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Аннотация. В работе обобщается вероятностный метод Эйнштейна для броуновского движения
на случай сжимаемых жидкостей в пористых средах. Рассматривается многомерный случай с
произвольными функциями распределения вероятностей. Связывая ожидаемое смещение за еди-
ницу времени со скоростью жидкости, мы выводим анизотропное уравнение диффузии-переноса
в недивергентной форме, содержащее член переноса. В предположении закона Дарси получено
соответствующее нелинейное уравнение в частных производных для функции плотности. Иссле-
дованы классические решения этого уравнения, доказаны принцип максимума и сильный прин-
цип максимума. Кроме того, получены оценки экспоненциального убывания решений при всех
временах, в частности, доказана их экспоненциальная сходимость при t → ∞. В основе анали-
за лежат явно построенные преобразования типа Бернштейна—Коула—Хопфа, которые удаётся
сконструировать даже для весьма общих уравнений состояния. Доказана и использована лемма
о росте во времени, позволившая получить указанные оценки убывания.
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1. Введение

Цель этой статьи состоит в следующем:

(1) разработка новой модели процессов диффузии и переноса жидкостей в пористых средах с
использованием парадигмы Эйнштейна для броуновского движения [14];

(2) строгий анализ этой модели для получения конкретных результатов по устойчивости.

Что касается первой цели, напомним, что моделирование фильтрации в пористых средах тра-
диционно базируется на следующих трёх компонентах [4, 23, 27]:

(a) уравнение непрерывности (материальный баланс/сохранение массы);
(b) уравнение движения, которое обычно представляет собой закон Дарси или одно из его обоб-

щений;
(c) уравнение состояния, описывающее связь между давлением и плотностью.
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Это приводит к уравнениям в частных производных (УрЧП) параболического типа (линей-
ным, квазилинейным, вырожденным и т. д.) для функции давления или плотности (см. [1, 3, 7]).
Благодаря (a), все они естественным образом возникают в дивергентной форме. Эти уравнения
изучаются уже давно, и существует обширная литература, см., например, [1,29] для течений Дар-
си, [2,6–10,15,17–19,24,25,28] для течений Форхгеймера и ссылки в этих работах. Они относятся
к более широкому классу нелинейных параболических уравнений, см. книги [13,21].

Хотя три уравнения (a), (b), (c), упомянутые выше, являются детерминированными, они, по су-
ти, могут быть подвержены стохастическим возмущениям [26,30]. Принимая во внимание эту сто-
хастическую точку зрения, мы предлагаем альтернативный подход к первой составляющей (a) —
сохранению массы— пересматривая и используя вероятностное уравнение материального балан-
са Эйнштейна [14]. Более конкретно, мы применяем парадигму Эйнштейна [14] и рассматриваем
движение жидкости в пористой среде как случайные перемещения частиц из точки x в точку x+ζ
в течение малого интервала времени τ, где ζ — случайное смещение. Обобщая рассуждения из [14]
на многомерное пространство, мы приходим к следующему уравнению в частных производных
для функции плотности ρ:

∂ρ

∂t
=

n∑

i,j=1

aij
∂2ρ

∂xi∂xj
+

E

τ
· ∇ρ, (1.1)

где aij(x, t)—коэффициенты диффузии, а E(x, t) =
∫
ζφ(x, t, ζ)dζ, где φ(x, t, ζ) обозначает рас-

пределение вероятностей этих событий (более подробно см. в разделе 2 ниже). Здесь E/τ — это
новый член переноса, поскольку φ(x, t, ζ) не предполагается чётной функцией по ζ. Обратим
внимание, что E — это ожидаемое значение смещения частицы в течение времени от t до t + τ.
Поэтому мы постулируем (см. гипотезу 2.1), что средняя скорость E/τ пропорциональна скорости
жидкости v, или, в более общем случае,

M0v =
1

τ
E, (1.2)

где M0 —матрица, гарантирующая определённый уровень «соответствия» v и E/τ, см. (2.14).
Предположение (1.2) связывает микроскопический перенос с макроскопическим. Это важно для
понимания и развития нашей модели.

После (1.1) и (1.2) мы рассматриваем анизотропный закон Дарси для (b) и изоэнтропические
течения газа, а также течения слабосжимаемой жидкости для (c). В результате получается ква-
зилинейное параболическое уравнение второго порядка в недивергентной форме относительно ρ,
содержащее квадратичный член по ∇ρ и другие нелинейности по ρ, см. (2.18)–(2.22) ниже.

Перейдём ко второй цели статьи — математическому анализу полученных моделей. Мы дока-
жем принцип максимума и сильный принцип максимума для решений. Для начальной задачи с
постоянными граничными данными мы получаем оценки экспоненциального убывания решения
в пространственной C0-норме. Следовательно, решение экспоненциально сходится в C0-норме к
своему постоянному граничному значению при стремлении времени к бесконечности. Для доказа-
тельства мы явно строим отдельные преобразования типа Бернштейна—Коула—Хопфа [5,11,20],
чтобы преобразовать то же самое решение в необходимое суб- или суперрешение соответствую-
щего усеченного линейного оператора. Более того, лемма о росте во времени устанавливается с
помощью метода Ландиса. Затем она применяется на последовательных временных интервалах
для получения оценок экспоненциального убывания.

Статья организована следующим образом. В разделе 2 мы выводим модели в несколько этапов.
Во-первых, обобщая вероятностный метод Эйнштейна [14] на многомерное пространство, мы вы-
водим общее уравнение диффузии (2.8) в недивергентной форме. Без предположения о чётности
функции распределения вероятностей, это уравнение содержит отношение E(x, t)/τ — среднее
смещение за единицу времени. Во-вторых, связывая это отношение E(x, t)/τ со скоростью v(x, t)
жидкости, мы получаем уравнение (2.22). Основным предположением является гипотеза 2.1, ко-
торая обобщает основную идею (2.11). Эта гипотеза связывает микроскопические понятия, такие
как движение частиц с вероятностями, со скоростью, которая является макроскопической харак-
теристикой жидкости. В-третьих, используя закон Дарси, мы находим уравнение (2.17) для дав-
ления p и плотности ρ. Наконец, уравнение состояния используется для получения нелинейного
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уравнения в частных производных (2.22) для плотности. Особыми случаями являются уравне-
ния (2.18), (2.19) и (2.20).

Раздел 3 посвящен изучению уравнения (2.22) в его общем виде (3.3) с точки зрения принципа
максимума и сильного принципа максимума для нелинейного оператора L, см. (3.7). Принцип
максимума доказан в теореме 3.1, а сильный принцип максимума — в теореме 3.2. Для последней
теоремы в лемме 3.1 построены преобразования типа Бернштейна—Коула—Хопфа, преобразую-
щие решение оператора L в субрешения и суперрешения усечённого линейного оператора L. Эти
преобразования явно записываются в терминах уравнения состояния.

В последнем разделе 4 мы изучаем поведение решения начально-краевой задачи (4.36) при
больших временах. Основным инструментом служит лемма Ландиса о росте для линейного опе-
ратора L̃, представляющего собой общую форму L, из леммы 4.1. Это приводит к оценкам суб-
и суперрешений L̃ в предложении 4.1. С помощью преобразований типа Бернштейна—Коула—
Хопфа из раздела 3 для связи L, L и L̃ мы получаем основные результаты теоремы 4.1. Они
заключаются в оценках экспоненциального убывания для всех времён и, как следствие, экспо-
ненциальной сходимости решений при стремлении времени к бесконечности. Фактически, экспо-
ненциальная скорость может не зависеть от начальных данных, как показано в следствии 4.1.
Приложения к различным типам течений жидкости приведены в примерах 4.1 и 4.2. Стоит отме-
тить, что лемма о росте демонстрирует устойчивость исходной нелинейной задачи, что частично
оправдывает предлагаемую нами модель динамики течений жидкости в пористых средах.

Авторы осознают, что разработанные в данной работе модели существенно отличаются от стан-
дартных. Очевидно, что для их подтверждения необходимы дополнительные данные и экспери-
менты. Тем не менее, поскольку вывод настолько прост, их идеи, методы и математический анализ
представлены здесь в надежде на дальнейшее обсуждение и развитие. В конечном итоге они мо-
гут оказаться полезными для разработки альтернативной методологии описания и понимания
сложных процессов диффузии и переноса в пористых средах.

2. Вывод моделей

Обозначения. На протяжении всей статьи пространственная размерность n � 1 фиксирована.
Для вектора x ∈ R

n его евклидова норма обозначается через |x|. Пусть Mn×n обозначает множе-
ство матриц действительных чисел размера n×n, а Mn×n

sym —множество симметричных матриц в
Mn×n. Для пары матриц A,B ∈ Mn×n их скалярное произведение 〈A,B〉 равно следу Tr(ATB).
Для действительной функции f(x), где x = (x1, . . . , xn) ∈ R

n, обозначим через D2f матрицу Гессе
вторых частных производных (∂2f/∂xi∂xj)i,j=1,...,n.

2.1. Общие уравнения. Пусть ρ(x, t)—функция плотности жидкости в точке x ∈ R
n в мо-

мент времени t ∈ R. Пусть τ > 0—небольшой временной интервал в качестве входного параметра
в момент наблюдения. Пусть ζ ∈ R

n — случайное смещение частиц жидкости. Предположим, что
вероятность перемещения частиц из точки x в момент времени t в точку x + ζ в момент вре-
мени t + τ, где ζ = (ζ1, ζ2, . . . , ζn) ∈ R

n, может быть охарактеризована функцией распределения
вероятностей φ(x, t, ζ) � 0, так что ∫

Rn

φ(x, t, ζ)dζ = 1.

Уравнение материального баланса Эйнштейна [14] записывается в виде

ρ(x, t+ τ) =

∫

Rn

ρ(x+ ζ, t)φ(x, t, ζ)dζ. (2.1)

При малом τ мы аппроксимируем производную по времени от ρ следующим образом:

∂ρ(x, t)

∂t
≈ 1

τ
(ρ(x, t+ τ)− ρ(x, t)). (2.2)

Вычислим ρ(x, t + τ) в правой части (2.2) по материальному балансу (2.1). Предположим,
что функция ζ �→ φ(x, t, ζ) сосредоточена в малом шаре с центром в начале координат. Согласно
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разложению Тейлора функции ζ �→ ρ(x+ζ, t) при малых |ζ| с точностью до квадратичных членов
имеем приближение

ρ(x+ ζ, t) ≈ ρ(x, t) + ζ · ∇ρ(x, t) +
1

2

n∑

i,j=1

ζiζj
∂2ρ(x, t)

∂xi∂xj
.

Затем, используя (2.1), мы можем записать аппроксимацию

ρ(x, t+ τ) =

∫

Rn

ρ(x+ ζ, t)φ(x, t, ζ)dζ ≈
∫

Rn

ρ(x, t)φ(x, t, ζ)dζ +

+

∫

Rn

ζ · ∇ρ(x, t)φ(x, t, ζ)dζ +
1

2

n∑

i,j=1

∫

Rn

ζiζj
∂2ρ(x, t)

∂xi∂xj
φ(x, t, ζ)dζ.

Таким образом,

ρ(x, t+ τ) ≈ ρ(x, t) + E(x, t) · ∇ρ(x, t) +
1

2

n∑

i,j=1

āij(x, t)
∂2ρ(x, t)

∂xi∂xj
, (2.3)

где вектор

E(x, t) =

∫

Rn

φ(x, t, ζ)ζdζ, (2.4)

а коэффициенты

āij(x, t) =

∫

Rn

ζiζjφ(x, t, ζ)dζ при i, j = 1, . . . , n. (2.5)

Объединяя (2.3) с (2.2) и заменяя приближение равенством, получаем

∂ρ(x, t)

∂t
=

1

2τ

n∑

i,j=1

āij(x, t)
∂2ρ(x, t)

∂xi∂xj
+

1

τ
E(x, t) · ∇ρ(x, t). (2.6)

Определим матрицы размера n× n

Ā(x, t) = (āij(x, t))i,j=1,...,n и A(x, t) = (aij(x, t))i,j=1,...,n
def
=

1

2τ
Ā(x, t). (2.7)

Тогда уравнение (2.6) можно переписать в виде

∂ρ

∂t
=

n∑

i,j=1

aij
∂2ρ

∂xi∂xj
+

1

τ
E · ∇ρ = 〈A,D2ρ〉+ 1

τ
E · ∇ρ. (2.8)

Замечание 2.1. Следует сделать следующие замечания.
(a) Ввиду (2.5), матрица Ā(x, t) симметрична, а значит, и A(x, t) тоже. Кроме того, для ξ =

(ξ1, . . . , ξn) ∈ R
n имеем

ξTĀ(x, t)ξ =

n∑

i,j=1

ξiāij(x, t)ξj =

∫

Rn

|ξ · ζ|2φ(x, t, ζ)dζ � 0.

Следовательно, Ā(x, t) положительно полуопределена. Поскольку τ > 0, то из (2.7) вытекает,
что матрица A(x, t) также положительно полуопределена.

(b) Если ζ �→ φ(x, t, ζ)—четная функция, то, согласно (2.4), E(x, t) = 0, и мы имеем

∂ρ

∂t
=

n∑

i,j=1

aij
∂2ρ

∂xi∂xj
. (2.9)

(c) Рассмотрим случай взаимно независимых событий относительно координат смещения ζ, т. е.

φ(x, t, ζ) = φ1(x, t, ζ1) · · · φn(x, t, ζn), при ζ = (ζ1, ζ2, . . . , ζn),
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где каждая φi(x, t, ζi)— это функция распределения вероятностей по переменной ζi ∈ R,
i = 1, 2, . . . , n. Тогда имеем

āij =

{
σ̄iσ̄j при i 	= j,

σ̄2
i,i при i = j,

где

σ̄i(x, t) =

∫

R

sφi(x, t, s)ds, σ̄i,i(x, t) =

⎛

⎝
∫

R

s2φi(x, t, s)ds

⎞

⎠
1/2

.

(d) Предположим, в дополнение к (c), что каждая функция φi(x, t, s) при 1 � i � n чёт-
на по s ∈ R. Тогда каждое σi = 0, и, следовательно, Ā(x, t)—диагональная матрица
diag[σ̄2

1,1, σ̄
2
2,2, . . . , σ̄

2
n,n]. Поскольку каждое σ̄i,i положительно, то в этом случае матрица

Ā(x, t) положительно определена. Более того, функция ζ �→ φ(x, t, ζ)—четная, следователь-
но, согласно пункту (b), уравнение (2.8) принимает вид

∂ρ

∂t
=

n∑

i=1

σ̄2
i,i

2τ
· ∂

2ρ

∂x2i
. (2.10)

Это многомерная версия уравнения, полученного Эйнштейном в [14].

Мы сосредоточимся на изучении общего уравнения (2.8), а не (2.9) или (2.10).

2.2. Основное предположение. Заметим, что E(x, t)— это ожидаемое смещение из точки x
между моментами времени t и t+ τ. Таким образом, E(x, t)/τ — это частное

среднее смещение
время

,

что можно рассматривать как среднюю скорость. Следовательно, при малых τ мы можем ап-
проксимировать это отношение E(x, t)/τ скоростью v(x, t) жидкости, т. е.

E(x, t)

τ
≈ v(x, t). (2.11)

Однако мы предположим гораздо более общее отношение, чем (2.11).

Гипотеза 2.1. Существует безразмерная матрица M0(x, t) размера n× n такая, что

M0(x, t)v(x, t) =
E(x, t)

τ
, (2.12)

ξTM0(x, t)ξ � 0 для всех ξ ∈ R
n. (2.13)

Условие (2.13) указывает, что скорость жидкости v(x, t) и отношение E(x, t)/τ имеют некоторое
«соответствие», т. е.

v(x, t) · E(x, t)

τ
� 0. (2.14)

Гипотеза 2.1 — наше фундаментальное предположение. Она связывает микроскопические осо-
бенности движения частиц в среде с макроскопическими свойствами потока жидкости, а именно
со скоростью жидкости в данном случае.

Объединение (2.8) с (2.12) даёт

∂ρ

∂t
= 〈A(x, t),D2ρ〉+ (M0(x, t)v(x, t)) · ∇ρ. (2.15)

В этом уравнении член 〈A(x, t),D2ρ〉 представляет диффузию в недивергентной форме, а член
(M0(x, t)v(x, t)) · ∇ρ представляет перенос/конвекцию.
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2.3. Движение жидкости в пористых средах. Пусть p(x, t)—давление жидкости. Пред-
положим, что закон Дарси — анизотропный [4, 12],

v = −K̄(x, t)(∇p − ρ	g), (2.16)

где K̄(x, t)—матрица размера n×n, а 	g— ускорение свободного падения при n = 1, 2, 3, и может
быть любым постоянным вектором для n � 4.

Объединение (2.15) с (2.16) даёт
∂ρ

∂t
= 〈A(x, t),D2ρ〉 − (K0(x, t)∇p) · ∇ρ+ ρB0(x, t) · ∇ρ, (2.17)

где
K0(x, t) = M0(x, t)K̄(x, t), B0(x, t) = M0(x, t)K̄(x, t)	g.

Далее мы используем уравнения состояния, чтобы связать давление p и плотность ρ в (2.17).

Случай изоэнтропических течений газа. Имеем p = cργ с константой c > 0 и показателем адиа-
баты γ � 1. Тогда (2.17) принимает вид

∂ρ

∂t
= 〈A(x, t),D2ρ〉 − cγργ−1(K0(x, t)∇ρ) · ∇ρ+ ρB0(x, t) · ∇ρ. (2.18)

В частности, для идеальных газов γ = 1, и уравнение (2.18) имеет вид
∂ρ

∂t
= 〈A(x, t),D2ρ〉 − c(K0(x, t)∇ρ) · ∇ρ+ ρB0(x, t) · ∇ρ. (2.19)

Случай слабосжимаемых жидкостей. Имеем
1

ρ

dρ

dp
= κ, где κ—малая положительная постоянная сжимаемость.

Заметив, что ∇ρ = κρ∇p, перепишем (2.17) в виде
∂ρ

∂t
= 〈A(x, t),D2ρ〉 − 1

κρ
(K0(x, t)∇ρ) · ∇ρ+ ρB0(x, t) · ∇ρ. (2.20)

В общем случае предположим справедливость уравнения состояния

p = P0(ρ), где P0 —известная возрастающая функция. (2.21)

Тогда уравнение (2.17) становится уравнением в частных производных на ρ:
∂ρ

∂t
= 〈A(x, t),D2ρ〉 − P ′

0(ρ)(K0(x, t)∇ρ) · ∇ρ+ ρB0(x, t) · ∇ρ. (2.22)

В следующих двух разделах мы сосредоточимся исключительно на математическом аспекте
уравнения (2.22).

3. Принцип максимума и сильный принцип максимума

Пусть U —непустое, открытое, ограниченное подмножество R
n с границей Γ и замыканием Ū .

Пусть T > 0. Обозначим UT = U × (0, T ] и введём параболическую границу ΓT = UT \ UT , где
UT = Ū × [0, T ]— замыкание UT (в R

n+1).
Пусть A : UT → Mn×n

sym , где A(x, t) = (aij(x, t))i,j=1,...,n, K : UT → Mn×n и B : UT → R
n —

заданные функции. В данном разделе мы предполагаем, что существует константа c0 > 0 такая,
что

ξTA(x, t)ξ � c0|ξ|2 для всех (x, t) ∈ UT и всех ξ ∈ R
n. (3.1)

Здесь и далее J —интервал с непустой внутренностью в R, а P —функция из C1(J,R) с
производной

P ′ ∈ C(J, [0,∞)). (3.2)

Для течений жидкости в пористых средах P связано с уравнением состояния (2.21). Однако
мы будем рассматривать общие функции P. Из (3.2) ясно, что P — возрастающая функция от J.

Для любого интервала I из R обозначим через C2,1
x,t (U × I) класс непрерывных функций u(x, t)

с непрерывными частными производными ∂u/∂t, ∂u/∂xi, ∂
2u/∂xi∂xj для i, j = 1. . . . , n.
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Рассмотрим нелинейное уравнение (2.22) в форме

∂u

∂t
− 〈A(x, t),D2u〉+ uB(x, t) · ∇u+ P ′(u)(K(x, t)∇u) · ∇u = 0. (3.3)

Для изоэнтропических неидеальных потоков газа в случае уравнения (2.18) с γ > 1 можно
использовать

J = [0,∞), P (s) = sγ , K = cK0, B = −B0. (3.4)
Для потоков идеального газа в случае уравнения (2.19) также можно использовать (3.4) с γ = 1

для физического u = ρ (плотности), но также можно заменить J = R на (3.4) для математиче-
ского u. Таким образом,

J = [0,∞) или J = R, P (s) = s, K = cK0, B = −B0. (3.5)

Например, для слабосжимаемых жидкостей и уравнения (2.20) мы можем использовать

J = (0,∞), P (s) = ln s, K = κ−1K0, B = −B0. (3.6)

Явно определим нелинейный оператор L, связанный с левой частью (3.3):

Lu =
∂u

∂t
− 〈A(x, t),D2u〉+ uB(x, t) · ∇u+ P ′(u)(K(x, t)∇u) · ∇u (3.7)

для любой функции u ∈ C2,1
x,t (UT ) с областью значений u(UT ), являющейся подмножеством J.

Ниже мы рассматриваем принципы максимума и сильного максимума, связанные с этим нели-
нейным оператором L.

3.1. Принцип максимума.

Теорема 3.1 (принцип максимума). Пусть

u ∈ C(UT ) ∩ C2,1
x,t (UT ), u(UT ) ⊂ J. (3.8)

(i) Если Lu � 0 на UT , тогда
max
UT

u = max
ΓT

u. (3.9)

(ii) Если Lu � 0 на UT , тогда
min
UT

u = min
ΓT

u. (3.10)

Доказательство. Определим b̃(x, t) = u(x, t)B(x, t) + P ′(u(x, t))K(x, t)∇u(x, t) и оператор для
функции v:

L̂v =
∂v

∂t
− 〈A(x, t),D2v〉+ b̃(x, t) · ∇v.

Заметим, что L̂u = Lu.

В случае (i) имеем L̂u � 0, следовательно, по стандартному принципу максимума для линей-
ного оператора L̂ и функции u получаем (3.9).

В случае (ii) имеем L̂u � 0, следовательно, по стандартному принципу максимума для линей-
ного оператора L̂ и функции u получаем (3.10).

Пусть S ⊂ R
n+1 и u— ограниченная функция на S. Обозначим

osc
S

u = sup
S

u− inf
S

u.

Следствие 3.1 (осцилляция). Пусть функция u удовлетворяет условию (3.8). Если Lu = 0
на UT , то

osc
UT

u = osc
ΓT

u. (3.11)

Доказательство. Поскольку Lu = 0, мы можем применить как (i), так и (ii) в теореме 3.1.
Следовательно, из (3.9) и (3.10) получаем (3.11).
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3.2. Преобразования типа Бернштейна—Коула—Хопфа. Для устранения квадратичных
членов градиента введём следующее преобразование типа Бернштейна—Коула—Хопфа.

Для заданной функции u мы определяем оператор L следующим образом:

Lw =
∂w

∂t
− 〈A(x, t),D2w〉+ u(x, t)B(x, t) · ∇w. (3.12)

Заметим, что L является линейным оператором по w для каждой заданной функции u.

Лемма 3.1. Пусть u—функция такая, что

u ∈ C2,1
x,t (UT ), u(UT ) ⊂ J. (3.13)

Определим линейный оператор L с помощью (3.12). Пусть s0 ∈ J. Для λ ∈ R, C > 0, C ′ ∈ R,
определим

Fλ(s) = C

s∫

s0

eλP (z)dz + C ′, s ∈ J. (3.14)

(i) Тогда Fλ ∈ C2(J), F ′
λ > 0 и λF ′′

λ � 0 на J.
(ii) Предположим, что существует константа c1 � 0 такая, что

ξTK(x, t)ξ � −c1|ξ|2 для всех (x, t) ∈ UT и всех ξ ∈ R
n. (3.15)

Если Lu � 0 на UT , то для любых чисел λ � c1/c0, C > 0, C ′ ∈ R, функция w = Fλ(u)
удовлетворяет Lw � 0 на UT .

(iii) Предположим, что существует константа c2 � 0 такая, что

ξTK(x, t)ξ � c2|ξ|2 для всех (x, t) ∈ UT и всех ξ ∈ R
n. (3.16)

Если Lu � 0 на UT , то для любых чисел λ � −c2/c0, C > 0, C ′ ∈ R, функция w = Fλ(u)
удовлетворяет Lw � 0 на UT .

Доказательство.
(i) Эти факты очевидно следуют из (3.14) и условия (3.2).
Для пунктов (ii) и (iii) находим w = F (u) для функции F ∈ C2(J) такой, что

F ′ > 0 на J. (3.17)

Имеем
∂w

∂xi
= F ′(u)

∂u

∂xi
,

∂2w

∂xi∂xj
= F ′(u)

∂2u

∂xi∂xj
+ F ′′(u)

∂u

∂xi

∂u

∂xj
.

Тогда

Lw = F ′(u)

⎡

⎣∂u

∂t
−

n∑

i,j=1

aij
∂2u

∂xi∂xj
+ uB · ∇u

⎤

⎦− F ′′(u)
n∑

i,j=1

aij
∂u

∂xi

∂u

∂xj
=

= F ′(u)Lu− F ′′(u)(∇u)TA(x, t)∇u.

Заметим, что Lu = Lu+ P ′(u)(∇u)TK(x, t)∇u. Таким образом,

Lw = F ′(u){Lu− P ′(u)(∇u)TK(x, t)∇u} − F ′′(u)(∇u)TA(x, t)∇u. (3.18)

(ii) Рассмотрим Lu � 0 на UT . Тогда из (3.18) следует, что

Lw � −P ′(u)F ′(u)(∇u)TK(x, t)∇u− F ′′(u)(∇u)TA(x, t)∇u.

Для Lw � 0 на UT мы накладываем условие

F ′′(u)ξTA(x, t)ξ � −P ′(u)F ′(u)ξTK(x, t)ξ ∀(x, t) ∈ UT , ∀ξ ∈ R
n. (3.19)

Найдём F такое, что
F ′′ � 0 на J. (3.20)

Это свойство и (3.1), (3.15) влекут для всех (x, t) ∈ UT и ξ ∈ R
n неравенства

F ′′(u)ξTA(x, t)ξ � c0F
′′(u)|ξ|2, −P ′(u)F ′(u)ξTK(x, t)ξ � c1P

′(u)F ′(u)|ξ|2.
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Благодаря этим неравенствам и (3.19) достаточным условием для Lw � 0 на UT является

c0F
′′(s) � c1P

′(s)F ′(s).

Для λ � c1/c0 указанное выше неравенство будет следовать из уравнения

F ′′(s) = λP ′(s)F ′(s), (3.21)

что даёт решение
F ′(s) = eλ

∫
P ′(s)ds = CeλP (s). (3.22)

Здесь мы выбираем C > 0 так, чтобы выполнялось условие (3.17). Затем выбираем решение
F = Fλ, как в (3.14). Поскольку (3.17) уже выполнено, уравнение (3.21) и свойство (3.2) влекут
за собой второе требование (3.20).

(iii) Рассмотрим Lu � 0 на UT . Тогда из (3.18) следует, что

Lw � −P ′(u)F ′(u)(∇u)TK(x, t)∇u− F ′′(u)(∇u)TA(x, t)∇u.

Благодаря этому неравенству, достаточным условием для Lw � 0 на UT является

F ′′(u)ξTA(x, t)ξ � −P ′(u)F ′(u)ξTK(x, t)ξ ∀(x, t) ∈ UT , ∀ξ ∈ R
n. (3.23)

В этом случае мы найдём F такую, что

F ′′ � 0 на J. (3.24)

Это, а также (3.1) и (3.16) влекут для всех (x, t) ∈ UT и ξ ∈ R
n неравенства

F ′′(u)ξTA(x, t)ξ � c0F
′′(u)|ξ|2, −P ′(u)F ′(u)ξTK(x, t)ξ � −c2P

′(u)F ′(u)|ξ|2.
Используя эти неравенства и (3.23), запишем достаточное условие для Lw � 0 на UT :

c0F
′′(s) � −c2P

′(s)F ′(s).

При λ � −c2/c0 � 0 мы снова решаем уравнение (3.21). Как и в пункте (ii), мы выбираем решение
F = Fλ в (3.14). Требования (3.17) и (3.24) снова выполняются благодаря (3.22) и (3.21).

Заметим, что функция Fλ в лемме 3.1 непрерывна и строго возрастает на J.

Пример 3.1. Имеем следующие примеры потоков жидкости.
(a) Случай изоэнтропических неидеальных потоков газа. Используя (3.4), мы можем выбрать

Fλ(s) =

s∫

0

eλz
γ
dz, s � 0. (3.25)

(b) Случай идеального газа. Мы используем (3.5) и выберем s0 = 0 в (3.14) для обоих случаев J.
При λ = 0 мы, очевидно, можем выбрать

Fλ(s) = s, s ∈ J. (3.26)

Для λ 	= 0 можно выбрать

Fλ(s) =
1

λ
eλs для всех s ∈ J или Fλ(s) = sign(λ)eλs для всех s ∈ J. (3.27)

(c) Случай слабосжимаемых жидкостей. Используем (3.6). При λ 	= −1 в общем случае
из (3.14) получаем, что

Fλ(s) = C

s∫

s0

zλdz + C ′ =
C

λ+ 1
(sλ+1 − sλ+1

0 ) + C ′,

и, следовательно, можно выбрать

Fλ(s) =
sλ+1

λ+ 1
для всех s > 0 или Fλ(s) = sign(λ+ 1)sλ+1 для всех s > 0. (3.28)

Для λ = −1 можно аналогично выбрать

Fλ(s) = ln s, s > 0.
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3.3. Строгий принцип максимума. Предположим дополнительно в этом пункте 3.3, что U
связно.

Теорема 3.2. Предположим, что A(x, t) и B(x, t) ограничены на UT , а K(x, t) удовлетворя-
ет условию (3.15) (соответственно, (3.16)). Предположим, что u—функция, удовлетворяю-
щая (3.13), ограниченная на UT и такая, что Lu � 0 (соответственно, Lu � 0) на UT . Пусть

M = sup
UT

u(x, t) (соответственно, m = inf
UT

u(x, t)).

Предположим, что существует пара (x0, t0) ∈ UT такая, что

u(x0, t0) = M (соответственно, u(x0, t0) = m). (3.29)

Тогда

u(x, t) = M (соответственно, u(x, t) = m) для всех (x, t) ∈ Ut0 = U × (0, t0]. (3.30)

Доказательство. Пусть Lw определено по формуле (3.12). Перепишем Lw в виде

Lw = wt − 〈A(x, t),D2w〉+ B̃(x, t) · ∇w, где B̃(x, t) = u(x, t)B(x, t). (3.31)

Поскольку и u(x, t), и B(x, t) ограничены на UT , то B̃(x, t) также ограничено на UT . Обратим
внимание, что оператор L не содержит члена c(x, t)w. Ниже мы будем использовать сильный
принцип максимума в частной форме [22, гл. 3, теорема 2.3], см. также [22, гл. 3, теорема 2.4].

Часть 1. Рассмотрим Lu � 0 в UT и соответствующие условия. Из (3.29) следует, что u(x0, t0) =
max
UT

u(x, t).

Случай c1 = 0. В этом случае Lu � Lu � 0 на UT . Можно применить сильный принцип
максимума к оператору L в форме (3.31) и функции u + |M | + 1, тогда получим u = M на Ut0 .
Таким образом, мы получаем первое утверждение из (3.30).
Случай c1 > 0. Пусть λ1 = c1/c0 и w = Fλ1(u) на UT . По лемме 3.1 (ii), имеем Lw � 0 на UT и,

ввиду роста Fλ1 ,

w(x0, t0) = Fλ1(M) = max
UT

w.

Применим сильный принцип максимума к оператору L и функции w+|Fλ1(M)|+1, тогда получим
w = Fλ1(M) на Ut0 . Таким образом, u = F−1

λ1
(w) = M на Ut0 .

Часть 2. Рассмотрим Lu � 0 в UT и соответствующие условия. Заметим, что u(x0, t0) =
min
UT

u(x, t).

Случай c2 = 0. Имеем Lu � Lu � 0 на UT . Применим сильный принцип максимума к опера-
тору L и функции u − |m| − 1, тогда получим u = m на Ut0 . Таким образом, получаем второе
утверждение из (3.30).
Случай c2 > 0. Пусть λ2 = −c2/c0 и w = Fλ2(u) на UT . Доказательство второго утверждения

в (3.30) аналогично доказательству случаю c1 > 0 в части 1 выше, с использованием леммы 3.1 (iii)
вместо леммы 3.1 (ii) и сильного принципа максимума, применённого к оператору L и функции
w − |Fλ2(m)| − 1. Опустим подробности.

4. Начально-краевая задача

Пусть U и Γ— такие же, как в разделе 3. Зафиксируем точку x0 	∈ Ū и положим

r0 = min{|x− x0| : x ∈ Ū}, R = max{|x− x0| : x ∈ Ū}.
Тогда R > r0 > 0.
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4.1. Результаты для линейных операторов. Как показано в разделе 3, исследование нели-
нейной задачи можно свести к исследованию некоторого линейного оператора. Поэтому сначала
мы установим некоторые существенные результаты для общего линейного случая.

При условии T > 0 пусть UT и ΓT будут такими, как в разделе 3.

Предположение 4.1. Пусть A : UT → Mn×n
sym и b : UT → R

n таковы, что
(i) A удовлетворяет условию (3.1) для некоторой константы c0 > 0;
(ii) существуют константы M1 > 0 и M2 � 0 такие, что

Tr(A(x, t)) � M1, |b(x, t)| � M2 для всех (x, t) ∈ UT . (4.1)

Определим линейный оператор L̃ следующим образом:

L̃w = wt − 〈A(x, t),D2w〉+ b(x, t) · ∇w, w ∈ C2,1
x,t (UT ). (4.2)

Лемма 4.1 (лемма о росте). В условиях предположения 4.1 положим

β =
1

4c0
max

{
2(M1 +M2R),

R2

T

}
, T∗ =

R2

4c0β
, η∗ = 1− (r0/R)2β . (4.3)

Если w ∈ C(UT ) ∩ C2,1
x,t (UT ) удовлетворяет L̃w � 0 на UT и w � 0 на Γ× [0, T ], то имеем

max

{
0,max

x∈Ū
w(x, T∗)

}
� η∗ max

{
0,max

x∈Ū
w(x, 0)

}
. (4.4)

Доказательство. Мы следуем [22, гл. 3, лемма 6.1], а также [16, лемма IV.3]. Значения в (4.3)
временно игнорируем.

Шаг 1. Пусть функция ϕ ∈ C(Ū) ∩ C2(U) такова, что

0 < d0 � ϕ � d1 на Ū ,

|∇ϕ| � d2, ϕ � c0|∇ϕ|2, |〈A,D2ϕ〉| � d3 на U
(4.5)

для некоторых положительных чисел d0, d1, d2, d3. Заметим, что последнее условие в (4.5) вы-
полняется в UT (из-за свойств матрицы A(x, t)). Конкретная функция ϕ будет построена на 3-м
шаге ниже. Определим барьерную функцию W на Ū × R следующим образом:

W (x, t) =

{
t−βe−

ϕ(x)
t , если (x, t) ∈ Ū × (0,∞),

0, если (x, t) ∈ Ū × (−∞, 0],

где β —положительное число. В силу оценки снизу на ϕ(x) в (4.5) мы имеем W ∈ C(Ū ×R). При
t > 0 получим

Wt = −β

t
W +

ϕ

t2
W, Wxi = −ϕxi

t
W, Wxixj = −ϕxixj

t
W +

ϕxiϕxj

t2
W

и будем иметь на UT

L̃W =
W

t2
{
t(−β + 〈A,D2ϕ〉 − b · ∇ϕ) + ϕ− (A∇ϕ) · ∇ϕ

}
.

Нам требуется L̃W � 0 на U × (0,∞), поэтому накладываем условия

ϕ � (A∇ϕ) · ∇ϕ, β � 〈A,D2ϕ〉 − b · ∇ϕ на UT . (4.6)

По (3.1), достаточным условием для первого условия в (4.6) является ϕ � c0|∇ϕ|2 на UT , что,
по сути, выполняется в соответствии с нашим предположением (4.5). Достаточным условием для
второго условия в (4.6) является

β � |〈A,D2ϕ〉|+ |b||∇ϕ| на UT . (4.7)

Основываясь на (4.1) и (4.5), выберем

β � d3 +M2d2, (4.8)

чтобы удовлетворялось (4.7). Итак, для β в (4.8) имеем L̃W � 0 на U × (0,∞).
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Шаг 2. Пусть β удовлетворяет условию (4.8). Положим M = max{0,max
Ū

w(x, 0)} и определим

W̃ = M(1− ηW ) на Ū ×R, где η = (d0e/β)
β > 0. Тогда L̃W̃ � 0 на U × (0,∞). На Ū × {0} имеем

W (x, 0) = 0 и, следовательно,

W̃ (x, 0) = M � w(x, 0) для всех x ∈ Ū . (4.9)

Заметим, что при t > 0

W̃ (x, t) = M
(
1− ηt−βe−ϕ(x)/t

)
� M

(
1− ηt−βe−d0/t

)
.

Элементарные вычисления показывают, что функция h0(t) = t−βe−d0/t на (0,∞) достигает мак-
симума при t0 = d0/β со значением h0(t0) = η−1. Таким образом, на Ū × (0,∞) имеем:

W̃ (x, t) � M (1− ηh0(t0)) = 0.

В частности,
W̃ � w на Γ× (0,∞). (4.10)

Наложим ещё одно условие:
β � d1/T, T∗ = d1/β. (4.11)

Тогда T∗ � T, имеем L̃(w−W̃ ) � 0 на U×(0, T∗] и, ввиду (4.9), (4.10), w−W̃ � 0 на параболической
границе U×(0, T∗]. Применяя принцип максимума к оператору L̃ и функции (w−W̃ ) на множестве
Ū × [0, T∗], получаем

w � W̃ на Ū × [0, T∗]. (4.12)

Заметим, что

W̃ (x, t) � M
(
1− ηt−βe−d1/t

)
. (4.13)

При t = T∗, из (4.12) и (4.13) для всех x ∈ Ū следует, что

w(x, T∗) � W̃ (x, T∗) � M

[
1−

(
d0e

β

)β (d1
β

)−β

e−d1(β/d1)

]
= M

[
1−

(
d0
d1

)β
]
= η∗M,

где
η∗ = 1− (d0/d1)

β ∈ (0, 1). (4.14)

Таким образом, мы получаем неравенство (4.4) для T∗, η∗ при β, удовлетворяющем условиям (4.8),
(4.11), (4.14).

Шаг 3. Выберем функцию ϕ(x) = μ|x − x0|2 с числом μ > 0, которое определим позже. Тогда
μr20 � ϕ � μR2 на Ū , следовательно, мы выбираем d0 = μr20 и d1 = μR2 в (4.5).

Для второго условия в (4.5), поскольку |∇ϕ| = 2μ|x− x0| � 2μR, выберем d2 = 2μR.
Третье условие в (4.5) трансформируется в μ|x− x0|2 � 4c0μ

2|x− x0|2, потому выберем

μ =
1

4c0
.

Для последнего условия в (4.5) заметим, что 〈A,D2ϕ〉 = 2μTr(A(x, t)), и, таким образом, вы-
берем d3 = 2μM1.

При указанных выше значениях μ, d0, d1, d2, d3 отношения (4.8) и (4.11) трансформируются в

β � 2μ(M1 +M2R) =
2(M1 +M2R)

4c0
, β � μR2

T
=

R2

4c0T
, T∗ =

μR2

β
=

R2

4c0β
. (4.15)

Выбранное β в (4.3) удовлетворяет первым двум условиям в (4.15). Кроме того, T∗ в (4.15) в
точности соответствует заданному в (4.3). Более того, из (4.14) следует, что

η∗ = 1− (μr20/(μR
2))β = 1− (r0/R)2β ,

что является тем же числом, что и в (4.3). Доказательство завершено.
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Ключевым улучшением оценки (4.4) по сравнению с принципом максимума является множи-
тель η∗, принадлежащий интервалу (0, 1). Из приведённой выше леммы о росте выведем более
конкретные оценки для суб- и суперрешений, а также сами решения для всех времён. Основное
внимание уделим убывающим решениям для больших времён, хотя также получим некоторые
«оптимальные» оценки для малых времён.

Предположение 4.2. Пусть A : U × (0,∞) → Mn×n
sym и b : U × (0,∞) → R

n удовлетворяют
следующим условиям:
(i) существует положительная константа c0 такая, что

ξTA(x, t)ξ � c0|ξ|2 для всех (x, t) ∈ U × (0,∞) и всех ξ ∈ R
n; (4.16)

(ii) A(x, t) и b(x, t) ограничены на U × (0,∞).

В предположении 4.2 определим линейный оператор L̃ формулой (4.2) для w ∈ C2,1
x,t (U×(0,∞)).

По условию (ii) в предположении 4.2, существуют константы M1 > 0 и M2 > 0 такие, что

Tr(A(x, t)) � M1, |b(x, t)| � M2 для всех (x, t) ∈ U × (0,∞). (4.17)

Предложение 4.1. Пусть предположение 4.2 справедливо, а положительные числа M1, M2

заданы как в (4.17). Положим

β =
1

2c0
(M1 +M2R), T∗ =

R2

4c0β
, η∗ = 1− (r0/R)2β ,

ν = T−1
∗ ln(1/η∗), ν0 =

R2

2c0
ln(R/r0).

(4.18)

Пусть w ∈ C(Ū × [0,∞)) ∩ C2,1
x,t (U × (0,∞)).

(i) Если L̃w � 0 на U × (0,∞) и w � 0 на Γ× (0,∞), тогда

max
x∈Ū

w(x, t) � (1− e−ν0/t)max{0,max
x∈Ū

w(x, 0)} при 0 < t � T∗, (4.19)

max
x∈Ū

w(x, t) � η−1
∗ e−νtmax{0,max

x∈Ū
w(x, 0)} при t � 0, (4.20)

и, следовательно,
lim sup
t→∞

max
x∈Ū

w(x, t) � 0. (4.21)

(ii) Если L̃w � 0 на U × (0,∞) и w � 0 на Γ× (0,∞), тогда

min
x∈Ū

w(x, t) � (1− e−ν0/t)min{0,min
x∈Ū

w(x, 0)} при 0 < t � T∗, (4.22)

min
x∈Ū

w(x, t) � η−1
∗ e−νtmin{0,min

x∈Ū
w(x, 0)} при t � 0, (4.23)

и, следовательно,
lim inf
t→∞ min

x∈Ū
w(x, t) � 0. (4.24)

(iii) Если L̃w = 0 на U × (0,∞) и w = 0 на Γ× (0,∞), тогда

max
x∈Ū

|w(x, t)| � (1− e−ν0/t)max
x∈Ū

|w(x, 0)| при 0 < t � T∗, (4.25)

max
x∈Ū

|w(x, t)| � η−1
∗ e−νtmax

x∈Ū
|w(x, 0)| при t � 0, (4.26)

и, следовательно,
lim
t→∞max

x∈Ū
|w(x, t)| = 0. (4.27)

Доказательство. Для любого целого числа k � 0 положим

Tk = kT∗, Jk = max{0,max
x∈Ū

w(x, Tk)} � 0.

(i) В этом случае L̃w � 0 на U × (0,∞) и w � 0 на Γ× [0,∞).
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Сначала докажем (4.19). Полагая t ∈ (0, T∗], применим лемму 4.1 к T = t. Переобозначим β,
T∗, η∗ через β′, T ′∗, η′∗ в (4.3) и, заметив, что

t � T∗ =
R2

4c0β
=

R2

2(M1 +M2R)
,

получим

β′ =
1

4c0
max

{
2(M1 +M2R),

R2

t

}
=

R2

4c0t
,

T ′
∗ = R2/(4c0β

′) = t,

η′∗ = 1− (r0/R)R
2/(2c0t) = 1− e−ν0/t.

Из (4.4) получаем, что

max
Ū

w(x, t) � η′∗ max{0,max
Ū

w(x, 0)} = (1− e−ν0/t)max{0,max
Ū

w(x, 0)},

что доказывает (4.19).

Далее докажем (4.20). При k � 1 применяем лемму 4.1 к цилиндру Ū × [Tk−1, Tk], т. е. при
T = Tk − Tk−1 = T∗. Снова, используя β′, T ′∗, η′∗ для обозначения β, T∗, η∗ в (4.3), получаем

β′ = max

{
M1 +M2R

2c0
,

R2

4c0T

}
= β,

T ′
∗ =

R2

4c0β′ =
R2

4c0β
= T∗,

η′∗ = 1− (r0/R)2β
′
= 1− (r0/R)2β = η∗.

Таким образом, из оценки (4.4) следует, что Jk � η∗Jk−1.Итерируя это неравенство по k, получаем

Jk � ηk∗J0 для любого k � 0. (4.28)

Для каждого t > 0 пусть k � 0 и t ∈ (Tk, Tk+1]. Заметим, что k+1 � t/T∗. Из принципа максимума,
неравенства w � 0 на Γ× (Tk−1, Tk] и неравенства (4.28) имеем

w(x, t) � Jk � ηk∗J0 = η−1
∗ ηk+1

∗ J0 � η−1
∗ η

t/T∗∗ J0 = η−1
∗ e−tT−1∗ ln(1/η∗)J0.

Таким образом,
max
x∈Ū

w(x, t) � η−1
∗ e−νtJ0 для любого t � 0,

что доказывает (4.20). Устремляя t к бесконечности в (4.20), получаем (4.21).

(ii) В этом случае мы можем применить результаты пункта (i), заменив w на −w. Тогда из (4.19)
и (4.20) следует, что

max
x∈Ū

(−w(x, t)) � (1− e−ν0/t)max{0,max
Ū

(−w(x, 0))} при 0 < t � T∗, (4.29)

max
x∈Ū

(−w(x, t)) � η−1
∗ e−νtmax{0,max

Ū
(−w(x, 0))} при t � 0, (4.30)

что влечёт (4.22) и (4.23) соответственно. Устремляя t к бесконечности в (4.23), получим (4.24).

(iii) Поскольку L̃w = 0 на U × (0,∞) и w = 0 на Γ× (0,∞), мы можем применить результаты
обоих пунктов (i) и (ii) выше. Заметим, что

|w(x, t)| = max{w(x, t),−w(x, t)} � max{max
x∈Ū

w(x, t),max
x∈Ū

(−w(x, t))}. (4.31)

При 0 < t � T∗, объединяя (4.31) с (4.19) и (4.29), и используя тот факт, что

max
Ū

w(x, 0), max
Ū

(−w(x, 0)) � max
Ū

|w(x, 0)|, (4.32)

получаем (4.25).
При t � 0 объединение (4.31) с (4.20), (4.30) и (4.32) даёт (4.26). Наконец, из (4.26) следу-

ет (4.27).
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Замечание 4.1. Заметим, что оценки (4.19), (4.22) и (4.21) для малых времён при t → 0+

более оптимальны, чем их аналоги для больших времён (4.20), (4.23) и (4.27). Это связано с тем,
что множители перед исходными данными сходятся к 1 при t → 0+, а не к η−1∗ > 1.

4.2. Результаты для нелинейной задачи. Вернёмся к нелинейной задаче.

Предположение 4.3. Пусть A : U × (0,∞) → Mn×n
sym , K : U × (0,∞) → Mn×n и B : U ×

(0,∞) → R
n таковы, что

(i) A(x, t) удовлетворяет условию (4.16);
(ii) A(x, t) и B(x, t) ограничены на U × (0,∞);
(iii) существуют константы c1 � 0 и c2 � 0 такие, что

−c1|ξ|2 � ξTK(x, t)ξ � c2|ξ|2 для всех (x, t) ∈ U × (0,∞), всех ξ ∈ R
n. (4.33)

Будем считать предположение 4.3 выполненным до конца этого раздела. Условие (4.33) в пред-
положении 4.3 означает, что K удовлетворяет условиям (3.15) и (3.16) для всех T > 0. (В частно-
сти, если K ограничено на U × (0,∞), то (4.33) заведомо выполняется.) В силу ограниченности
B и A на U × (0,∞) существуют положительные числа M0 и M1 такие, что

|B(x, t)| � M0 для всех (x, t) ∈ U × (0,∞), (4.34)

Tr(A(x, t)) � M1 для всех (x, t) ∈ U × (0,∞). (4.35)
Рассмотрим начально-краевую задачу

⎧
⎪⎪⎨

⎪⎪⎩

∂u

∂t
− 〈A,D2u〉+ uB · ∇u+ P ′(u)(K∇u) · ∇u = 0 на U × (0,∞),

u(x, t) = u∗ на Γ× (0,∞),

u(x, 0) = u0(x) на U,

(4.36)

где u∗ —константа, а u0(x)— заданная функция.
Определим нелинейный оператор L с помощью (3.7) для любой функции u ∈ C2,1

x,t (U × (0,∞)),
причём область значений u является подмножеством J.

Предположим, что u ∈ C(Ū×[0,∞))∩C2,1
x,t (U×(0,∞)) является решением (4.36) и удовлетворяет

условию
u(x, t) ∈ J для всех (x, t) ∈ U × (0,∞), (4.37)

Как и в (3.31), мы определяем линейный оператор L по формуле

Lw = wt − 〈A(x, t),D2w〉+ B̃(x, t) · ∇w, где B̃(x, t) = u(x, t)B(x, t)

для любой функции w ∈ C2,1
x,t (U × (0,∞)).

В силу непрерывности u(x, t) на Ū × [0,∞) мы должны иметь

u(x, 0) = u∗ при x ∈ Γ (4.38)

и, вместе с требованием (4.37), u∗ ∈ J̄ . Кроме того, функция u0(x) непрерывна при x ∈ U , а
u(x, 0) является её единственным продолжением до непрерывной функции на Ū . Следовательно,
можно сказать, что u(x, 0) = u0(x) на Ū и u = u∗ на Γ× [0,∞). Обозначим

m∗ = min
x∈Ū

u(x, 0), M∗ = max
x∈Ū

u(x, 0).

Тогда в силу (4.38) имеем m∗ � u∗ � M∗. Поскольку u(U × (0,∞)) ⊂ J, то m∗,M∗ ∈ J̄ и,
следовательно, отрезок [m∗,M∗] ⊂ J̄ .

Из принципа максимума — теоремы 3.1 — следует, что для всех T > 0

m∗ � u(x, t) � M∗ на Ū × [0,∞). (4.39)

Если m∗ = M∗, то, очевидно,

u = m∗ = u∗ = M∗ на Ū × [0,∞). (4.40)

По этой причине сейчас мы сосредоточимся на случае m∗ < M∗. Выберем любую точку (x0, t0) ∈
U × (0,∞). Тогда u(x0, t0) ∈ J ∩ [m∗,M∗].

Рассмотрим случай m∗ 	∈ J. Поскольку m∗,M∗ находятся в интервале J̄ и m∗ < M∗, можно
сделать вывод, что m∗ не может быть правой конечной точкой J, следовательно, m∗ должна быть
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левой конечной точкой J и J̄ . Аналогично, если M∗ 	∈ J, то M∗ должна быть правой конечной
точкой J и J̄ .

Из этих рассуждений получим следующие условия для m∗ < M∗:
(E1) M∗ ∈ J, m∗ 	∈ J, правый предел lim

z→m+∗
P (z) существует и принадлежит R ∪ {−∞},

(E2) m∗ ∈ J, M∗ 	∈ J, левосторонний предел lim
z→M−∗

P (z) существует и принадлежит R ∪ {∞}.

Рассмотрим случай (E1) и λ > 0. Функцию eλP (z), z ∈ J, можно продолжить до непрерывной
функции Eλ : J∪{m∗} → [0,∞). Любую функцию Fλ из (3.14) можно продолжить до C1-функции
с J ∪ {m∗} в R, по-прежнему обозначая её Fλ, следующим образом:

Fλ(s) = C

s∫

s0

Eλ(z)dz +C ′, s ∈ J ∪ {m∗}. (4.41)

Рассмотрим случай (E2) и λ < 0. Аналогичным образом, любую функцию Fλ из (3.14) можно
продолжить до C1-функции с J ∪ {M∗} в R, по-прежнему обозначая её Fλ:

Fλ(s) = C

s∫

s0

Eλ(z)dz + C ′, s ∈ J ∪ {M∗}. (4.42)

Теорема 4.1. Пусть m∗ < M∗.
(i) Если m∗,M∗ ∈ J, то существуют число C0 > 0, зависящее от c0, c1, c2, M0, M1, m∗, M∗,

и число ν > 0, зависящее от c0, M0, M1, m∗, M∗, такие, что

max
x∈Ū

|u(x, t)− u∗| � C0e
−νtmax

x∈Ū
|u0(x)− u∗| при t � 0. (4.43)

(ii) Предположим, что выполняется либо c1 = 0, либо условие (E1). Тогда

lim sup
t→∞

max
x∈Ū

u(x, t) � u∗. (4.44)

Если, кроме того, u∗ = m∗, то

lim
t→∞max

x∈Ū
|u(x, t)− u∗| = 0. (4.45)

(iii) Предположим, что выполняется либо c2 = 0, либо условие (E2). Тогда

lim inf
t→∞ min

x∈Ū
u(x, t) � u∗. (4.46)

Если, кроме того, u∗ = M∗, то имеем (4.45).
(iv) Следовательно, если либо

(a) c1 = 0 и (E2), либо
(b) c2 = 0 и (E1),
то имеет место (4.45).

Доказательство. Из (4.39) получаем |u(x, t)| � max{|m∗|, |M∗|} для всех (x, t) ∈ Ū × [0,∞).
Объединяя это с (4.34), получаем

|B̃(x, t)| � M2 для всех (x, t) ∈ U × (0,∞), где M2 = M0 max{|m∗|, |M∗|}. (4.47)

Пусть M1 и M2 определены как в (4.35) и (4.47), а s, η∗ и ν определены, как в (4.18). Заметим,
что последние три числа зависят только от c0, M0, M1, m∗, M∗.

Пусть
λ1 > 0 и λ2 < 0 таковы, что λ1 � c1/c0 и λ2 � −c2/c0. (4.48)

Пусть функции Fλj
, j = 1, 2, заданы формулой (3.14) при C = 1, C ′ = 0 и λ = λj. Определим

wj = Fλj
(u) на U × (0,∞). (4.49)

По лемме 3.1 (ii) и (iii) имеем

Lw1 � 0, Lw2 � 0 на U × (0,∞). (4.50)
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Ниже, всякий раз, когда мы применяем предложение 4.1 к оператору L, это подразумевает,
что L̃ = L, где b(x, t) = B̃(x, t).

(i) Доказательство (4.43) разделим на три шага.

Шаг 1. Поскольку m∗,M∗ ∈ J, имеем

u(Ū × [0,∞)) ⊂ [m∗,M∗] ⊂ J. (4.51)

Выберем два числа λ1 и λ2, удовлетворяющие условию (4.48). В этом случае в силу (4.51) можно
продолжить функцию (4.49) до wj = Fλ1(u) на Ū × [0,∞), j = 1, 2. Тогда мы по-прежнему
имеем (4.50).

Определим w∗,j = Fλj
(u∗) и w̄j = wj − w∗,j, j = 1, 2, на Ū × [0,∞). Очевидно, w̄j = 0 на

Γ × [0,∞), j = 1, 2. Применяя предложение 4.1 (i) к оператору L и функции w := w̄1, из (4.20)
при t � 0 получаем, что

max
x∈Ū

w̄1(x, t) � η−1
∗ e−νtmax{0,max

Ū
w̄1(x, 0)} � η−1

∗ e−νtmax
Ū

|w̄1(x, 0)|. (4.52)

Аналогично, применяя предложение 4.1 (ii) к оператору L и функции w := w̄2, из (4.23) для всех
t � 0 следует, что

min
x∈Ū

w̄2(x, t) � η−1
∗ e−νtmin{0,min

Ū
w̄2(x, 0)} � −η−1

∗ e−νtmax
Ū

|w̄2(x, 0)|} при t � 0. (4.53)

Шаг 2. Следующий шаг состоит в том, чтобы связать неравенства (4.52) и (4.53) при u(x, t)−u∗.
Для этого обозначим

C1 = min{eλ1P (m∗), eλ2P (M∗)}, C2 = max{eλ1P (M∗), eλ2P (m∗)}.
Для j = 1, 2 имеем

0 < C1 � F ′
λj
(z) = eλjP (z) � C2 при z ∈ [m∗,M∗].

Выше мы использовали свойство возрастания P, см. (3.2). Следовательно, для j = 1, 2

C1|s− u∗| � |Fλj
(s)− Fλj

(u∗)| � C2|s− u∗| при z ∈ [m∗,M∗]. (4.54)

Более конкретно, по теореме о среднем значении для j = 1, 2 имеем:
C1(s− u∗) � Fλj

(s)− Fλj
(u∗) � C2(s− u∗) при s ∈ [u∗,M∗],

C2(s− u∗) � Fλj
(s)− Fλj

(u∗) � C1(s− u∗) при s ∈ [m∗, u∗).
(4.55)

Следовательно, при j = 1 из (4.55) для s ∈ [m∗,M∗] имеем, что

s− u∗ � max{C−1
1 (Fλ1(s)− Fλ1(u∗)), C

−1
2 (Fλ1(s)− Fλ1(u∗))}. (4.56)

При j = 2, для s ∈ [m∗,M∗] имеем:

s− u∗ � min{C−1
2 (Fλ2(s)− Fλ2(u∗)), C

−1
1 (Fλ2(s)− Fλ2(u∗))}. (4.57)

Шаг 3. Теперь, объединяя неравенство (4.56) с оценкой (4.52), получаем для любого t � 0, что

u(x, t)− u∗ � max{C−1
1 (w1(x, t)− w∗,1), C−1

2 (w1(x, t)− w∗,1)} �
� max{C−1

1 η−1
∗ e−νtmax

Ū
|w1(x, 0) − w∗,1|, C−1

2 η−1
∗ e−νtmax

Ū
|w1(x, 0)− w∗,1|} �

� C−1
1 η−1

∗ e−νtmax
Ū

|w1(x, 0)− w∗,1|.
Вместе с (4.54) для оценки последнего максимума это даёт

u(x, t)− u∗ � C−1
1 C2η

−1
∗ e−νtmax

Ū
|u(x, 0) − u∗|. (4.58)

Далее, объединяя неравенство (4.57) с оценкой (4.53), получаем

u(x, t)− u∗ � min{C−1
2 (w2(x, t)− w∗,2), C−1

1 (w2(x, t)− w∗,2)} �
� min{−C−1

2 η−1
∗ e−νtmax

Ū
|w2(x, 0) − w∗,2|,−C−1

1 η−1
∗ e−νtmax

Ū
|w2(x, 0) − w∗,2|} �

� −C−1
1 η−1

∗ e−νtmax
Ū

|w2(x, 0) − w∗,2|.
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Опять же, отсюда с учётом (4.54) получим

u(x, t) − u∗ � −C−1
1 C2η

−1
∗ e−νtmax

Ū
|u(x, 0) − u∗|. (4.59)

Наконец, объединение оценок (4.58) и (4.59) даёт

|u(x, t)− u∗| � C−1
1 C2η

−1
∗ e−νtmax

Ū
|u(x, 0) − u∗|,

что доказывает искомую оценку (4.43).

(ii) Сначала докажем (4.44).

Случай 1: c1 = 0. В этом случае Lu � Lu = 0. Тогда, применяя предложение 4.1 (ii) к оператору
L и функции w := u− u∗, получаем (4.44) из (4.21).

Случай 2: c1 > 0 и выполнено (E1). Имеем диапазон u(Ū × [0,∞)), являющийся подмножеством
J ∪ {m∗}. Пусть λ1 = c1/c0 > 0. Используем расширенное определение функции Fλj

на J ∪ {m∗},
заданное формулой (4.41) с C = 1, C ′ = 0 и λ = λ1. Тогда мы можем определить w∗,1 = Fλ1(u∗)
и w1 = Fλ1(u), w̄1 = wj −w∗,1 на Ū × [0,∞).

Согласно (4.50), имеем Lw̄1 � 0 на U × (0,∞). Согласно предложению 4.1 (i), применённому к
оператору L и функции w̄1, из (4.21) следует, что

lim sup
t→∞

max
x∈Ū

w1(x, t) � w∗,1. (4.60)

Из возрастания и непрерывности Fλ1 по (4.60) следует, что

Fλ1(u∗) = w∗,1 � lim sup
t→∞

max
x∈Ū

Fλ1(u(x, t)) = lim sup
t→∞

Fλ1(max
x∈Ū

u(x, t)) = Fλ1(lim sup
t→∞

max
x∈Ū

u(x, t)).

Поэтому благодаря строгому возрастанию Fλ1 имеем

u∗ � lim sup
t→∞

max
x∈Ū

u(x, t), (4.61)

что доказывает (4.44). Это завершает доказательство (4.44).

Теперь рассмотрим u∗ = m∗. Имеем u(x, t) � u∗, откуда по (4.44) следует, что

lim sup
t→∞

max
x∈Ū

|u(x, t) − u∗| = lim sup
t→∞

max
x∈Ū

(u(x, t) − u∗) � 0.

Таким образом, получаем (4.45).

(iii) Сначала докажем (4.46).

Случай 1: c2 = 0. В этом случае Lu � Lu = 0. Тогда из (4.24) следует (4.46) после применения
предложения 4.1 (iii) к оператору L и функции w := u− u∗.

Случай 2: c2 > 0 и выполнено (E2). Доказательство такое же, как в части (ii), случай 2. Действи-
тельно, имеем u(Ū × [0,∞)) ⊂ J ∪ {M∗}. Пусть λ2 = −c2/c0 < 0, а Fλ2 —расширенная функция
на J ∪ {M∗}, определяемая формулой (4.42) с C = 1, C ′ = 0 и λ = λ2. Определим w∗,2 = Fλ2(u∗)
и w2 = Fλ2(u), w̄2 = wj −w∗,2 на Ū × [0,∞).

Согласно (4.50), имеем Lw̄2 � 0 на U×(0,∞). Тогда, применяя предложение 4.1 (ii) к оператору
L и функции w̄2, из (4.24) получаем, что

lim inf
t→∞ min

x∈Ū
w2(x, t) � w∗,2. (4.62)

Так же, как и в (4.61), из (4.62) имеем, что

u∗ � lim inf
t→∞ min

x∈Ū
u(x, t),

что доказывает (4.46).

Теперь, когда (4.46) уже установлено, рассмотрим u∗ = M∗. Из (4.46) следует, что

lim sup
t→∞

max
x∈Ū

|u(x, t) − u∗| = − lim inf
t→∞ min

x∈Ū
(−|u(x, t)− u∗|) = − lim inf

t→∞ min
x∈Ū

(u(x, t) − u∗) � 0,

следовательно, мы снова получаем (4.45).

(iv) С одной стороны, с учётом (4.31) имеем
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lim sup
t→∞

max
x∈Ū

|u(x, t) − u∗| �
� max{lim sup

t→∞
max
x∈Ū

(u(x, t) − u∗), lim sup
t→∞

max
x∈Ū

(−(u(x, t)− u∗))} =

= max{lim sup
t→∞

max
x∈Ū

(u(x, t) − u∗),− lim inf
t→∞ min

x∈Ū
(u(x, t) − u∗)}. (4.63)

С другой стороны, в обоих случаях (a) и (b) имеем (4.44) и (4.46). Тогда, объединяя (4.63) с (4.44)
и (4.46), получаем (4.45).

В качестве следствия покажем, что экспоненциальная скорость убывания |u(x, t) − u∗| при
t → ∞ зависит только от асимптотического поведения A(x, t) и B(x, t) при t → ∞, но не от
начальных данных u0(x) и матрицы K(x, t).

Следствие 4.1. В предположении 4.3 положим

c′0 = lim inf
t→∞ inf

x∈U
min

ξ∈Rn,|ξ|=1
ξTA(x, t)ξ, (4.64)

и пусть M ′
0, M

′
1 будут двумя положительными числами такими, что

lim sup
t→∞

sup
x∈U

|B(x, t)| < M ′
0, (4.65)

lim sup
t→∞

sup
x∈U

Tr(A(x, t)) < M ′
1. (4.66)

Если m∗,M∗ ∈ J, то существует число ν∗ > 0, зависящее от u∗, c′0, M ′
0, M

′
1, но не от начальных

данных u0(x), такое, что

max
x∈Ū

|u(x, t)− u∗| = O(e−ν∗t) при t → ∞. (4.67)

Доказательство. Из (4.43) ясно, что

lim
t→∞max

x∈Ū
|u(x, t)− u∗| = 0. (4.68)

Также заметим, что u∗ ∈ J. Согласно (4.64), (4.66), (4.65), (4.68), существуют T > 0 и m′,M ′ ∈ J,
достаточно близкие к u∗, при этом m′ < u∗ < M ′, такие, что

u(x, t) ∈ [m′,M ′] для всех (x, t) ∈ Ū × [T,∞),

|B(x, t)| � M ′
0, Tr(A(x, t)) � M ′

1 для всех (x, t) ∈ U × [T,∞),

ξTA(x, t)ξ � c′0
2
|ξ|2 для всех (x, t) ∈ U × [T,∞), ξ ∈ R

n.

Повторим доказательство теоремы 4.1 (i) при

u := u(x, t+ T ), A := A(x, t+ T ), B := B(x, t+ T ), K := K(x, t+ T ),

c0 := c′0/2, M0 := M ′
0, M1 := M ′

1, m∗ := m′, M∗ := M ′

и теми же числами c1, c2. Заметим, что доказательство работает с заменами m∗ := m′ иM∗ := M ′,
как указано выше, хотяm′ иM ′ могут не быть минимальным и максимальным значениями u(x, T )
в Ū . Пусть ν∗ = ν задано формулой 4.18, где M2 заменено на M ′

2 = M ′
0 max{|m′|, |M ′|}, см. (4.47).

Тогда ν∗ зависит только от чисел c′0/2, M ′
0, M

′
1, m

′, M ′, и, следовательно, не зависит от u0(x).
Из (4.43) получаем, что

|u(x, t+ T )− u∗| � C∗e−ν∗tmax
Ū

|u(x, T )− u∗| для некоторого числа C∗ > 0.

Таким образом, получаем оценку (4.67).

Пример 4.1. Используя пример 3.1, рассмотрим случаи (a) с (3.25) и (b) с (3.26), (3.27). Как
при J = [0,∞), так и при J = R всегда имеем m∗,M∗ ∈ J. Следовательно, для любого u∗ ∈ J = J̄
и любого соответствующего решения u из теоремы 4.1 (i) следует оценка (4.43) для всех t � 0.
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Пример 4.2. Рассмотрим слабосжимаемые жидкости, как в случае (c) из примера 3.1. Имеем
J = (0,∞), u � 0 на Ū × [0,∞) и M∗ � u∗ � m∗ � 0. Учитывая (4.39) и u > 0 на U × (0,∞), имеем
M∗ > 0, т. е. M∗ ∈ J. Учитывая (4.40), ниже рассмотрим только m∗ < M∗.

Случай 1: u∗ > 0. Рассмотрим два подслучая.
Случай 1a: m∗ > 0. Тогда m∗,M∗ ∈ J и из теоремы 4.1 (i) следует оценка (4.43) для всех t � 0.
Случай 1b:m∗ = 0. Тогда выполняется условие (E1). С использованием (4.44) из теоремы 4.1 (ii)

следует оценка u для больших времён, которая не зависит от u0(x). Если, кроме того, c2 = 0, то
из теоремы 4.1 (iv)(b) следует предел (4.45).

Случай 2: u∗ = 0. Тогда m∗ = 0 	∈ J и выполняется условие (E1). Из теоремы 4.1 (ii) получаем
предел (4.45), который запишем как

lim
t→∞max

x∈Ū
u(x, t) = 0. (4.69)

Более того, мы можем даже получить оценки убывания для всего времени. Действительно, можно
взять c1 > 0, λ1 = c1/c0 и следовать случаю 2 доказательства теоремы 4.1 (ii). Можно проверить,
что eλ1P (z) при z > 0 имеет продолжение Eλ1(z) = zλ1 при z � 0. Аналогично полученному
нами результату (3.28), положив m = λ1 + 1 = c1/c0 + 1 и выбрав λ = λ1, C = m, C ′ = sm0
в формуле (4.41), мы можем использовать явную функцию Fλ1(s) = sm при s � 0. Затем на
шаге (4.60) мы используем оценку (4.20) вместо предельного значения (4.21). Получаем при t � 0:

max
x∈Ū

w1(x, t) � η−1
∗ e−νtmax

x∈Ū
w1(x, 0)

что влечёт
max
x∈Ū

um(x, t) � η−1
∗ e−νtmax

x∈Ū
um(x, 0).

Поэтому вместо предела (4.69) мы имеем

max
x∈Ū

u(x, t) � η
−1/m
∗ e−νt/m max

x∈Ū
u(x, 0) для всех t � 0.

СПИСОК ЛИТЕРАТУРЫ

1. Aronson D.G. The porous medium equation// В сб.: «Nonlinear diffusion problems». — Berlin—Heidelberg:
Springer, 1986. — С. 1–46. — DOI: 10.1007/BFb0072687.

2. Aulisa E., Bloshanskaya L., Hoang L., Ibragimov A. Analysis of generalized Forchheimer flows of
compressible fluids in porous media// J. Math. Phys. — 2009. — 50, № 10. — 103102. — DOI: 10.1063/
1.3204977.

3. Barletta A. Thermal instability in a horizontal porous channel with horizontal through flow and
symmetric wall heat fluxes// Transp. Porous Media. — 2012. — 92, № 2. — С. 419–437.— DOI: 10.1007/
s11242-011-9910-y.

4. Bear J. Dynamics of fluids in porous media. — New York: Dover Publications, 1988.
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Abstract. We generalize Einstein’s probabilistic method for the Brownian motion to study com-
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