием теоремы 2.1 является теорема 2.2.

Теорема 2.2. Пусть f ∈ L1,loc(Ω), выполнены условия P, тогда существует локальное ре-
нормализованное решение задачи (0.1), (0.2).

В работе [11] в пространстве R
n рассмотрено нелинейное анизотропное эллиптическое уравне-

ние вида (0.1) с переменными показателями нелинейностей и локально интегрируемой функ-
цией f. Ф. Мохтари доказано существование локального слабого решения u уравнения (0.1)
в пространстве R

n. Для сравнения сформулируем результат регулярности градиента для изо-
тропного уравнения. При дополнительном ограничении p(·) > 2 − 1/n установлена локальная

суммируемость ∇u с показателем 1 � q(·) < (p(·) − 1)n

n− 1
, а также при дополнительном ограни-

чении p(·) > 1 + 1/p0(·) установлена локальная суммируемость ∇u с показателем 1 � q(·) <
p0(·)p(·)
1 + p0(·) = q4(·)(p(·) − 1). Заметим, что в настоящей работе аналогичные оценки установлены в

утверждении 3.2 (см. (3.17)), причем оценка с показателем q4(·) получена без дополнительных
ограничений.

3. Подготовительные сведения

Меру Лебега измеримого множества Q будем обозначать meas (Q). Через D+(Rn) обозначим
пространство функций C∞

0 (Rn) с положительными значениями внутри компактного носителя.
Все постоянные, встречающиеся ниже в работе, положительны.

Утверждение 3.1. Пусть u—локальное ренормализованное решение задачи (0.1), (0.2), по-

ложим R̂0 = sup
x∈Ω

p0(x)p(x)

p0(x) + 1− p(x)
. Тогда для любых α < 0, φ ∈ D+(Rn) справедливы оценки

∫

Ω

(|u|+ 1)p0(x)φRdx � C1

⎛
⎝
∫

Ω

(1 + Φp′(x) + |f |)φRdx +
∫

Ω

|∇φ|Rdx
⎞
⎠ , R > R̂0, (3.1)

∫

Ω

(|u| + 1)α−1|∇u|p(x)φRdx � C2

⎛
⎝
∫

Ω

(1 + Φp′(x) + |f |)φRdx +

∫

Ω

|∇φ|Rdx
⎞
⎠ , R > R̂0, (3.2)

с постоянными C1(â, a, b, n,R, suppφ, p, p0), C2(â, a, b, α, n,R, suppφ, p, p0), не зависящими от u.

Доказательство. Пусть ρ > 0, α < 0 и h(�) = (1− (|�|+1)α)sign �, hρ(�) = h(Tρ(�)), � ∈ R, тогда
h′ρ(�) = |α|(|Tρ(�)|+1)α−1χ{|�|<ρ}. Положив в (2.7) h = hρ, применяя оценку (2.1), для ϕ ∈ D+(Rn)
будем иметь

|α|
∫

Ω

(|Tρ(u)|+ 1)α−1a(x,∇u) · ∇Tρ(u)ϕdx +

∫

Ω

b(x, u)ϕhρ(u)dx =

= −
∫

Ω

a(x,∇u) · ∇ϕhρ(u)dx +

∫

Ω

ϕfhρ(u)dx � (3.3)

� â

∫

Ω

|∇Tρ(u)|p(x)−1|∇ϕ|dx +

∫

{Ω:|u|>ρ}
|∇u|p(x)−1|∇ϕ|dx + â

∫

Ω

Φ|∇ϕ|dx +

∫

Ω

ϕ|f |dx.

Далее, используя (1.2), выводим

I = â

∫

Ω

|∇Tρ(u)|p(x)−1|∇ϕ|dx � |α|a
2

∫

Ω

|∇Tρ(u)|p(x)(|Tρ(u)|+ 1)α−1ϕdx +
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+ C3(α, â, a)

∫

Ω

|∇ϕ|p(x)(|Tρ(u)|+ 1)(1−α)(p(x)−1)ϕ1−p(x)dx.

Положим −α∗ = inf
Ω

p0(x)

p(x)− 1
− 1 > 0 и τα(x) =

p0(x)

(p(x)− 1)(1 − α)
> 1 для α ∈ (α∗, 0). Снова

применяя (1.2), получаем

I � |α|a
2

∫

Ω

|∇Tρ(u)|p(x)(|Tρ(u)|+ 1)α−1ϕdx + (3.4)

+ ε

∫

Ω

(|Tρ(u)|+ 1)p0(x)ϕdx +C4(ε, α, â, a)

∫

Ω

|∇ϕ|p(x)τ ′α(x)ϕ1−p(x)τ ′α(x)dx.

Соединяя (3.3), (3.4), применяя (2.3), (2.5), выводим неравенство

a
|α|
2

∫

Ω

(|Tρ(u)| + 1)α−1|∇Tρ(u)|p(x)ϕdx +

∫

Ω

|b(x, u)|ϕ|hρ(u)|dx �

� ε

∫

Ω

(|u|+ 1)p0(x)ϕdx + C4

∫

Ω

|∇ϕ|p(x)τ ′α(x)ϕ1−p(x)τ ′α(x)dx +

+

∫

{Ω:|u|>ρ}
|∇u|p(x)−1|∇ϕ|dx + â

∫

Ω

Φ|∇ϕ|dx +

∫

Ω

ϕ|f |dx. (3.5)

Ввиду условия с-loc) |∇u|p(·)−1 ∈ L1,loc(Ω), поэтому

lim
ρ→∞

∫

{Ω:|u|>ρ}
|∇u|p(x)−1|∇ϕ|dx = 0. (3.6)

Выполняя предельный переход при ρ→ ∞ в (3.5) с учетом (3.6), устанавливаем неравенство

a
|α|
2

∫

Ω

(|u|+ 1)α−1|∇u|p(x)ϕdx +

∫

Ω

|b(x, u)|ϕ|h(u)|dx �

� ε

∫

Ω

(|u|+ 1)p0(x)ϕdx + C4

∫

Ω

( |∇ϕ|
ϕ

)p(x)τ ′α(x)
ϕdx + â

∫

Ω

Φ|∇ϕ|dx +

∫

Ω

ϕ|f |dx.

Применяя (2.5), выводим

a
|α|
2

∫

Ω

(|u|+ 1)α−1|∇u|p(x)ϕdx + b

∫

Ω

|u|p0(x)ϕ|h(u)|dx �

� ε

∫

Ω

(|u|+ 1)p0(x)ϕdx + C4

∫

Ω

( |∇ϕ|
ϕ

)p(x)τ ′α(x)
ϕdx + â

∫

Ω

Φ|∇ϕ|dx +

∫

Ω

ϕ|f |dx. (3.7)

Для α ∈ (α∗, 0] рассмотрим функцию Rα(x) = p(x)τ ′α(x) =
p0(x)p(x)

p0(x) + 1− p(x) + α(p(x)− 1)
: K →

R
+, где K = suppϕ ∩ Ω. Обозначим R̂α = max

x∈K
Rα(x). Очевидно, R̂α непрерывна, монотонно не

возрастает по α ∈ (α∗, 0] и ограничена снизу R̂0. Для любого α ∈ (α∗, 0) найдем R̂α и зафиксируем
R > R̂α.
Положим ϕ = φR, тогда из (3.7) следует неравенство

a
|α|
2

∫

Ω

(|u|+ 1)α−1|∇u|p(x)φRdx + b

∫

Ω

|u|p0(x)φR|h(u)|dx �

� ε

∫

Ω

(|u|+ 1)p0(x)φRdx + C4

∫

Ω

(
φR +RR|∇φ|R) dx + âR

∫

Ω

Φ|∇φ|φR−1dx +

∫

Ω

φR|f |dx. (3.8)
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Далее, применяя неравенство (1.2), пользуясь очевидным неравенством R′ < p′(x), устанавливаем

R

∫

Ω

Φ|∇φ|φR−1dx �
∫

Ω

(
RR|∇φ|R +ΦR′

φR
)
dx �

∫

Ω

(
RR|∇φ|R +Φp′(x)φR + φR

)
dx. (3.9)

Соединяя (3.8), (3.9), устанавливаем∫

Ω

(|u|+ 1)α−1|∇u|p(x)φRdx +

∫

Ω

|u|p0(x)φR|h(u)|dx �

� εC5

∫

Ω

(|u|+ 1)p0(x)φRdx + C6

∫

Ω

(
RR|∇φ|R + φR(1 + |f |+Φp′(x))

)
dx. (3.10)

Для |u| � 1 справедлива оценка |h(u)| = 1 − (|u| + 1)α � 1 − 2α > 0. Тогда имеем следующую
цепочку неравенств: ∫

Ω

(|u| + 1)p0(x)φRdx � 2p0+−1

∫

Ω

(|u|p0(x) + 1)φRdx � (3.11)

� 2p0+
∫

{Ω:|u|�1}

|u|p0(x)φRdx + 2p0+
∫

{Ω:|u|<1}

φRdx � 2p0+

1− 2α

∫

Ω

|u|p0(x)φR|h(u)|dx + 2p0+
∫

Ω

φRdx.

Соединяя (3.10), (3.11), выбирая ε > 0 достаточно малым, устанавливаем неравенство∫

Ω

(|u|+ 1)α−1|∇u|p(x)φRdx +

∫

Ω

(|u| + 1)p0(x)φRdx �

� C7

∫

Ω

(
RR|∇φ|R + φR(1 + |f |+Φp′(x))

)
dx. (3.12)

Отсюда следует неравенство (3.1) и неравенство (3.2) для α ∈ (α∗, 0); для α � α∗ неравенство (3.2)
также справедливо.

Введем обозначения: B(r) = {x ∈ R
n
∣∣ |x| < r}, Ω(r) = Ω ∩ B(r), r > 0. Будем рассматривать

срезающую функцию φr ∈ C∞(R+) : φr(�) = 0 при � > r + 1 и φr(�) = 1 при 0 � � � r.

Утверждение 3.2. Пусть u— локальное ренормализованное решение задачи (0.1), (0.2), то-
гда для любых r, k > 0 верны оценки ∫

Ω(r)

(|u|+ 1)p0(x)dx � D1, (3.13)

∫

Ω(r)

(|u|+ 1)α−1|∇u|p(x)dx � D2(α), α < 0, (3.14)

meas ({Ω(r) : |u| � k}) � D1k
−p0− . (3.15)

Кроме того, |u|p(·)−1 ∈ Ls(·),loc(Ω), 1 � s(·) < q3(·), и справедлива оценка∫

Ω(r)

|u|(p(x)−1)s(x)dx � D3; (3.16)

|∇u|p(·)−1 ∈ Lσ(·),loc(Ω), 1 � σ(·) < q2(·), и справедлива оценка∫

Ω(r)

|∇u|(p(x)−1)σ(x)dx � D4, (3.17)

а также |∇u|p(·)−1 ∈ Lσ(·),loc(Ω), 1 � σ(·) < q4(·), и справедлива оценка (3.17).
Здесь константы D1–D4, зависят от N, где N —набор â, a, b, n,Ω(r + 1), p, p0,‖Φ‖p′(·),Ω(r+1),

‖f‖1,Ω(r+1), не зависящий от u.
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Доказательство. Перепишем оценки (3.1), (3.2) c φ(x) = φr(|x|) и фиксированным R, получим
неравенства: (3.13), (3.14). Из оценки (3.13) следует неравенство (3.15).
Пусть α ∈ (1−p−, 0) и v = (1+|u|)β , β = (α+p−−1)/p− > 0. Поскольку βp(x) < p(x)−1 < p0(x),

ввиду оценки (3.13) имеем ∫

Ω(r)

vp(x)dx �
∫

Ω(r)

(1 + |u|)p0(x)dx � D1. (3.18)

Тогда ∇v = β(1 + |u|)β−1 ∇u sign u и, согласно (3.14), справедливы неравенства∫

Ω(r)

|∇v|p(x)dx � βp−
∫

Ω(r)

(1 + |u|)(β−1)p(x)|∇u|p(x)dx �
∫

Ω(r)

(1 + |u|)α−1|∇u|p(x)dx � D5. (3.19)

Соединяя (3.18), (3.19), выводим оценку

‖v‖1p(·),Ω(r) � D6,

из которой, ввиду леммы 1.1, получаем

‖v‖q(·)(p(·)−1),Ω(r) � D7, 1 � q(·) < p∗(·)
p(·)− 1

.

Отсюда для любого α ∈ (1− p−, 0) следует неравенство∫

Ω(r)

|u|βq(x)(p(x)−1)dx �
∫

Ω(r)

(|u|+ 1)βq(x)(p(x)−1)dx � D3. (3.20)

Пусть s(·) < q3(·), найдем s(·) < t(·) < q3(·), тогда inf
Ω
(q3(x) − t(x)) = a > 0. Положим t(x) =

p∗(x)(α+ p− − 1)

p−(p(x)− 1)
, тогда a = |α| inf

Ω

p∗(x)
p−(p(x)− 1)

. Поскольку s(x) < t(x) =
p∗(x)β
p(x)− 1

, то ввиду (3.20)

оценка (3.16) установлена.
Далее, применяя неравенство (1.2), для 1 � σ(x) < p′(x) имеем:∫

Ω(r)

|∇u|(p(x)−1)σ(x)dx �
∫

Ω(r)

|∇u|p(x)(|u|+ 1)α−1dx +

∫

Ω(r)

(|u|+ 1)
(1−α)σ(x)

p′(x)−σ(x) . (3.21)

Первый интеграл в (3.21) оценивается благодаря (3.14), а второй с помощью (3.16) при условии
(1− α)σ(x)

p′(x)− σ(x)
< q0(x), которое выполняется для 1 � σ(x) <

p′(x)q0(x)
1− α+ q0(x)

при малых α < 0.

Кроме того, второй интеграл можно оценить с помощью (3.13) при условии
(1− α)σ(x)

p′(x)− σ(x)
< p0(x),

которое выполняется для 1 � σ(x) <
p′(x)p0(x)

1− α+ p0(x)
при малых α < 0. Таким образом, оценка (3.17)

установлена.

Следует отметить, что в случае ограниченной области Ω глобальные оценки вида (3.16), (3.17)
для энтропийного решения установлены в [12, Proposition 3.2, 3.6, Corollary 3.5, 3.7].

Утверждение 3.3. Пусть u— локальное ренормализованное решение задачи (0.1), (0.2), то-
гда при всех k, r > 0,m � 0 справедлива оценка∫

{Ω(r):|u|�k+m}
|b(x, u)|dx +

1

k

∫

{Ω(r):m�|u|<k+m}
|∇u|p(x)dx � D7, (3.22)

с константой D7(N), не зависящей от u.

Доказательство. Рассмотрим функцию

Tk,m(�) =

⎧⎪⎨
⎪⎩
0 при |�| < m,

�−m sign � при m � |�| < k +m,

k sign � при |�| � k +m.



ЛОКАЛЬНЫЕ РЕНОРМАЛИЗОВАННЫЕ РЕШЕНИЯ ЭЛЛИПТИЧЕСКИХ УРАВНЕНИЙ 133

Положив в (2.7) h(u) = Tk,m(u), ϕ = φr, будем иметь∫

{Ω:m�|u|<k+m}
φra(x,∇u) · ∇udx +

∫

{Ω:m�|u|}
b(x, u)Tk,m(u)φrdx +

+

∫

{Ω:m�|u|}
a(x,∇u) · ∇φrTk,m(u)dx =

∫

{Ω:m�|u|}
Tk,m(u)φrfdx.

Далее, используя (2.3), (2.5), выводим

a

∫

{Ω:m�|u|<k+m}
φr|∇u|p(x)dx + k

∫

{Ω:|u|�k+m}
φr|b(x, u)|dx �

� k

∫

{Ω:|u|�m}
φr|f |dx + kâ

∫

{Ω:|u|�m}

(
|∇u|p(x)−1 +Φ(x)

)
|∇φr|dx � (3.23)

� k‖f‖1,Ω(r+1) + kâ

∫

Ω

(
|∇u|p(x)−1 +Φ(x)

)
|∇φr|dx.

Соединяя последнее неравенство с (3.17), получаем оценку (3.22).
В частности, из (3.22) при m = 0 имеем оценку∫

{Ω(r):|u|�k}
|b(x, u)|dx +

1

k

∫

{Ω(r):|u|<k}
|∇u|p(x)dx � D7. (3.24)

Утверждение 3.4. Пусть u— локальное ренормализованное решение задачи (0.1), (0.2), то-
гда для любых k, r > 0 верны неравенства

meas ({Ω(r) : |∇u| � k}) � D8(N)k−γ0 , γ0 =
p0−p−
p0− + 1

. (3.25)

Доказательство. Из оценки (3.24) выводим∫

{Ω(r):|u|<k}

|∇u|p(x)dx � D7k, k > 0. (3.26)

Положим Φ(k, h) = meas {Ω(r) : |u| � k, |∇u|p(x) � h}, k, h > 0. Выше установлено (см. (3.15)),
что

Φ(k, 0) � D1k
−p0− . (3.27)

Поскольку функция h→ Φ(k, h) невозрастающая, то для k, h > 0 справедливы неравенства

Φ(0, h) � 1

h

h∫

0

Φ(0, �)d� � Φ(k, 0) +
1

h

h∫

0

(Φ(0, �) − Φ(k, �))d�. (3.28)

Отметим, что
Φ(0, �) − Φ(k, �) = meas {Ω : |u| < k, |∇u|p(x) � �}.

Поэтому из (3.26) следует, что
∞∫

0

(Φ(0, �) − Φ(k, �))d� � D7k. (3.29)

Теперь, соединяя (3.27)–(3.29), получаем неравенство

Φ(0, h) � D1k
−p0− +D7k/h.
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Выбирая k = h
1

p0−+1 , добиваемся неравенства Φ(0, h) < D8h
− p0

p0−+1 . Отсюда, ввиду справедливо-
сти вложения {Ω(r) : |∇u|p(x) � h} ⊃ {Ω(r) : |∇u| � h1/p−}, устанавливаем оценку

meas ({Ω(r) : |∇u| � h1/p−}) � D8h
−γ0/p− , h � 1,

из которой следует (3.25).

Лемма 3.1. Пусть B = Lp(·)(Q) или B = W 1
p(·)(Q), vj , j ∈ N, v—такие функции из B, что

{vj}j∈N ограничена в B и
vj → v п.в. в Q, j → ∞, (3.30)

тогда
vj ⇀ v слабо в B, j → ∞.

Лемма 3.2. Пусть функции vj , j ∈ N, v ∈ L∞(Q) такие, что {vj}j∈N ограничена в L∞(Q) и
имеет место сходимость (3.30), тогда

vj
∗
⇀ v слабо в L∞(Q), j → ∞.

Если, кроме того, hj , j ∈ N, h—такие функции из Lp(·)(Q), что

hj → h сильно в Lp(·)(Q), j → ∞,

то
vjhj → vh сильно в Lp(·)(Q), j → ∞.

Лемма 3.3 (см. [5, лемма 2]). Пусть meas (Q) < ∞, γ : Q → [0,+∞]—измеримая функция
такая, что meas({x ∈ Q : γ(x) = 0}) = 0. Тогда для любого ε > 0 существует δ > 0 такое, что
неравенство ∫

Q′

γ(x)dx < δ, Q′ ⊂ Q,

влечет meas (Q′) < ε.

Ниже будет использоваться теорема Витали в следующей форме (см. [1, гл. III, §6, теорема 15]).

Лемма 3.4. Пусть vj , j ∈ N, v—измеримые функции в области Q, meas (Q) < ∞, такие,
что имеет место сходимость (3.30), s = 1 или p(·) и интегралы∫

Q

|vj(x)|sdx, j ∈ N,

равностепенно абсолютно непрерывны, тогда

vj → v сильно в Ls(Q), j → ∞.

Лемма 3.5 (см. [9, Theorem 13.47]). Пусть vj , j ∈ N, v ∈ L1(Q) такие, что vj , v � 0 п.в.
в Q, имеет место сходимость (3.30) и∫

Q

vj(x)dx →
∫

Q

v(x)dx, j → ∞,

тогда
vj → v сильно в L1(Q), j → ∞.

Определение 3.1. Пусть область Ω ограничена. Измеримая конечная почти всюду функция
u : Ω → R называется ренормализованным решением задачи (0.1), (0.2) с f ∈ L1(Ω), если выпол-
няются условия: a)–d) и для любой функции w ∈ W̊ 1

p(·)(Ω) ∩ L∞(Ω) такой, что

существуют k > 0, w+∞, w−∞ ∈W 1
r(·)(Ω), r(·) > q′2(·),{

w = w+∞ почти всюду при u > k,
w = w−∞ почти всюду при u < −k, (3.31)
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справедливо равенство ∫

Ω

(b(x, u) − f)wdx +

∫

Ω

a(x,∇u) · ∇wdx = 0. (3.32)

Определение 3.1-loc. Измеримая конечная почти всюду функция u : Ω → R называется
локальным ренормализованным решением задачи (0.1), (0.2) c f ∈ L1,loc(Ω), если выполняются
условия a-loc)–d-loc) и для любой функции w ∈ W̊ 1

p(·)(Ω) ∩ L∞(Ω) с компактным носителем и
свойствами (3.31) справедливо равенство (3.32).

Замечание 3.1. Каждый интеграл в (3.32) корректно определен. Пусть suppw∩Ω = K. Пер-
вое слагаемое в левой части конечно благодаря условию b-loc), f ∈ L1,loc(Ω) и принадлежности
w ∈ L∞(K). Второе слагаемое можно записать∫

{K:u<−k}
a(x,∇u) · ∇wdx +

∫

{K:u>k}
a(x,∇u) · ∇wdx +

∫

{K:|u|�k}
a(x,∇u) · ∇wdx.

C одной стороны, из условия c-loc) и неравенства (2.1) следует, что a(x,∇u) ∈ (Lq(·)(K))n для
любого q(·) < q2(·); с другой стороны, ∇w = ∇w−∞ п.в. на множестве {K : u < −k}, поэтому
∇w ∈ (Lr(·)({K : u < −k}))n для любого r(·) > q′2(·) и, следовательно, произведение a(x,∇u) · ∇w
интегрируемо на {K : u < −k}. Таким же образом доказывается интегрируемость a(x,∇u)·∇w на
{K : u > k}. Наконец, благодаря (2.9) и принадлежности w ∈W 1

p(·)(K) произведение a(x,∇u) ·∇w
интегрируемо на {K : |u| � k}.

Теорема 3.1. Определения 2.1-loc, 3.1-loc эквивалентны.

Эквивалентность определений 2.1, 3.1 в случае данных в виде общей меры доказана в [3],
эквивалентность определений 2.1-loc, 3.1-loc устанавливается аналогично.

4. Доказательство теоремы 2.1, начало

В этом разделе будут получены некоторые априорные оценки и свойства сходимости последо-
вательности {uξ}.
Согласно определению 2.1-loc, для любой функции h ∈ Lip0(R) и любой ϕ ∈ W 1

q(·)(Ω), r(·) >
q′2(·) с компактным носителем такой, что ϕh(u) ∈ W̊ 1

p(·)(Ω), решение uξ удовлетворяет равенству
∫

Ω

(b(x, uξ)− fξ)h(uξ)ϕdx +

∫

Ω

a(x,∇uξ) · (∇uξh′(uξ)ϕ+∇ϕh(uξ))dx = 0. (4.1)

Коме того, согласно определению 3.1-loc для любой функции w ∈ W̊ 1
p(·)(Ω)∩L∞(Ω) с компактным

носителем и со свойствами (3.31) справедливо равенство∫

Ω

(b(x, uξ)− fξ)wdx +

∫

Ω

a(x,∇uξ) · ∇wdx = 0. (4.2)

Шаг 1: априорные оценки. Здесь r > 0—произвольное фиксированное.
Ввиду сходимости

fξ → f в L1,loc(Ω), ξ → ∞, (4.3)

существует положительная константа cr такая, что

‖fξ‖1,Ω(r) � cr, ξ ∈ N. (4.4)

Применяя оценки утверждения 3.1 с φ = φr (см. (3.1), (3.2)), учитывая (4.4), выводим оценки:∫

Ω(r)

(|uξ |+ 1)p0(x)dx � D1, ξ ∈ N, (4.5)
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и для любого α < 0 ∫

Ω(r)

(|uξ|+ 1)α−1|∇uξ|p(x)dx � D2, ξ ∈ N. (4.6)

Согласно утверждению 3.2, для любых k, r > 0 справедливо неравенство (см. (3.15))

meas ({Ω(r) : |uξ| � k}) � D1k
−p0− , ξ ∈ N. (4.7)

Кроме того, для 1 � q(·) < q3(·) справедлива оценка (см. (3.16))∫

Ω(r)

|uξ|(p(x)−1)q(x)dx � D3, ξ ∈ N; (4.8)

а для 1 � q(·) < q2(·) (или q4(·))— оценка (см. (3.17))∫

Ω(r)

|∇uξ|(p(x)−1)q(x)dx � D4, ξ ∈ N. (4.9)

Таким же образом, как в утверждении 3.3, получаем оценку (см. (3.24))∫

{Ω(r):|uξ|�k}

|b(x, uξ)|dx +
1

k

∫

{Ω(r):|uξ|<k}

|∇uξ|p(x)dx � D7, ξ ∈ N. (4.10)

Из оценки (4.10) ввиду произвольности k > 0 устанавливаем неравенство

‖b(x, uξ)‖1,Ω(r) � D7, ξ ∈ N. (4.11)

Далее, из оценки (4.10), пользуясь неравенством (2.1′), выводим∫

Ω(r)

|∇Tk(uξ)|p(x)dx � D7k, k > 0, ξ ∈ N, (4.12)

∫

Ω(r)

|a(x,∇Tk(uξ))|p′(x)dx � D9k, k � 1, ξ ∈ N. (4.13)

Далее, согласно утверждению 3.4, для любых k, r > 0 справедливо неравенство (см. (3.25))

meas ({Ω(r) : |∇uξ| � k}) � D8k
−γ0 , γ0 =

p0−p−
p0− + 1

. (4.14)

Здесь и ниже константы Di не зависят от ξ, k.

Шаг 2: сходимость подпоследовательности {uξ} почти всюду.
Из оценок (4.7), (4.14) имеем

meas ({Ω(r) : |uξ| � h}) → 0 равномерно по ξ, h→ ∞, (4.15)
meas ({Ω(r) : |∇uξ| � h}) → 0 равномерно по ξ, h→ ∞. (4.16)

Установим сходимость по подпоследовательности:

uξ → u п.в. в Ω, ξ → ∞. (4.17)

Пусть α ∈ (1−p−, 0), рассмотрим последовательность vξ = (1+ |uξ|)β , β = (α+p−−1)/p− > 0.
Согласно (4.5), (4.6), справедливы оценки∫

Ω(r)

|vξ|p(x)dx �
∫

Ω(r)

(1 + |uξ|)p0(x)dx � D1, (4.18)

∫

Ω(r)

|∇vξ|p(x)dx � βp−
∫

Ω(r)

(1 + |uξ|)(β−1)p(x)|∇uξ|p(x)dx �
∫

Ω(r)

(1 + |uξ|)α−1|∇uξ|p(x)dx � D2. (4.19)
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Рассмотрим также последовательности v′ξ = (1 + u+ξ )
β, v′′ξ = (1 + u−ξ )

β. Очевидно, что
|∇v′ξ| � β(1 + |uξ|)(α−1)/p− |∇uξ|, |∇v′′ξ | � β(1 + |uξ|)(α−1)/p− |∇uξ|. Из оценок (4.18), (4.19) следу-
ет ограниченность последовательностей v′ξ, v

′′
ξ в пространстве W 1

p(·)(Ω(r)) и, ввиду компактности
вложения в пространство Lp(·)(Ω(r)), имеет место сильная сходимость в Lp(·)(Ω(r)) и сходимость
v′ξ → v′, v′′ξ → v′′ п.в. в Ω. Тогда сходимость (4.17) доказана. Применяя лемму Фату и сходи-
мость (4.17), из оценок (4.5), (4.11) выводим |u|p0(x), b(x, u) ∈ L1,loc(Ω).
Из (4.17) следует, что для любого k > 0

Tk(uξ) → Tk(u) п.в. в Ω, ξ → ∞. (4.20)

Кроме того, из сходимости (4.17) вытекает сходимость локально по мере, а значит, и фундамен-
тальность {uξ} локально по мере:

meas ({Ω(r) : |uξ − uη| � ν}) → 0 при ξ, η → ∞ для любых ν, r > 0. (4.21)

Из оценки (4.12) следует ограниченность последовательности {Tk(uξ)} ⊂ W̊ 1
p(·),loc(Ω) в про-

странстве W 1
p(·)(Ω(r)) при фиксированных k, r > 0. Тогда можно выделить слабо сходящуюся в

W 1
p(·)(Ω(r)) подпоследовательность Tk(uξ) ⇀ vk, ξ → ∞, причем vk ∈ V̊ 1

p(·)(Ω(r)). Из сходимо-
сти (4.20) следует равенство vk = Tk(u) ∈ V̊ 1

p(·)(Ω(r)). Таким образом, доказана сходимость

Tk(uξ)⇀ Tk(u) в W̊ 1
p(·),loc(Ω), ξ → ∞. (4.22)

Шаг 3: сходимость подпоследовательности {∇uξ} почти всюду.
Сначала установим сходимость

∇uξ → ∇u локально по мере, ξ → ∞. (4.23)

Для ν, θ, h, r > 0 рассмотрим множество

Eν,θ,h(r) = {Ω(r) : |uξ − uη| < ν, |∇uξ| � h, |∇uη| � h, |uξ| < h, |uη| < h, |∇(uξ − uη)| � θ}.
Поскольку справедливо включение

{Ω(r) : |∇(uξ − uη)| � θ} ⊂ {Ω(r) : |∇uξ| > h} ∪ {Ω(r) : |∇uη| > h} ∪
∪ {Ω(r) : |uξ − uη| � ν} ∪ {Ω(r) : |uξ | � h} ∪ {Ω(r) : |uη| � h} ∪ Eν,θ,h(r),

то в силу (4.15)-(4.16) выбором h добьемся неравенств

meas {Ω(r) : |∇(uη − uξ)| � θ} < 4ε+measEν,θ,h(r) + meas {Ω(r) : |uη − uξ| � ν}, ξ, η ∈ N. (4.24)

По условию монотонности (2.2) и известному факту, что непрерывная функция на компакте
достигает наименьшего значения, найдется γ(x) > 0 п.в. в Ω(r) такая, что meas({x ∈ Ω(r) : γ(x) =
0}) = 0, и при |s| � h, |t| � h, |s− t| � θ справедливо неравенство

(a(x, s) − a(x, t)) · (s− t) � γ(x), x ∈ Ω(r). (4.25)

Запишем равенство (4.2) дважды для uξ uη c fξ и fη, соответственно, и вычтем из первого
второе, получим∫

Ω

(a(x,∇uξ)− a(x,∇uη)) · ∇wdx =

∫

Ω

(fξ − fη − b(x, uξ) + b(x, uη))wdx.

Подставляя пробную функцию w = Tν(uξ − uη)φr(|x|)φh(|uξ|)φh(|uη |), w+∞ = w−∞ = 0, устанав-
ливаем соотношение∫

Ω

(a(x,∇uξ)− a(x,∇uη)) · ∇ (Tν(uξ − uη)φr(|x|)φh(|uξ|)φh(|uη |)) dx =

=

∫

Ω

(−b(x, uξ) + b(x, uη) + fξ − fη)Tν(uξ − uη)φr(|x|)φh(|uξ|)φh(|uη|)dx.



138 Л.М. КОЖЕВНИКОВА

Используя оценки (4.4), (4.11), выводим∫

Ω

(a(x,∇uξ)− a(x,∇uη)) · ∇ (Tν(uξ − uη)φr(|x|)φh(|uξ|)φh(|uη |)) dx �

� ν(‖b(x, uξ)‖1,Ω(r+1) + ‖b(x, uη)‖1,Ω(r+1) + ‖fξ‖1,Ω(r+1) + ‖fη‖1,Ω(r+1)) � D10ν. (4.26)

Далее, применяя (4.25), устанавливаем∫

Eν,θ,h(r)

γ(x)dx �
∫

Eν,θ,h(r)

(a(x,∇uξ)− a(x,∇uη)) · ∇(uξ − uη)dx � (4.27)

�
∫

{Ω:|uξ−uη |<ν}
φr(|x|)φh(|uξ|)φh(|uη |)(a(x,∇uξ)− a(x,∇uη)) · ∇(uξ − uη)dx.

Соединяя (4.26), (4.27), применяя (1.2), (4.12), (4.13), получаем∫

Eν,θ,h(r)

γ(x)dx �
∫

{Ω(r+1):|uξ|<h+1,|uη|<r+1}
(|a(x,∇uξ)|+ |a(x,∇uη)|) |Tν(uξ − uη)|dx +

(4.28)

+

∫

{Ω(r+1):h<|uη|<h+1,|uξ|<h+1}
(|a(x,∇uξ)|+ |a(x,∇uη)|)|∇uη ||Tν(uξ − uη)|dx+

+

∫

{Ω(r+1):h<|uξ|<h+1,|uη|<h+1}

(|a(x,∇uξ)|+ |a(x,∇uη)|)|∇uξ ||Tν(uξ − uη)|dx +D10(r)ν �

� ν
(
3ρ(|a(x,∇Th+1(uξ))|)p′(·),Ω(r+1) + 3ρ(|a(x,∇Th+1(uη))|)p′(·),Ω(r+1) +

+ 2ρ(|∇Th+1(uξ)|)p(·),Ω(r+1) + 2ρ(|∇Th+1(uη)|)p(·),Ω(r+1) +D11(r)
)
� D12(r, h)ν.

Для произвольных θ, δ > 0 при фиксированных h, r выбором ν из (4.28) устанавливаем нера-
венство ∫

Eν,θ,h(r)

γ(x)dx < δ.

Применяя лемму 3.3, для любых θ, ε > 0 выводим

meas (Eν,θ,h(r)) < ε. (4.29)

Кроме того, согласно (4.21) можно выбрать ξ0(ν, r, ε) такое, что

meas ({Ω(r) : |uξ − uη| � ν}) < ε, ξ, η � ξ0. (4.30)

Соединяя (4.24), (4.29), (4.30), в итоге для любых θ, ε > 0 выводим неравенство

meas ({Ω(r) : |∇(uξ − uη)| � θ}) < 6ε, ξ, η � ξ0.

Отсюда следует локальная фундаментальность по мере последовательности {∇uξ}, это влечет
сходимость (4.23), а также сходимость по подпоследовательности:

∇uξ → ∇u п.в. в Ω, ξ → ∞. (4.31)

Далее, несложно установить сходимость

∇Tk(uξ) → ∇Tk(u) п.в. в Ω, ξ → ∞. (4.32)

Из непрерывности a(x, s) по s ∈ R
n и сходимости (4.32) следует сходимость

a(x,∇Tk(uξ)) → a(x,∇Tk(u)) п.в. в Ω, ξ → ∞. (4.33)

Отсюда, благодаря оценке (4.13), по лемме 3.1 имеем сходимость

a(x,∇Tk(uξ))⇀ a(x,∇Tk(u)) слабо в (Lp′(·),loc(Ω))n, ξ → ∞. (4.34)
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Шаг 4: сильные сходимости

|uξ|p(x)−1 → |u|p(x)−1 в Lq(·),loc(Ω), 1 � q(·) < q3(·), ξ → ∞, (4.35)

|∇uξ|p(x)−1 → |∇u|p(x)−1 в (Lq(·),loc(Ω))n, 1 � q(·) < q2(·) (или q4(·)), ξ → ∞, (4.36)

a(x,∇uξ) → a(x,∇u) в (Lq(·),loc(Ω))n, 1 � q(·) < q2(·) (или q4(·)), ξ → ∞, (4.37)

b(x, uξ) → b(x, u) в L1,loc(Ω), ξ → ∞. (4.38)

Применяя лемму Фату и сходимости (4.17), (4.31), из оценок (4.8), (4.9) выводим принадлеж-
ность |u|p(·)−1 ∈ Lq(·),loc(Ω), 1 � q(·) < q3(·), |∇u|p(·)−1 ∈ Lq(·),loc(Ω), 1 � q(·) < q2(·) (или q4(·)).
Применяя неравенства (1.1), (2.1) и неравенство Юнга, для любого измеримого множества

Q ⊂ Ω(r) и любого ε > 0 устанавливаем неравенства∫

Q

|a(x,∇uξ)|q(x)dx � âq+2q+−1

∫

Q

(
|∇uξ|(p(x)−1)q(x) +Φq(x)(x)

)
dx �

� ε

∫

Ω(r)

|∇uξ|(p(x)−1)q̂(x)dx + C(ε) meas (Q) +D13

∫

Q

Φq(x)(x)dx, (4.39)

где 1 � q(·) < q̂(·) < q2(·).
Поскольку q2(·) < p′(·), то Φ ∈ Lq(·)(Ω(r)), q(·) < q2(·). Учитывая абсолютную непрерывность

второго интеграла в правой части (4.39), применяя оценку (4.9), для любого ε > 0 найдем такое
δ(ε), что: для любого Q такого, что meas (Q) < δ(ε), выполнено неравенство∫

Q

|a(x,∇uξ)|q(x)dx � ε, ∀ ξ ∈ N.

Отсюда следует, что последовательности {|∇uξ|(p(x)−1)q(x)}, {|a(x,∇uξ)|q(x)} имеют равносте-
пенно абсолютно непрерывные интегралы по множеству Ω(r). По лемме 3.4 имеют место сходи-
мости (4.36), (4.37). Сходимость (4.35) устанавливается аналогично, с помощью оценки (4.8).
Запишем оценку (3.23) для uξ, fξ для k = 1:

a

∫

{Ω(r):ρ�|uξ|<1+ρ}
|∇uξ|p(x)dx +

∫

{Ω(r):|uξ|�1+ρ}
|b(x, uξ)|dx �

�
∫

{Ω(r+1):|uξ|�ρ}

|fξ|dx + â

∫

{Ω(r+1):|uξ |�ρ}

(
|∇uξ|p(x)−1 +Φ(x)

)
dx.

Ввиду того, что fξ, |∇uξ|p(x)−1 сходятся сильно в L1,loc(Ω), и абсолютной непрерывности инте-
грала в правой части последнего неравенства, учитывая (4.15), для любого ε > 0 можно выбрать
достаточно большое ρ̃(ε) > 1 такое, что для ρ � ρ̃ справедлива оценка:

a

∫

{Ω(r):ρ�|uξ|<1+ρ}
|∇uξ|p(x)dx +

∫

{Ω(r):|uξ|�1+ρ}
|b(x, uξ)|dx < ε

2
. (4.40)

Для любого измеримого множества Q ⊂ Ω(r) имеем∫

Q

|b(x, uξ)|dx �
∫

{Q:|uξ|<ρ+1}

|b(x, uξ)|dx +

∫

{Ω(r):|uξ|�ρ+1}

|b(x, uξ)|dx. (4.41)

Применяя (2.4), выводим: ∫

{Q:|uξ|<ρ+1}
|b(x, uξ)|dx � b̂(ρ+ 1)

∫

Q

Φ0(x)dx.
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Ввиду того, что Φ0 ∈ L1(Q), и абсолютной непрерывности интеграла в правой части последнего
неравенства, для любого ε > 0 найдется такое α(ε), что для любого Q такого, что meas Q < α(ε),
выполнено неравенство ∫

{Q:|uξ|<ρ+1}
|b(x, uξ)|dx < ε

2
, ξ ∈ N. (4.42)

Объединяя (4.40)–(4.42), устанавливаем∫

Q

|b(x, uξ)|dx < ε ∀ Q такого, что meas Q < α(ε), ξ ∈ N.

Отсюда следует, что последовательность {b(x, uξ)} имеет равностепенно абсолютно непрерывные
интегралы по множеству Ω(r). По лемме 3.4 устанавливаем сходимость

b(x, uξ) → b(x, u) в L1(Ω(r)), ξ → ∞,

для любого r > 0. Сходимость (4.38) доказана.
Доказательство теоремы будет продолжено в разделе 6.

5. Вспомогательные леммы

Чтобы доказать сильную сходимость срезок в W̊ 1
p(·),loc(Ω), установим вспомогательные леммы.

Будем использовать функции вещественной переменной � от одного вещественного параметра
m > 0:

Gm(�) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, |�| > 2m,
�+ 2m

m
, −2m � � < −m,

1, |�| � m,
2m− �

m
, m < � � 2m,

(5.1)

τm(�) = Tm,m(�).
Для положительных вещественных чисел m, ξ обозначим через ω(m, ξ) любую величину такую,

что
lim sup
m→+∞

lim sup
ξ→+∞

|ω(m, ξ)| = 0.

А через ωm(ξ) обозначим величину такую, что при фиксированном m

lim sup
ξ→+∞

|ωm(ξ)| = 0.

Лемма 5.1. Пусть {uξ}—последовательность локальных ренормализованных решений зада-
чи (2.10), (0.2) такая, что имеют место сходимости (4.3), (4.17), (4.22), (4.31), (4.37), (4.38).
Тогда для любых m > 0 и φ ∈ D+(Rn) имеем

1

m

∫

{Ω:m�|uξ|<2m}

a(x,∇uξ) · ∇uξφdx = ω(m, ξ). (5.2)

Доказательство. Зафиксируемm, и пусть ξ стремится к бесконечности. Ввиду сходимости (4.17),
непрерывности и ограниченности функции τm(�), по лемме 3.2 имеем

τm(uξ) → τm(u) п.в. в Ω, ξ → ∞, (5.3)

τm(uξ)
∗
⇀ τm(u) слабо в L∞(Ω), ξ → ∞. (5.4)

Очевидно,

τm(u) → 0 п.в. в Ω, m→ ∞. (5.5)

Ввиду ограниченности последовательности функций {τm(�)}∞m=1, по лемме 3.2 имеем

τm(u)
∗
⇀ 0 слабо в L∞(Ω), m→ ∞. (5.6)
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Теперь в равенстве (4.1) возьмем h = τm(uξ), ϕ = φ ∈ D+(Rn), получим

I1 + I21 + I22 =

∫

Ω

(b(x, uξ)− fξ)φτm(uξ)dx +
1

m

∫

{m�|uξ|<2m}
a(x,∇uξ) · ∇uξφdx +

+

∫

Ω

a(x,∇uξ) · ∇φτm(uξ)dx = 0. (5.7)

Поскольку φ ∈ D+(Rn), благодаря сходимостям

a(x,∇uξ) → a(x,∇u) сильно в (L1,loc(Ω))
n, ξ → 0 (5.8)

(см. (4.37)), (5.4), (5.6) имеем

I22 =

∫

Ω

a(x,∇u) · ∇φτm(u)dx + ωm(ξ) = ω(m, ξ). (5.9)

Аналогично, используя сходимости (4.38), (4.3), (5.4), (5.6), получаем

I1 =

∫

Ω

(b(x, u)− f)φτm(u)dx + ωm(ξ) = ω(m, ξ). (5.10)

Соединяя (5.7), (5.9)–(5.10), получаем неравенство
1

m

∫

{Ω:m�|uξ|<2m}
a(x,∇uξ) · ∇uξφdx � ω(m, ξ),

которое влечет (5.2).

Лемма 5.2. Пусть выполнены условия леммы 5.1, тогда для k > 0 и φ ∈ D+(Rn) имеем∫

Ω

a(x,∇Tk(uξ)) · ∇Tk(uξ)φdx =

∫

Ω

a(x,∇Tk(u)) · ∇Tk(u)φdx + ω(ξ). (5.11)

Доказательство леммы 5.2 разобьем на две леммы.

Лемма 5.3. Пусть выполнены условия леммы 5.1, тогда для любых k > 0 и φ ∈ D+(Rn)
имеем∫

Ω

(b(x, u)− f)Tk(u)φdx +

∫

Ω

a(x,∇Tk(uξ)) · ∇Tk(uξ)φdx +

∫

Ω

a(x,∇u) · ∇φTk(u)dx = ω(ξ). (5.12)

Доказательство. Выберем h(ρ) = Tk(ρ), ϕ = φ ∈ D+(Rn) в равенстве (4.1), получим:

I1 + I21 + I22 =

∫

Ω

(b(x, uξ)− fξ)Tk(uξ)φdx +

∫

Ω

a(x,∇Tk(uξ)) · ∇Tk(uξ)φdx +

+

∫

Ω

a(x,∇uξ) · ∇φTk(uξ)dx = 0. (5.13)

Согласно (4.20), по лемме 3.2 имеет место сходимость

Tk(uξ)
∗
⇀ Tk(u) слабо в L∞(Ω), ξ → ∞. (5.14)

Применяя (5.14), (5.8), устанавливаем:

I22 =

∫

Ω

a(x,∇u) · ∇φTk(u)dx + ω(ξ). (5.15)

Благодаря (4.38), (4.3), (5.14) устанавливаем

I1 =

∫

Ω

(b(x, u)− f)Tk(u)φdx + ω(ξ). (5.16)

Соединяя (5.13), (5.15), (5.16), выводим (5.12).
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Лемма 5.4. Пусть выполнены условия леммы 5.1, тогда для любых k > 0 и φ ∈ D+(Rn)
имеем∫

Ω

(b(x, u) − f)Tk(u)φdx +

∫

Ω

a(x,∇Tk(u)) · ∇Tk(u)φdx +

∫

Ω

a(x,∇u) · ∇φTk(u)dx = 0. (5.17)

Доказательство. Ввиду сходимости (4.17), непрерывности и ограниченности функции Gm(�), по
лемме 3.2 имеем

Gm(uξ) → Gm(u) п.в. в Ω, ξ → ∞,

Gm(uξ)
∗
⇀ Gm(u) слабо в L∞(Ω), ξ → ∞. (5.18)

Ввиду ограниченности функции Gm(�) по лемме 3.2 имеем

Gm(u) → 1 п.в. в Ω, m→ ∞, (5.19)

Gm(u)
∗
⇀ 1 слабо в L∞(Ω), m→ ∞. (5.20)

Выберем w = Tk(u)Gm(uξ)φ, φ ∈ D+(Rn) в качестве тестовой функции в равенстве (4.2),
полагая w+∞ = w−∞ = 0; получим:

I1 + I21 + I22 + I23 =

∫

Ω

(b(x, uξ)− fξ)Tk(u)φGm(uξ)dx +

∫

Ω

a(x,∇uξ) · ∇uξTk(u)φG′
m(uξ)dx +

+

∫

Ω

a(x,∇uξ) · ∇Tk(u)φGm(uξ)dx +

∫

Ω

a(x,∇uξ) · ∇φTk(u)Gm(uξ)dx = 0. (5.21)

Благодаря неравенству (4.13) имеет место оценка:∫

Ω(r)

|a(x,∇T2m(uξ))Gm(uξ)|p′(x)dx � mD13.

Из непрерывности a(x, s) по s ∈ R
n, Gm(s0) по s0 ∈ R и сходимостей (4.17), (4.32) следует сходи-

мость
a(x,∇T2m(uξ))Gm(uξ) → a(x,∇T2m(u))Gm(u) п.в. в Ω, ξ → ∞.

Отсюда, по лемме 3.1 имеем сходимость

a(x,∇T2m(uξ))Gm(uξ)⇀ a(x,∇T2m(u))Gm(u) слабо в (Lp′(·),loc(Ω))n, ξ → ∞. (5.22)

Поскольку a(x,∇uξ)Gm(uξ) = a(x,∇T2m(uξ))Gm(uξ), применяя (5.22), (5.20), для m > k имеем

I22 =

∫

Ω

a(x,∇T2m(u)) · ∇Tk(u)φGm(u)dx + ωm(ξ) =

∫

Ω

a(x,∇Tk(u)) · ∇Tk(u)φdx + ω(m, ξ). (5.23)

Применяя сходимости (5.8), (5.18), (5.20), получаем

I23 =

∫

Ω

a(x,∇u) · ∇φTk(u)Gm(u)dx + ωm(ξ) =

∫

Ω

a(x,∇u) · ∇φTk(u)dx + ω(m, ξ). (5.24)

По лемме 5.1 имеем

|I21| � k

m

∫

{Ω:m�|uξ|<2m}
a(x,∇uξ) · ∇uξφdx = ω(m, ξ). (5.25)

Применяя сходимости (4.38), (4.3), (5.18), (5.20), получаем

I1 =

∫

Ω

(b(x, u) − f)Tk(u)φGm(u)dx + ωm(ξ) =

∫

Ω

(b(x, u) − f)Tk(u)φdx + ω(m, ξ). (5.26)

Соединяя (5.21), (5.23)–(5.26), устанавливаем (5.17), поскольку все слагаемые в (5.17) не зави-
сят от ξ и m.

Для получения (5.11) достаточно вычесть (5.17) из (5.12). Лемма 5.2 доказана.
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6. Доказательство теоремы 2.1, финал

В этом разделе мы завершаем доказательство теоремы 2.1. Напомним, что {uξ}—подпосле-
довательность ренормализованных решений задач (2.10), (0.2) такая, что имеют место сходимо-
сти (4.17), (4.22), (4.31), (4.37), (4.38).

Шаг 5: сильная сходимость срезок в W̊ 1
p(·),loc(Ω).

Учитывая (4.32), (4.33), выводим

a(x,∇Tk(uξ)) · ∇Tk(uξ) → a(x,∇Tk(u)) · ∇Tk(u) п.в. в Ω, ξ → ∞. (6.1)

Поскольку a(x,∇Tk(uξ)) · ∇Tk(uξ) неотрицательны, применяя (5.11), (6.1), для φ ∈ D+(Rn) по
лемме 3.5 устанавливаем

φa(x,∇Tk(uξ)) · ∇Tk(uξ) → φa(x,∇Tk(u)) · ∇Tk(u) в L1(Ω), ξ → ∞. (6.2)

Отсюда следует сходимость

a(x,∇Tk(uξ)) · ∇Tk(uξ) → a(x,∇Tk(u)) · ∇Tk(u) в L1,loc(Ω), ξ → ∞. (6.3)

Для любого измеримого множества Q ⊂ Ω(r), используя неравенства (1.1), (2.3), выводим∫

Q

|∇Tk(uξ)−∇Tk(u)|p(x)dx � 2p+−1

∫

Q

(
|∇Tk(uξ)|p(x) + |∇Tk(u)|p(x)

)
dx �

� D14

∫

Q

(a(x,∇Tk(uξ)) · ∇Tk(uξ) + a(x,∇Tk(u)) · ∇Tk(u)) dx.

Ввиду сходимости (6.3) и абсолютной непрерывности интегралов в правой части последнего
неравенства, для любого ε > 0 найдется такое δ(ε), что:∫

Q

|∇Tk(uξ)−∇Tk(u)|p(x)dx < ε ∀ Q такого, что meas (Q) < δ(ε).

Таким образом, последовательность {|∇Tk(uξ) − ∇Tk(u)|p(x)} имеет равностепенно абсолютно
непрерывные интегралы по множеству Ω(r). Отсюда, благодаря сходимости (4.32), по лемме 3.4
имеет место сходимость

∇Tk(uξ) → ∇Tk(u) в (Lp(·),loc(Ω))n, ξ → ∞. (6.4)

Далее, применяя неравенства (1.1), (2.1′), (2.3), выводим

|a(x,∇Tk(uξ))− a(x,∇Tk(u))|p′(x) � 2p
′
+−1

(
|a(x,∇Tk(uξ))|p′(x) + |a(x,∇Tk(u))|p′(x)

)
�

� D15

(
|∇Tk(uξ)|p(x) + |∇Tk(u)|p(x) +Ψ(x)

)
�

� D16 (a(x,∇Tk(uξ)) · ∇Tk(uξ) + a(x,∇Tk(u)) · ∇Tk(u) + Ψ(x)) .

Отсюда, как и выше, устанавливаем, что последовательность {|a(x,∇Tk(uξ))− a(x,∇Tk(u))|p′(x)}
имеет равностепенно абсолютно непрерывные интегралы. Тогда, благодаря сходимости (4.33), по
лемме 3.4 имеет место сходимость

a(x,∇Tk(uξ)) → a(x,∇Tk(u)) сильно в (Lp′(·),loc(Ω))n, ξ → ∞. (6.5)

Шаг 6: предельная функция— ренормализованное решение.
Докажем, что предельная функция u удовлетворяет определению 2.1-loc. Условия a-loc)–d-loc)

определения 2.1-loc выполнены, это доказано в конце шага 2 и начале шага 4, соответственно.
Докажем равенство (2.7). Пусть h ∈ Lip0(R) и ϕ с компактным носителем, ϕ ∈ W 1

r(·)(Ω), r(·) >
q′2(·), таковы, что ϕh(u) ∈ W̊ 1

p(·)(Ω) (очевидно, что ϕh(uξ) ∈ W̊ 1
p(·)(Ω)). Поскольку h ограничена и

непрерывна, ввиду сходимости (4.17), по лемме 3.2 устанавливаем

h(uξ) → h(u) п.в. в Ω, ξ → ∞, (6.6)

h(uξ)
∗
⇀ h(u) слабо в L∞(Ω), ξ → ∞, (6.7)
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∇ϕh(uξ) → ∇ϕh(u) сильно в Lr(·)(Ω), r(·) > q′2(·), ξ → ∞. (6.8)

Если supp h′ ⊂ [−M,M ] для M > 0, то для п.в. x ∈ Ω имеем

|h(uξ)|p(x) + |∇h(uξ)|p(x) = |h(uξ)|p(x) + |∇uξh′(uξ)|p(x) � D17 +D18|∇TM (uξ)|p(x).
Тогда, применяя оценку (4.12), получаем ограниченность последовательности {h(uξ)} в простран-
стве W̊ 1

p(·),loc(Ω). Отсюда и из (6.6) по лемме 3.1 устанавливаем сходимость

h(uξ)⇀ h(u) слабо в W̊ 1
p(·),loc(Ω), ξ → ∞.

Тогда, учитывая ϕ ∈ C(K), K = suppϕ ∩ Ω, заключаем сходимость

∇h(uξ)ϕ ⇀ ∇h(u)ϕ слабо в Lp(·)(Ω), ξ → ∞. (6.9)

Напомним, что функции uξ являются локальными ренормализованными решениями уравне-
ния (2.10) в смысле определения 2.1-loc и удовлетворяют равенству вида (4.1).
Применяя (4.38), (4.3), (6.7), устанавливаем∫

Ω

(b(x, uξ)− fξ)h(uξ)ϕdx =

∫

Ω

(b(x, u) − f)h(u)ϕdx + ω(ξ). (6.10)

Учитывая сходимости (6.5), (6.9), имеем∫

Ω

a(x,∇TM (uξ)) ·∇h(uξ)ϕdx =

∫

Ω

a(x,∇TM (u)) ·∇h(u)ϕdx+ω(ξ) =
∫

Ω

a(x,∇u) ·∇uh′(u)ϕdx+ω(ξ).

(6.11)
Применяя сходимости (4.37), (6.8), получаем∫

Ω

a(x,∇uξ) · ∇ϕh(uξ)dx =

∫

Ω

a(x,∇u) · ∇ϕh(u)dx + ω(ξ). (6.12)

Комбинируя (4.1), (6.10)–(6.12), получаем равенство (2.7). Теорема 2.1 доказана.

Доказательство теоремы 2.2. Для любого ξ ∈ N существует единственное глобальное ренорма-
лизованное решение задачи

−div a(x,∇uξ) + b(x, uξ) = f, x ∈ Ω(ξ); (6.13)
uξ = 0, x ∈ ∂Ω(ξ), (6.14)

где f ∈ L1(Ω(ξ)) (см., например, [3]).
Продолжим uξ нулем на область Ω. Очевидно, при каждом ξ ∈ N функция uξ является локаль-

ным ренормализованным решением задачи (0.1), (0.2) в области Ω. Тогда, согласно теореме 2.1,
существует подпоследовательность последовательности {uξ}ξ∈N (обозначим ее так же), сходяща-
яся почти всюду к локальному ренормализованному решению u задачи (0.1), (0.2).
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tions// Ann. Henri Poincaré. — 2011. — 28. — С. 775–795.
11. Mokhtari F. Nonlinear anisotropic elliptic equations in R

N with variable exponents and locally integrable
data// Math. Methods Appl. Sci. — 2017. — 40. — С. 2265–2276.

12. Sanchón M., Urbano J.M. Entropy solutions for the p(x)-laplace equation// Trans. Am. Math. Soc. —
2009. — 361, № 12.— С. 6387–6405.
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1. Введение

Рассмотрим нестрого гиперболическую систему

Yt + A(x,Y)Yx = S(x,Y), A = Q(x,Y) I, (1.1)

где Y(t, x) = (Y1, . . . , Yn)
T , x ∈ R, t > 0, S = (S1, . . . , Sn)

T , i = 1, . . . , n, n ∈ N, I— единичная
матрица размера n× n, t > 0, x ∈ R, Q(x,0) = 0, S(x,0) = 0, с начальными условиями

Y
∣∣∣
t=0

= Y0(x) ∈ C2(R). (1.2)

Предполагается, что функции Q(x,Y) и S(x,Y) являются C1-гладкими по всем своим аргумен-
там.
Система (1.1) является промежуточным математическим объектом между квазилинейными

гиперболическими уравнениями общего вида, где A—произвольная n × n матрица с n веще-
ственными различными собственными значениями, и системами нелинейных обыкновенных диф-
ференциальных уравнений. Действительно, динамика решения может быть полностью описана
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поведением вдоль одной лагранжевой характеристики x = x(t), которая управляется системой
n+ 1 обыкновенных дифференциальных уравнений

ẋ = Q(x,Y), Ẏ = S(x,Y). (1.3)

Можно сказать, что это несколько упрощает исследование нестрого гиперболической систе-
мы (1.1) за счет того, что можно использовать результаты и методы, относящиеся к теории
обыкновенных дифференциальных уравнений.
Интерес к изучению нестрого гиперболических систем обусловлен тем, что к ним сводятся

некоторые важные многомерные радиально-симметричные модели физики полупроводников и
холодной плазмы. Эти модели описываются уравнениями Эйлера—Пуассона с отталкивающей
силой и ненулевым постоянным фоном плотности c > 0:

Vt + (V · ∇)V = −∇Ψ, ρt + div (ρV) = 0, ΔΨ = c− ρ, (1.4)

где V, ρ > 0 и Ψ— скорость, плотность электронов и потенциал электрического поля, соответ-
ственно; они зависят от времени t � 0 и точки x ∈ R

d.
Для

V = F (t, r)r, ∇Ψ = E = G(t, r)r, ρ = ρ(t, r),

где r = (x1, . . . , xd), r = |r|, систему можно свести к
Gt + FrGr = F − dFG, Ft + Fr Fr = −F 2 −G, (1.5)

(подробнее см. в [19]). Мы видим, что система (1.5) является частным случаем системы (1.1). Она
имеет нулевое постоянное равновесие G = F = 0, и естественно предположить, что вблизи этого
равновесия существуют решения, которые также являются гладкими во времени. Достаточно
легко показать, что при размерности 1 это действительно так [11,22].
Однако в многомерном случае ситуация совершенно иная. Было обнаружено, что помимо раз-

мерности 1 существует только одна пространственная размерность 4, для которой существует
окрестность нулевого равновесия, соответствующая глобально гладким решениям (размер этой
окрестности был найден точно в [21]). В остальных размерностях любое сколь угодно малое воз-
мущение общего вида положения равновесия приводит к его разрушению за конечное время.
Однако, если возмущение выбрано специальным образом так, чтобы начальные данные лежали
на некотором подмногообразии меньшей размерности (соответствующем так называемым про-
стым волнам, при которых F = F (G)), содержащем начало координат, то глобально гладкое
решение все равно может быть получено [19].
Как было недавно показано, во всех случаях, когда период лагранжевой траектории x(t) зави-

сит от начальной точки траектории, различные траектории обязательно пересекаются и решение
разрушается. А именно, справедлива следующая лемма.

Лемма 1.1. Предположим, что отображение x �→ X(t) (R �→ R) непрерывно, а траектория
X(t) (нетривиально) периодична по t � 0 для всех x0 ∈ R с периодом T (x0), который непрерывно
зависит от x0, X(0) = x0. Тогда, если T (x) не является константой, существуют x1 и x2
из R такие, что X1(t∗) = X2(t∗) для некоторого t∗ > 0, где Xi(t)—траектория такая, что
Xi(0) = xi, i = 1, 2.

Лемма доказана в [20]. Фактически, это более общая формулировка леммы 2.2 из [3]. Этот
результат также известен физикам в контексте проблемы разрушения плазменных колебаний.
Другими словами, только в случае, когда период лагранжевой траектории x(t) не зависит

от начальной точки траектории x(0), можно надеяться найти окрестность нулевого равновесия,
для которой существуют глобально гладкие решения. Для задач, связанных с физикой холод-
ной плазмы, случаи изохронных колебаний крайне редки. По-видимому, они возможны толь-
ко в нерелятивистском случае с фоном постоянной плотности [20] в размерностях 1 и 4 (для
радиально-симметричных решений).
Однако можно рассматривать квазилинейные нестрого гиперболические системы вне физиче-

ского контекста, то есть изучать, какими свойствами должны обладать Q и Si, чтобы система (1.1)
имела изохронные колебания.
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Напомним, что система ОДУ называется изохронной, если ее фазовое пространство имеет от-
крытую полномерную область, где все ее решения являются периодическими с одним и тем же
периодом, независимо от начальных данных.

Определение 1.1. Будем говорить, что система (1.1) является изохронной колебательной,
если характеристическая система (1.3) является изохронной.

В частности, это означает, что каждая из характеристик x(t), x(0) = x0 ∈ R, является перио-
дической с тем же периодом.
В этой статье мы сначала показываем, что изохронная колебательная система имеет окрест-

ность тривиального стационарного состояния в C1-норме, соответствующей глобально гладким
по времени решениям задачи Коши. Затем мы предлагаем правила, позволяющие генерировать
нестрого гиперболические изохронные колебательные системы. Затем мы обсуждаем возмож-
ность получения гладких решений для уравнений холодной плазмы в нерелятивистском и реля-
тивистском случаях.

2. Глобально гладкие решения

Мы собираемся доказать следующую теорему.

Теорема 2.1. Система (1.1) является изохронно колебательной тогда и только тогда, ко-
гда существует окрестность U точки Y = 0 в C1-норме такая, что решение задачи Ко-
ши (1.1), (1.2) с начальными данными из U сохраняет начальную гладкость при всех t > 0.

Доказательство. Система (1.1) является гиперболической, поэтому она имеет локальное реше-
ние по времени, такое же гладкое, как и начальные данные, а разрушение обусловлено либо
неограниченностью самих компонент решения, либо неограниченностью их первых производ-
ных [5]. Компоненты решения являются периодическими, поэтому нам нужно изучить поведение
производных. Для этого мы дифференцируем (1.1) по x и получаем следующее матричное урав-
нение Риккати для вектора y = (y1, . . . , yn)

T = ((Y1)x, . . . , (Yn)x)
T :

(yi)t +Q I (yi)x = −(Qx +
n∑

j=1

QYj yj) yi +
n∑

j=1

(Si)Yj yi + (Si)x, i, j = 1, . . . , n, (2.1)

с начальными данными y0 = (y01, . . . , y
0
n)

T = ((Y 0
1 )x, . . . , (Y

0
n )x)

T .

Ключевым моментом в изучении поведения производных является теорема Радона [13,17].

Теорема 2.2 (теорема Радона). Матричное уравнение Риккати

Ẇ =M21(t) +M22(t)W −WM11(t)−WM12(t)W, (2.2)

где W = W (t)— (n × m)-матрица, M21— (n × m)-матрица, M22— (m × m)-матрица, M11—
(n × n)-матрица, M12 — (m × n)-матрица, эквивалентно однородному линейному матричному
уравнению

Ẏ =M(t)Y, M =

(
M11 M12

M21 M22

)
, (2.3)

где Y = Y (t)— (n× (n+m))-матрица M — ((n +m)× (n+m))-матрица, в следующем смысле.

Пусть на некотором интервале J ∈ R матричная функция Y (t) =

(
Q(t)
P (t)

)
, где Q— (n×n)-

матрица, P — (n ×m)-матрица, является решением (2.3) с начальными данными

Y (0) =

(
I

W0

)
,

где I— единичная (n×n)-матрица, W0—постоянная (n×m)-матрица, и detQ �= 0 на J . Тогда
W (t) = P (t)Q−1(t)— решение уравнение (2.2) при J с W (0) =W0.
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Систему (2.1) можно переписать вдоль характеристик в виде (2.2) при W = y, с M11 = Qx,
M12 = (QY1 , . . . , QYn), M21 = ((S1)x, . . . , (Sn)x)

T , и (n × n)-матрицей M22 = (Si)Yj , i, j = 1, . . . , n,
т. е. ⎛

⎜⎜⎝
q̇
ẏ1
. . .
ẏn

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

Qx QY1 . . . QYn

(S1)x (S1)Y1 . . . (S1)Yn

. . . . . . . . . . . .
(Sn)x (Sn)Y1 . . . (Sn)Yn

⎞
⎟⎟⎠

⎛
⎜⎜⎝
q
y1
. . .
yn

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
q
y1
. . .
yn

⎞
⎟⎟⎠ (0) =

⎛
⎜⎜⎝

1
y01
. . .
y0n

⎞
⎟⎟⎠ . (2.4)

Это система линейных уравнений с периодическими коэффициентами, которую можно изучать
с помощью теории Флоке (например, [4, раздел 2.4]). Согласно этой теории, для фундаменталь-
ной матрицы Ψ(t) (Ψ(0) = I) существует постоянная матрица M, возможно, с комплексными
коэффициентами, такая, что Ψ(T ) = eTM, где T —период коэффициентов. Собственные значе-
ния матрицы монодромии eTM называются характеристическими множителями системы. Если
среди характеристических множителей есть такие, что их абсолютные значения больше едини-
цы, то решение (2.4) не является периодическим и колебания компонент решения в основном
имеют экспоненциально растущую амплитуду (см. [4, теорема 2.53]). В частности, это означает,
что нулевое решение (2.4) неустойчиво по Ляпунову. Таким образом, компонента q, начиная с 1,
за конечное время превращается в ноль, а решение (2.1) разрушается.
Если решение (2.4) периодическое, то при y0i = 0, i = 1, . . . , n, компонента q ≡ 1 и можно

найти (y01 , . . . , y
0
n) по крайней мере в окрестности нуля, так что q(t) > 0 в пределах периода. Это

подразумевает существование окрестности нулевого равновесия в C1-норме такой, что решение
из этой окрестности сохраняет глобальную гладкость по t.
Мы показываем, что решение (2.4) является периодическим тогда и только тогда, когда си-

стема (1.3) является изохронной. Для этой цели мы используем следующий результат, который
фактически является обобщением на многомерный случай предложения из [8, с. 8].

Предложение 2.1. Пусть

Ẋi = Ni(X), X = (X1, . . . ,Xn)
T , i = 1, . . . , n, N = (N1, . . . ,Nn)

T ∈ C2(R), (2.5)

— система с неотрицательным интегралом энергии E(X) = h = const, и существует един-
ственная точка X ∈ R

n такая, что E(X) = 0. Пусть Z(t, h), Z = (Z1, . . . , Zn)
T —периодическое

решение, соответствующее фиксированному уровню h > 0 с периодом T (h). Тогда решения си-
стемы

ẋi =
n∑

j=1

∂Ni(Z(t, h))

∂Xj
xj , i = 1, . . . , n, (2.6)

являются T (h)-периодическими тогда и только тогда, когда T ′(h) = 0.

Доказательство. Прежде всего, заметим, что Zh является решением системы (2.6) с любы-
ми начальными данными X0 для системы (2.5). Найдем условие периодичности для Zh, т. е.
Zh(t, h) = Zh(t+ T (h), h).
Обозначим через Z′

k, k = 1, 2, производные по первому и второму аргументам, соответственно.
Поскольку Z(t, h) = Z(t+ T (h), h), то

Zh(t, h) =
dZ(t, h)

dh
=
dZ(t+ T (h), h)

dh
= Z′

1(t+ T (h), h)T ′(h) + Z′
2(t+ T (h), h).

Заметим, что Z′
1(t+ T (h), h) = Zt(t+ T (h), h) = N (Z(t, h)) �= 0 тождественно, и Z′

2(t+ T (h), h) =
Zh(t + T (h), h). Таким образом, если T ′(h) �= 0, то Zh(t + T (h), h) �= Zh(t, h), и наоборот. Это
доказывает предложение.

Для завершения доказательства теоремы 2.1 достаточно отметить, что систему (1.3) можно
рассматривать как систему (2.5) при X = (Q,S1, . . . , Sn)

T , а систему (2.4) рассматривать как
систему (2.6) при x = (q, y1, . . . , yn)

T .

Замечание 2.1. Подчеркнем, что требование существования нулевого равновесия систе-
мы (1.1) является существенным. Без этого требования, даже если система (1.3) имеет изохронное
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положение равновесия, глобально гладких решений может вообще не быть. Действительно, рас-
смотрим уравнение Хопфа с потенциалом

Yt + Y Yx = −x, Y = Y (t, x).

Система характеристик (1.3) имеет вид

ẋ = Y, Ẏ = −x,
совпадает с уравнениями гармонического осциллятора и имеет изохронный центр в начале ко-
ординат. Тем не менее, вдоль характеристик производная y = Yx удовлетворяет уравнению
ẏ = −y2 − 1 и, очевидно, стремится к −∞ при любых начальных условиях.

3. Построение изохронных колебательных систем

История изучения изохронных систем обыкновенных дифференциальных уравнений очень
долгая. Со времен Пуанкаре известно, что если система имеет изохронное положение равнове-
сия, то ее можно линеаризовать (см., например [18]). Однако на практике найти преобразование,
позволяющее линеаризовать систему, порой гораздо сложнее, чем найти альтернативные способы
доказательства ее изохронности. Для систем на плоскости есть результаты такого рода. Их мож-
но применять к системам, возникающим естественным образом (как это произошло в случае с
системой (1.5)). Изохронную систему естественного происхождения найти сложно, но, если речь
идет о проектировании изохронных систем, не имеющих никакого отношения к реальной физике,
то вопрос решается достаточно просто.
Например, мы можем взять систему, соответствующую линейному осциллятору Ẋ1 = X2, Ẋ2 =

−X1, и рассмотреть обратимое гладкое преобразование X1 = F1(Z1, Z2),X2 = F2(Z1, Z2) такое,
что F1(0, 0) = F2(0, 0) = 0. Тогда изохронным центром будет начало новой системы

Ż1 =
Δ1

Δ
, Ż2 =

Δ2

Δ
,

Δ = Det

(
(F1)1 (F1)2
(F2)1 (F2)2

)
, Δ1 = Det

(
F2 (F1)2
−F1 (F2)2

)
, Δ2 = Det

(
(F1)1 F2

(F2)1 −F1

)
,

где (Fi)j —производная Fi(Z1, Z2) по компоненте j, i, j = 1, 2.
Формально мы можем выбрать любую изохронную систему обыкновенных дифференциальных

уравнений в качестве (1.3) и построить на ее основе систему (1.1). Если построенная таким обра-
зом система имеет тривиальное решение, то она удовлетворяет всем необходимым требованиям.
Например, книга [2] посвящена различным методам построения изохронных систем. Таким об-

разом, если не привязываться к физике, изохронных систем оказывается довольно много, тогда
как «. . . в реальном мире примеры чисто изохронного поведения довольно редки— иначе жизнь
была бы довольно скучной» [2]. В то же время, даже в задаче N тел можно построить явное ана-
литическое решение, получив изохронные колебания специальным подбором потенциала. Сре-
ди физически содержательных задач отметим также случаи изохронности для так называемых
PDM-осцилляторов [16]. Критерий изохронности гамильтоновой системы с одной степенью сво-
боды был получен в [1, 9].

3.1. Однородные левые части. Мы сосредоточимся на частном случае, когда система (1.3)
имеет вид

ẋ = Q(x,Y), Ẏ = S(Y).

Здесь вторая часть Ẏ = S(Y) отделена от всей системы, а поведение x(t) наследуется от Y. Этот
случай можно в некоторой степени применить к колебаниям холодной плазмы.
Пусть векторY состоит из двух компонент (n = 2). В этом случае нам нужно изучить проблему

центра на плоскости, и есть много результатов по изохронности (см., например, [7, 10, 12, 14, 18]
и содержащуюся там библиографию). В частности, критерий Сабатини [23] очень полезен для
двумерных систем, которые можно свести к уравнению Льенара

z̈ + f(z)ż + g(z) = 0. (3.1)
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Например, системы

Ẏ1 = Y2, Ẏ2 = −g(Y1)− f(Y1)Y2

и

Ẏ1 = Y2 − F (Y1), Ẏ2 = −g(Y1), F (x) =

x∫

0

f(s) ds.

Справедлива следующая теорема [23].

Теорема 3.1. Пусть функции f, g—аналитические, g—нечетная, f(0) = g(0) = 0, g′(0) > 0.
Тогда O = (y, ẏ) = (0, 0) является центром тогда и только тогда, когда f —нечетная, и явля-
ется изохронным центром для (3.1) тогда и только тогда, когда

τ(z) :=

⎛
⎝

z∫

0

sf(s)ds

⎞
⎠

2

− z3(g(z) − g′(0)z) = 0.

4. Примеры

4.1. Как стабилизировать нерелятивистские радиальные колебания в любых раз-
мерностях? Рассмотрим систему (1.5), описывающую радиально-симметричные нерелятивист-
ские плазменные колебания в d-мерном пространстве. Переименуем r в x и G,F в Y1, Y2, соот-
ветственно. Таким образом, система (1.3) здесь имеет вид

ẋ = xY2, Ẏ1 = Y2 − dY1Y2, Ẏ2 = −Y1 − Y 2
2 . (4.1)

Последние два уравнения сводятся к

Ÿ2 + (2 + d)Y2 Ẏ2 + Y2 + dY 3
2 = 0,

что является уравнением Льенара, поэтому мы можем применить теорему 3.1. Мы видим, что

τ(Y2) := ((2 + d)2 − 9d)
Y 6
2

2
,

поэтому τ(Y2) = 0 подразумевает d = 1 или d = 4.
Мы изучаем следующий вопрос: какую зависящую от скорости силу F(V, r) следует добавить

в правую часть первого уравнения (1.4), чтобы обеспечить изохронность колебаний и, следова-
тельно, возможность существования глобально гладких возмущений тривиального стационарного
состояния в произвольной размерности? Легко видеть, что нам необходимо откалибровать коэф-
фициенты системы (4.1) в зависимости от d.

Прежде всего, обозначим L(x, Y2) =
1

r
F(V, r)|r=x =

1

r
F(rY2, r)|r=x. Тогда (4.1) примет вид

ẋ = xY2, Ẏ1 = Y2 − dY1Y2, Ẏ2 = −Y1 − Y 2
2 − L(x, Y2).

Стандартные вычисления показывают, что для получения уравнения Льенара нам нужно потре-
бовать L = L(Y2), и если требуется получить τ(Y2) = 0, то нужно положить L = γY 2

2 , γ = const.
В этом случае τ(Y2) = 0, если γ является корнем квадратного уравнения

(2(1 − γ) + d)2 − 9d(1− γ) = 0,

то есть γ = 1− d или γ = 1− d

4
. Соответствующий член силы равен

F(V, r) = γ
|V|2
r
.

Возникает соблазн интерпретировать этот член как нечто вроде аэродинамического трения, но это
не так, поскольку трение направлено против скорости и должно быть пропорционально −V|V|.
Более того, наличие трения всегда связано с затуханием интеграла энергии, что несовместимо
с существованием центра на плоскости (G,F ). В действительности этот калибровочный член не
имеет физического смысла и означает лишь то, что скорость должна быть специально замедлена
или увеличена на разных стадиях колебаний.
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4.2. Можно ли стабилизировать релятивистские колебания в 1D? Система уравнений
Эйлера—Пуассона, описывающая поведение релятивистской холодной плазмы в R с фоном пере-
менной плотности в случае отталкивания имеет следующий вид [6]:

Pt + (V · ∇)P = −E, ∂ρ

∂t
+ div (ρV ) = 0, E = c(x)− ρ, V =

P√
1 + P 2

.

Здесь x и t— безразмерные координаты в пространстве и времени, соответственно. Переменная
P описывает импульс электрона, V — скорость электрона, E —функция, характеризующая элек-
трическое поле, ρ > 0—плотность электронов. Фиксированная C1-гладкая функция c(x) > 0—
фон плотности, или так называемый допинг-профиль. В простейшем случае c(x) = 1.
Используя эту систему, приходим к уравнениям, описывающим плоские одномерные реляти-

вистские плазменные колебания

Pt + V Px + E = 0, Et + V Ex − V c(x) = 0, V =
P√

1 + P 2
(4.2)

с начальными условиями

P (x, 0) = P0(x), E(x, 0) = E0(x), x ∈ R. (4.3)

Таким образом, вдоль характеристик x = x(t) решение (V (x(t)), E(x(t))) начиная с точки
x0 ∈ R подчиняется системе ОДУ

ẋ =
P√

1 + P 2
, Ṗ = −E, Ė = c(x)

P√
1 + P 2

(4.4)

с начальными условиями

x(0) = x0, P (0) = P0(x0), E(0) = E0(x0).

Докажем несколько предложений, позволяющих понять свойства простых релятивистских ко-
лебаний.

Предложение 4.1. В случае постоянного допинг-профиля c(x) = c0 > 0 любое нетриви-
альное классическое решение задачи Коши (4.2), (4.3), которое не является простой волной
P = P (E), разрушается за конечное время.

Доказательство. Из двух последних уравнений (4.4) имеем

P̈ + c0
P√

1 + P 2
= 0, (4.5)

что является частным случаем уравнения Льенара (3.1). Легко видеть, что τ(P ) �= 0, поэтому
теорема 3.1 подразумевает, что колебания P не изохронны. Из первых уравнений (4.4) заклю-
чаем, что колебания x(t) также не изохронны. Таким образом, из леммы 1.1 заключаем, что
характеристики обязательно пересекаются и решение разрушается за конечное время для общих
начальных данных. В [22] показано, что для простой волны можно выбрать окрестность начала
координат P = G = 0, соответствующую гладкому решению.

Рассмотрим аналог системы (1.4) с силой такой, что первое уравнение принимает вид

Pt + (V · ∇)P = −E + L,
где L— внешняя сила. Мы предполагаем, что L′(0) = 0, L′(P )—нечетное число, чтобы сохранить
колебательный характер системы под воздействием внешней силы.

Предложение 4.2. Никакая зависящая от импульса (и скорости) сила L(P ) такая, что
L′(0) = 0 и L′(P ) нечетна, не может сделать колебания (1.4) изохронными в случае постоян-
ного допинг-профиля.

Доказательство. Рассмотрим соответствующий аналог (4.5):

P̈ + L′(P )Ṗ + c0
P√

1 + P 2
= 0.
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Таким образом,

τ(P ) =

⎛
⎝

P∫

0

sL′(s) ds

⎞
⎠

2

− c0 P
4 1−

√
1 + P 2

√
1 + P 2

.

Так как 1−√
1 + P 2 < 0 и c0 > 0, то τ > 0 для всех нетривиальных P.

В [20] было доказано, что в случае нерелятивистских колебаний холодной плазмы система
характеристик изохронна (и, следовательно, глобально гладкие решения возможны только для
постоянного допинг-профиля). Далее, как следует из предложения 4.1, релятивистские колебания
холодной плазмы для постоянного допинг-профиля в основном разрушаются. Поэтому возникает
вопрос: можно ли найти переменную c(x) такую, чтобы колебания не разрушались? Другими
словами, может ли система (4.4) быть изохронной для некоторой c(x)? Следующее предложение
утверждает, что ответ отрицательный.

Предложение 4.3. Для любого гладкого допинг-профиля c(x) > 0, x ∈ R, любое нетривиаль-
ное классическое решение задачи Коши (4.2), (4.3) разрушается за конечное время.

Доказательство. Из (4.4) имеем

E(x(t)) =

x∫

x0

c(ξ) dξ + E0(x0), P 2 =
(ẋ)2

1− (ẋ)2
, ẍ =

1

(1 + P 2)
3
2

Ṗ ,

поэтому
ẍ = −E(x) (1 − (ẋ)2)

3
2 . (4.6)

Заметим, что |ẋ| < 1. Предположим для простоты, что x = 0—точка равновесия.
Если обозначить ẋ = s(x) и z(x) = s2, то получим

z′ = −2E(x) (1 − z)
3
2 ,

и

1− (ẋ)2 = 1− z =
1

Φ2(x)
, Φ(x) = −

x∫

0

E(ξ)dξ +E0 + (1+ P 2
0 )

3
2 , Φ′(x) = −E(x), Φ′′(x) = c(x).

Вместе с (4.6) это влечёт

ẍ =
Φ′(x)
Φ3(x)

, (4.7)

что соответствует плоской гамильтоновой системе с гамильтонианом V таким, что g(x) = V ′ =

−Φ′(x)
Φ3(x)

.

1. Если предположить, что g(x) является нечетной и аналитичной в окрестности x = 0, то мы
можем воспользоваться теоремой 3.1 и вычислить

τ(x) = −x3
(
−Φ′(x)
Φ3(x)

−K x

)
, K = −

(
Φ′(x)
Φ3(x)

)′ ∣∣∣
x=0

> 0.

Таким образом, τ(x) = 0 тогда и только тогда, когда

Φ(x) = ± 1√
K x2 +M

, M = const.

Заметим, что в этом случае
Φ′(x)
Φ3(x)

= −Kx, поэтому уравнение (4.7) линейно и инвариантно
относительно сдвига x0. Учитывая сдвиг начальной точки в x0, имеем

c(x) = ± K(M − 2K(x− x0)
2)

(M +K(x− x0)2)
5
2

.
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Однако мы видим, что c(x) не может быть положительной для всех x ∈ R. Более того, для обес-
печения изохронности c(x) должна зависеть от начальной точки траектории, что противоречит
требованию, чтобы допинг-профиль был функцией только пространственной координаты.

2. Известно, что предположение о нечетности g(x) не является необходимым для существования
изохронного центра гамильтоновой системы. Таким образом, мы можем воспользоваться общим
результатом [9] для класса непрерывных функций g.
Мы называем C1-диффеоморфизм H открытого интервала J ⊆ R на себя инволюцией, если

H−1 = H, 0 ∈ J, H(0) = 0, H ′(0) = −1.

Это означает, что график функции y = H(x) симметричен относительно главной диагонали y = x.

Теорема 4.1. Пусть H : J → J —инволюция, ω > 0, и определим

V (x) =
ω

8
(x−H(x))2, x ∈ J. (4.8)

Тогда начало координат является изохронным центром для ẍ = −g(x), где g(x) = V ′(x), с тем

же периодом
2π

ω
.

Наоборот, пусть g непрерывно в окрестности 0 ∈ R, g(0) = 0 и предположим, что g′(0) > 0 и
начало координат является изохронным центром для ẍ = −g(x). Тогда существуют открытый
интервал J, 0 ∈ J, который является подмножеством области определения g, и инволюция
H : J → J, такая, что (4.8) выполняется при

V (x) =

x∫

0

g(s)ds, ω =
√
g′(0).

В статье [9] содержится множество примеров для H. В нашем случае (4.7) мы имеем

M − 1

2Φ2(x)
= −ω

8
(x−H(x))2, M =

1

2Φ2(0)
> 0, Φ(x) = ± 1√

2M + ω
4 (x− x0 −H(x− x0))2

.

Таким образом, в этом случае c(x) снова зависит от начальной точки траектории и не удовлетво-
ряет требованиям. Таким образом, доказательство завершено.

5. Обсуждение

1. Если колебательная система изохронна, это фактически означает, что она имеет дополни-
тельный первый интеграл. В контексте гамильтоновых систем это свойство называется суперин-
тегрируемостью и имеет многочисленные приложения [15].
2. Представленные здесь методы могут быть распространены на системы уравнений в частных

производных для Y = Y(t,x), x ∈ R
m вида

(Yi)t +
m∑
j=0

aj(Y,x)(Yi)xj = Si(Y,x), x = (x1, . . . , xm), i = 1, . . . , n, j = 1, . . . ,m, (5.1)

a = (a1, . . . , am), a(0,x) = 0. В частности, при n = 1 это одно уравнение. Динамика вдоль
характеристик определяется системой n+m обыкновенных дифференциальных уравнений

ẋ = a(x,Y), Ẏ = S(x,Y). (5.2)

Если равновесие (5.2) является изохронным, то вполне вероятно, что глобально гладкие реше-
ния (5.1) могут быть найдены вблизи нулевого устойчивого состояния.
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Аннотация. Вирус иммунодефицита человека первого типа (ВИЧ) поражает иммунную систему
и, тем самым, ослабляет защиту от других инфекций и некоторых типов рака, с которыми может
справиться иммунная система здорового человека. Несмотря на применение препаратов высо-
коактивной антиретровирусной терапии (ВААРТ), пока не существует методов, позволяющих
добиться полного удаления ВИЧ из организма зараженного человека. Однако благодаря расши-
рению доступа к средствам профилактики, диагностики и лечения ВИЧ с помощью ВААРТ,
ВИЧ-инфекция перешла в категорию контролируемых хронических заболеваний. Для исследо-
вания кинетических механизмов патогенеза ВИЧ-инфекции и развития персонализированных
подходов к лечению на основе комбинированной иммунотерапии активно используются методы
математического моделирования. Одной из центральных задач моделирования ВИЧ-инфекции
является определение индивидуальных параметров реагирования иммунной системы при острой
фазе развития ВИЧ-инфекции на основе решения обратных задач.

Для исследования кинетики процессов патогенеза ВИЧ-инфекции использовалась матема-
тическая модель из восьми обыкновенных дифференциальных уравнений, сформулированная
H.T. Bank и др. [5]. Система уравнений модели описывает изменение численности четырех суб-
популяций CD4+ Т-клеток и двух типов CD8+ T-клеток. Особенностью данной модели является
рассмотрение латентно-инфицированных CD4+ T-клеток, которые служат основным резервуа-
ром вирусной популяции. Вирусная нагрузка на организм человека определятся совокупностью
популяций инфекционных и неинфекционных вирусных частиц.

Проведено исследование обратной задачи идентификации параметров по данным острой фазы
течения ВИЧ-инфекции. В частности, исследована идентифицируемость параметров и проведен
анализ чувствительности от входных данных. Обратная задача сведена к задачи минимизации
методом эволюционных центров.

Ключевые слова: вирус иммунодефицита человека, ВИЧ, иммунный ответ, система дифферен-
циальных уравнений, обратная задача идентификации параметров, метод эволюционных центров.
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Введение

Вирус иммунодефицита человека первого типа (ВИЧ) — это ретровирус, который заражает
CD4+ Т-хелперные клетки и макрофаги иммунной системы организма человека, вызывая систем-
ное заболевание, переходящее от острой фазы в хроническую. Хроническая фаза характеризует-
ся развитием иммунодефицита, приводящего данное инфекционное заболевание к терминальной
фазе синдрома приобретенного иммунодефицита (СПИД).
ВИЧ-инфекция и СПИД относятся к числу наиболее серьезных проблем общественного здра-

воохранения в мире, затрагивающих людей всех демографических групп во всем мире [14]. Так,
на сегодняшний день этот вирус унес 36.3 миллиона человеческих жизней [21]. Со времени обна-
ружения в 1987 г. первого россиянина, инфицированного ВИЧ, по 31 декабря 2021 г. общее число
выявленных случаев ВИЧ-инфекции среди граждан Российской Федерации (подтвержденных
в иммунном блоке) достигло по предварительным данным 1 562 570. На 31 декабря 2021 г. в
стране проживало 1 137 596 россиян с лабораторно подтвержденным диагнозом ВИЧ-инфекции,
исключая 424 974 больных, умерших за весь период наблюдения (27,2%) [3]. Эпидемиология ВИЧ
и проблемы общественного здравоохранения, такие как передача (динамика между хозяевами),
остаются важными для изучения.
Несмотря на множество успешных мероприятий в области общественного здравоохранения и

клинических вмешательств с момента первого выявления ВИЧ-инфицированных пациентов в
1981 году, лечения по-прежнему нет, и эпидемия ВИЧ/СПИДа продолжает расти. Применяе-
мые методы лечения ВИЧ-инфекции используют средства высокоактивной антиретровирусной
терапии (ВААРТ) [9], подавляющие процессы заражения и размножения вирусов, однако не при-
водящие к полноценному излечению, т. е. восстановлению функций иммунной системы. Важной
задачей проводимых исследований являются эффективное использование и совершенствование
антиретровирусных препаратов с целью снижения побочных эффектов, а также разработка прин-
ципиально новых подходов на основе методов иммунотерапии. Для их реализации необходимо бо-
лее глубокое понимание поведения вирусной популяции внутри каждого хозяина, включая пути
заражения, регуляция процессов иммунной защиты и эффекты лекарств.
При анализе механизмов патогенеза ВИЧ-инфекции и решении задачи прогнозирования ее ди-

намики с учетом индивидуального иммунного статуса пациента иммунологи и вирусологи сталки-
ваются целым рядом фундаментальных проблем. К ним относятся многовариантность режимов
динамики патологических процессов, нелинейность регуляторных связей, гетерогенность и вари-
абельность популяций клеток врожденного и адаптивного иммунитета, мутация вирусов, форми-
рование пула латентно-инфицированных клеток, в которых скрывается ВИЧ. Их исследование
связано с разработкой и применением математических и компьютерных инструментов модели-
рования иммунных процессов. Математические модели могут помочь в количественной оценке
параметров динамических физиологических и иммунологических процессов и соотнесении науч-
ных знаний об этих процессах с наблюдаемым поведением пациента.
Математическое моделирование ВИЧ-1 инфекции в организме человека является одним из

главных направлений математической иммунологии [8,10,16,20]. В работах [4,6,7,19] разработаны
модели ВИЧ-инфекции и исследованы задачи оптимального управления.
Целью данной работы является разработка новых подходов к изучению методами математи-

ческого моделирования факторов иммунной защиты, определяющих наблюдаемые различия в
течении и тяжести ВИЧ-инфекции по клиническим данным пациентов.

1. Математическая модель

Для изучения динамики ВИЧ-инфекции исследована математическая модель из [5], которая
является системой нелинейных обыкновенных дифференциальных уравнений (ОДУ) и описывает
важные механизмы патогенеза ВИЧ-инфекции, такие как роль Т-клеток памяти CD4+ в фор-
мировании резервуара латентно инфицированных клеток, участие CD4+ Т-хелперных клеток в
генерации Т-клеток памяти CD8+ и стимуляция антигенами, отличными от ВИЧ.
Выбранная модель [5] характеризуется рядом важных свойств, выделяющих ее среди других

классов моделей, которые позже были включены в некоторые из них [18]. В частности, данная
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математическая модель учитывает следующие клинически существенные особенности патогенеза
инфекции:
(1) роль CD4+ Т-клеток памяти как резервуара латентно инфицированных клеток,
(2) участие активированных CD4+ Т-клеток в формировании ВИЧ-1 специфического ответа

CD8+ Т-клеток киллеров и генерации клеток памяти,
(3) влияние хронической иммунной активации.
При этом существенно, что модель калибрована на основе клинических данных за длительные
периоды наблюдения.
Уравнения модели описывают популяционную динамику численности следующих компонент

инфекционного процесса: клетки-мишени CD4+ Т-клетки (покоящиеся и активированные), зара-
женные клетки-мишени CD4+ Т-клетки (покоящиеся и активированные), ВИЧ-специфические
цитотоксические CD8+ Т-лимфоциты (эффекторы и клетки памяти). Моделируемые компонен-
ты ВИЧ-инфекции перечислены в таб. 1.

Таб. 1. Моделируемые характеристики инфекции.

Состояние Размерность Описание
T1 клетки/мкл-кровь неинфицированные активированные CD4+ T-клетки
T2 клетки/мкл-кровь неинфицированные покоящиеся CD4+ T-клетки
I1 клетки/мкл-кровь инфицированные активированные CD4+ T-клетки
I2 клетки/мкл-кровь инфицированные покоящиеся CD4+ T-клетки
VI РНК копии/мл-плазма инфекционный свободный вирус
VNI РНК копии/мл-плазма неинфекционный свободный вирус
E1 клетки/мкл-кровь ВИЧ-специфические CD8+ T-клетки эффекторы
E2 клетки/мкл-кровь ВИЧ-специфические CD8+ T-клетки памяти

Tab. 1. Modeled infection characteristics.

State Dimension Description
T1 cells/ml-blood uninfected activated CD4+ T cells
T2 cells/ml-blood uninfected resting CD4+ T cells
I1 cells/ml-blood infected activated CD4+ T cells
I2 cells/ml-blood infected resting CD4+ T cells
VI RNA copies/ml-plasma infectious free virus
VNI RNA copies/ml-plasma noninfectious free virus
E1 cells/ml-blood HIV-specific CD8+ T cell effectors
E2 cells/ml-blood HIV-specific CD8+ memory T cells

Математическая модель описывается следующей системой ОДУ:

Ṫ1 = −d1T1 − (1− ξ1(t))k1VIT1 − γTT1 + pT

(
aTVI

VI +KV
+ aA

)
T2, (1.1)

Ṫ2 = −d2T2 − (1− fξ1(t))k2VIT2 + γTT1 −
(

aTVI
VI +KV

+ aA

)
T2 + λT

Ks

VI +KS
, (1.2)

İ1 = −δI1 + (1− ξ1(t))k1VIT1 − γT I1 + pT

(
aTVI

VI +KV
+ aA

)
I2 −mE1I1, (1.3)

İ2 = −d2I2 + (1− fξ1(t))k2VIT2 + γT I1 −
(

aTVI
VI +KV

+ aA

)
I2, (1.4)

V̇I = (1− ξ2(t))10
3NT δI1 − cVI − 103[(1− ξ1(t))ρ1k1T1 + (1− fξ1(t))ρ2k2T2]VI , (1.5)

V̇NI = ξ2(t)10
3NT δI1 − cVNI , (1.6)

Ė1 = λE +
bE1I1

I1 +Kb1
E1 − dEI1

I1 +Kd
E1 − δE1E1 − γE

T1 + I1
T1 + I1 +Kγ

E1 +
pEaEVI
VI +KV

E2, (1.7)

Ė2 = γE
T1 + I1

T1 + I1 +Kγ
E1 +

bE2Kb2

E2 +Kb2
E2 − δE2E2 − aEVI

VI +KV
E2, (1.8)
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со следующими начальными условиями:

T1(0) = T 0
1 , T2(0) = T 0

2 , I1(0) = I01 , I2(0) = I02 ,

VI(0) = V 0
I , VNI(0) = V 0

NI , E1(0) = E0
1 , E2(0) = E0

2 .
(1.9)

Уравнения системы ОДУ (1.1)–(1.8) описывают изменения концентраций соответствующих ха-
рактеристик инфекции.
Первое уравнение описывает динамику неинфицированных активированных CD4+ T-клеток

под действием процессов естественной гибели, заражения ВИЧ и перехода в состояние покоя,
появления в результате активации покоящихся клеток, представленных соответствующими сла-
гаемыми в правой части уравнения.
Второе уравнение для неинфицированных покоящихся CD4+ T-клеток учитывает действие

процессов естественной гибели, заражения ВИЧ, перехода активированных клеток в состояние
покоя, активации покоящихся клеток и поступления клеток предшественников из тимуса, соот-
ветственно.
Третье уравнение описывает динамику инфицированных активно-продуцирующих ВИЧ CD4+

T-клеток, обусловленную следующими процессами: естественная гибель, появление в результате
заражения активированных CD4+ T-клеток, переход в состояние покоя (латентной инфекции),
активация латентно-инфицированных клеток и разрушение ВИЧ-специфическими эффекторны-
ми CD8+ T-клетками.
Четвертое уравнение для латентно-инфицированных CD4+ T-клеток описывает вклад процес-

сов естественной гибели, появление в результате заражения покоящихся CD4+ T-клеток, переход
в активированное состояние.
Пятое уравнение описывает изменение концентрации инфекционных ВИЧ, определяемую про-

цессами их размножения в активно-инфицированных клетках, естественной деградации, расхода
на заражение активированных и покоящихся CD4+ T-клеток.
Шестое уравнение описывает динамику неинфекционных вирусных частиц с учетом процессов

размножения в активированных зараженных клетках под действием антиретровирусных препа-
ратов, блокирующих процесс созревания инфекционных вирионов, и деградации вирусных ча-
стиц.
Динамика ВИЧ-специфических эффекторных CD8+ T-клеток описывается седьмым уравне-

нием, в правой части которого рассматривается вклад следующих процессов: поступление из ти-
муса, антиген-индуцированное деление, антиген-индуцированный апоптоз, естественная гибель,
дифференцировка в CD8+ T-клетки памяти, активация и деление покоящихся CD8+ T-клеток
памяти.
Динамика ВИЧ-специфических CD8+ T-клеток памяти описывается последним уравнени-

ем, определяется процессами дифференцировки эффекторных CD8+ T-клеток в клетки памя-
ти, гомеостатической пролиферации CD8+ T-клеток памяти, естественной гибели и антиген-
индуцированной активацией CD8+ T-клеток памяти.
Параметризация функций ξ1(t) = ε1u(t) и ξ2(t) = ε2u(t), описывающих эффект лечения, со-

держит параметры эффективности ε1 и ε2, а также функцию управления u(t), учитывающую
фармакокинетику и фармакодинамику антиретровирусных препаратов. Параметры ε1 и ε2 за-
дают относительную эффективность ингибитора обратной транскриптазы (RTI) и ингибитора
протеазы (PI), соответственно. Функция управления (лечения) u(t) (0 � u(t) � 1) описывает в
единичном интервале обобщенный уровень антиретровирусных препаратов.

2. Описание данных и параметров

Математическая модель (1.1)–(1.8) использовалась нами для решения обратной задачи по кли-
ническим данным острой фазы ВИЧ-инфекции и далее, в течение года, до начала антиретрови-
русной терапии, когда имеет место стабилизация динамики вирусной нагрузки (ВН). Данные бы-
ли взяты из статьи [13]. В данной работе проведен детальный анализ динамики уровня вирусной
нагрузки и Т-клеточного иммунитета у группы пациентов. В таб. 2 представлены клинические
показатели вирусной нагрузки и CD4+ T-клеток на миллилитр крови.
Для решения задачи Коши (1.1)–(1.9) необходимы значения параметров модели, которые взяты

(в качестве референтного набора) из [5] и приведены в таб. 3.
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Таб. 2. Значения показателей вирусной нагрузки (log10) и общие число CD4+ T-
клеток для группы пациентов P1–P4.
Tab. 2. Viral load values (log10) and total CD4+ T cell counts for patient group P1–P4.

Период/Period
Сутки
/Day ВН P1 CD4 P1 ВН P2 CD4 P2 ВН P3 CD4 P3 ВН P4 CD4 P4

Прединфицирование
/Preinfection 0 0.0 1200.0 0.0 750.0 0.0 650.0 0.0 610.0

0 Неделя/Week 11 5.89 890.0 5.8 610.0 5.95 450.0 3.9 695.0
1 Неделя/Week 18 7.96 600.0 7.0 450.0 7.3 300.0 5.9 450.0
2 Неделя/Week 25 6.3 420.0 5.98 290.0 6.9 480.0 6.1 605.0
3 Неделя/Week 32 5.91 550.0 4.9 620.0 4.1 550.0 4.0 580.0
4 Неделя/Week 39 5.87 520.0 3.95 590.0 3.9 470.0 3.95 560.0
6 Месяцев/Months 180 4.5 560.0 4.2 470.0 3.0 610.0 3.6 490.0

1 Год/Year 360 5.0 580.0 4.1 580.0 3.5 510.0 3.5 610.0

Таб. 3. Значения параметров для модели ВИЧ-инфекции.

Параметр Значение Параметр Значение
d1 0.02 сутки−1 δE1 0.1 сутки−1

δ 0.7 сутки−1 pT 1.2
d2 0.005 сутки−1 pE 3
f 0.34 ∈ [0, 1] bE2 0.001
ε2 0 ∈ [0, 1] k1 10−5 мл-плазма

копии сутки
aA 0 сутки−1 k2 10−9 мл-плазма

копии сутки
aT 0.008 сутки−1 λT 7 клетка

мкл-кровь сутки
aE 0.1 сутки−1 KS 105 копии

мл-плазма
γE 0.01 сутки−1 NT 100 копии мкл-кровь

клетки мл-плазма
δE2 0.005 сутки−1 λE 0.001 клетка

мкл-кровь сутки
ε1 0 ∈ [0, 1] Kγ 10 клетки

мкл-кровь
m 0.01 мкл-кровь

клетки сутки Kb1 0.1 клетки
мкл-кровь

KV 100 копии
мл-плазма Kb2 100 клетки

мкл-кровь
γT 0.005 сутки−1 Kd 0.5 клетки

мкл-кровь
c 13 сутки−1 bE1 0.3 сутки−1

dE 0.25 сутки−1

Tab. 3. Parameter values for the HIV infection model.

Parameter Value Parameter Value
d1 0.02 day−1 δE1 0.1 day−1

δ 0.7 day−1 pT 1.2

d2 0.005 day−1 pE 3
f 0.34 ∈ [0, 1] bE2 0.001

ε2 0 ∈ [0, 1] k1 10−5 ml-plasma
copies day

aA 0 day−1 k2 10−9 ml-plasma
copies day

aT 0.008 day−1 λT 7 cell
mcl-blood day

aE 0.1 day−1 KS 105 copies
ml-plasma

γE 0.01 day−1 NT 100 copies ml-blood
cells ml-plasma

δE2 0.005 day−1 λE 0.001 cell
ml-blood day

ε1 0 ∈ [0, 1] Kγ 10 cells
ml-blood

m 0.01 ml-blood
cells day Kb1 0.1 cells

mcl-blood
KV 100 copies

mcl-plasma Kb2 100 cells
mcl-blood

γT 0.005 day−1 Kd 0.5 cells
mcl-blood

c 13 day−1 bE1 0.3 day−1

dE 0.25 day−1
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3. Алгоритм выбора начального условия для прямой задачи

В первую неделю после заражения (фаза эклипса) обнаружить вирус в организме человека
невозможно, но инфекционный процесс развивается и вирус взаимодействует с клетками иммун-
ной системы. При задании начальных условий нами сделаны следующие предположения:

• |VI(0)| � 10−2, VNI(0) = 0,
• I1(0) = 0, I2(0) = 0,
• E2(0) = 0 (предполагается, что ВИЧ-специфические CD8+ Т-клетки памяти появляются
после контакта с вирусом в организме).

В норме у здорового человека количество CD4+ Т-клеток находится диапазоне от 600 до
1200 клеток на мл крови. В математической модели ВИЧ-инфекции описаны четыре группы
CD4+ Т-клеток, которые никак не разделены при анализе биологического материала, поэто-
му необходимо найти оптимальное значение начальных условий. В таб. 2 для каждого паци-
ента содержится информация о CD4-клетках ũ1(t) = log10 |u1(t)| и вирусной нагрузке u2(t)
в момент времени t. Для математической модели эти значения представляются как суммы
TCD4(t) = T1(t) + T2(t) + I1(t) + I2(t) и VL(t) = VI(t) + VNI(t). Чтобы адекватно воспроизвести
раннюю фазу динамики ВИЧ, начальное условие задачи Коши записано в виде:

T1(0) = TCD4(0) · 100− p

100
, T2(0) = TCD4(0) · p

100
, I1(0) = 0, I2(0) = 0,

VI(0) = v, VNI(0) = 0, E1(0) =
λE
δE1

, E2(0) = 0,
(3.1)

где
p ∈ {1, . . . , 99}, v ∈ {10−2, . . . , 10−15}.

Значения p, v берутся такими, чтобы значение | log10 |TCD4(T )|− ũ1(T )|+ | log10 |VL(T )|−u2(T )|
было минимально. Функции TCD4(t) и VL(t) задаются после решения задачи Коши (1.1)–
(1.8), (3.1) с параметрами из таб. 3 на временном интервале от 0 до T, который обозначает день,
когда был обнаружен вирус. Из таб. 2 значение T = 11, что соответствует началу первой недели.
Для численного решения прямой задачи использовалась явная схема Рунге—Кутты пятого

порядка [17]. Полученные значения начальных условий (1.9) представлены в таб. 4.

Таб. 4. Начальные условия для (P1)–(P4).
Tab. 4. Initial conditions for (P1)–(P4).

Пациент/Patient T 0
1 T 0

2 I01 I02 V 0
1 V 0

2 E0
1 E0

2

P1 156.0 1044.0 0.0 0.0 1e-18 0.0 0.01 0.0
P2 158.0 592.0 0.0 0.0 1e-18 0.0 0.01 0.0
P3 156.0 494.0 0.0 0.0 1e-18 0.0 0.01 0.0
P4 146.0 464.0 0.0 0.0 1e-17 0.0 0.01 0.0

4. Дисперсионный анализ чувствительности

Для задачи (1.1)–(1.9) с начальными условиями из таб. 4 применен дисперсионный анализ
чувствительности методом Соболя.
Метод Соболя [2] основан на исследовании дисперсии наблюдаемой переменной модели, обу-

словленной случайным выбором параметров модели. Идея заключается в том, что метод разби-
вает дисперсию выходных данных модели или системы на слагаемые, которые можно отнести к
входным данным (параметры модели) или их комбинациям. Это помогает получить не только
чувствительность интересующей переменной модели или функционала от нее к отдельному па-
раметру, но и дает возможность количественно оценить совместное влияние и чувствительность
от взаимодействия между параметрами.
Любую модель можно рассматривать как функцию Y = f(X), где X—вектор d неопределен-

ных входных данных модели {X1,X2, . . . ,Xd}, а Y — скалярное значение, которое выдает модель.
Предполагается, что входные данные независимо и равномерно распределены внутри единичного
гиперкуба, т. е. Xi ∈ [0, 1] для i = 1, 2, . . . , d. Это предположение не приводит к потере общности,
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(P1) (P2)

(P3) (P4)

Рис. 1. Изображения (P1)–(P4) иллюстрируют решение прямой задачи с данными
из таб. 3 и 4. Красный цвет соответствует вирусной нагрузке VL, а синий TCD4.
Точки в форме квадратов описывают данные из таб. 2.

Fig. 1. Figures (P1)–(P4) illustrate the solution of the direct problem with the data
from Tab. 3 and 4. The red color corresponds to the viral load VL, and the blue color
TCD4. The square dots describe the data from Tab. 2.

поскольку любое входное пространство может быть преобразовано в единичный гиперкуб. Тогда
f(X) может быть разложено следующим образом:

Y = f0 +
d∑

i=1

fi(Xi) +
d∑

i<j

fij(Xi,Xj) + . . . + f1,2,...,d(X1,X2, ..Xd),

где f0—константа, fi —функции от Xi, fij —функции от Xi и Xj и т. д. Условием такого разло-
жения является то, что все члены функциональной декомпозиции ортогональны:

1∫

0

fi1i2...is(Xi1 ,Xi2 , . . . ,Xis)dXk = 0 для k = i1, . . . , is.

Это приводит к следующим выражениям с условными математическими ожиданиями:

f0 = E(Y ),

fi(Xi) = E(Y |Xi)− f0,

fij(Xi,Xj) = E(Y |Xi,Xj)− f0 − fi − fj.
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Из данных соотношений следует, что fi отражает эффект изменения только Xi (известный как
основной эффект Xi), а fij отражает эффект изменения Xi и Xj одновременно, дополнительный
к эффекту их индивидуальных вариаций. Это известно как взаимодействие второго порядка.
Слагаемые более высокого порядка имеют аналогичные определения. Дополнительно предпола-
гая, что f(X) квадратично интегрируемо, функциональное разложение может быть возведено в
квадрат и проинтегрировано, чтобы получить

∫
f2(X)dX− f20 =

d∑
s=1

d∑
i1<···<is

∫
f2i1...isdXi1 . . . dXis .

Левая часть равна дисперсии Y, а члены правой части являются членами дисперсии, разложен-
ными по множествам Xi. Учитывая это, приходим к выражениям для разложения величины
дисперсии

Var(Y ) =

d∑
i=1

Vi +

d∑
i<j

Vij + · · ·+ V12...d,

где
Vi = VarXi (EX∼i

(Y | Xi)) ,

Vij = VarXij

(
EX∼ij

(Y | Xi,Xj)
)− Vi − Vj

и т. д. Обозначение X∼i указывает на набор всех переменных, кромеXi.Приведенная выше деком-
позиция дисперсии показывает, как дисперсия выходных данных модели может быть разложена
на слагаемые, относящиеся к каждому входному параметру, а также эффекты взаимодействия
между параметрами.
Индексы Соболя «упорядочены», при этом индексы первого порядка задаются выражением

Si =
Vi

V ar(Y )
, характеризуя вклад в дисперсию выходной переменной или величину основного

эффекта для параметра Xi. Таким образом, они измеряют эффект варьирования Xi отдельно,
но усредненный по вариациям других входных параметров. Данный индекс чувствительности
масштабируется величиной общей дисперсии, чтобы обеспечить следующую нормализацию:

d∑
i=1

Si +

d∑
i<j

Sij + · · ·+ S12...d = 1.

Используя индексы более высокого порядка, можно составить представление о важности каж-
дой переменной при определении выходной дисперсии. Однако когда число переменных велико,
это требует оценки 2d − 1 индексов, что может быть слишком трудоемким с точки зрения вы-
числений. По этой причине используется показатель, известный как индекс общего эффекта, или
индекс общего порядка:

STi =
EX∼i (VarXi(Y | X∼i))

Var(Y )
= 1− VarX∼i (EXi(Y | X∼i))

Var(Y )
,

который измеряет вклад в выходную дисперсию параметра, включая все дисперсии, вызванные
его взаимодействиями любого порядка с любыми другими входными переменными.
Для данной задачи были выбраны границы варьирования параметров следующим образом:

если qi0 < 1.0, то [10−10, 1.0], иначе [10�log10(qi0)�−4, 10�log10(qi0)�+4]. Также фиксировались парамет-
ры f, ε1, ε2, aA, так как они отвечают за моделирование антиретровирусной терапии и иммунного
ответа на инфекцию, не являющейся ВИЧ. При сэмплировании для пространства параметров ис-
пользовался метод выборки квази-Монте-Карло, который использует последовательность с низ-
ким расхождением.
Анализ чувствительности проводился на интервале времени (0, 39) с числом точек N = 100.

Результаты метода сначала были усреднены на интервале для каждого уравнения в отдельности.
Затем усреднялись значения для каждого уравнения разных случаев начальных условий (P1)–
(P4). Конечный результат усреднения представлен на рис. 2.
Из гистограммы 2 видно, что наиболее чувствительными параметрами к изменению началь-

ных данных являются m, отвечающий за интенсивность удаления I1 иммунными эффекторными
клетками E1, и параметр NT , учитывающий количество копий РНК, полученных в ходе вирусного
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почкования. В ходе решения обратной задачи на это обращено внимание с помощью фиксирова-
ния параметра m и уменьшения интервала варьирования параметра NT .

Рис. 2. Гистограмма иллюстрирует индекс общего порядка STi и индекс первого
порядка Si для каждого параметра математической модели.

Fig. 2. The histogram illustrates the total order index STi and the first-order index Si
for each parameter of the mathematical model.

5. Постановка обратной задачи

Обратная задача для системы (1.1)–(1.8), (3.1) заключается в идентификации параметров (пе-
речисленных в таб. 3) по дополнительной информации [12]. При решении обратной задачи опре-
делялись следующие параметры: d2, aT , c,NT , λT .
Введем дополнительные функции z1 и z2, которые описывают наблюдаемые переменные —

CD4+ T-клетки и вирусную нагрузку — в момент времени t при заданном векторе параметров q:

z1(t; q) = log10(|T1(t; q) + T2(t; q) + I1(t; q) + I2(t; q) + 1|),
z2(t; q) = log10(|VI(t; q) + VNI(t; q) + 1|).

Дополнительно введем функции ỹ1(t) = log10 |y1(t)| и y2(t), которые описывают значения CD4+
T-клеток и вирусной нагрузки VL в момент времени t. Для решения обратной задачи — для по-
лучения функций y1(t) и y2(t) по данным из таб. 2 — была проведена интерполяция. К данным
CD4+ T-клеток была применена линейная интерполяция, а к данным вирусной нагрузки квад-
ратичная интерполяция.
Обратная задача состоит в том, чтобы найти в области допустимых значений параметров Q

такой вектор параметров q, который бы для функционала J(q) давал минимальное значение:

J(q) =

N1∑
i=1

(ỹi1 − z1(t
i
1; q))

2 +

N2∑
i=1

(yi2 − z2(t
i
2; q))

2 → min
q∈Q

.

Выбор функционала соответствует предположению о лог-нормальности ошибок измерений.
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6. Описание расчетов

Данные в таб. 2 представлены с интервалом времени 7 дней, где значения могут расти или убы-
вать. Нами предложено разбить отрезок времени [0, 40] дней на 5 интервалов i1, . . . , i5. В каждом
интервале будет решаться соответствующая обратная задача со своими начальными данными
для системы ОДУ модели.
Для минимизации целевого функционала J(q) использовался алгоритм эволюционных цен-

тров [15]. В качестве начального приближения q0 использовался вектор, составленный из значе-
ний таб. 3. Применение априорной информации об искомом решении позволяет повысить устой-
чивость работы алгоритма и восстановления параметров и сильно сократить количество итера-
ций [1,11]. Область допустимых значений Qi для каждого параметра qi выбиралась так, что если
qi < 1.0, то Qi = [10−10, 1.0], иначе Qi = [10�log10(qi)�−2, 10�log10(qi)�+2].
Алгоритм эволюционных центров является методом стохастической оптимизации, который схо-

дятся к точке глобального минимума с некоторой вероятностью. При решении оптимизационной
задачи алгоритм работал при размере шага ηmax = 2, количестве векторов для генерации центра
масс K = 7, размере популяции N = 20. Для устойчивости алгоритма делался многократный
рестарт и выбиралось минимальное по функционалу приближенное решение обратной задачи.

Таб. 5. Значения параметров, полученные в ходе решения обратной задачи для
случаев (P1)–(P4).

Tab. 5. Parameter values obtained during the solution of the inverse problem for cases
(P1)–(P4).

Параметр/Parameter i1 i2 i3 i4 i5
P1

d2 0.035 0.036 0.038 0.005 0.005
λT 7 7 7 210.5 7
NT 100 1000 1000 1000 1000
c 13 0.1 2 2 2
aT 0.008 0.008 0.008 0.002 0.002

P2
d2 0.035 0.005 0.063 0.005 0.149
λT 7 7 7 165 7
NT 100 100 100 10 6
c 13 0.1 0.35 0.4 0.41
aT 0.008 0.008 0.00125 0.00125 0.00175

P3
d2 0.055 0.00113 0.00035 0.005 0.033
λT 7 7 3127 17.5 7
NT 100 227 50 150 175
c 13 0.1 0.13 5 13
aT 0.008 0.008 0.0002 0.002 0.00195

P4
d2 0.005 0.0087 0.005 0.001 0.001
λT 13 7 583.5 7 9.5
NT 100 5 5 10 11
c 13 0.05 0.05 8 9
aT 0.008 0.05 0.05 0.04 0.00141

7. Результаты решения обратной задачи

Расчеты производились на языке программирования Julia. Оценки значений параметров мо-
дели, отражающие изменение интенсивности процессов в ходе развития инфекции для каждого
из пациентов, представлены в таб. 5 и на рис. 4.
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(P1) (P2)

(P3) (P4)

Рис. 3. Изображения (P1)–(P4) иллюстрируют работу алгоритма с данными из
таб. 2. Красный цвет соответствует вирусной нагрузке VL, а синий TCD4.

Fig. 3. Figures (P1)–(P4) illustrate the algorithm’s operation with the data from
the Tab. 2. The red color corresponds to the viral load VL, and the blue color to TCD4.

Таб. 6. Погрешность измерений для случаев (P1)–(P4).
Tab. 6. Measurement error for cases (P1)–(P4).

Sp · tα P1 P2 P3 P4
TCD4 66.4 37.49 28.35 23.26

log10 |VL| 0.83 0.73 0.79 0.66

Восстановленное решение по параметрам, найденным из решения обратной задачи, представ-
лено на рис. 3. Доверительный интервал, учитывающий неопределенность, связанную с поло-
жением тренда, и возможность отклонения от этого тренда, задается со значением надежности
P = 0.95. В таб. 6 представлены значения погрешностей измерений, где среднеквадратическая

ошибка среднего арифметического Sp =

√
1

n(n− 1)

n∑
i=1

|xi − x̄|2 при n = 48, а tα — соответствую-

щий коэффициент Стьюдента.
Как видно из графиков, решение хорошо описывает начальную фазу распространения вируса

в организме человека, а дальше улавливает характерный профиль данных.

Заключение

Одной из важнейших задач моделирования ВИЧ-инфекции является определение индивиду-
альных параметров реагирования иммунной системы на инфекцию по измеряемым клиническим
данным пациентов, в частности — вирусной нагрузке и концентрации CD4+ T-клеток. Это важно
для развития персонализированных подходов к терапии ВИЧ-инфекции.
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Рис. 4. Оценки значений параметров модели на различных фазах развития ин-
фекции из таб. 5.

Fig. 4. Estimates of the values of the model parameters at different phases of infection
development from Tab. 5.

Результаты идентификации параметров индивидуальной динамики ВИЧ-1 инфекции для че-
тырех пациентов позволяют сформулировать следующие гипотезы об особенностях патогенеза у
каждого из них:

• Скорость продукции вирусов NT зараженными клетками у пациента P1 существенно выше,
чем у стальных.

• Скорость нейтрализации свободных вирусов c имеет тенденцию к значительному росту у
пациентов Р3, Р4, что может быть связано с развитием гуморального иммунного ответа —
нейтрализующих антител.

• Скорость активации ВИЧ-инфицированных покоящихся CD4+ Т-клеток вирусов aT суще-
ственно выше у пациента Р4, что может отражать повышенный уровень хронической им-
мунной активации.
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• Скорость поступления наивных CD4+ Т-клеток λT из тимуса временно, но существенно,
повышается у пациента Р3.

• Скорость естественной гибели покоящихся CD4+ Т-клеток d2 в среднем выше у пациентов
Р1, Р2.

Следует отметить, что неполнота клинических данных, используемых для идентификации, не
является ограничивающим фактором. Более детальные данные важны для уточнения оценок и
доверительных интервалов для более широкого набора идентифицируемых параметров модели.
В данной работе предложен возможный подход к решению этой задачи, связанный с декомпо-

зицией задачи приближения на более простые подзадачи на меньших временных интервалах. Его
реализация связана с уточнением начального условия и параметров для системы ОДУ. Разрабо-
тан метод оптимизации целевого функционала согласия данных и модели, который улавливает
общий тренд. Отметим, что чувствительным к шумам в исходных данных и выбросам в исходных
данных является не предложенный алгоритм решения, а математическая модель, основанная на
обыкновенных дифференциальных уравнениях. Поэтому предварительно для параметров мате-
матической модели проводится анализ чувствительности методом Соболя, чтобы выявить пара-
метры, наиболее чувствительные к изменению начальных данных. После интерполяции данных
временной интервал разбивается на подынтервалы, где с помощью алгоритма эволюционных цен-
тров производится подбор параметров системы дифференциальных уравнений, гладкое решение
которой проходило бы через исходные точки данных.
В дальнейшем планируется развитие компонент метода, которые помогут оценивать число

латентно-инфицированных клеток и иммунного статуса пациентов. В целом, разработанный
в данной работе подход к анализу параметров индивидуальной реакции пациентов на ВИЧ-
инфекцию позволяет получить информацию об интенсивности вирусных и иммунных процессов
и их вкладу в наблюдаемые различия динамики заболевания.
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Abstract. Human immunodeficiency virus of type 1 (HIV) attacks the immune system and thereby
weakens the defense against other infections and some types of cancer that the immune system of a
healthy person can cope with. Despite the use of highly active antiretroviral therapy (HAART), there
are no methods yet to completely eliminate HIV from the body of an infected person. However, due
to the expansion of access to HIV prevention, diagnosis and treatment with HAART, HIV infection
has moved into the category of controllable chronic diseases. Mathematical modeling methods are
actively used to study the kinetic mechanisms of HIV pathogenesis and the development of personalized
approaches to treatment based on combined immunotherapy. One of the central tasks of HIV infection
modeling is to determine the individual parameters of the immune system response during the acute
phase of HIV infection by solving inverse problems.

To study the kinetics of the pathogenesis of HIV infection, a mathematical model of eight ordinary
differential equations formulated by Bank et al. [5] was used. The system of equations of the model
describes the change in the number of four subpopulations of CD4+ T cells and two types of CD8+
T cells. A feature of this model is the consideration of latently infected CD4+ T cells, which serve as
the main reservoir of the viral population. The viral load on the human body is determined by the
combination of populations of infectious and noninfectious viral particles.

The inverse problem of parameter identification based on the data of the acute phase of HIV infection
was studied. In particular, the identifiability of the parameters was studied and sensitivity analysis from
the input data was performed. The inverse problem was reduced to a minimization problem using the
evolutionary centers method.

Keywords: human immunodeficiency virus, HIV, immune response, system of differential equations,
inverse problem of parameter identification, method of evolutionary centers.
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Аннотация. Мы рассматриваем результаты о корректности задачи со свободной границей (ин-
терфейсом), где граница отделяет идеально проводящую невязкую жидкость (например, плазму)
от вакуума. Течение жидкости регулируется уравнениями идеальной сжимаемой магнитогид-
родинамики (МГД). В отличие от классической постановки, когда вакуумное магнитное поле
подчиняется системе div-rot домаксвелловской динамики, мы не пренебрегаем током смещения в
вакуумной области и рассматриваем уравнения Максвелла для электрических и магнитных по-
лей. С граничными условиями на интерфейсе это образует нелинейную гиперболическую задачу
с характеристической свободной границей. Постановка этой задачи свободного интерфейса исхо-
дит из релятивистской постановки, где током смещения в вакууме нельзя пренебречь. Мы также
кратко обсуждаем недавний результат, показывающий стабилизирующий эффект поверхностного
натяжения.

Ключевые слова: уравнения идеальной сжимаемой магнитогидродинамики, задача со свобод-
ной границей, ток смещения, уравнения Максвелла, нелинейная гиперболическая задача, кор-
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1. Введение

Система уравнений идеальной сжимаемой МГД [9], описывающая движение сжимаемой невяз-
кой идеально проводящей жидкости (например, плазмы) в магнитном поле, имеет вид

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tρ+ div(ρv) = 0,

∂t(ρv) + div(ρv ⊗ v −H ⊗H) +∇q = 0,

∂tH −∇× (v ×H) = 0,

∂t(ρE + 1
2 |H|2) + div (ρEv + pv +H × (v ×H)) = 0.

(1.1)
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Здесь ρ обозначает плотность, v = (v1, v2, v3)
T — скорость плазмы, H = (H1,H2,H3)

T —магнит-

ное поле, p = p(ρ, S)—давление, q = p+
1

2
|H|2 —полное давление, S — энтропия, E = e+

1

2
|v|2 —

полная энергия и e = e(ρ, S)— внутренняя энергия. С уравнением состояния, ρ = ρ(p, S), и пер-
вым принципом термодинамики, (1.1) является замкнутой системой, например, для неизвестного
U = U(t, x) = (q, vT,HT, S)T ∈ R

8. Система (1.1) должна быть дополнена ограничением на ди-
вергенцию

divH = 0 (1.2)

с начальными данными U |t=0 = U0. Легко видеть, что равенство (1.2) выполняется для всех t > 0,
если оно справедливо при t = 0.
Принимая во внимание (1.2), перепишем (1.1) в неконсервативной форме⎧⎪⎪⎪⎨

⎪⎪⎪⎩

1

ρa2

{
dq

dt
−H · dH

dt

}
+ div v = 0, ρ

dv

dt
− (H · ∇)H +∇q = 0,

dH

dt
− (H · ∇)v − 1

ρa2

{
dq

dt
−H · dH

dt

}
H = 0,

dS

dt
= 0,

(1.3)

где a = a(p, S) = (ρp(p, S))
−1/2 — скорость звука, а d/dt = ∂t + (v · ∇). Отметим, что для 2-

мерных плоских течений, когда пространственные переменные x = (x1, x2), скорость v = (v1, v2)
T

и магнитное поле H = (H1,H2)
T имеют только две компоненты, МГД-систему также можно

переписать в неконсервативной форме (1.3). Ниже мы будем рассматривать по умолчанию 3-
мерный случай, если не указано иное. Но следует иметь в виду, что все векторы в (1.3) являются
2-мерными для 2-мерного случая.
Уравнения (1.3) образуют симметричную систему

A0(U)∂tU +

d∑
i=1

Ai(U)∂iU = 0, (1.4)

где

A0(U) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

ρa2
0 − 1

ρa2
HT 0

0 ρId Od 0

− 1

ρa2
H Od Id +

1

ρa2
H ⊗H 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

Ai(U) :=

⎛
⎜⎜⎜⎜⎜⎜⎝

vi
ρa2

eTi − vi
ρa2

HT 0

ei ρviId −HiId 0

− vi
ρa2

H −HiId viId +
vi
ρa2

H ⊗H 0

0 0 0 vi

⎞
⎟⎟⎟⎟⎟⎟⎠
, i = 1, d.

Здесь d—размерность пространства (d = 3 или d = 2), Om и Im обозначают нулевую и еди-
ничную матрицы порядка m, соответственно, ei := (δi1, . . . , δid)

T, а δij обозначает дельта-фунцию
Кронекера. Система (1.4) является гиперболической, если матрица A0 положительно определена,
т. е.

ρ > 0, ρp > 0. (1.5)

Задачи интерфейса плазма—вакуум для идеальных уравнений МГД возникают при матема-
тическом моделировании удержания плазмы магнитными полями (см., например, [2]). В астро-
физике задача интерфейса плазма—вакуум может быть использована для моделирования дви-
жения звезды или солнечной короны с учетом магнитных полей. В классической постановке
задачи интерфейса плазма—вакуум [2, 7] плазма описывается гиперболическими уравнениями
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МГД (1.1)/(1.3), тогда как в области вакуума рассматривается эллиптическая система домакс-
велловской динамики

∇× h = 0, div h = 0, (1.6)
описывающая вакуумное магнитное поле h = (h1, h2, h3)

T. То есть током смещения (1/c) ∂tE
пренебрегают не только при выводе нерелятивистских уравнений МГД (см., например, [9]), но и
в уравнениях Максвелла в вакууме, где E = (E1, E2, E3)

T — электрическое поле в вакууме, а c—
скорость света. Тогда из

∇× E = −1

c
∂th, divE = 0

следует, что вакуумное электрическое поле E является вторичной переменной, которая может
быть вычислена из магнитного поля H. Напомним, что плазменное электрическое поле E+ также
является вторичной переменной, поскольку в идеальной МГД

E+ = −1

c
v ×H. (1.7)

В релятивистской постановке током смещения (1/c) ∂tE нельзя пренебречь, и мы имеем урав-
нения Максвелла

1

c
∂th+∇× E = 0,

1

c
∂tE −∇× h = 0, div h = 0, divE = 0 (1.8)

в области вакуума, тогда как в области плазмы вместо системы (1.1) рассматриваются уравне-
ния релятивистской магнитной гидродинамики (РМГД). Задача о релятивистском интерфейсе
плазма—вакуум для случая специальной теории относительности впервые была изучена в [22].
Если, в отличие от классической постановки задачи о границе раздела плазма—вакуум в нере-

лятивистской МГД [2, 7, 16, 21], не пренебрегать током смещения ε∂tE в вакуумной области, то
нам снова придется рассматривать полную систему уравнений Максвелла

ε∂th+∇× E = 0, ε∂tE −∇× h = 0, (1.9)
div h = 0, divE = 0, (1.10)

где система (1.9)-(1.10) записана в безразмерной форме [10], а положительная константа ε � 1,
являющаяся отношением характерной (средней) скорости потока плазмы к скорости света c,
является малым (но фиксированным) параметром в нерелятивистской постановке. Бездивергент-
ные уравнения (1.10) представляют собой ограничения на начальные данные V |t=0 = V0 для
вакуумного неизвестного V = V (t, x) = (hT, ET)T ∈ R

6. Вакуумные уравнения Максвелла (1.9)
переписываются в виде симметричной гиперболической системы:

ε∂tV +

3∑
i=1

Bi∂iV = 0, (1.11)

где

Bi =

(
03 bi
bTi 03

)
, i = 1, 2, 3,

b1 =

⎛
⎝ 0 0 0

0 0 −1
0 1 0

⎞
⎠ , b2 =

⎛
⎝ 0 0 1

0 0 0
−1 0 0

⎞
⎠ , b3 =

⎛
⎝ 0 −1 0

1 0 0
0 0 0

⎞
⎠ .

Поскольку нас в первую очередь интересует корректность задачи о свободной границе для
гиперболических систем (1.4) и (1.11), а не устойчивость стационарных решений этой задачи,
как, например, в классической работе [2], геометрия плазменных и вакуумных областей не так
важна. Поэтому для технической простоты мы предполагаем, что свободный интерфейс Γ(t),
разделяющий плазменные и вакуумные области Ω±(t), имеет вид графика:

Γ(t) = {x1 = ϕ(t, x′)}, x′ = (x2, x3), Ω±(t) = {±(x1 − ϕ(t, x′)) > 0}.
Задача со свободной границей завершается граничными условиями

∂tϕ = v ·N, (1.12)

q =
1

2

(|h|2 − |E|2) , (1.13)
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E · τ2 = εh3∂tϕ, E · τ3 = −εh2∂tϕ, (1.14)
H ·N = 0, h ·N = 0 (1.15)

на свободном интерфейсе Γ(t), где

N = (1,−∂2ϕ,−∂3ϕ)T, τ2 = (∂2ϕ, 1, 0)
T, τ3 = (∂3ϕ, 0, 1)

T.

Условие (1.12) означает, что интерфейс движется вместе с движением жидкости, тогда как
условие (1.13) исходит из баланса нормальных напряжений на интерфейсе. Для понимания
смысла условия (1.13) следует также отметить, что релятивистское полное давление q = p +
1

2

(|H|2 − |E+|2) , где плазменное электрическое поле E+ задается как (1.7), т. е. член
1

2
|E+|2

просто опускается в (1.13) в условиях нерелятивистской МГД. Условия (1.14) исходят из условий
скачка [2, 7] для электрического поля. А именно, для законов сохранения

∂t(εH
±) +∇× E± = 0 в Ω±(t),

при H+ = H, H− = h, E+ = −ε(v×H) (ср. (1.7)) и E− = E, условия перехода имеют вид (см. [2])

N × [E] = ε∂tϕ [H] на Γ(t),

при [E] = E+
|Γ − E|Γ, [H] = H|Γ − h|Γ. Учитывая (1.12) и (1.15), исключаем из них скорость и

магнитное поле плазмы:
N × E = εh∂tϕ на Γ(t). (1.16)

Первое условие в (1.16) есть не что иное, как второе условие в (1.15), тогда как остальные два
граничных условия в (1.16) совпадают с (1.14). Наконец, как и в [22], можно показать, что усло-
вия (1.15) — это просто граничные ограничения на начальные данные

U |t=0 = U0, V |t=0 = V0, ϕ|t=0 = ϕ0 (1.17)

для задачи (1.4), (1.11)–(1.14).
Как было отмечено выше, постановка задачи (1.4), (1.11)–(1.14), (1.17) (с ограничениями (1.2),

(1.10), (1.15)) исходит из релятивистской постановки [22] задачи свободного интерфейса. В клас-
сической постановке [2,7,16,21], где пренебрегают током смещения ε∂tE и рассматривают эллип-
тическую систему (1.6) в области вакуума, влияние вакуумного электрического поля E, напротив,
по умолчанию не учитывается. Локальная по времени корректность классической задачи свобод-
ного интерфейса с граничными условиями (1.12), (1.13) (с E ≡ 0) и (1.15) была доказана в [16]
при условии, что условие неколлинеарности |H × h| �= 0 выполняется в каждой точке начально-
го интерфейса Γ(0) (см. также обзор [17] и имеющуюся там библиографию). Наконец, отметим,
что доказательство корректности классической задачи свободного интерфейса при условии знака

типа Тейлора
(
N · ∇

(
q − 1

2
|h|2
))∣∣∣

Γ(0)
(которое является альтернативным условием корректно-

сти [23]) все еще остается открытой проблемой. Корректность при условии знака типа Тейлора
доказана в [27] пока только для частного случая h ≡ 0.
Целью данной статьи является обзор существующих результатов по корректности зада-

чи (1.4), (1.11)–(1.14), (1.17) и ее 2-мерной версии, полученных в [3, 4, 10, 18, 25]. Кроме того,
мы приводим недавний результат [26], показывающий стабилизирующий эффект поверхностного
натяжения на корректность линеаризации задачи (1.4), (1.11)–(1.14), (1.17), в которой граничное
условие (1.13) заменено на

q =
1

2

(|h|2 − |E|2)+ sH(ϕ), (1.18)

где s � 0—постоянный коэффициент поверхностного натяжения, H(ϕ)— удвоенная средняя кри-
визна Γ(t), определяемая как

H(ϕ) := ∇′ ·
(

∇′ϕ√
1 + |∇′ϕ|2

)
, где ∇′ :=

(
∂2
∂3

)
.
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Отметим, что влияние поверхностного натяжения становится особенно важным при моделиро-
вании течений жидких металлов [13]. То есть, для краткости мы называем задачу (1.4), (1.11)–
(1.14), (1.17) задачей на интерфейсе плазма—вакуум, но на самом деле сжимаемая невязкая иде-
ально проводящая жидкость, описываемая уравнениями МГД (1.11), не обязательно является
плазмой и, в частности, может быть жидким металлом.
План остальной части этой статьи следующий. В разделе 2 мы сводим задачу со свободной

границей (1.4), (1.11)–(1.14), (1.17) к задаче в фиксированных областях. В разделе 3 мы описыва-
ем так называемую вторичную симметризацию уравнений Максвелла в вакууме и формулируем
эквивалентную задачу с фиксированной границей с характеристиками постоянной кратности.
В разделе 4 мы записываем линеаризованную задачу, связанную с нелинейной задачей с фикси-
рованной границей, и обсуждаем существующие результаты для нее. Наконец, в разделе 5 мы
обсуждаем недавние результаты для 2-мерной линейной и нелинейной задачи МГД—Максвелла
со свободным интерфейсом.

2. Упрощенная нелинейная задача в фиксированных областях

Мы сводим задачу со свободной границей (1.4), (1.11)–(1.14) к эквивалентной задаче с фиксиро-
ванной границей, вводя новые неизвестные U�(t, x) := U(t,Φ(t, x), x′) и V�(t, x) := V (t,Φ(t, x), x′),
которые являются гладкими в полупространствах R

3± = {±x1 > 0, x′ ∈ R
2}, где

Φ(t, x) := x1 + χ(x1)ϕ(t, x
′), (2.1)

а χ ∈ C∞
0 (−1, 1)— срезающая функция, которая удовлетворяет ‖χ′‖L∞(R) < 1/2 и равна 1 в ма-

лой окрестности начала координат. Требование ∂1Φ > 0 невырожденности замены переменных
выполняется для решений с ‖ϕ‖L∞([0,T ]×R2) � 1. Последнее верно, если, не теряя общности, мы
рассматриваем начальные данные, удовлетворяющие ‖ϕ0‖L∞(R2) � 1/2, и время T в нашей тео-
реме существования достаточно мало.
Замена переменных (2.1) сводит задачу со свободной границей (1.4), (1.11)–(1.14) к следующей

задаче с фиксированной границей:

L+(U,Φ) := L+(U,Φ)U = 0 в [0, T ] ×R
+
3 , (2.2a)

L−(V,Φ) := L−(Φ)V = 0 в [0, T ] ×R
−
3 , (2.2b)

B(U, V, ϕ) = 0 на [0, T ] × Γ, (2.2c)
U |t=0 = U0, V |t=0 = V0, ϕ|t=0 = ϕ0, (2.2d)

где мы опустили нижний индекс «	» для удобства, Γ = {0} × R
2—плоскость x1 = 0, а

L+(U,Φ) := A0(U)∂t + Ã1(U,Φ)∂1 +

3∑
k=2

Ak(U)∂k, L−(Φ) := ε∂t + B̃1(Φ)∂1 +

3∑
k=2

Bk∂k,

B(U, V, ϕ) :=

⎛
⎜⎜⎜⎜⎝

∂tϕ− v ·N
E · τ2 − εh3∂tϕ

E · τ3 + εh2∂tϕ

q − 1

2
|h|2 + 1

2
|E|2

⎞
⎟⎟⎟⎟⎠ ,

с
Ã1(U,Φ) :=

1

∂1Φ

(
A1(U)− ∂tΦA0(U)− ∂2ΦA2(U)− ∂3ΦA3(U)

)
,

B̃1(Φ) =
1

∂1Φ

(
B1 − ε∂tΦI3 − ∂2ΦB2 − ∂3ΦB3

)
.

Следующие предложения были доказаны в [3, 10, 22] при условиях (1.2), (1.10) и (1.15).

Предложение 2.1. Пусть начальные данные (2.2d) удовлетворяют условиям

divH = 0, (2.3)
HN |x1=0 = 0, (2.4)
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где
H = (HN ,H2∂1Φ,H3∂1Φ), HN = H1 −H2∂2Φ−H3∂3Φ.

Если задача (2.2) имеет достаточно гладкое решение (U, V, ϕ), то это решение удовлетворя-
ет (2.3) и (2.4) для всех t ∈ [0, T ].

Предложение 2.2. Пусть начальные данные (2.2d) удовлетворяют условиям

div h = 0, div e = 0, (2.5)
hN |x1=0 = 0, (2.6)

где
hN = h1 − h2∂2Φ− h3∂3Φ, h = (hN , h2∂1Φ, h3∂1Φ),

e = (EN , E2∂1Φ, E3∂1Φ), EN = E1 − E2∂2Φ− E3∂3Φ.

Если задача (2.2) имеет достаточно гладкое решение (U, V, ϕ) со свойством

∂tϕ � 0, (2.7)

то это решение удовлетворяет (2.5) и (2.6) для всех t ∈ [0, T ]. Если задача (2.2) с двумя допол-
нительными граничными условиями

div h|x1=0 = 0 и div e|x1=0 = 0 (2.8)

имеет достаточно гладкое решение (U, V, ϕ) со свойством

∂tϕ > 0, (2.9)

то это решение снова удовлетворяет (2.5) и (2.6) для всех t ∈ [0, T ].

Можно показать, что граничная матрица Ã1(U,Φ)|x1=0 на границе Γ имеет одно положительное
и одно отрицательное собственное значение, а остальные равны нулю. Это означает, что граница
Γ является характеристикой, и в соответствии с числом входящих/исходящих характеристик
гиперболическая система (2.2a) в полупространстве R

3
+ требует одного граничного условия на Γ.

Для уравнений Максвелла (2.2b) граничная матрица B = B(ϕ) := B̃1(Φ)|x1=0 имеет собственные
значения

λ1,2(B) = −ε∂tϕ−
√

1 + (∂2ϕ)2 + (∂3ϕ)2, λ3,4(B) = −ε∂tϕ,
λ5,6(B) = −ε∂tϕ+

√
1 + (∂2ϕ)2 + (∂3ϕ)2.

Если выполнено (2.7), то матрица B имеет два отрицательных собственных значения (напомним,
что ε � 1). Это означает, что гиперболическая система (2.2b) в R

3− требует двух граничных
условий на Γ, т. е. при предположении (2.7) мы имеем правильное количество граничных условий
в (2.2c), поскольку первое условие в (2.2c) необходимо для определения функции ϕ.
Если выполнено (2.9), то матрица B имеет четыре отрицательных собственных значения.

То есть правильное число граничных условий равно шести, и в задаче (2.2) отсутствуют два
граничных условия. Однако, если, как было предложено в [22], мы дополним (2.2c) дополнитель-
ными граничными условиями (2.8), что позволяет доказать (2.5), то у нас будет правильное число
граничных условий и для случая (2.9). Дополняя нашу задачу условиями

div h = 0, div e = 0 на [0, T ]× Γ ∩ {∂tϕ > 0}, (2.10)

приходим к задаче (2.2), (2.10), которая корректно сформулирована по числу граничных условий.

3. Вторичная симметризация уравнений Максвелла в вакууме

Мы задаем разное количество граничных условий на разных участках границы Γ. То есть
граница является неравномерно характеристической. Для преодоления этой трудности в [3] бы-
ло предложено ввести такую новую неизвестную в вакуумной области, что граница становится
характеристикой постоянной кратности. С другой стороны, существует альтернативный способ,
предполагающий применение так называемой вторичной симметризации [19, 20, 22] к симмет-
ричной гиперболической системе вакуумных уравнений Максвелла. Эта симметризация, пред-
ложенная в [22], позволяет свести нелинейную задачу (2.2), (2.10) к задаче с характеристиками
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постоянной кратности и вывести априорную оценку энергии [3,10,22] для линеаризованной зада-
чи, связанной с (2.2), (2.10).
Забудем на минуту нашу нелинейную начально-краевую задачу (2.2), (2.10) и рассмотрим про-

сто линейную систему (1.11) вакуумных уравнений Максвелла во всем пространстве R
3. Для

системы (1.11) в R
3 вместе с очевидным тождеством

d

dt

∫

R3

|V |2 = 0

(для |V | → 0 при |x| → ∞) мы имеем следующие три дополнительных интеграла сохранения
(сохранение импульса поля в вакууме):

d

dt

∫

R3

h× E = 0.

Тогда
d

dt

∫

R3

{|V |2 + ν1(h2E3 − h3E2) + ν2(h3E1 − h1E3) + ν3(h1E2 − h2E1)
}
= 0 (3.1)

где ν1, ν2 и ν3 —произвольные константы.
Последнее энергетическое тождество переписывается как

d

dt

∫

R3

(B0V · V ) = 0,

где

B0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 ν3 −ν2
0 1 0 −ν3 0 ν1
0 0 1 ν2 −ν1 0
0 −ν3 ν2 1 0 0
ν3 0 −ν1 0 1 0
−ν2 ν1 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Пусть теперь νi —произвольные функции νi(t, x). С учетом условий на дивергенцию (1.10) из
системы (1.11) следует, что

εB0∂tV +
3∑

j=1

B0Bj∂jV +R1div h+R2divE = 0 (3.2)

для некоторых произвольных векторов R1 ∈ R
6 и R2 ∈ R

6. Мы можем выбрать векторы R1 и R2

так, что (3.2) перепишется как новая симметричная система

εB0∂tV +
3∑

j=1

Bj∂jV = 0, (3.3)

где

B1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

ν1 ν2 ν3 0 0 0
ν2 −ν1 0 0 0 −1
ν3 0 −ν1 0 1 0
0 0 0 ν1 ν2 ν3
0 0 1 ν2 −ν1 0
0 −1 0 ν3 0 −ν1

⎞
⎟⎟⎟⎟⎟⎟⎠
, B2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−ν2 ν1 0 0 0 1
ν1 ν2 ν3 0 0 0
0 ν3 −ν2 −1 0 0
0 0 −1 −ν2 ν1 0
0 0 0 ν1 ν2 ν3
1 0 0 0 ν3 −ν2

⎞
⎟⎟⎟⎟⎟⎟⎠
,

B3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−ν3 0 ν1 0 −1 0
0 −ν3 ν2 1 0 0
ν1 ν2 ν3 0 0 0
0 1 0 −ν3 0 ν1
−1 0 0 0 −ν3 ν2
0 0 0 ν1 ν2 ν3

⎞
⎟⎟⎟⎟⎟⎟⎠
, R1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

ν1
ν2
ν3
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠
, R2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
ν1
ν2
ν3

⎞
⎟⎟⎟⎟⎟⎟⎠
.
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Система (3.3) эквивалентна (1.11), и она снова является гиперболической, если B0 > 0, т. е.

|ν| < 1 (3.4)

для вектор-функции ν = (ν1, ν2, ν3).
Используя условия на дивергенцию (2.5) и отсылая читателя за техническими подробностями

к [3, 10], мы получаем следующий аналог вторичной симметризации (3.3) для системы (2.2b):

εB0(ν)∂tV + B̃1(ν,Φ)∂1V +

3∑
k=2

Bk(ν)∂kV = 0 в [0, T ]× R
−
3 , (3.5)

где

B̃1(ν,Φ) =
1

∂1Φ
(B1(ν)− ε∂tΦB0(ν)− ∂2ΦB2(ν)− ∂3ΦB3(ν)) .

Теперь зададим ν(t, x) в соответствии с выбором, сделанным в [3,10] для соответствующей лине-
аризованной задачи:

ν = εv−, (3.6)

где v− = v−(t, x) := v(t,−x1, x′). Поскольку ε—малый параметр, условие гиперболичности (3.4)
выполняется для такого ν.Мы можем показать, что гладкие решения (3.5) удовлетворяют услови-
ям на дивергенцию (2.5) для всех t ∈ [0, T ], если они были истинны при t = 0 (см. доказательство
в [3, 15]). Это означает эквивалентность задачи (2.2), (2.10) и задачи (2.2a), (2.2c), (2.2d), (3.5).
С обозначениями

Bk(v
−) := Bk(εv

−), k = 0, 2, 3, B1(v
−,Φ) := B̃1(εv

−,Φ), (3.7)

система (3.5) переписывается в виде

L−(v−, V,Φ) := L−(v−,Φ)V = 0 в [0, T ]× R
−
3 , (3.8)

где
L−(v−,Φ) := εB0(v

−)∂t +B1(v
−,Φ)∂1 +B2(v

−)∂2 +B3(v
−)∂3.

Используя первое граничное условие в (2.2c), вычисляем собственные значения граничной мат-
рицы B = B(v|x1=0, ϕ) := B1(v

−,Φ)|x1=0:

λ1,2(B) = −
√

1 + (∂2ϕ)2 + (∂3ϕ)2 +O(ε), λ3,4(B) = 0,

λ5,6(B) =
√

1 + (∂2ϕ)2 + (∂3ϕ)2 +O(ε).

Это означает, что гиперболическая система (3.8) требует два граничных условия на Γ. Следо-
вательно, задача (2.2a), (2.2c), (2.2d), (3.8) имеет правильное количество граничных условий
в (2.2c) независимо от знака ∂tϕ. С этого момента мы будем рассматривать начально-краевую
задачу (2.2a), (2.2c), (2.2d), (3.8), для которой граница является характеристикой постоянной
кратности.

4. Простая априорная оценка для линеаризованной задачи

Пусть
(Ů(t, x), V̊ (t, x), ϕ̊(t, x′)) (4.1)

— заданная достаточно гладкая вектор-функция, где Ů = (q̊, v̊T, H̊T, S̊)T, V̊ = (̊hT, E̊)T и

‖Ů‖W 3∞(Ω+
T ) + ‖V̊ ‖W 3∞(Ω−

T ) + ‖ϕ̊‖W 4∞(ΓT ) � K,

где K > 0—константа,
Ω±
T := (−∞, T ]× R

3
±, ΓT := (−∞, T ]× Γ.

Здесь и далее все обозначения с «кружком» типа Ů будут относиться к базовому состоянию (4.1).
Следуя [3, 10, 22], мы также предполагаем, что базовое состояние (4.1) удовлетворяет условиям
гиперболичности (1.5), первым трем граничным условиям в (2.2c), уравнениям для H и h, содер-
жащимся в (2.2a) и (2.2b), ограничениям (2.3)–(2.6) при t = 0 и неравенству ‖ϕ̊‖L∞([0,T ]×R2) � 1.
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Линеаризованные операторы для задачи (2.2a), (2.2c), (2.2d), (3.8) имеют вид:

L
′
+

(
Ů , Φ̊

)
(U,Φ) :=

d

dθ
L+

(
Ů + θU, Φ̊ + θΦ

)∣∣∣∣
θ=0

,

L
′
−
(
W̊ , Φ̊

)
(W,Φ) :=

d

dθ
L−
(
W̊ + θW, Φ̊ + θΦ

)∣∣∣∣
θ=0

,

B
′(Ů , V̊ , ϕ̊)(U, V, ϕ) := d

dθ
B(Ů + θU, V̊ + θV, ϕ̊+ θϕ)

∣∣∣∣
θ=0

,

где Φ̊(t, x) := x1 + χ(x1)ϕ̊(t, x
′), W̊ := (V̊ T, v̊−)T, W := (V T, v−)T и v̊− = v̊−(t, x) := v̊(t,−x1, x′).

Линеаризованные операторы могут быть легко вычислены. Например, линеаризованные внут-
ренние уравнения имеют вид

L
′
+

(
Ů , Φ̊

)
(U,Φ) = L

′
e+

(
Ů , Φ̊

)
U − L+(Ů , Φ̊)Φ

∂1Φ̊
∂1Ů ,

L
′
−
(
W̊ , Φ̊

)
(W,Φ) = L

′
e−
(
W̊ , Φ̊

)
W − L−(̊v−, Φ̊)Φ

∂1Φ̊
∂1V̊ ,

(4.2)

где

L
′
e+

(
Ů , Φ̊

)
U := L+

(
Ů , Φ̊

)
U + C+(Ů , Φ̊)U, L

′
e−
(
W̊ , Φ̊

)
W := L−

(̊
v−, Φ̊

)
V + C−(V̊ , Φ̊)v−,

а конкретный вид матриц C± не представляет интереса (см. [3, 10, 22]).
Линеаризованные внутренние уравнения содержат производные возмущения интерфейса ϕ.

Для получения стандартных линейных гиперболических систем мы сначала переходим к «хоро-
шим неизвестным Алинака» [1]

U̇ = (q̇, v̇T, ḢT, Ṡ)T := U − Ψ

∂1Φ̊
∂1Ů , V̇ = (ḣT, Ė)T := V − Ψ

∂1Φ̊
∂1V̊ , (4.3)

где Ψ(t, x) := χ(x1)ϕ(t, x
′). В обозначениях (4.3) операторы в (4.2) переписываются следующим

образом:

L
′
+

(
Ů , Φ̊

)
(U,Φ) = L

′
e+

(
Ů , Φ̊

)
U̇ +

Ψ

∂1Φ̊
∂1L+(Ů , Φ̊),

L
′
−
(
W̊ , Φ̊

)
(W,Φ) = L

′
e−
(
W̊ , Φ̊

)
Ẇ +

Ψ

∂1Φ̊
∂1L−(W̊ , Φ̊),

(4.4)

где Ẇ := (V̇ T, v̇−)T и v̇− = v̇−(t, x) := v̇(t,−x1, x′). Затем мы отбрасываем члены нулевого поряд-
ка в Ψ в (4.4), которые в последующем нелинейном анализе будут рассматриваться как величины
погрешности на каждом шаге итерации Нэша—Мозера. Это дает нам следующую окончательную
форму нашей линеаризованной задачи для (U̇ , V̇ , ϕ):

L+

(
Ů , Φ̊

)
U̇ + C+(Ů , Φ̊)U̇ = f в Ω+

T , (4.5a)

L−
(̊
v−, Φ̊

)
V̇ + C−(V̊ , Φ̊)v̇− = 0 в Ω−

T , (4.5b)

B
′(Ů , V̊ , ϕ̊)(U̇ , V̇ , ϕ) = 0 на ΓT , (4.5c)

(U̇ , V̇ , ϕ)
∣∣
t<0

= 0, (4.5d)

где

B
′(Ů , V̊ , ϕ̊)(U̇ , V̇ , ϕ) :=

⎛
⎜⎜⎜⎜⎝

(
∂t + v̊′ · ∇′ − ∂1(̊v · N̊)

)
ϕ− v̇ · N̊

Ė · τ̊2 − ε(∂tϕ̊)ḣ3 − ε∂t(̊h3ϕ) + ∂2(E̊1ϕ)

Ė · τ̊3 + ε(∂tϕ̊)ḣ2 + ε∂t(̊h2ϕ) + ∂3(E̊1ϕ)

q̇ − h̊ · ḣ+ E̊ · Ė + [∂1q̊]ϕ

⎞
⎟⎟⎟⎟⎠ ,

v̊′ = (̊v2, v̊3)
T, ∇′ = (∂2, ∂3)

T, N̊ = (1,−∂2ϕ̊,−∂3ϕ̊)T,
τ̊2 = (∂2ϕ̊, 1, 0)

T, τ̊3 = (∂3ϕ̊, 0, 1)
T, [∂1q̊] = (∂1q̊)|Γ − (̊h · ∂1h̊)|Γ + (E̊ · ∂1E̊)|Γ.
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Предположение о том, что базовое состояние (4.1) удовлетворяет уравнению для h, содер-
жащемуся в (2.2b), использовалось при записи второго и третьего граничных условий в (4.5c)
(см. [3, 10, 22]). Более того, мы предполагаем, что заданный исходный член f обращается в нуль
в прошлом и рассматриваем случай нулевых начальных данных, что является обычным предпо-
ложением. Случай ненулевых начальных данных откладывается до построения так называемого
приближенного решения (см., например, [16]) в нелинейном анализе.
Заметим, что мы можем рассматривать однородные уравнения в системе (4.5b) (с нулевыми

исходными членами) и однородные граничные условия (4.5c). Это возможно, поскольку, сле-
дуя [3,10,22], линеаризованная задача с неоднородными вакуумными уравнениями и неоднород-
ными граничными условиями может быть сведена к задаче (4.5). Более того, процесс сведения
линеаризованной задачи к задаче с однородными вакуумными уравнениями и однородными гра-
ничными условиями, описанный в [3,22], организован таким образом, что решения редуцирован-
ной задачи (4.5) автоматически удовлетворяют следующим линейным версиям ограничений (2.3)–
(2.6):

div Ḣ = 0 в Ω+
T , (4.6)

div ḣ = 0, div ė = 0 в Ω−
T , (4.7)

ḢN = H̊2∂2ϕ+ H̊3∂3ϕ− ϕ∂1(H̊ · N̊) на ΓT , (4.8)

ḣN = h̊2∂2ϕ+ h̊3∂3ϕ− ϕ∂1(̊h · N̊) на ΓT , (4.9)

где
Ḣ = (ḢN , Ḣ2∂1Φ̊, Ḣ3∂1Φ̊)

T, ḢN = Ḣ1 − Ḣ2∂2Φ̊− Ḣ3∂3Φ̊, ḢN |Γ = (Ḣ · N̊)|Γ,
ḣ = (ḣN , ḣ2∂1Φ̊, ḣ3∂1Φ̊)

T, ḣN = ḣ1 − ḣ2∂2Φ̊− ḣ3∂3Φ̊, ḣN |Γ = (ḣ · N̊)|Γ,
ė = (ĖN , Ė2∂1Φ̊, Ė3∂1Φ̊)

T, ĖN = Ė1 − Ė2∂2Φ̊− Ė3∂3Φ̊.

Далее мы используем A �
a1,...,am

B для обозначения того, что A � C(a1, . . . , am)B при заданных

параметрах a1, . . . , am, где мы обозначаем через C некоторую универсальную положительную
константу, а через C(·) некоторую положительную константу, зависящую от величин, перечис-
ленных в скобках. Следуя стандартным рассуждениям энергетического метода, примененным к
симметричным гиперболическим системам (4.5a) и (4.5b), получаем

I(t) +

∫

Γt

Q�
K
‖f‖2

L2(Ω
+
T )

+ ‖U̇‖L2(Ω+
t ) + ‖V̇ ‖L2(Ω−

t ), (4.10)

где

I(t) =

∫

R
3
+

A0(Ů)U̇ · U̇ +

∫

R
3
−

B0(̊v)V̇ · V̇ , Q = −(Ã1(Ů , Φ̊)U̇ · U̇)∣∣
Γ
+

1

ε

(
B1(̊v

−, Φ̊)V̇ · V̇ )∣∣
Γ
.

В частности, (
Ã1(Ů , Φ̊)U̇ · U̇)∣∣

Γ
= 2q̇v̇N |Γ, (4.11)

где v̇N = v̇1 − v̇2∂2Φ̊− v̇3∂3Φ̊ (очевидно, v̇N |Γ = (v̇ · N̊)|Γ).
Благодаря выбору (3.6) с использованием граничных условий и (4.8)-(4.9), в [3, 10, 22] было

показано, что квадратичная форма Q приводится к виду

Q = ∂t
(
μ̊ϕĖN

)
+ ∂2

(
μ̊ϕ(Ė2∂tϕ̊− ḣ · τ̊3)

)
+ ∂3

(
μ̊ϕ(Ė3∂tϕ̊+ ḣ · τ̊2)

)
+ L на Γ, (4.12)

где μ̊ = 2
(
E̊1 + ε̊v2̊h3 − ε̊v3̊h2

)
и L— это сумма членов типа coeff q̇ϕ, coeff v̇Nϕ, coeff ḣiϕ, coeff Ėiϕ,

coeff ϕ2. Здесь и далее coeff — это общий коэффициент, который зависит от базового состоя-
ния (4.1), точная форма которого не представляет интереса и может меняться от строки к строке.
Из (4.10) и (4.12) выводим энергетическое неравенство

I(t) +

∫

Γ

μ̊ϕĖN +

∫

Γt

L�
K
‖f‖L2(Ω+

T ) + ‖U̇‖L2(Ω+
t ) + ‖V̇ ‖L2(Ω−

t ) + ‖ϕ‖2L2(Γt)
. (4.13)
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Как мы видим, нам не удается замкнуть априорную оценку в L2, но подготовительное энер-
гетическое неравенство (4.13) имело решающее значение в [3, 10] (см. также [22] для реляти-
вистского случая) для замкнутой оценки в H1. Точнее, поскольку граница Γ является характе-
ристической, естественная функциональная настройка обеспечивается анизотропными весовыми
пространствами Соболева Hm∗ , см. [6,14] (мы также ссылаемся на [12] и имеющуюся там библио-
графию), и базовая априорная оценка в [3, 10, 22] была замкнута в H1∗ .
Для удобства читателя определим здесь пространства Hm∗ . Введем символ Dα∗ :

Dα
∗ := ∂α0

t (σ∂1)
α1∂α2

2 · · · ∂αd
d ∂

αd+1

1 , 〈α〉 := |α|+ αd+1, |α| :=
d+1∑
i=0

αi,

где α := (α0, . . . , αd+1) ∈ N
d+2 (d = 3 и d = 2 для 3-мерного и 2-мерного случаев, соответственно),

σ = σ(x1)— возрастающая гладкая функция на [0,+∞) такая, что σ(x1) = x1 при 0 � x1 � 1/2
и σ(x1) = 1 при x1 � 1. Для любого целого числа m ∈ N и интервала I ⊂ R функциональное
пространство Hm∗ (I × Ω) определяется как

Hm
∗ (I × Ω) := {u ∈ L2(I × Ω) : Dα

∗u ∈ L2(I × Ω) для 〈α〉 � m},
с нормой ‖ · ‖Hm∗ (I×Ω):

‖u‖2Hm∗ (I×Ω) :=
∑

〈α〉�m

‖Dα
∗u‖2L2(I×Ω).

Для краткости мы будем писать ‖u‖m,∗,t := ‖u‖Hm∗ (Ωt). По определению имеем

Hm(I × Ω) ↪→ Hm
∗ (I × Ω) ↪→ H�m/2�(I × Ω) для всех m ∈ N, I ⊂ R.

Отметим также, что H1∗ (Ωt) совпадают с H1
tan(Ωt), где Hm

tan(Ωt)— так называемые конормальные
пространства Соболева [3, 25].
Для системы (4.5b) граница Γ также характеристична, но потеря контроля над производны-

ми в нормальном направлении может быть компенсирована использованием линеаризованных
дивергентных ограничений (4.7) (более подробно см. в [10, 22]). Поэтому для вакуумного неиз-
вестного V̇ мы можем использовать обычные нормы Соболева. Отсылая читателя к [3, 10] за
доказательством, здесь мы просто представим основную априорную оценку, полученную для ли-
неаризованной задачи (4.5).

Теорема 4.1. Пусть базовое состояние (4.1) удовлетворяет всем предположениям выше.
Пусть также выполняется условие неколлинеарности

|H̊2̊h3 − H̊3̊h2| � δ > 0 на ΓT , (4.14)

где δ—фиксированная константа. Тогда существует положительная константа E̊∗
1 такая,

что если основное состояние удовлетворяет условию |E̊1| < E̊∗
1 на ΓT , то для всех f ∈ H1∗ (ΩT ),

которые обращаются в нуль в прошлом, любое решение (U̇ , V̇ , ϕ) ∈ H1∗ (ΩT )×H1(ΩT )×H3/2(ΓT )
задачи (4.5) подчиняется априорной оценке

‖U̇‖1,∗,T + ‖V̇ ‖H1(ΩT ) + ‖ϕ‖H3/2(ΓT ) �
K,T,δ

‖f‖1,∗,T . (4.15)

Напомним, что, как было доказано в [16], классическая задача свободного интерфейса, в кото-
рой не учитывается влияние вакуумного электрического поля, корректно поставлена при условии,
что начальные данные удовлетворяют условию неколлинеарности (4.14). Отметим, что условие
неколлинеарности появляется как условие эллиптичности символа интерфейса (это означает, что
граничные условия (4.8) и (4.9) разрешены относительно ∂tϕ и ∇′ϕ). С другой стороны, в [10]
было показано, что несмотря на то, что ε является малым параметром в нерелятивистской по-
становке, достаточно большое вакуумное электрическое поле может сделать плоский интерфейс
сильно неустойчивым, т. е. линеаризованная задача с постоянным коэффициентом, связанная
с (4.5), может быть некорректно поставлена, если невозмущенное вакуумное электрическое поле
достаточно велико. То есть условия неколлинеарности недостаточно, и вакуумное электрическое
поле E играет решающую роль для корректности неклассической задачи.
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Как мы видим, априорная оценка (4.15) была доказана в предположении, что нормальная ком-
понента невозмущенного вакуумного электрического поля достаточно мала. Но этого предполо-
жения достаточно только для корректности. К сожалению, по техническим причинам невозможно
найти необходимое и достаточное условие корректности для общего случая невозмущенного тече-
ния как аналитически, так и численно (численной проверкой условия Крайса—Лопатинского [8]
для линеаризованной задачи с постоянным коэффициентом). Это было сделано в [24] только
для случая идеальной несжимаемой МГД. Точнее, для задачи несжимаемой МГД—Максвелла
о свободном интерфейсе в [24] было показано, что плоский интерфейс плазма—вакуум x1 = 0
является сильно неустойчивым, т. е. соответствующая линеаризованная задача с постоянным
коэффициентом является некорректной тогда и только тогда, когда

E̊ 2
1 >

|H̊|2 + |̊h|2 −
√(|H̊|2 + |̊h|2)2 − 4|H̊ × h̊|2

2
(4.16)

для невозмущенного потока. Легко видеть, что как только условие неколлинеарности (4.14) нару-
шается (т. е. H̊×h̊ = 0), выполняется неравенство (4.16) и линеаризованная задача с постоянными
коэффициентами в несжимаемой МГД становится некорректной. Более того, если коэффициенты
этой задачи удовлетворяют противоположному строгому неравенству

E̊ 2
1 <

|H̊|2 + |̊h|2 −
√(|H̊|2 + |̊h|2)2 − 4|H̊ × h̊|2

2
, (4.17)

то в [11] была выведена априорная оценка в L2 с помощью «несжимаемой» адаптации метода
симметризатора Крайса [8].
Если учесть влияние поверхностного натяжения, т. е. заменить граничное условие (1.13)

на (1.18), то в линеаризованной задаче (4.5) последнее граничное условие в (4.5c) следует за-
менить на

q̇ − h̊ · ḣ+ E̊ · Ė + [∂1q̊]ϕ− s∇′ · (B̊∇′ϕ) = 0 на ΓT , (4.18)

где B̊ —положительно определенная матрица, определяемая как (см. [29])

B̊ :=
I2

|N̊ | −
∇′ϕ̊⊗∇′ϕ̊

|N̊ |3 .

В этом случае вместо (4.13) справедливо следующее энергетическое неравенство:

I(t) +

∫

Γ

{
s|∇′ϕ|2
|N̊ |3 + μ̊ϕĖN

}
+

∫

Γt

L�
K

�
K
‖f‖L2(Ω+

T ) + ‖U̇‖L2(Ω+
t ) + ‖V̇ ‖L2(Ω−

t ) + ‖(ϕ,∇′ϕ)‖2L2(Γt)
, (4.19)

выведенное в [26]. То есть, как и в случае s = 0, мы не можем замкнуть априорную оценку в L2.
Дифференцируя линеаризованную задачу (4.5) по t, x2 и x3 и применяя рассуждения, анало-

гичные тем, что были применены к доказательству неравенства (4.19), удается замкнуть апри-
орную оценку в H1. А именно, следующая теорема была доказана в [26].

Теорема 4.2. Пусть базовое состояние (4.1) удовлетворяет сформулированным выше пред-
положениям, а исходный член f ∈ H1∗ (Ω

+
T ) обращается в нуль в прошлом. Пусть задача (4.5),

в которой последнее граничное условие (4.5c) заменено на (4.18), имеет решение (U̇ , V̇ , ϕ) ∈
H1∗ (Ω

+
T )×H1(Ω−

T )×H1(ΓT ), причем ∇′ϕ ∈ H1(ΓT ). Тогда это решение подчиняется априорной
оценке

‖U̇‖1,∗T + ‖V̇ ‖H1(Ω−
T ) + ‖(ϕ,∇′ϕ)‖H1(ΓT ) �

K,T
‖f‖1,∗T . (4.20)

Другими словами, стабилизирующий эффект поверхностного натяжения на эволюцию свобод-
ного интерфейса был проверен в [26]. Действительно, в теореме 4.2 не предполагается никаких
условий корректности, таких как (4.14) или (4.17) для невозмущенного потока.
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В то же время, доказательство локальной по времени корректности исходной нелинейной за-
дачи свободного интерфейса при s = 0 или s �= 0 все еще остается открытой проблемой. Фак-
тически, с помощью априорных оценок (4.15) и (4.20), выведенных для линеаризованной задачи
(при s = 0 или s �= 0 соответственно), можно доказать (стандартными рассуждениями — см., на-
пример, [16]) единственность гладкого решения нелинейной задачи. Более того, мы считаем, что,
имея доказательство существования гладких решений линейной задачи, разрешимость нелиней-
ной задачи можно доказать модифицированной итерационной схемой Нэша—Мозера (как, напри-
мер, в [16, 28, 29]). То есть отсутствие доказательства существования решений линеаризованной
задачи теперь является главным препятствием к доказательству локальной корректности нели-
нейной задачи. Обратим внимание, что классический аргумент двойственности [5] не может быть
напрямую применен к линейной задаче (4.5) (или ее аналогу при s �= 0), поскольку для нее мы
не можем замкнуть априорную оценку в L2.

5. Локальная по времени корректность 2-мерной нелинейной задачи

Что касается 2-мерной версии нелинейной задачи (2.2a), (2.2c), (2.2d), (3.8), ее локальная
по времени корректность была недавно доказана в [18]. Давайте теперь рассмотрим 2-мерный
случай. То есть, следуя [4], мы предполагаем, что все величины не зависят от x3, тогда как
v3 = H3 = h3 = 0. Это подразумевает, что E1 = E2 = 0 для всех t > 0, если это верно при t = 0.
Предполагая последнее, мы имеем E = (0, 0, E3). Немного злоупотребляя обозначениями, пусть
ниже E := E3 будет скалярным неизвестным. Таким образом, мы рассматриваем 2-мерные плос-
кие МГД-течения, т. е. когда пространственные переменные x = (x1, x2), скорость v = (v1, v2)

T

и магнитное поле H = (H1,H2)
T имеют только две компоненты. В области вакуума нашими

неизвестными являются магнитное поле h = (h1, h2)
T и скалярная функция E.

Для неизвестного U ∈ R
6 2-мерная МГД-система записывается в симметричной форме (1.4), с

d = 2. Двумерные уравнения Максвелла⎧⎪⎨
⎪⎩
ε∂th1 + ∂2E = 0,

ε∂th2 − ∂1E = 0,

ε∂tE − ∂1h2 + ∂2h1 = 0

для V = (hT, E)T ∈ R
3 также образуют симметричную гиперболическую систему

ε∂tV +B1∂1V +B2∂2V = 0 (5.1)

с условием на дивергенцию
∂1h1 + ∂2h2 = 0 (5.2)

на начальных данных для (5.1), где

B1 =

⎛
⎝0 0 0
0 0 −1
0 −1 0

⎞
⎠ и B2 =

⎛
⎝0 0 1
0 0 0
1 0 0

⎞
⎠ .

Движущийся интерфейс теперь представляет собой кривую Γ(t) = {x1 = ϕ(t, x2)} и N =
(1,−∂2ϕ)T. Для 2-мерного случая граничные условия (1.12)–(1.14) на Γ(t) имеют вид

∂tϕ = v1 − v2∂2ϕ, q =
1

2

(|h|2 − E2
)
, E = −εh2∂tϕ. (5.3)

Граничные условия
H1 = H2∂2ϕ и h1 = h2∂2ϕ (5.4)

на Γ(t) не включены в (1.12), поскольку они являются всего лишь граничными ограничениями
на начальных данных. Таким образом, задача на интерфейсе плазма—вакуум в 2-мерном случае
является задачей со свободной границей для МГД-системы (1.4) (с d = 2) в области Ω+(t) =
{x1 > ϕ(t, x2)} и уравнений Максвелла (5.1) в области Ω−(t) = {x1 < ϕ(t, x2)} с граничными
условиями (5.3) на свободном интерфейсе Γ(t) и начальными данными (1.17), которые должны
удовлетворять условиям на дивергенцию (1.2) и (5.2) в Ω+(0) и Ω−(0), соответственно, а также
граничным ограничениям (5.4) на Γ(0).
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Замена переменных (2.1) (с x′ := x2) сводит задачу со свободной границей (1.4), (5.1), (5.3),
(1.17) к 2-мерной версии задачи с фиксированной границей (2.2), в которой R

3± заменяются на
R
2±, линия Γ = {0} × R,

B(U, V, ϕ) :=

⎛
⎜⎜⎝
∂tϕ− v1 + v2∂2ϕ

E + εH2∂tϕ

q − 1

2
|H|2 + 1

2
E2

⎞
⎟⎟⎠ ,

и т. д. (подробнее см. в [4, 25]). Более того, можно доказать 2-мерные версии предложений 2.1
и 2.2.
Для 2-мерной версии задачи (2.2) мы снова сталкиваемся с трудностями, вызванными тем, что

граница неравномерно характеристична. Для преодоления этой трудности мы снова используем
вторичную симметризацию. Двумерная версия вторичной симметризации (3.3) имеет вид

εB0∂tV + B1∂1V + B2∂2V = 0, (5.5)

где

B0 =

⎛
⎝ 1 0 −ν2

0 1 ν1
−ν2 ν1 1

⎞
⎠ , B1 =

⎛
⎝ν1 ν2 0
ν2 −ν1 −1
0 −1 −ν1

⎞
⎠ , B2 =

⎛
⎝−ν2 ν1 1
ν1 ν2 0
1 0 −ν2

⎞
⎠ ,

и условие гиперболичности B0 > 0 снова неравенство (3.4) при ν = (ν1, ν2). Мы должны сделать
естественные изменения в 2-мерном аналоге системы (3.8), где выбор ν такой же, как в (3.6), а
собственные значения граничной матрицы B = B(v|x1=0, ϕ) := B1(v

−,Φ)|x1=0 имеют вид

λ1,2(B) = ±
√
1 + (∂2ϕ)2 +O(ε), λ3(B) = 0.

Гиперболическая система (3.8) (ее 2-мерная версия в R2−) требует одного граничного условия на Γ.
То есть, 2-мерная версия задачи (2.2a), (2.2c), (2.2d), (3.8) имеет правильное количество гранич-
ных условий в (2.2c) независимо от знака ∂tϕ. Двумерная версия линеаризованной задачи (4.5)
имеет тот же вид, где теперь Ω±

T := (−∞, T ]× R
2±,

B
′(Ů , V̊ , ϕ̊)(U, V, ϕ) :=

⎛
⎜⎝
(
∂t + v̊′2∂2 − ∂1(̊v · N̊)

)
ϕ− v̇ · N̊

Ė + ε∂tϕ̊ Ḣ2 + εH̊2∂tϕ+ b̊ϕ

q̇ − H̊ · Ḣ + E̊Ė + [∂1q̊]ϕ

⎞
⎟⎠ ,

b̊ = ∂1E̊ + ε∂tϕ̊∂1H̊2, и т. д.
Корректность 2-мерной линеаризованной задачи была недавно доказана в [25].

Теорема 5.1. Пусть базовое состояние (4.1) удовлетворяет всем сформулированным выше
предположениям. Пусть также

|H̊|+ |H̊| � δ > 0 на ΓT , (5.6)

где δ—фиксированная константа. Тогда 2-мерная версия задачи (4.5) имеет единственное ре-
шение (U̇ , V̇ , ϕ) ∈ H1∗ (Ω

+
T ) × H1(Ω−

T ) × H3/2(ΓT ) для всех f ∈ H1∗ (Ω
+
T ), обращающихся в нуль в

прошлом. Более того, это решение подчиняется априорной оценке

‖U̇‖1,∗T + ‖V̇ ‖H1(Ω−
T ) + ‖ϕ‖H3/2(ΓT ) �

K,T,δ
‖f‖1,∗T . (5.7)

Условие (5.6) является 2-мерным аналогом условия неколлинеарности (4.14) в том смысле,
что (5.6) также появляется как условие эллиптичности символа интерфейса, т. е. 2-мерные вер-
сии граничных ограничений (4.8) и (4.9) разрешимы для ∂tϕ и ∂2ϕ, если выполняется (5.6). Как
мы видим, в отличие от 3-мерного случая, в теореме 1.3 не требуется никаких предположений
о невозмущенном вакуумном электрическом поле. Однако это вполне естественно, поскольку
в 3-мерном случае нормальная компонента E̊1 играет дестабилизирующую роль, тогда как E̊1

выпадает из 2-мерной постановки. Благодаря выбору ν в (3.4) граничные условия для 2-мерной
линеаризованной задачи являются диссипативными для случая постоянных коэффициентов, для
которого мы можем даже замкнуть априорную оценку в L2 (но из-за наличия членов низшего
порядка априорная оценка для переменных коэффициентов замкнута в H1∗ ; более подробно см.
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в [25]). Единственность решения линеаризованной задачи следует из оценки (5.7). Доказатель-
ство существования решений снова основано на использовании априорной оценки (5.7), если мы
используем аргумент с фиксированной точкой из [15] (см. [25]).
Априорная оценка (5.7) не теряет производных от исходного члена f, но (5.7) подразумева-

ет следующую априорную оценку для линеаризованной задачи с неоднородными уравнениями
Максвелла и граничными условиями [25]:

‖U̇‖1,∗,T + ‖V̇ ‖H1(Ω−
T ) + ‖ϕ‖H3/2(ΓT ) �

K,T,δ
‖f‖3,∗,T + ‖f−‖H3(Ω−

T ) + ‖g‖H3(ΓT ), (5.8)

где f− и g—исходные члены в уравнениях Максвелла и граничные условия, соответственно.
Априорная оценка (5.8) теряет производные из исходных членов. Вот почему для компенсации
этой потери производных существование гладких решений нелинейной задачи доказывается в [18]
подходящими итерациями Нэша—Мозера. Отсылая читателя к [18] за подробностями, здесь мы
только отметим, что решающую роль в доказательстве сходимости итераций Нэша—Мозера иг-
рают так называемые ручные априорные оценки в высоких нормах Соболева, выведенные для
линеаризованной задачи.
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ОБ УСРЕДНЕНИИ УРАВНЕНИЯ ЛАВРЕНТЬЕВА—БИЦАДЗЕ

В ПОЛУПЕРФОРИРОВАННОЙ ОБЛАСТИ С ТРЕТЬИМ КРАЕВЫМ

УСЛОВИЕМ НА ГРАНИЦЕ ПОЛОСТЕЙ. ДОКРИТИЧЕСКИЙ,

КРИТИЧЕСКИЙ И ЗАКРИТИЧЕСКИЙ СЛУЧАИ

Г.А. Чечкин

Московский государственный университет им. М.В. Ломоносова, Москва, Россия
Институт математики с компьютерным центром Уфимского федерального исследовательского

центра РАН, Уфа, Россия

Аннотация. Рассмотрена задача для уравнения Лаврентьева—Бицадзе в полуперфорированной
модельной области, имеющей характерный размер микронеоднородностей ε, с краевым условием
третьего рода на границе полостей (условием Фурье), которое имеет в коэффициентах в качестве
множителя малый параметр εα, и условием Дирихле на внешней части границы. Для этой задачи
построена усреднённая задача и доказана сходимость решений исходной задачи к решению усред-
нённой в трёх случаях. Докритический (субкритический) случай α > 1 характеризуется тем, что
диссипация на границе полостей пренебрежимо мала, в критическом случае α = 1 в уравнении
из-за диссипации появляется потенциал, а в закритическом (суперкритическом) случае α < 1
диссипация играет главную роль, она приводит к вырождению решения всей задачи.

Ключевые слова: уравнение Лаврентьева—Бицадзе, усреднение, перфорированная область.
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Введение

Асимптотический анализ задач в микронеоднородных средах является важной частью теории
дифференциальных уравнений. Такие задачи возникают во многих прикладных областях, таких
как материаловедение, современное производство композиционных материалов с различными
свойствами, строительство, нефтеразработка, ракетостроение и др., а также в естественных нау-
ках, таких как химия, физика, биология, биофизика и биохимия, геология и др. Эти исследования
приводят к математическим моделям, включающим уравнения и краевые условия с малыми па-
раметрами, характеризующими размеры микронеоднородностей. Часто рассматриваются урав-
нения в перфорированных или полуперфорированных областях, которые требуют применения
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методов асимптотического анализа, теории усреднения, теории пограничного слоя и т. д. Случай
уравнения Стокса рассмотрен в [25,26,29,30,33]. Модельные задачи для оператора Лапласа с раз-
личными граничными условиями на границе полостей рассмотрены в работах [4, 5, 12, 13, 27, 28].
Краевые условия третьего рода рассматривались в работах [2, 3, 22–24]. Интересные результаты
получены для сходимости аттракторов в перфорированных областях. В работах [14,16] рассмот-
рена ситуация случайных полостей. Двумерное уравнение Навье—Стокса изучено в [1,20]. В этих
работах доказана слабая сходимость аттракторов. Сильная сходимость доказана в [15]. Уравнения
Гинзбурга—Ландау изучены в [17–19]. В этих работах рассмотрены докритический, критический
и закритический случаи.
В работах [7, 8] моделировались задачи, связанные с изучением физико-химических свойств

струи газа в камере сгорания и сопле жидкостного реактивного двигателя.
В настоящей работе рассматривается уравнение переменного типа Лаврентьева—Бицадзе в

полуперфорированной области. В соответствии с моделью предполагается, что перфорация на-
ходится только в «эллиптической» части области, а в «гиперболической» она отсутствует, как,
впрочем, и правая часть уравнения в «гиперболической» части области предполагается равной
нулю.
Доказательство существования и единственности решения такой задачи в полуперфорирован-

ной области можно найти в [7]. Отметим, что вопросы существования и единственности решений
задач для уравнения Лаврентьева—Бицадзе поднимались ранее. В работе [32] изучалась смешан-
ная задача для такого уравнения. Там установлена нормальная разрешимость задачи в весовых
пространствах, весами при этом являются степени расстояния до угловых точек области. Отме-
тим также, что в случае, когда область, в которой рассматривается задача, является односвязной
(например, она может быть конформно отображена на полукруг), однозначная разрешимость в
Соболевском пространстве W 1

2 установлена в [9].
В работе строится усреднённая задача (аналогично см. [7]) и доказывается оценка отклонения

решения исходной задачи от решения усреднённой задачи в интегральной норме.

1. Предварительные определения и постановка задачи

Для простоты будем рассматривать двумерную область. В многомерном случае потребуется
более сложный анализ уравнения в «гиперболической» части области.
Рассматривается уравнение вида

−uεyy − (sign y)uεxx = f(x, y)

в полуперфорированной области Dε, перфорированная часть которой расположена в полуплос-
кости y > 0 и имеет локально периодическую структуру с характерным размером ε, а часть,
лежащая в нижней полуплоскости y < 0, имеет однородную структуру. На внешней границе
области выставлено однородное условие Дирихле, тогда как на границе полостей выставлено
краевое условие третьего рода (условие Фурье) с параметром εα, отвечающим за диссипацию
энергии. Исследуется асимптотическое поведение решения при стремлении малого параметра ε
к нулю. Полагаем, что f ∈ C1(R2) и обращается в ноль при y < 0.
Выделяются три различных случая: α > 1 (докритический, или субкритический случай), α = 1

(критический случай) и α < 1 (закритический, или суперкритический случай).
Перейдём к строгому определению области и краевой задачи в этой области.
Определим сначала перфорированную часть области. Пусть D1—полукруг, лежащий в полу-

плоскости y > 0, граница области ∂D1 состоит из двух частей Γ0 и Γ, где Γ0—является частью
окружности единичного радиуса с центром в точке (x = 1, y = 0), а Γ— отрезок [0, 2] на оси
абсцисс y = 0. Обозначим

Jε =
{
j ∈ Z

2 : dist (εj,Γ0) � ε
√
2, dist (εj,Γ) � ε

2

}
,

� ≡
{
(ξ, η) : −1

2
< ξ <

1

2
, −1

2
< η <

1

2

}
.
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Задавая 1-периодическую по ξ и η гладкую функцию Φ(x, y, ξ, η) такую, что Φ
∣∣∣
(ξ,η)∈∂�

� const > 0,

Φ(x, y, 0, 0) < 0, ∇ξηΦ �= 0 при (ξ, η) ∈ �\{0}, определяем

Qε
j =

{
(x, y) ∈ ε (�+ j) |Φ(x, y, x

ε
,
y

ε
) � 0

}
, j ∈ Z

2,

и строим перфорированную область следующим образом:

D1
ε = D1\

⋃
j∈Jε

Qε
j.

В соответствии с приведённой конструкцией, граница области D1
ε состоит из Γ0, Γ, которые фор-

мируют внешнюю границу области, и границы «дырок», которую мы обозначим Sε =
(
∂D1

ε

)∩D.
Также обозначим

D̃1
ε = D1\

⋃
j∈Jε

(ε(� + j)),

т. е. тонкий слой около границы области без перфорации.
Обозначим также

S(x, y) = {(ξ, η) ∈ T
2 |Φ(x, y, ξ, η) = 0}, ω(x, y) = {(ξ, η) ∈ T

2 |Φ(x, y, ξ, η) > 0}.
Здесь T2— 2-мерный тор. Далее мы будем опускать буквы (x, y) в обозначении ячейки периодич-
ности и границы полости, будем писать S и ω, соответственно.

Рис. 1. Двумерная полуперфорированная область
Fig. 1. Two-dimensional partially perforated domain

Замечание 1.1. Следует отметить, что перфорация области подходит непосредственно к оси
{y = 0}. Поэтому ожидается влияние перфорации на эффективное поведение решения в окрест-
ности интерфейса Γ.

Теперь остаётся добавить к «эллиптической» области D1
ε «гиперболическую» часть D2, ко-

торую мы определяем как часть полуплоскости y < 0, ограниченную сверху отрезком Γ, а
снизу — отрезками прямых («характеристик» уравнения) Γ1 := {(x, y) : x = −y, x ∈ [0, 1]} и
Γ2 := {(x, y) : x = y + 2, x ∈ [1, 2]}. Итак, построена область Dε = D1

ε ∪ (intΓ) ∪D2 (см. рис. 1).



ОБ УСРЕДНЕНИИ УРАВНЕНИЯ ЛАВРЕНТЬЕВА—БИЦАДЗЕ В ПОЛУПЕРФОРИРОВАННОЙ ОБЛАСТИ 197

Рассматривается задача⎧⎪⎪⎨
⎪⎪⎩

−uεyy − (sign y)uεxx = f(x, y) в Dε,

uε = 0 на Γ0 ∪ Γ1,
∂uε

∂nε
+ εαq

(
x, y,

x

ε
,
y

ε

)
uε = 0 на Sε,

(1.1)

где nε
(
x, y,

x

ε
,
y

ε

)
— внутренняя нормаль к границе включений. Предполагается, что коэффици-

ент q является неотрицательной достаточно гладкой функцией в D1, а также 1-периодической
по третьему и четвёртому аргументу. Будем исследовать асимптотическое поведение решения
uε(x, y) при ε→ 0.
Решение краевой задачи (1.1) может быть разбито на две части. Сначала мы решаем урав-

нение в «гиперболической» части D2. В этой области функция u(x, y) = F (x + y) + G(x − y),
где F (s) и G(t)—произвольные достаточно гладкие функции. С учётом краевых условий на Γ1

получаем, что F (0) +G(2x) = 0 и, следовательно, G ≡ 0, а F (0) = 0. Такое решение инициирует
на «интерфейсе» Γ между «эллиптической» и «гиперболической» частями области Dε условие
ux = uy. Решая отдельно краевую задачу для уравнения Пуассона в области D1

ε вида⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Δuε = −f(x, y) в D1
ε ,

uε = 0 на Γ0,

uεx = uεy на Γ,
∂uε

∂nε
+ εαq

(
x, y,

x

ε
,
y

ε

)
uε = 0 на Sε,

(1.2)

получаем условия для однозначного нахождения функции F (s) (см. аналогично [32]).
Введём обозначения пространств

W 2
δ1δ2(D

1
ε) :=

{
u :

∫

D1
ε

(
|∇2u|2ρδ11 ρδ22 + |∇u|2ρδ1−2

1 ρδ2−2
2 + u2ρδ1−4

1 ρδ2−4
2

)
dxdy < +∞

}
,

W 2
δ1δ2(D

1
ε ,Γ0) :=

{
u : u∈W 2

δ1δ2(D
1
ε), u=0 на Γ0, ux=uy на Γ, uεx=uεy на Γ,

∂u

∂nε
=− εαqu на Sε

}
,

где δj ∈ (0, 1/2], j = 1; 2, ρ1 = ρ1(x, y)—расстояние до начала координат, ρ2 = ρ2(x, y)—расстоя-
ние до точки (2, 0), здесь |∇2u|2 — сумма квадратов обобщённых частных производных второго

порядка, а равенства ux = uy и
∂u

∂nε
= −εαq u понимаются в смысле следов функций.

Пусть u ∈ W 2
δ1δ2

(D1
ε). Обозначим v1 = ρ

δ1
2
1 ρ

δ1
2
2 u, v2 = ρ

δ1
2
−1

1 ρ
δ1
2
−1

2 u. Ясно, что v1 ∈ W 2
2 (D

1
ε),

v2 ∈ H1(D1
ε). В силу классической теоремы о следе v1 ∈W 1

2 (Γ), v2 ∈ L2(Γ), и следовательно,∫

Γ

|∇u|2ρδ11 ρδ22 dx <∞,

∫

Γ

u2ρδ1−2
1 ρδ2−2

2 dx <∞. (1.3)

Решение задачи (1.2) понимается как элемент пространства W 2
δ1δ2

(D1
ε ,Γ0), который удовлетво-

ряет уравнению задачи (1.2) почти всюду, а граничные значения понимаются в смысле следов.

Замечание 1.2. В работе [32] изучалась задача (1.2) в однородной области без перфорации
с целью решения модели Лаврентьева—Бицадзе для смешанной задачи. Там установлена нор-
мальная разрешимость задачи (1.2) в весовых пространствах, весами при этом являются степени
расстояния до точек (0, 0) и (2, 0).
Принципиальным же является вопрос об однозначной разрешимости (которая в общем слу-

чае не следует из нормальной). Доказательство однозначной разрешимости в пространстве
W 2

δ1δ2
(D1

ε ,Γ0) с некоторыми δ1, δ2 ∈ (0, 1/2] для перфорированной области с условием Нейма-
на на границе полостей проведено в [7]. Доказательство для задачи с третьим краевым условием
на границе полостей совершенно аналогично доказательству из [7], которое опирается на лемму
Хопфа—Олейник (см. [11]), а также на вложение W 2

δ1δ2
(D1

ε ,Γ0) ↪→ C(D1
ε) (см. [7, предложение 1]),

доказательство которого опирается на результаты из [6, 10], и мы его здесь не приводим.
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Умножим уравнение задачи на uε и проинтегрируем по частям. Запишем это равенство:∫

D1
ε

|∇uε|2 dxdy + εα
∫

Sε

q
(
x, y,

x

ε
,
y

ε

)
(uε)2 ds −

∫

Γ

uεxu
ε dx =

∫

D1
ε

fuε dxdy. (1.4)

Здесь uεx понимается в смысле следа функции. При этом (см. (1.3))∫

Γ

|uεxuε| dx �
∫

Γ

|uεx|2ρδ11 ρδ22 dx+

∫

Γ

|uε|2ρ−δ1
1 ρ−δ2

2 dx <∞.

2. Априорные оценки

Для того, чтобы перейти к рассмотрению вопросов усреднения, предварительно мы должны
получить априорные оценки решений задачи (1.2). Имеет место следующая теорема.

Теорема 2.1. Решение uε задачи (1.2) удовлетворяет неравенству

‖uε‖H1(D1
ε ,Γ0) � K,

где константа K > 0 не зависит от ε.

Доказательство. В равенстве (1.4) рассмотрим третье слагаемое в левой части. Имеем∫

Γ

uεxu
ε dx =

1

2

∫

Γ

∂
(
(uε)2

)
∂x

dx ≡ 0.

Далее, используя стандартную технику интегральных оценок, учитывая неравенство для следов∫

Sε

q (uε)2 ds � C

∫

D1
ε

|∇uε|2 dxdy

и неравенство типа Фридрихса ∫

D1
ε

(uε)2 dxdy � C

∫

D1
ε

|∇uε|2 dxdy,

получаем необходимую оценку. Теорема доказана.

3. Усреднение в «эллиптической» части области и оценки

Этот раздел посвящён изучению асимптотического поведения решений уравнения Пуассона

Δuε = −f(x, y) в области D1
ε с краевыми условиями uε = 0 на Γ0, u

ε
x = uεy на Γ и

∂uε

∂nε
+

εαq
(
x, y,

x

ε
,
y

ε

)
uε = 0 на Sε.

В последующих пунктах отдельно разберёмся с докритическим, критическим и закритическим
случаями.

3.1. Критический случай α = 1.

3.1.1. Формальная асимптотическая процедура. Выпишем ведущие члены асимптотического
разложения решения uε(x) задачи (1.2) в виде

uε(x, y) = u0(x, y) + εu1
(
x, y,

x

ε
,
y

ε

)
+ ε2u2

(
x, y,

x

ε
,
y

ε

)
+ ε3u3

(
x, y,

x

ε
,
y

ε

)
+ . . . (3.1)

Подставляя выражение (3.1) в уравнение (1.2), принимая во внимание соотношения
∂

∂x
ζ
(
x, y,

x

ε
,
y

ε

)
=

(
∂

∂x
ζ(x, y, ξ, η) +

1

ε

∂

∂ξ
ζ(x, y, ξ, η)

) ∣∣∣
ξ=x

ε

,

∂

∂y
ζ
(
x, y,

x

ε
,
y

ε

)
=

(
∂

∂y
ζ(x, y, ξ, η) +

1

ε

∂

∂η
ζ(x, y, ξ, η)

) ∣∣∣
η= y

ε

,

(3.2)

получаем в области D1
ε равенство
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− f(x, y) = Δxyu
ε(x, y) ∼= Δxyu

0(x, y) + ε
(
Δxyu

1(x, y, ξ, η)
) ∣∣∣

ξ=x
ε
,η= y

ε

+

+ 2
(∇xy,∇ξηu

1(x, y, ξ, η)
) ∣∣∣

ξ=x
ε
,η= y

ε

+
1

ε

(
Δξηu

1(x, y, ξ, η)
) ∣∣∣

ξ=x
ε
,η= y

ε

+

+ ε2
(
Δxyu

2(x, y, ξ, η)
) ∣∣∣

ξ=x
ε
,η= y

ε

+ 2ε
(∇xy,∇ξηu

2(x, y, ξ, η)
) ∣∣∣

ξ=x
ε
,η= y

ε

+

+
(
Δξηu

2(x, y, ξ, η)
) ∣∣∣

ξ=x
ε
,η= y

ε

+ ε3
(
Δxyu

3(x, y, ξ, η)
) ∣∣∣

ξ=x
ε
,η= y

ε

+

+ 2ε2
(∇xy,∇ξηu

3(x, y, ξ, η)
) ∣∣∣

ξ=x
ε
,η= y

ε

+ ε
(
Δξηu

3(x, y, ξ, η)
) ∣∣∣

ξ=x
ε
,η= y

ε

+ . . . (3.3)

Аналогично, подставляя (3.1) в граничные условия задачи (1.2), получаем на Sε соотношение

0 =
∂uε

∂nε
+ εq

(
x, y,

x

ε
,
y

ε

)
uε ∼= (∇xyu

0, nε
)
+ εq

(
x, y,

x

ε
,
y

ε

)
u0 + ε

(∇xyu
1, nε

)
+

+
(
∇ξηu

1
∣∣
ξ=x

ε
,η= y

ε
, nε

)
+ ε2q

(
x, y,

x

ε
,
y

ε

)
u1 + ε2

(∇xyu
2, nε

)
+ ε

(
∇ξηu

2
∣∣
ξ=x

ε
,η= y

ε
, nε

)
+

+ ε3q
(
x, y,

x

ε
,
y

ε

)
u2 + ε3

(∇xyu
3, nε

)
+ ε2

(
∇ξηu

3
∣∣
ξ=x

ε
,η= y

ε
, nε

)
+ ε4q

(
x, y,

x

ε
,
y

ε

)
u3 + . . . (3.4)

Заметим, что нормальный вектор nε имеет вид

nε

(
x, y,

x

ε
,
y

ε

)
= ñ(x, y, ξ, η)

∣∣∣
ξ=x

ε
,η= y

ε

+ εn′ε(x, y, ξ, η)
∣∣∣
ξ=x

ε
,η= y

ε

, (3.5)

где ñ—нормаль к S(x, y) = {ξ, η |Φ(x, y, ξ, η) = 0},
n′ε = n′ +O(ε).

Можно увидеть, что

nε(x, y,
x

ε
,
y

ε
) ≡ ∇xyΦ(x, y,

x
ε ,

y
ε )

|∇xyΦ(x, y,
x
ε ,

y
ε )|

=

( ∇ξηΦ(x, y, ξ, η)

|∇ξηΦ(x, y, ξ, η)| + ε
∇xyΦ(x, y, ξ, η)

|∇ξηΦ(x, y, ξ, η)| −

− ε∇ξηΦ(x, y, ξ, η)
(∇xyΦ(x, y, ξ, η),∇ξηΦ(x, ξ))

|∇ξηΦ(x, y, ξ, η)|3 +O(ε2)

)∣∣∣∣
ξ=x

ε
,η= y

ε

.

Поэтому, ñ(x, y, ξ, η) =
∇ξηΦ(x, y, ξ, η)

|∇ξηΦ(x, y, ξ, η)| ,

n′(x, y, ξ, η) =
∇xyΦ(x, y, ξ, η)

|∇ξηΦ(x, y, ξ, η)| − ∇ξηΦ(x, y, ξ, η)
(∇xyΦ(x, y, ξ, η),∇ξηΦ(x, y, ξ, η))

|∇ξηΦ(x, y, ξ, η)|3 .

Собирая члены порядка ε−1 в (3.3) и порядка ε0 в (3.4), получаем задачу на ячейке периодичности⎧⎨
⎩
Δξηu

1 (x, y, ξ, η) = 0 в ω,

∂u1(x, y, ξ, η)

∂ñ
= − (∇xy(u

0(x, y)), ñ
)

на S(x, y),
(3.6)

которая рассматривается в классе 1-периодических по ξ и η функций; здесь x и y—параметры.
Условием разрешимости задачи является равенство∫

S

(∇xyu
0(x, y), ñ

)
dσ = 0,

которое выполняется автоматически. Решение этой задачи является первым корректором в (3.1).
На следующем шаге собираем члены порядка ε0 в (3.3) и порядка ε1 в (3.4). Имеем⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δξηu
2 (x, y, ξ, η) = −f(x, y)−Δxyu

0(x, y)− 2
(∇ξη,∇xyu

1(x, y, ξ, η)
)
в ω,

∂u2(x, y, ξ, η)

∂ñ
= − (∇xyu

1(x, y, ξ, η), ñ
)− (∇ξηu

1(x, y, ξ, η), n′
)−

− (∇xyu
0(x, y), n′

)− q(x, y, ξ, η)u0(x, y) на S(x, y).

(3.7)
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1-периодическое по ξ и η решение этой задачи является следующим членом разложения решения
uε(x, y).
Из структуры задачи (3.6) естественно искать решение u1(x, y, ξ, η) в виде

u1(x, y, ξ, η) =
(∇xyu

0(x, y),M(x, y, ξ, η)
)
,

где 1-периодические по ξ и η функции M(x, y, ξ, η) = (M1(x, y, ξ, η),M2(x, y, ξ, η)) являются клас-
сическими решениями задач

⎧⎪⎨
⎪⎩
ΔξηMi (x, y, ξ, η) = 0 в ω,

∂Mi(x, y, ξ, η)

∂ñ
= −ñi на S(x, y).

(3.8)

Здесь x и y играют роль параметров.
Теперь перепишем задачу (3.7) в виде

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δξηu
2 (x, y, ξ, η) = −f(x, y)−Δxyu

0(x, y)−

− 2
∂2u0(x, y)

∂x ∂y

(
∂M1(x, y, ξ, η)

∂η
+
∂M2(x, y, ξ, η)

∂ξ

)
−

− 2
∂2u0(x, y)

∂x2
∂M1(x, y, ξ, η)

∂ξ
− 2

∂2u0(x, y)

∂y2
∂M2(x, y, ξ, η)

∂η
−

− 2
∂u0(x, y)

∂x

(
∂2M1(x, y, ξ, η)

∂ξ ∂x
+
∂2M1(x, y, ξ, η)

∂η ∂y

)
−

− 2
∂u0(x, y)

∂y

(
∂2M2(x, y, ξ, η)

∂ξ ∂x
+
∂2M2(x, y, ξ, η)

∂η ∂y

)
в ω,

∂u2(x, y, ξ, η)

∂ñ
= −∂

2u0(x, y)

∂x ∂y

(
M1(x, y, ξ, η)ñ2 +M2(x, y, ξ, η)ñ1

)
−

− ∂2u0(x, y)

∂x2
M1(x, y, ξ, η)ñ1 − ∂2u0(x, y)

∂y2
M2(x, y, ξ, η)ñ2 −

− ∂u0(x)

∂x

(
∂M1(x, y, ξ, η)

∂x
ñ1 +

∂M1(x, y, ξ, η)

∂y
ñ2

)
−

− ∂u0(x)

∂y

(
∂M2(x, y, ξ, η)

∂x
ñ1 +

∂M2(x, y, ξ, η)

∂y
ñ2

)
−

− q(x, y, ξ, η)u0(x, y)−

− ∂u0(x)

∂x

(
∂M1(x, y, ξ, η)

∂ξ
n′1 +

∂M1(x, y, ξ, η)

∂η
n′2

)
−

− ∂u0(x)

∂y

(
∂M2(x, y, ξ, η)

∂ξ
n′1 +

∂M2(x, y, ξ, η)

∂η
n′2

)
−

− ∂u0(x, y)

∂x
n′1 −

∂u0(x, y)

∂y
n′2 на S(x, y).

Записываем условие разрешимости этой задачи и с помощью формулы Гаусса—Остроградского,
имея в виду самосопряжённость предельного оператора (подробнее см. [22]), получаем

∂

∂x

(〈
1 +

∂M1

∂ξ

〉
∂u0

∂x
+

〈
∂M2

∂ξ

〉
∂u0

∂y

)
+

+
∂

∂y

(〈
1 +

∂M2

∂η

〉
∂u0

∂y
+

〈
∂M1

∂η

〉
∂u0

∂x

)
−Q(x, y)u0(x, y) = −|� ∩ ω|f. (3.9)
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Здесь скобками 〈·〉 обозначен интеграл
∫

�∩ω
· dξdη по ячейке периодичности, 1-периодические по

ξ и η функции Mi(x, y, ξ, η) являются решениями ячеичных задач (3.8), а также

Q(x, y) =

∫

S

q(x, y, ξ, η)dσ.

Применяя методы из [11], можно показать, что матрица этого уравнения является положительно
определённой (см. аналогично [22]).
Далее подставляем анзац (3.1) в краевое условие задачи (1.2) на Γ и приравниваем члены с

соответствующими степенями ε; приходим к усреднённой (предельной) задаче вида⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂x

(〈
1 +

∂M1

∂ξ

〉
∂u0

∂x
+

〈
∂M2

∂ξ

〉
∂u0

∂y

)
+

+
∂

∂y

(〈
1 +

∂M2

∂η

〉
∂u0

∂y
+

〈
∂M1

∂η

〉
∂u0

∂x

)
−

−Q(x, y)u0(x, y) = −|� ∩ ω|f в D1,

u0x =

〈
1 +

∂M1

∂η

〉
u0y +

〈
∂M2

∂η

〉
u0x на Γ,

u0 = 0 на Γ0.

(3.10)

Замечание 3.1. Отметим, что функции Mi

(
x, y,

x

ε
,
y

ε

)
не определены во всей области D1.

Применяя технику симметрического продолжения (см. [31, теорема 8.1]), можно продолжить
функции M(x, y, ξ, η) во внутренность полостей, сохраняя регулярность этих функций. За про-
долженными функциями сохраняем те же обозначения.

Замечание 3.2. Отметим интересную особенность краевого условия задачи (3.10) на Γ.
В усреднённой задаче нормальная составляющая косой производной перешла в конормальную,
тогда как касательная составляющая осталась без изменений.

Имеет место теорема.

Теорема 3.1. Пусть f ∈ C1(R2) и пусть q(x, y, ξ, η)— достаточно гладкая неотрицатель-
ная функция, 1-периодическая по ξ и η. Тогда для достаточно малых ε задача (1.2) имеет един-
ственное решение, которое удовлетворяет оценке

‖u0 + εu1 − uε‖H1(Ωε) � K1
√
ε, (3.11)

где u0 и u1— решения задач (3.10) и (3.6) соответственно, а константа K1 не зависит от ε.

Замечание 3.3. На самом деле в теореме 3.1 условие неотрицательности q(x, y, ξ, η) � 0 может
быть заменено на более слабое Q(x, y) � 0.

3.1.2. Вспомогательные утверждения. В этом пункте сформулируем леммы из [2,21,22], кото-
рые нам понадобятся в дальнейшем анализе.

Лемма 3.1. Если выполнены условия теоремы 3.1, то имеет место неравенство∫

D1
ε

|∇v|2dxdy + ε

∫

Sε

q
(
x, y,

x

ε
,
y

ε

)
v2ds � C1‖v‖2H1(D1

ε ,Γ0)

для любой v ∈ H1(D1
ε ,Γ0) с константой C1, не зависящей от ε.

Лемма 3.2. Если

|� ∩ ω|Q(x, y)−
∫

S

q(x, y, ξ, η) dσ ≡ 0,
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то ∣∣∣∣∣∣∣
1

|� ∩ ω|
∫

D1
ε

Qv dxdy − ε

∫

Sε

q
(
x, y,

x

ε
,
y

ε

)
v ds

∣∣∣∣∣∣∣
� C2ε‖v‖H1(D1

ε)

для любой v(x) ∈ H1(D1
ε ,Γ0); константа C2 не зависит от ε.

Лемма 3.3. Пусть yε— решение задачи⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−Δyε = hε(x, y) в D1
ε ,

yε = 0 на Γ0,

∂yε
∂nε

+ εq
(
x, y,

x

ε
,
y

ε

)
yε = 0 на Sε,

где функция hε(x, y) = f(x, y) для (x, y) ∈ D̃1
ε и равна 0 в остальных случаях. Тогда

‖yε‖H1(D1
ε)

� C3ε.

3.1.3. Основная оценка.

Доказательство теоремы 3.1. Для обоснования построенной формальной асимптотики необхо-
димо оценить невязку

‖u0 + εu1 − uε‖H1(D1
ε)
.

Продолжим функции Mi(x, y, ξ, η) в слой D̃1
ε (см. замечание 1.1) и подставим

zε

(
x, y,

x

ε
,
y

ε

)
= u0(x, y) + εχε

(x
ε
,
y

ε

)
u1
(
x, y,

x

ε
,
y

ε

)
− uε(x, y)

в уравнение (1.2). Здесь χε
(x
ε
,
y

ε

)
— гладкая срезающая функция 0 � χε

(x
ε
,
y

ε

)
� 1, такая что

χε
(x
ε
,
y

ε

)
= 0 при x ∈ D̃1

ε и χε
(x
ε
,
y

ε

)
= 1 при dist(x, D̃1

ε) � dist(Sε, D̃1
ε); более того, |∇ξηχ

ε(ξ, η)|
и |Δξηχ

ε(ξ, η)| равномерно ограничены. Имеем

Δxy

(
zε

(
x, y,

x

ε
,
y

ε

))
= Δxyu

0(x, y) + εχε(ξ, η)Δxyu
1(x, y, ξ, η)

∣∣∣
ξ=x

ε
,η= y

ε

+

+ 2
(
χε(ξ, η)∇xy ,∇ξηu

1(x, y, ξ, η)
) ∣∣∣

ξ=x
ε
,η= y

ε

+

+ 2
(∇xyu

1(x, y, ξ, η),∇ξηχ
ε(ξ, η)

) ∣∣∣
ξ=x

ε
,η= y

ε

+
1

ε
(χε(ξ, η)Δξηu

1(x, y, ξ, η))
∣∣∣
ξ=x

ε
,η= y

ε

+

+
1

ε
(u1(x, y, ξ, η)Δξηχ

ε(ξ, η))
∣∣∣
ξ=x

ε

+
2

ε
(∇ξχ

ε(ξ, η),∇ξηu
1(x, y, ξ, η))

∣∣∣
ξ=x

ε
,η= y

ε

−Δxyu
ε(x, y). (3.12)

Принимая во внимание равенства

Δξηu
1(x, y, ξ, η) = 0 в D1

ε\D̃1
ε , Δxyu

ε(x) = −f(x) в D1
ε ,

2
(∇xy, χ

ε(ξ, η)∇ξηu
1(x, y, ξ, η)

)
=

= 2χε(ξ, η)

((
∂M1(x, y, ξ, η)

∂η
+
∂M2(x, y, ξ, η)

∂ξ

)
∂2u0(x, y)

∂x ∂y
+

+
∂M1(x, y, ξ, η)

∂ξ

∂2u0(x, y)

∂x2
+
∂M2(x, y, ξ, η)

∂η

∂2u0(x, y)

∂y2
+

+

(
∂2M1(x, y, ξ, η)

∂x ∂ξ
+
∂2M1(x, y, ξ, η)

∂y ∂η

)
∂u0(x, y)

∂x
+

+

(
∂2M2(x, y, ξ, η)

∂x ∂ξ
+
∂2M2(x, y, ξ, η)

∂y ∂η

)
∂u0(x, y)

∂y

)
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и (3.9), можно переписать (3.12) в области D1
ε\D̃1

ε (см. аналогично [22]). Также мы поступаем с

выражением
∂zε(x, y,

x
ε ,

y
ε )

∂nε
на Sε. Далее, имея в виду, что

zε

(
x, y,

x

ε
,
y

ε

)
≡ 0

на Γ0, умножаем полученное уравнение из (3.12) на v(x, y) и интегрируем по области D1
ε . После

применения формулы Грина получаем
∫

D1
ε

Δxy

(
zε

(
x, y,

x

ε
,
y

ε

))
v(x, y) dxdy =

∫

Sε

∂zε
∂nε

v ds −
∫

D1
ε

∇zε∇v dxdy =

= ε

∫

Sε

q(x, y,
x

ε
,
y

ε
)uε v ds+

∫

Sε

∂u0(x, y)

∂nε
v ds+

+ ε

∫

Sε

(
∇xyu

1(x, y, ξ, η)
∣∣∣
ξ=x

ε
,η= y

ε

, nε

)
v(x, y) ds+

+ ε

∫

Sε

(∇ξηu
1(x, y, ξ, η), n′ε(x, y, ξ, η)

) ∣∣∣
ξ=x

ε
,η= y

ε

v(x, y) ds+

+

∫

Sε

(
∂u0(x, y)

∂x

((
∂M1(x, y, ξ, η)

∂ξ
, ñ1(x, y, ξ, η)

)
+

(
∂M1(x, y, ξ, η)

∂η
, ñ2(x, y, ξ, η)

))
+

+
∂u0(x, y)

∂y

((
∂M2(x, y, ξ, η)

∂ξ
, ñ1(x, y, ξ, η)

)
+

+

(
∂M2(x, y, ξ, η)

∂η
, ñ2(x, y, ξ, η)

)))∣∣∣
ξ=x

ε
,η= y

ε

v(x, y) ds−

−
∫

D1
ε

∇zε
(
x, y,

x

ε
,
y

ε

)
∇v(x, y) dxdy. (3.13)

Теперь, используя (3.13) и граничное условие из (3.10), оцениваем
∣∣∣∣∣∣∣
∫

D1
ε

∇zε
(
x, y,

x

ε
,
y

ε

)
∇v(x, y) dxdy + ε

∫

Sε

q
(
x, y,

x

ε
,
y

ε

)
zε

(
x, y,

x

ε
,
y

ε

)
v(x, y) ds

∣∣∣∣∣∣∣
�

� ε

∣∣∣∣∣∣ε
∫

Sε

q
(
x, y,

x

ε
,
y

ε

)
u1(x, y,

x

ε
,
y

ε
) v(x, y) ds

∣∣∣∣∣∣+

+

∣∣∣∣∣∣∣
ε

∫

Sε

q
(
x, y,

x

ε
,
y

ε

)
u0(x, y) v(x, y) ds− 1

|� ∩ ω|
∫

D1
ε\ ˜D1

ε

Q(x, y)u0(x, y) v(x, y) dxdy

∣∣∣∣∣∣∣
+

+

∣∣∣∣∣∣∣
∫

˜D1
ε

Δxyu
0(x, y) v(x, y) dxdy

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
ε

∫

D1
ε

χε(ξ, η)Δxyu
1(x, y, ξ, η)

∣∣∣
ξ=x

ε
,η= y

ε

v(x, y) dxdy

∣∣∣∣∣∣∣
+

+

∣∣∣∣∣
∫

Sε

(
∂u0(x, y)

∂nε
+
∂u0(x, y)

∂x

((
∂M1(x, y, ξ, η)

∂ξ
, ñ1(x, y, ξ, η)

)
+

+

(
∂M1(x, y, ξ, η)

∂η
, ñ2(x, y, ξ, η)

))
+
∂u0(x, y)

∂y

((
∂M2(x, y, ξ, η)

∂ξ
, ñ1(x, y, ξ, η)

)
+
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+

(
∂M2(x, y, ξ, η)

∂η
, ñ2(x, y, ξ, η)

)))∣∣∣∣
ξ=x

ε
,η= y

ε

v(x, y) ds

∣∣∣∣∣+

+

∣∣∣∣∣
∫

D1
ε\ ˜D1

ε

((
1

|� ∩ ω|
∂

∂x

[〈
1 +

∂M1(x, y, ξ, η)

∂ξ

〉
∂u0(x, y)

∂x

]
−

− ∂

∂x

[(
1 +

∂M1(x, y, ξ, η)

∂ξ

)
∂u0(x, y)

∂x

])
+

(
1

|� ∩ ω|
∂

∂x

[〈
∂M2(x, y, ξ, η)

∂ξ

〉
∂u0(x, y)

∂y

]
−

− ∂

∂x

[(
∂M2(x, y, ξ, η)

∂ξ

)
∂u0(x, y)

∂y

])
+

(
1

|� ∩ ω|
∂

∂y

[〈
∂M1(x, y, ξ, η)

∂η

〉
∂u0(x, y)

∂x

]
−

− ∂

∂y

[(
∂M1(x, y, ξ, η)

∂η

)
∂u0(x, y)

∂x

])
+

(
1

|� ∩ ω|
∂

∂y

[〈
1 +

∂M2(x, y, ξ, η)

∂η

〉
∂u0(x, y)

∂y

]
−

− ∂

∂y

[(
1 +

∂M2(x, y, ξ, η)

∂η

)
∂u0(x, y)

∂y

]))∣∣∣∣
ξ=x

ε
,η= y

ε

v(x, y) dxdy −

− ε

∫

Sε

(∇ξηu
1(x, y, ξ, η), n′ε(x, y, ξ, η)

) ∣∣∣∣
ξ=x

ε
,η= y

ε

v(x, y) ds

∣∣∣∣∣+
∣∣∣∣∣∣∣
∫

˜D1
ε

f(x, y)v(x, y) dxdy

∣∣∣∣∣∣∣
+

+

∣∣∣∣∣
∫

D1
ε\ ˜D1

ε

(χε(ξ, η) − 1)

(
∂

∂x

(
∂M1(x, y, ξ, η)

∂ξ

∂u0(x, y)

∂x

)
+

∂

∂x

(
∂M2(x, y, ξ, η)

∂ξ

∂u0(x, y)

∂y

)
+

+
∂

∂y

(
∂M1(x, y, ξ, η)

∂η

∂u0(x, y)

∂x

)
+

∂

∂y

(
∂M2(x, y, ξ, η)

∂η

∂u0(x, y)

∂y

))∣∣∣∣
ξ=x

ε
,η= y

ε

v(x, y) dxdy

∣∣∣∣∣+

+

∣∣∣∣∣
∫

D1
ε

1

ε
(u1(x, y, ξ, η)Δξηχ

ε(ξ, η))
∣∣∣
ξ=x

ε
,η= y

ε

v(x, y) dxdy +

+

∫

D1
ε

2

ε
(∇ξηχ

ε(ξ, η),∇ξηu
1(x, y, ξ, η))

∣∣∣
ξ=x

ε
,η= y

ε

v(x, y) dxdy

∣∣∣∣∣ +

+O(ε)‖v‖H1(D1
ε)

= I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8 + I9 +O(ε)‖v‖H1(D1
ε)
. (3.14)

Используя лемму 3.2, оцениваем

I2 =

∣∣∣∣∣∣∣
ε

∫

Sε

q
(
x, y,

x

ε
,
y

ε

)
u0(x, y) v(x, y) ds− 1

|� ∩ ω|
∫

D1
ε\ ˜D1

ε

Q(x, y)u0(x, y) v(x, y) dxdy

∣∣∣∣∣∣∣
�

� C4 ε ‖u0‖H1(D1
ε)
‖v‖H1(D1

ε)
.

Члены I1 и I4 удовлетворяют
|I1|+ |I4| � C5ε‖v‖H1(D1

ε)
.

Тождество I5 ≡ 0 следует из граничных условий задачи (3.6). Для оценки слагаемого I6 приме-
няем технику доказательства леммы 3.2 (см. [22]). Получаем

|I6| � C6ε
∥∥D2u0(x, y)

∥∥
H1(D1

ε)
‖v‖H1(D1

ε)
;

здесь мы использовали C1-гладкость функции f(x, y). Учитывая лемму 3.3, можно считать, что
функция f(x) равна нулю в слое D̃1

ε . Поэтому I7 = 0. Слагаемое I3 оценивается следующим
образом:

I3 � C7

√
ε‖v‖H1(D1

ε)
.
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Из свойств срезающей функции χε(ξ, η) следует, что

|I8|+ |I9| � C8

√
ε‖v‖H1(D1

ε)
.

Подставляя v = u0+εχεu1−uε в (3.14) и учитывая полученные выше оценки, с помощью леммы 3.1
и очевидной оценки ‖εu1(1− χε)‖H1(D1

ε)
� C9

√
ε получаем (3.11). Теорема доказана.

3.2. Докритический случай α > 1.

3.2.1. Формальная процедура и главная оценка. Подставляем выражение

uε(x, y) = u0(x, y) + εα−1u1,−1
(
x, y,

x

ε
,
y

ε

)
+ εu0,1

(
x, y,

x

ε
,
y

ε

)
+ εαu1,0

(
x, y,

x

ε
,
y

ε

)
+

+ ε2u0,2
(
x, y,

x

ε
,
y

ε

)
+ εα+1u1,1

(
x, y,

x

ε
,
y

ε

)
+ · · ·+ εkα+luk,l

(
x, y,

x

ε
,
y

ε

)
+ . . .

в уравнение (1.2). С учетом (3.2) выводим

− f(x, y) = Δxyu
ε(x, y) ∼=

∼= Δxyu
0(x, y) + εα−1

(
Δxyu

1,−1(x, y, ξ, η)
) ∣∣∣

ξ=x
ε
,η= y

ε

+ 2εα−2
(∇xy,∇ξηu

1,−1(x, y, ξ, η)
) ∣∣∣

ξ=x
ε
,η= y

ε

+

+ εα−3
(
Δξηu

1,−1(x, y, ξ, η)
) ∣∣∣

ξ=x
ε
,η= y

ε

+ ε
(
Δxyu

0,1(x, y, ξ, η)
) ∣∣∣

ξ=x
ε
,η= y

ε

+

+ 2
(∇xy,∇ξηu

0,1(x, y, ξ, η)
) ∣∣∣

ξ=x
ε
,η= y

ε

+
1

ε

(
Δξηu

0,1(x, y, ξ, η)
) ∣∣∣

ξ=x
ε
,η= y

ε

+

+ εα
(
Δxyu

1,0(x, y, ξ, η)
) ∣∣∣

ξ=x
ε
,η= y

ε

+ 2εα−1
(∇xy,∇ξηu

1,0(x, y, ξ, η)
) ∣∣∣

ξ=x
ε
,η= y

ε

+

+ εα−2
(
Δξηu

1,0(x, y, ξ, η)
) ∣∣∣

ξ=x
ε
,η= y

ε

+ ε2
(
Δxyu

0,2(x, y, ξ, η)
) ∣∣∣

ξ=x
ε
,η= y

ε

+

+ ε2
(∇xy,∇ξηu

0,2(x, y, ξ, η)
) ∣∣∣

ξ=x
ε
,η= y

ε

+
(
Δξηu

0,2(x, y, ξ, η)
) ∣∣∣

ξ=x
ε
,η= y

ε

+

+ εα+1
(
Δxyu

1,1(x, y, ξ, η)
) ∣∣∣

ξ=x
ε
,η= y

ε

+ 2εα
(∇xy,∇ξηu

1,1(x, y, ξ, η)
) ∣∣∣

ξ=x
ε
,η= y

ε

+

+ εα−1
(
Δξηu

1,1(x, y, ξ, η)
) ∣∣∣

ξ=x
ε
,η= y

ε

+ · · · + εkα+l
(
Δxyu

k,l(x, y, ξ, η)
) ∣∣∣

ξ=x
ε
,η= y

ε

+

+ 2εkα+l−1
(
∇xy,∇ξηu

k,l(x, y, ξ, η)
) ∣∣∣

ξ=x
ε
,η= y

ε

+ εkα+l−2
(
Δξηu

k,l(x, y, ξ, η)
) ∣∣∣

ξ=x
ε
,η= y

ε

+ . . . (3.15)

Аналогично на Sε получаем

0 =
∂uε

∂nε
+ εαq

(
x, y,

x

ε
,
y

ε

)
uε ∼= (∇xyu

0, nε
)
+ εαq

(
x, y,

x

ε
,
y

ε

)
u0 + εα−1

(∇xyu
1,−1, nε

)
+

+ εα−2
(
∇ξηu

1,−1
∣∣
ξ=x

ε
,η= y

ε
, nε

)
+ ε2α−1q

(
x, y,

x

ε
,
y

ε

)
u1,−1 + ε

(∇xyu
0,1, nε

)
+

+
(
∇ξηu

0,1
∣∣
ξ=x

ε
,η= y

ε
, nε

)
+ εα+1q

(
x, y,

x

ε
,
y

ε

)
u0,1 + εα

(∇xyu
1,0, nε

)
+

+ εα−1
(
∇ξηu

1,0
∣∣
ξ=x

ε
,η= y

ε
, nε

)
+ ε2αq

(
x, y,

x

ε
,
y

ε

)
u1,0 +

+ ε2
(∇xyu

0,2, nε
)
+ ε

(
∇ξηu

0,2
∣∣
ξ=x

ε
,η= y

ε
, nε

)
+ εα+2q

(
x, y,

x

ε
,
y

ε

)
u0,2 +

+ εα+1
(∇xyu

1,1, nε
)
+ εα

(
∇ξηu

1,1
∣∣
ξ=x

ε
,η= y

ε
, nε

)
+ ε2a+1q

(
x,
x

ε

)
u1,1 + · · ·+

+ εkα+l
(
∇xyu

k,l, nε

)
+ εkα+l−1

(
∇ξηu

k,l
∣∣
ξ=x

ε
,η= y

ε
, nε

)
+ ε(k+1)α+lq

(
x, y,

x

ε
,
y

ε

)
uk,l + . . . (3.16)

Используя (3.5) и собирая слагаемые с соответствующими степенями ε в (3.15) и (3.16), при-
ходим к следующим вспомогательным задачам:⎧⎨

⎩
Δξηu

1,−1 (x, y, ξ, η) = 0 в ω,

∂u1,−1(x, y, ξ, η)

∂ñ
= 0 на S(x, y),

(3.17)
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⎧⎨
⎩
Δξηu

1,0 (x, y, ξ, η) = −2
(∇ξη,∇xyu

1,−1(x, y, ξ, η)
)

в ω,

∂u1,0(x, y, ξ, η)

∂ñ
= − (∇xyu

1,−1(x, y, ξ, η), ñ
)

на S(x, y)
(3.18)

и задаче (3.6) для u0,1 (x, y, ξ, η) , решения которых рассматриваются в классе 1-периодических
по ξ и η функций.
Из (3.17) получаем, что функция u1,−1 не зависит от ξ. Фактически можно взять u1,−1 ≡ 0.

Тогда u1,0 ≡ 0 решает задачу (3.18).
На следующем шаге собираем слагаемые порядка ε0 в (3.15) и порядка ε1 в (3.16). Получаем
⎧⎪⎨
⎪⎩

Δξηu
0,2 (x, y, ξ, η) = −f(x, y)−Δxyu

0(x, y)− 2
(∇ξη,∇xyu

0,1(x, y, ξ, η)
)

в ω,
∂u0,2(x, y, ξ, η)

∂ñ
= − (∇xyu

0,1(x, y, ξ, η), ñ
)− (∇ξηu

0,1(x, y, ξ, η), n′
)−

− (∇xyu
0(x, y), n′

)
на S(x, y).

(3.19)

Представляя u0,1(x, y, ξ, η) =
(∇xyu

0(x, y),M(x, y, ξ, η)
)
, где 1-периодические компоненты век-

тор-функции M(x, y, ξ, η) = (M1(x, y, ξ, η),M2(x, y, ξ, η)) являются решениями задач (3.8), выво-
дим из (3.19) следующую задачу:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δξηu
0,2 (x, y, ξ, η) = −f(x, y)−Δxyu

0(x, y)−
− 2

∂2u0(x, y)

∂x ∂y

(
∂M1(x, y, ξ, η)

∂η
+
∂M2(x, y, ξ, η)

∂ξ

)
−

− 2
∂2u0(x, y)

∂x2
∂M1(x, y, ξ, η)

∂ξ
− 2

∂2u0(x, y)

∂y2
∂M2(x, y, ξ, η)

∂η
−

− 2
∂u0(x, y)

∂x

(
∂2M1(x, y, ξ, η)

∂ξ ∂x
+
∂2M1(x, y, ξ, η)

∂η ∂y

)
−

− 2
∂u0(x, y)

∂y

(
∂2M2(x, y, ξ, η)

∂ξ ∂x
+
∂2M2(x, y, ξ, η)

∂η ∂y

)
в ω,

∂u0,2(x, y, ξ, η)

∂ñ
= −∂

2u0(x, y)

∂x ∂y

(
M1(x, y, ξ, η)ñ2 +M2(x, y, ξ, η)ñ1

)
−

− ∂2u0(x, y)

∂x2
M1(x, y, ξ, η)ñ1 − ∂2u0(x, y)

∂y2
M2(x, y, ξ, η)ñ2 −

− ∂u0(x)

∂x

(
∂M1(x, y, ξ, η)

∂x
ñ1 +

∂M1(x, y, ξ, η)

∂y
ñ2

)
−

− ∂u0(x)

∂y

(
∂M2(x, y, ξ, η)

∂x
ñ1 +

∂M2(x, y, ξ, η)

∂y
ñ2

)
−

− q(x, y, ξ, η)u0(x, y)−
− ∂u0(x)

∂x

(
∂M1(x, y, ξ, η)

∂ξ
n′1 +

∂M1(x, y, ξ, η)

∂η
n′2

)
−

− ∂u0(x)

∂y

(
∂M2(x, y, ξ, η)

∂ξ
n′1 +

∂M2(x, y, ξ, η)

∂η
n′2

)
−

− ∂u0(x, y)

∂x
n′1 −

∂u0(x, y)

∂y
n′2 на S(x, y).

Действуя так же, как и в пункте 3.1.1, записываем условие разрешимости и применяем те же
рассуждения, что и в пункте 3.1.1. В результате получаем усреднённую (предельную) задачу

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂x

(〈
1 +

∂M1

∂ξ

〉
∂u0

∂x
+

〈
∂M2

∂ξ

〉
∂u0

∂y

)
+

+
∂

∂y

(〈
1 +

∂M2

∂η

〉
∂u0

∂y
+

〈
∂M1

∂η

〉
∂u0

∂x

)
= −|� ∩ ω|f в D1,

u0x =

〈
1 +

∂M1

∂η

〉
u0y +

〈
∂M2

∂η

〉
u0x на Γ,

u0 = 0 на Γ0.

(3.20)

Предельное поведение решения задачи (1.2) в этом случае определяется следующей теоремой.
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Теорема 3.2. Предположим, что f ∈ C1(R2), и пусть q(x, y, ξ, η)— достаточно гладкая
неотрицательная функция, 1-периодическая по ξ и η. Тогда для достаточно малых ε задача (1.2)
имеет единственное решение, которое удовлетворяет неравенству

‖u0 + εu0,1 − uε‖H1(D1
ε)

� K2 max (εα−1,
√
ε),

где u0 и u0,1— решения задач (3.20) и (3.6), соответственно, с константой K2, не зависящей
от ε.

Доказательство аналогично доказательству теоремы 3.1 и основано на следующей лемме (см.
аналогично [22]).

Лемма 3.4. Для любой v ∈ H1(D1
ε)∣∣∣∣∣∣

∫

Sε

q(x, y,
x

ε
,
y

ε
)u0(x, y) v(x, y) ds

∣∣∣∣∣∣ � C10 ε
−1 ‖u0‖H1(D1

ε)
‖v‖H1(D1

ε)
.

3.3. Закритический случай α < 1.

3.3.1. Теорема усреднения. Следующая теорема описывает предельное поведение решения.

Теорема 3.3. Если f ∈ C1(R2) и q(x, y, ξ, η)— достаточно гладкая положительная функция,
1-периодическая по ξ и η, то для всех достаточно малых ε задача (1.2) имеет единственное
решение, удовлетворяющее оценке

‖uε‖L2(D1
ε)

� K3 max (ε
1−α
2 ,

√
ε), (3.21)

где K3 не зависит от ε.

Доказательство теоремы 3.3. Записываем интегральное тождество задачи (1.2), из которого с
помощью неравенства Коши—Буняковского получаем равномерную ограниченность семейства
uε(x) в H1(D1

ε). Действительно,

‖uε‖2H1(D1
ε)

� C11

∣∣∣∣∣∣∣
∫

D1
ε

|∇uε(x, y)|2 dxdy + εα
∫

Sε

q
(
x, y,

x

ε
,
y

ε

)
(uε)2(x, y) ds

∣∣∣∣∣∣∣
=

=

∣∣∣∣∣∣∣
∫

D1
ε

f(x, y)uε(x, y) dxdy

∣∣∣∣∣∣∣
� ‖f‖L2(D1

ε)
‖uε‖H1(D1

ε)
.

Поэтому
‖uε‖H1(D1

ε)
� C12. (3.22)

Если выполняются условия теоремы, то Q(x, y)— строго положительная функция, которая удо-
влетворяет неравенству∫

D1
ε

(uε)2 dxdy � C13

|� ∩ ω|
∫

D1
ε

Q(x, y)(uε)2 dxdy = C13

{
ε

∫

Sε

q(x, y,
x

ε
,
y

ε
)(uε)2 ds+

+
1

|� ∩ ω|
∫

D1
ε

Q(x, y)(uε)2 dxdy − ε

∫

Sε

q(x, y,
x

ε
,
y

ε
)(uε)2 ds

}
�

� C13

{
ε

∫

Sε

q(x, y,
x

ε
,
y

ε
)(uε)2 ds+ ε‖uε‖2H1(D1

ε)

}
.

Это неравенство может быть легко доказано с использованием шагов доказательства леммы 3.2
(см. [22]). С другой стороны, имеем∣∣∣∣∣∣ε

∫

Sε

q
(
x, y,

x

ε
,
y

ε

)
(uε)2 ds

∣∣∣∣∣∣ = ε1−α

∣∣∣∣∣∣∣
∫

D1
ε

f(x, y)uε dxdy −
∫

D1
ε

|∇uε|2 dxdy

∣∣∣∣∣∣∣
�
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� ε1−α‖f‖L2(D1
ε)
‖uε‖L2(D1

ε)
+O(ε1−α).

Используя последние оценки с учётом (3.22), выводим (3.21). Теорема доказана.

4. Предельная задача во всей области

Чтобы завершить построение предельной задачи во всей области, надо вспомнить, что в «ги-
перболической» области решение имеет вид F (x + y), которое, в свою очередь, инициирует на
«интерфейсе» Γ условие ux = uy. После усреднения изменилась задача в «эллиптической» части
области, а значит, и условие на «интерфейсе». Кроме того, в критическом случае α = 1 в задаче
появляется дополнительный потенциал, и она во всей области принимает следующий вид:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂x

(〈
1 +

∂M1

∂ξ

〉
∂u0+
∂x

+

〈
∂M2

∂ξ

〉
∂u0+
∂y

)
+

+
∂

∂y

(〈
1 +

∂M2

∂η

〉
∂u0+
∂y

+

〈
∂M1

∂η

〉
∂u0+
∂x

)
−

−Q(x, y)u0+(x, y) = −|� ∩ ω|f в D1,

∂2u0−
∂y2

− ∂2u0−
∂x2

= 0 в D2,

u0 = 0 на Γ0 ∪ Γ1,(
1−

〈
∂M2

∂η

〉)
(u0+)x −

〈
1 +

∂M1

∂η

〉
(u0+)y = (u0−)x − (u0−)y на Γ,

[
u0
]
= 0 на Γ.

В докритическом случае α > 1 задача имеет вид⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂x

(〈
1 +

∂M1

∂ξ

〉
∂u0+
∂x

+

〈
∂M2

∂ξ

〉
∂u0+
∂y

)
+

+
∂

∂y

(〈
1 +

∂M2

∂η

〉
∂u0+
∂y

+

〈
∂M1

∂η

〉
∂u0+
∂x

)
= −|� ∩ ω|f в D1,

∂2u0−
∂y2

− ∂2u0−
∂x2

= 0 в D2,

u0 = 0 на Γ0 ∪ Γ1,(
1−

〈
∂M2

∂η

〉)
(u0+)x −

〈
1 +

∂M1

∂η

〉
(u0+)y = (u0−)x − (u0−)y на Γ,

[
u0
]
= 0 на Γ.

Здесь u0 = u0− в «гиперболической» части и u0 = u0+ в «эллиптической» части области Dε.
Символом [ · ] обозначается скачок функции.
В закритическом случае α < 1 решение в эллиптической части стремится к нулю при ε → 0.

Условие согласования на интерфейсе Γ сразу влечёт в пределе F ≡ 0. Таким образом, решение
исходной задачи для уравнения Лаврентьева—Бицадзе во всей области стремится к нулю.
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Abstract. For the Lavrent’ev—Bitsadze equation in a partially perforated model domain with a
characteristic size of microinhomogeneities ε, we consider the problem with the third-kind boundary
condition on the boundary of the cavities (the Fourier condition), which has a small parameter εα as
a multiplier in the coefficients, and the Dirichlet condition on the outer part of the boundary. For this
problem, we construct a homogenized problem and prove the convergence of the solutions of the original
problem to the solution of the homogenized problem in three cases. The subcritical case with α > 1
is characterized by the fact that dissipation at the boundary of the cavities is negligibly small, in the
critical case with α = 1 a potential appears in the equation due to dissipation, and in the supercritical
case with α < 1 the dissipation plays the major role, it leads to degeneracy of the solution of the entire
problem.
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