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Аннотация. В данной работе обсуждаются некоторые особенности краевой задачи для системы
уравнений в частных производных, описывающей рост насыпи песка в контейнере под действи-
ем вертикального источника. В частности, характеризуется долговременное поведение профилей
поверхности и приводится достаточное условие на вертикальный источник, гарантирующее схо-
димость к равновесию за конечное время. На контрпримерах показано, что устойчивая конфигу-
рация может не достигаться за конечное время, вообще говоря, даже если источник не зависит
от времени. Наконец, дается полная характеристика равновесных профилей поверхности.
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1. Введение

Со времени работы [12] вариационный подход к изучению растущих песчаных насыпей за-
рекомендовал себя как эффективный способ описания макроскопического поведения сыпучих
материалов. В этих моделях сложная динамика течения сыпучих материалов упрощается путём
разделения материала на статический нижний слой (стоя́щий слой), содержащий бо́льшую часть
насыпи, и текучий, динамичный верхний слой (скользящий слой). Этот подход особенно эф-
фективен для моделирования эволюции песчаной насыпи по мере добавления нового материала
(см. [3, 10]).
Нас интересует эволюция песчаной насыпи, растущей в ограниченном контейнере (бункере) под

действием вертикального источника. Контейнер имеет плоское основание Ω ⊂ R
2 и вертикальные

стенки, высота которых задаётся функцией φ : ∂Ω → [0,+∞[. Вертикальный источник, который
предполагается не зависящим от времени, моделируется функцией f : Ω → [0,+∞[. В каждый мо-
мент времени t � 0 форма песчаной насыпи (т. е. профиль стоящего слоя) описывается графиком
функции u(t, ·), где u : R+ ×Ω → R. Обозначим через u0 начальный профиль насыпи. Ключевой
особенностью сыпучего материала является существование критического угла наклона, который
не может быть превышен стоящим слоем. Далее мы нормализуем критический уклон к единице
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и, следовательно, накладываем ограничение |∇u| � 1 на пространственный градиент u. Толщина
слоя скатывания определяется выражением v : R+ ×Ω → [0,+∞[, и предполагается, что матери-
ал, выбрасываемый источником, скатывается вниз только при попадании в точки с критическим
уклоном, т. е. (1 − |∇u|)v = 0 в R

+ × Ω. Когда профиль достигает вершины стенки (т. е. в тех
точках ∂Ω, где u = φ), песок, скользящий из слоя скатывания, стекает вниз. Поэтому мы вводим
третью переменную в нашей задаче: неотрицательную меру ν на ∂Ω, описывающую количество
песка, стекающего в каждой точке границы. Предполагая, что материал катится вдоль направле-
ний наискорейшего спуска, закон сохранения массы можно записать как ∂tu− div(v∇u) = f − ν.
Подводя итог, можно сказать, что для заданного бункера (Ω, φ) и вертикального источника f

динамика соответствующей растущей насыпи песка описывается триплетом (u, v, ν), удовлетво-
ряющим следующей системе уравнений в частных производных с ограничениями:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tu− div(v∇u) = f − ν в R
+ × R

N ,

|∇u| � 1, v � 0, (1− |∇u|)v = 0 в R
+ × Ω,

0 � u(t, x) � φ(x) ∀t � 0, x ∈ ∂Ω,

u(t, x) = φ(x) для ν-п.в. (t, x) ∈ R
+ × ∂Ω,

u(0, ·) = u0.

(1.1)

Точное определение решения задачи (1.1) будет дано в начале раздела 2. Поскольку анализ
можно провести в пространстве любой размерности N � 1, в приведенной выше задаче и далее мы
будем предполагать, что Ω— открытое ограниченное выпуклое подмножество RN . Более того, для
упрощения изложения мы будем предполагать, что u0 = 0, т. е. эволюция начинается с пустого
бункера. Тем не менее, мы будем рассматривать возможно ненулевые начальные данные при
анализе связанного вариационного неравенства для компоненты u (см. предложение 2.1), что,
в свою очередь, будет полезно для изучения стационарных решений задачи (2.2), т. е. решений
(u, v, ν) задачи

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− div(v∇u) = f − ν в R
N ,

|∇u| � 1, v � 0, (1− |∇u|)v = 0 п.в. в Ω,

0 � u � φ на ∂Ω,
u(x) = φ(x) для ν-п.в. x ∈ ∂Ω.

Как мы покажем в разделе 4, указанную выше задачу можно сформулировать и без явного
указания граничной меры ν, а только в терминах её носителя Γf , который можно явно построить
(см. (2.4)). В этом контексте мы можем опираться на хорошо известные результаты, касающиеся
явной характеризации решений (см. [2, 4–9]). Более точно, в [2] был рассмотрен случай задачи
открытого стола (т. е. φ = 0) с регулярной границей, который впоследствии был обобщён на
анизотропный случай в [5, 6] (см. также [7] о применении той же вариационной задачи к макро-
скопической электродинамике анизотропных жёстких сверхпроводников). В [4] был исследован
случай частично открытого контейнера, т. е. φ = 0 на части границы и φ = +∞ на оставшей-
ся части. В [8] нами была исследована задача о подносе, соответствующая граничным данным
φ, достигнутым профилем на всей границе. Наконец, общая задача о бункере, рассмотренная в
разделе 4, была изучена в [9].

Статья устроенная следующим образом.
В разделе 2 мы формулируем предположения относительно Ω, φ и f, которые гарантируют

существование решения задачи (1.1) (его N -мерной слабой формулировки), как доказано в [10].
Раздел 3 посвящен асимптотическому поведению формы насыпи. Мы показываем, что решение

u(t, ·) сходится при t → +∞ к пределу u∞ (см. теорему 3.2). После явных вычислений приме-
ров 3.1 и 3.2 мы обсуждаем условия его сходимости за конечное время, формулируя предполо-
жение и доказывая результат в этом направлении (см. предположение 3.1 и теорему 3.3).
В разделе 4 мы показываем, что u∞ является компонентой u стационарного решения зада-

чи (1.1) (см. теорему 4.3). Этот результат, по сути, основан на тщательном анализе стационарной
задачи, проведённом в [9].
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Обозначения.
• Евклидова норма вектора ξ ∈ R

N обозначается как |ξ|.
• Для множества E ⊆ R

N через χE обозначим характеристическую функцию E, т. е.

χE(x) =

{
1, если x ∈ E,

0, если x 	∈ E.

• Для любого E ⊂ R
N мы обозначим через M(E) множество ограниченных борелевских мер,

сосредоточенных на E, а через M+(E)—множество неотрицательных мер в M(E).
• Для μ ∈ L∞(0, T ;M(E)) положим μt = μ(t, ·).
• Для функции u = u(t, x) через ∂tu и ∇u обозначим соответственно производную по времени
и пространственную часть градиента.

• Для любого открытого множества A через C∞
c (A) обозначим множество гладких функций с

компактным носителем в A, а через D′(A)— его топологически двойственное, т. е. множество
распределений на A.

• Lip1(A)—множество липшицевых функций в A с константой Липшица 1, т. е.

Lip1(A) =
{
u : A→ R : u(x)− u(y) � |x− y|, ∀x, y ∈ A

}
.

• L1
+(A)—множество неотрицательных функций из L1(A).

• Для f ∈ L1
+(A) под supp(f) ⊆ A будем понимать существенный носитель f как функции,

расширенной в R
N путём продолжения нулём на R

N \ A.

2. Эволюционная задача

Зафиксируем целое число N � 1, а также:
(D1) непустое открытое выпуклое ограниченное множество Ω ⊂ R

N ;
(D2) полунепрерывную снизу функцию φ : ∂Ω → [0,+∞[;
(D3) неотрицательную интегрируемую функцию f ∈ L1

+(Ω).

Введём выпуклое множество допустимых профилей

Xφ :=
{
u ∈ Lip1(Ω): u � 0 в Ω, u � φ на ∂Ω

}
, (2.1)

и рассмотрим эволюционную задачу (1.1) с предыдущими данными и начальным профилем
u0 = 0. Точнее, будем говорить, что (u, v, ν) является решением системы

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tu− div(v∇u) = f − ν в R
+ × R

N ,

|∇u| � 1, v � 0, (1− |∇u|)v = 0 в R
+ × Ω,

0 � u � φ в R
+ × ∂Ω,

u = φ ν-п.в. в R
+ × ∂Ω,

u(0, ·) = 0,

(2.2)

если для каждого T > 0

(S1) u ∈ L∞(0, T ;W 1,∞(Ω)), ∂tu ∈ L2(]0, T [×Ω), u(t, ·) ∈ Xφ для п.в. t ∈ [0, T ];
(S2) v ∈ L∞(0, T ;L1

+(Ω)), ν ∈ L∞(0, T ;M+(∂Ω));

(S3) (1− |∇u(t, x)|) v(t, x) = 0 для LN+1-п.в. (t, x) ∈]0, T [×Ω;
(S4) u(0, ·) = 0 в Ω;
(S5) u(t, x) = φ(x) νt-п.в. на ∂Ω, для п.в. t ∈]0, T [;
(S6) для каждой пробной функции ϕ ∈ C∞

c (RN ) справедливо
d

dt

∫

Ω

u(t, x)ϕ(x) dx +

∫

Ω

v(t, x)∇u(t, x) · ∇ϕ(x) dx =

∫

Ω

f(x)ϕ(x) dx −
∫

∂Ω

ϕ(x) dνt(x) в D′(0, T ).

Замечание 2.1. Заметим, что каждая функция u ∈ L∞(0, T ;W 1,∞(Ω)) принадлежит также
C([0, T ];L2(Ω)) (см. [13, Theorem 7.104]), так что начальное условие u(0, ·) = 0 (или даже u(0, ·) =
u0 ∈ Xφ) имеет смысл. Более того, это также означает, что условие u(t, ·) ∈ Xφ в (S1) выполняется
для всех t ∈ [0, T ].
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Решающую роль в описании решения задачи (2.2) играет функция Лакса—Хопфа, связанная
с граничными данными φ:

uφ(x) := min{φ(y) + |x− y| : y ∈ ∂Ω}, x ∈ Ω.

Напомним, что uφ —липшицева функция в Ω, |∇uφ| = 1 п.в. в Ω, и эта функция является макси-
мальной во множестве Xφ, определённом в (2.1), т. е.

u � uφ в Ω, ∀u ∈ Xφ. (2.3)

Замечание 2.2. Если φ = 0 (задача открытого стола в вариационных моделях для растущих
песчаных насыпей), то функция Лакса—Хопфа является функцией расстояния от границы Ω.

Для x ∈ Ω введём множество Π(x) всех проекций x на ∂Ω, т. е.

Π(x) := {y ∈ ∂Ω: uφ(x) = φ(y) + |x− y|},
и границу стока

Γf := {y ∈ ∂Ω: ∃x ∈ supp(f) такой, что y ∈ Π(x)} =
⋃

x∈supp(f)
Π(x). (2.4)

Поскольку φ—полунепрерывная снизу функция, а носитель supp(f) компактен, то легко видеть,
что Γf замкнута.
Следующий результат существования для задачи (2.2) и свойства решений, необходимые в

остальной части статьи, были доказаны в [10, Theorem 6.5] (см. также [12]).

Теорема 2.1. При условиях (D1)–(D3) существует решение (u, v, ν) уравнения (2.2). Более
того,
(i) u-компонента решения единственна, а t �→ u(t, ·)—неубывающая функция в R

+;
(ii) мера νt сосредоточена на Γf для п.в. t � 0, и каждому ν соответствует единственная v.

Замечание 2.3. Фактически, результат в [10] получен в более общей постановке: предполага-
ется, что источник f является неотрицательной ограниченной мерой в Ω, а компонента v, в свою
очередь, является неотрицательной ограниченной мерой в Ω. Тем не менее, компоненты (v, ν) по-
лучены с помощью двойственности и оптимального переноса, и следовательно, мы можем приме-
нить результаты о регулярности для плотностей потока (см. [11, Theorem 4.13] или [14, Theorem 2])
и восстановить абсолютную непрерывность компоненты v относительно меры Лебега в Ω.

Следующий результат, впервые доказанный в [12], а затем подробно описанный в [10,
Theorem 4.3] (см. также [1]), показывает, что система уравнений в частных производных (2.2)
может рассматриваться как эквивалентное условие первого порядка для задачи ограниченной
оптимизации, решаемой относительно компоненты u, таким образом, другие компоненты (v, ν)
решения могут пониматься как множители Лагранжа.

Теорема 2.2. Следующие утверждения эквивалентны:
(i) Если (u, v, ν) является решением (2.2), то для любого T > 0 справедливо неравенство

∫

Ω

(f(x)− ∂tu(t, x)) (w(x) − u(t, x)) dx � 0 ∀w ∈ Xφ (2.5)

для п.в. t ∈]0, T [.
(ii) Пусть u ∈ L∞(0, T ;W 1,∞(Ω)) удовлетворяет условию (S1), начальному условию (S4) и

условию максимальности (2.5). Тогда существует (v, ν) такое, что (u, v, ν) является ре-
шением уравнения (2.2).

Замечание 2.4. Используя терминологию выпуклого анализа, при f ∈ L2(Ω) условие макси-
мальности (2.5) можно перефразировать как дифференциальное включение.
В частности, пусть I : L2(Ω) → [0,+∞] обозначает индикаторную функцию выпуклого множе-

ства Xφ, определяемую как

I(w) :=

{
0, если w ∈ Xφ,

+∞ иначе,
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и обозначим через ∂I(w) его субдифференциал в w ∈ L2(Ω).
Тогда вариационное неравенство (2.5) эквивалентно дифференциальному включению

f − ∂tu(t, ·) ∈ ∂I(u(t, ·)), t � 0.

В дальнейшем мы будем говорить, что u удовлетворяет f − ∂tu ∈ ∂I(u(t, ·)), если выполняется
условие максимизации (2.5).

Вариационное неравенство (2.5) даёт обширную информацию о свойствах компоненты u реше-
ния (например, в теореме 2.1 (i)). Чтобы получить эту информацию, полезно вспомнить следую-
щее правило вывода, доказанное в более общей постановке в [10, Lemma 4.2].

Лемма 2.1. Пусть w ∈ L1(0, T ;W 1,∞(Ω)) и ∂tw ∈ L2(]0, T [×Ω). Тогда
1

2

d

dt

∫

Ω

|w(t, x)|2 dx =

∫

Ω

w(t, x) ∂tw(t, x) dx для п.в. t ∈]0, T [.

Единственность решения задачи (2.5) с начальными данными u(0, ·) = u0 ∈ Xφ и его монотон-
ность по t являются следствиями следующего принципа сравнения, доказанного в [3, Lemma 3.1]
или [10, Proposition 4.1] и справедливого также для источников, зависящих от времени. Поскольку
этот результат важен для наших целей, мы приводим набросок его доказательства для полноты
изложения.

Предложение 2.1 (принцип сравнения). Пусть f1, f2 ∈ L∞(0, T ;L1
+(Ω)), u

1
0, u

2
0 ∈ Xφ, при

этом f1 � f2 и u10 � u20. Пусть также ui, i = 1, 2, являются решениями задач
{
fi(t, ·) − ∂tui(t, ·) ∈ ∂I(ui(t, ·)) для п.в. t ∈]0, T [,
ui(0, ·) = ui0.

Тогда u1 � u2 в ]0, T [×Ω.

Доказательство. Пусть u+(t, x) := max{u1(t, x), u2(t, x)} и u−(t, x) := min{u1(t, x), u2(t, x)}.
Заметим, что u+, u− ∈ Xφ. В силу оптимальности u1 и u2, используя соответственно u+ и u−
в (2.5), получаем, что для п.в. t � 0

∫

Ω

(f1(t, x)− ∂tu1(t, x))(u
+(t, x) − u1(t, x)) dx � 0,

∫

Ω

(f2(t, x)− ∂tu2(t, x))(u
−(t, x) − u2(t, x)) dx � 0.

Так как u+ − u1 = (u2 − u1)χ{u1<u2} = u2 − u− и χ{u1<u2} ∂tu2 = χ{u1<u2} ∂tu
+, получаем, что

∫

Ω

(f2(t, x)− ∂tu
+(t, x))(u1(t, x)− u+(t, x)) dx =

∫

Ω

(f2(t, x)− ∂tu2(t, x))(u
−(t, x)− u2(t, x)) dx � 0,

так что ввиду f2 � f1 по лемме 2.1 имеем
1

2

d

dt

∫

Ω

|u+(t, x)− u1(t, x)|2 dx =

∫

Ω

(∂tu
+(t, x)− ∂tu1(t, x))(u

+(t, x)− u1(t, x)) dx �

�
∫

Ω

f2(t, x)(u
+(t, x)− u1(t, x)) dx −

∫

Ω

f1(t, x)(u
+(t, x)− u1(t, x)) dx � 0

для п.в. t � 0. По замечанию 2.1, ψ(t) := ‖u+(t)− u1(t)‖2L2(Ω) —непрерывная функция с ψ(0) = 0,

следовательно, из приведённого выше неравенства следует, что ψ ≡ 0, т. е. u+(t, ·) = u1(t, ·) для
любого t � 0.

Теорема 2.3. Если f ∈ L∞(0, T ;L1
+(Ω)) и u0 ∈ Xφ, то решение задачи

{
f(t, ·)− ∂tu(t, ·) ∈ ∂I(u(t, ·)) для п.в. t ∈]0, T [,
u(0, ·) = u0
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единственно, а t �→ u(t, ·)—монотонная неубывающая функция в R
+.

Доказательство. Единственность решения является прямым следствием принципа сравнения.
Более того, фиксируя t0 > 0 и применяя принцип сравнения к f1 = f, f2 ≡ 0 и u10 = u20 = u(t0, x),

получаем u(t, x) � u(t0, x) для t � t0.

3. Асимптотическая устойчивость профилей поверхности

Пусть (u, v, ν)—решение уравнения (2.2). Поскольку по теореме 2.2 (i), теореме 2.3 и (2.3)
функция t �→ u(t, ·) монотонно не убывает в R

+ и 0 � u(t, ·) � uφ для любого t, то существует
предел

u∞(x) := lim
t→+∞u(t, x), x ∈ Ω. (3.1)

Более того, u∞ ∈ Xφ, ввиду того, что u(t, ·) принадлежит Xφ для любого t � 0, а сходимость
в (3.1) равномерна в Ω.
Наша цель — дать явное представление u∞. В качестве первого шага покажем, что асимптоти-

ческий профиль максимален там, где источник активен.

Лемма 3.1. Равенство u∞(x) = uφ(x) справедливо для всех x ∈ supp(f).

Доказательство. Предположим от противного, что существует x0 ∈ supp(f) ⊂ Ω такое, что
u∞(x0) < uφ(x0). Пусть δ := (uφ(x0)−u∞(x0))/2, и пусть r > 0 таково, что uφ(x)− u∞(x) � δ для
любого x ∈ Br(x0) ∩ Ω. Поскольку f ∈ L1

+(Ω) и x0 ∈ supp(f), мы также имеем
∫

Br(x0)∩Ω
f dx > 0.

Следовательно, для любого t � 0 имеем
∫

Ω

f(x) (uφ(x)− u(t, x)) dx �
∫

Ω

f (uφ(x)− u∞(x)) dx �

�
∫

Br(x0)∩Ω
f(x) (uφ(x)− u∞(x)) dx � δ

∫

Br(x0)∩Ω
f(x) dx =: ρ > 0, ∀t � 0.

(3.2)

Учитывая uφ ∈ Xφ в (2.5), получаем, что
∫

Ω

(f(x)− ∂tu(t, x))(uφ(x)− u(t, x)) dx � 0.

Следовательно, по лемме 2.1 указанное выше неравенство и (3.2) дают

1

2

d

dt

∫

Ω

|uφ(x)− u(t, x)|2 dx = −
∫

Ω

∂tu(t, x) (uφ(x)− u(t, x)) dx �

� −
∫

Ω

f(x) (uφ(x)− u(t, x)) dx � −ρ, ∀t � 0,

что противоречит тому факту, что t �→ ‖uφ−u(t)‖2L2(Ω) —неотрицательная непрерывная функция.

Чтобы продолжить исследование u∞, которое окажется стационарным решением задачи (см.
раздел 4), нам понадобятся некоторые определения.

Определение 3.1. Отрезок [[y, x]] называется транспортным лучом, если y ∈ ∂Ω, x ∈ Ω,
uφ(x) = uφ(y) + |x− y| (т. е. y ∈ Π(x)), и [[y, x]] не является собственным подмножеством другого
отрезка, удовлетворяющего тем же свойствам. Точки y и x называются соответственно начальной
и конечной точками транспортного луча.
Обозначим через J ⊂ Ω множество конечных точек транспортных лучей, определяемое соот-

ношением

J := {x ∈ Ω: ∃y ∈ ∂Ω такое, что [[y, x]] является транспортным лучом}. (3.3)
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При заданной f ∈ L1
+(Ω) определим функцию

uf (x) := 0 ∨ sup{uφ(x)− |x− z| : z ∈ supp(f)}.
Наконец, вспоминая определение Γf в (2.4), введём множество допустимых профилей, дости-

гающих граничного значения φ на Γf

Xf := {u ∈ Xφ : u = φ на Γf}. (3.4)

Основные особенности функции uf , доказанные в [9, Proposition 5.3 и Theorem 5.5], заключа-
ются в следующем.

Теорема 3.1. Предположим, что f ∈ L1
+(Ω), f 	≡ 0. Тогда справедливы утверждения:

(i) uf ∈ Xf , uf = uφ на supp(f);
(ii) каждая функция u ∈ Xf такая, что u = uf на supp(f), удовлетворяет условию uf � u � uφ

на Ω;
(iii) uf = uφ в Ω тогда и только тогда, когда J ⊆ supp(f).

Теперь мы готовы доказать, что асимптотический профиль u∞ на самом деле является uf .

Теорема 3.2. При предположениях (D1)–(D3) (единственная) компонента u решения (2.2)
сходится монотонно и равномерно к функции uf при t→ +∞.

Доказательство. По лемме 3.1 и теореме 3.1 (i) получаем, что u∞ = uφ = uf на supp(f). Следо-
вательно, по теореме 3.1 (ii) также имеем, что

uf � u∞ � uφ в Ω. (3.5)

Заметим, что uf является (стационарным) решением (2.5). В частности, поскольку uf = uφ на
supp(f), имеем, что

∫

Ω

f(w − uf ) dx =

∫

supp(f)

f(w − uφ) dx � 0 ∀w ∈ Xφ.

Следовательно, по принципу сравнения с f1 = f2 = f, u10 = uf , u
2
0 = 0, мы заключаем, что u(t, x) �

uf (x), x ∈ Ω, для любого t � 0, так что u∞ � uf , что вместе с (3.5) завершает доказательство.

Замечание 3.1. Внеся небольшие изменения в доказательство, мы можем доказать, что един-
ственное решение u(t, ·) для (2.5) с начальными данными u0 ∈ Xφ сходится монотонно и равно-
мерно к u∞ = u0 ∨ uf при t→ +∞.

Поскольку здесь рассматривается источник f, постоянный во времени, можно было бы пред-
положить, что эволюция u(t, ·) сходится к uf за конечное время. Тем не менее, в следующих
примерах мы покажем, что в общем случае это неверно.

Пример 3.1. Пусть Ω = B1— единичный шар в R
N с центром в начале координат, φ ≡ 0 и

f(x) = (N + α)|x|α, α > 0. Поскольку supp(f) = Ω, по теореме 3.1 (iii) и теореме 3.2 (см. также
замечание 2.2), предельная функция u∞ совпадает с функцией расстояния до границы B1, т. е.

u∞(x) = uφ(x) = 1− |x|, x ∈ B1.

Начиная с u0 = 0, за конечное время tα =
2α − 1

(N + 1)α
достигаем профиля u1(x) = u1(|x|), при этом

u1(r) :=
1

2
−

∣
∣
∣
∣r −

1

2

∣
∣
∣
∣ , r ∈ [0, 1]. (3.6)

Поскольку эволюция при t ∈ [0, tα] не существенна для нашего примера, мы опускаем соответ-
ствующие вычисления и предполагаем, что начинаем в момент времени t = 0 с этого начального
профиля u1. Пусть ρ : [0,+∞[→ [0,+∞[— единственное неотрицательное решение задачи Коши

⎧
⎪⎨

⎪⎩

ρ̇ = −N
2
ρα,

ρ(0) =
1

2
.

(3.7)
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Для любого α > 0 решение является монотонной невозрастающей функцией и сходится к 0 при
t → +∞. Если α � 1, решение строго положительно и строго убывает, а для любого α ∈]0, 1[
существует τα > 0 такое, что ρ(t) > 0 для t ∈ [0, τα[ и ρ(t) = 0 для любого t � τα.
Мы утверждаем, что функция

u(t, x) :=

{
1− 2ρ(t) + |x|, если |x| < ρ(t),

1− |x|, если ρ(t) � |x| � 1,
(3.8)

является решением (2.5) при u(0, ·) = u1, и, следовательно, по теореме 2.2 (ii), u(t, x)— это эво-
люция профиля стоящего слоя при φ ≡ 0 и f(x) = (N + α)|x|α. Очевидно, что u(t, ·) сходится
к uφ за конечное время τ тогда и только тогда, когда ρ(t) = 0 для всех t � τ. Следовательно,
если α � 1, то u(t, 0) < 1 = uφ(0) для всех t � 0, так что сходимости к uφ за конечное время не
наблюдается. Если же α ∈]0, 1[, то источник имеет достаточно массы на каждом малом шаре с
центром в начале координат, чтобы заставить решение сходиться к uφ за конечное время τα.
Осталось доказать, что для каждого t � 0 и каждого w ∈ Xφ справедливо неравенство

K(t) :=

∫

B1

(f(x)− ∂tu(t, x)) · (w(x) − u(t, x)) dx � 0 ∀t � 0.

Вычисляя

∂tu(t, x) =

{
−2ρ̇(t) = N ρ(t)α, если |x| < ρ(t),

0, если ρ(t) < |x| < 1,

получаем, что

K(t) =

∫

Bρ(t)

((N + α)|x|α −N ρ(t)α) · (w(x) − 1 + 2ρ(t) − |x|) dx+

∫

B1\Bρ(t)

f(x)(w(x) − uφ(x)) dx.

Так как w � uφ, интеграл в B1 \ Bρ(t) неположителен. Для оценки первого интеграла можно
воспользоваться следующим неравенством, учитывающим, что |∇w| � 1: положив x̂ := x/|x| для
каждого x 	= 0, для каждого ρ0 ∈ [0, 1] имеем неравенство

{
w(x) � w̃(x) := w(ρ0x̂) + |x| − ρ0, если 0 < |x| � ρ0,

w(x) � w̃(x), если ρ0 � |x| � 1.
(3.9)

Пусть ρ0(t) ∈ [0, ρ(t)] определяется как

ρ0(t) :=

(
N

N + α

)1/α

ρ(t),

так что (N + α)|x|α − Nρ(t)α отрицательно, если |x| < ρ0(t), и положительно, если |x| > ρ0(t).
Следовательно, из (3.9) мы заключаем, что

[(N + α)|x|α −N ρ(t)α]w(x) � [(N + α)|x|α −N ρ(t)α]w̃(x) ∀|x| < ρ(t),

так что

K(t) �
∫

Bρ(t)

[(N + α)|x|α −N ρ(t)α] · [w̃(x)− 1 + 2ρ(t)− |x|] dx =

=

∫

Bρ(t)

[(N + α)|x|α −N ρ(t)α] · [w(ρ0(t)x̂)− ρ0(t)− 1 + 2ρ(t)] dx =

= NωN [w(ρ0(t))− ρ0(t)− 1 + 2ρ(t)]

ρ(t)∫

0

[(N + α)rα −N ρ(t)α] rN−1 dr = 0,

где w(ρ0) :=
1

NωN

∫

SN−1

w(ρ0 σ) dσ, что завершает доказательство нашего утверждения.
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Построение эволюции, представленное в примере 3.1 выше, может показаться несколько неяс-
ным. В частности, следует прояснить роль обыкновенного дифференциального уравнения (3.7).
Для этого может быть полезен следующий пример, рассматривающий более общий источник.

Пример 3.2. Рассмотрим ситуацию, аналогичную описанной в примере 3.1, т. е. Ω = B1 ⊆ R
N

и φ ≡ 0, но для

f(x) = f̃(|x|), f̃ : [0, 1] → R непрерывна, возрастает, и f̃(0) = 0.

Предположим, что в момент времени t = 0 мы начинаем с профиля u1, определённого в (3.6).
Мы хотим доказать, что функция u(t, x), определённая в (3.8), является решением (2.5) при

подходящем выборе функции ρ : [0,+∞[→ [0,+∞[.
Для определения ρ(t) (в частности, для получения обыкновенного дифференциального урав-

нения, заменяющего (3.7)), проведём следующее рассмотрение, основанное на феноменологии
растущих песчаных насыпей: только масса, засыпанная в Bρ(t), будет включена в насыпь, в то
время как масса, засыпанная в B1 \Bρ(t), свободно скатывается вниз, поскольку профиль макси-
мален. Это приводит к дополнительному условию

∫

Bρ(t)

∂tu(t, x) dx =

∫

Bρ(t)

f(x) dx, t � 0.

Поскольку ∂tu(t, x) = −2ρ̇(t), это условие даёт

−2ρ̇(t) =
1

|Bρ(t)|
∫

Bρ(t)

f(x) dx, t � 0. (3.10)

При этом предполагается, что среднее значение источника f на шаре Bρ(t), стоящем справа,
равно 0, если ρ(t) = 0. С учётом начального условия ρ(0) = 1/2 соответствующая задача Коши
имеет единственное неотрицательное решение ρ(t). Имеются две возможности: либо ρ(t) > 0
для всех t � 0, либо существует τ > 0 такое, что ρ(t) = 0 для всех t � τ. Второй случай,
соответствующий сходимости за конечное время, имеет место тогда и только тогда, когда

τ :=

1/2∫

0

|Bρ|∫

Bρ

f(x) dx
dρ < +∞. (3.11)

Теперь выберем ρ(t), удовлетворяющее (3.10) и такое, что ρ(0) = 1/2, и покажем, как в приме-
ре 3.1, что функция u, определённая в (3.8), является решением вариационного неравенства (2.5)
такого, что u(0, ·) = u1, так что u— это профиль растущей песчаной насыпи.
Прежде всего, поскольку f является непрерывной функцией, для каждого t � 0 существует

ρ0(t) ∈ [0, ρ(t)] такое, что

f̃(ρ0(t)) =
1

|Bρ(t)|
∫

Bρ(t)

f(x) dx. (3.12)

Вследствие этого, учитывая (3.10), справедливо равенство

∂tu(t, x) = −2ρ̇(t) = f̃(ρ0(t)) ∀t � 0.

На этом этапе мы можем завершить доказательство, как в примере 3.1: поскольку f̃ возрастает,
то имеем, что

f̃(r) � f̃(ρ0(t)), ∀r ∈ [0, ρ0(t)], f̃(r) � f̃(ρ0(t)), ∀r ∈ [ρ0(t), ρ(t)],
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так что для каждого w ∈ X0 выполняется
∫

B1

(f(x)− ∂tu(t, x))(w(x) − u(t, x)) dx �
∫

Bρ(t)

(f̃(|x|)− f̃(ρ0(t)))(w̃(x)− 1 + 2ρ(t) − |x|) dx =

= NωN [w(ρ0(t))− ρ0(t)− 1 + 2ρ(t)]

ρ(t)∫

0

(f̃(r)− f̃(ρ0(t))) r
N−1 dr = 0,

где w̃ определено в (3.9), а последнее равенство следует из (3.12).
Подводя итог, можно сказать, что эволюция u(t, ·) в (3.8) при ρ, удовлетворяющем (3.10), и

ρ(0) = 1/2 сходится к u∞ = uφ за конечное время тогда и только тогда, когда выполняется (3.11).

Главное в примерах 3.1 и 3.2 заключается в том, что за единичный промежуток времени к
насыпи добавляется лишь стремящаяся к нулю доля (при t → +∞) массы из источника f, а
остальная часть сбрасывается на границе стола. В примере 3.1, когда α � 1, эта бесконечно
малая доля не может заполнить максимальный профиль uφ за конечное время. Это происходит
из-за того, что источник слишком слаб вблизи множества конечных точек транспортных лучей
J = {0}, что означает, что условие (3.11) не выполняется. В частности,

1/2∫

0

|Bρ|∫

Bρ

f(x) dx
dρ =

1/2∫

0

ρ−α dρ = +∞ ∀α � 1.

Эти соображения приводят нас к следующему утверждению.

Предположение 3.1. Пусть f ∈ L1
+(Ω) удовлетворяет условию

sup
y∈J

1∫

0

|Bρ|∫

Bρ(y)∩Ω
f(x) dx

dρ < +∞. (3.13)

Тогда u(t, ·) сходится к uφ за конечное время.

Условие сильнее, чем (3.13), но, возможно, проще на практике: существуют α ∈ [0, 1[ и кон-
станта c > 0 такие, что

lim inf
r↘0

1

rN+α

∫

Br(y)∩Ω
f(x) dx � c ∀y ∈ J. (3.14)

Очевидно, оба условия можно сформулировать и в случае f ∈ M+(Ω). Например, (3.14) требует,
чтобы нижняя (N + α)-мерная плотность меры f, ограниченной на J, была ограничена снизу
положительной константой.
Заметим, что если y ∈ J не принадлежит носителю f, то подынтегральное выражение в (3.13)

стремится к +∞ при достаточно малых ρ, следовательно, из (3.13) следует, в частности, что J ⊂
supp(f). Согласно теоремам 3.2 и 3.1 (iii), это вложение необходимо и достаточно для сходимости
u(t, ·) к uφ при t→ +∞.
В следующей теореме мы доказываем достаточное условие сходимости к uφ за конечное время

(см. также в [3, Theorem 3.3] аналогичное условие в случае φ ≡ 0). Отметим, что в условиях
теоремы 3.3 ниже, условие (3.14) выполняется при α = 0 и c = ε.

Теорема 3.3 (сходимость за конечное время). Пусть J ⊂ Ω—множество конечных точек
транспортных лучей, определённых в (3.3). Предположим, что существуют r > 0 и ε ∈]0, r]
такие, что

f(x) � ε ∀x ∈ Ω ∩
⋃

y∈J
Br(y).

Тогда u(t, ·) сходится к uφ за конечное время.
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Доказательство. Пусть y ∈ J ∩Ω и Br(y) ⊂ Ω. Рассмотрим зависящий от времени источник

f2(t, x) =

{
ε(0 ∨ (r − |x− y|)), если t ∈ [0, r/ε],

ε χBr(y), если t > r/ε,

а u2—решение (2.5), где f = f2 и u2(0, ·) = 0. Определим

α(t) := u2(t, y), u(t, x) := 0 ∨ (α(t)− |x− y|), x ∈ Ω, t � 0.

По теореме 2.3, α—непрерывная и неубывающая функция. Пусть t � r/ε—первый момент вре-
мени, такой что Bα(t)(y) ∩ ∂Ω 	= ∅. Для t ∈ [0, t] можно проверить, что u2(t, x) = u(t, x) и

α(t) =

{
ε t, если t ∈ [0, r/ε],

α(t), если t ∈ [r/ε, t],
(3.15)

при этом

α(t) :=
[
rN+1 + (N + 1)εrN

(
t− r

ε

)] 1
N+1

, t � 0 (3.16)

(см. подробное доказательство теоремы 3.3 в [3]). В частности, представление (3.16), если при-
нять как данность, что u2 = u при t ∈ [0, t], можно получить следующим образом. Высоту α(t)
конуса можно вычислить, учитывая, что ни одна песчинка не может упасть со стола до момента
времени t, так что должен выполняться следующий баланс масс:

∫

Ω

f2(t, x) dx =

∫

Ω

∂tu2(t, x) dx. (3.17)

Простой расчёт даёт

∫

Ω

f2(t, x) dx =

⎧
⎨

⎩

ωNε r
N

N + 1
, если t ∈ [0, r/ε],

ωNε r
N если t ∈ [r/ε, t],

∫

Ω

∂tu2(t, x) dx =

⎧
⎨

⎩

ωNr
N α̇(t)

N + 1
, если t ∈ [0, r/ε],

ωNα(t)
N α̇(t), если t ∈ [r/ε, t],

так что (3.15) следует из того, что функция α, определённая в (3.16), является решением задачи
Коши ⎧

⎨

⎩

d

dt
α(t) =

ε rN

α(t)N
, t � 0,

α(r/ε) = r.

(3.18)

Для достаточно большого T > t пусть ν ∈ L∞(0, T ;M+(∂Ω)) будет мерой, связанной с u2
посредством теоремы 2.2 (ii), и пусть

T (y) := sup{t � t : νt = 0}.
В силу [10, Theorem 5.4] имеем, что u2(t, x) = u(t, x) при t ∈ [0, T (y)]. (Точнее, теорема 5.4 в [10]
была доказана для случая источника f2, являющегося δ-функцией Дирака относительно y, но при
t � T (y) это решение совпадает с u2.) В частности, существует z ∈ ∂Ω такое, что α(T (y))−|z−y| =
φ(z). Определим

A(t) := {x ∈ Ω: α(t)− |x− y| > 0} ⊆ Bα(t)(y), t � 0.

Поскольку баланс масс (3.17) сохраняется также для t ∈ [t, T (y)], мы заключаем, что

α̇(t) =
ωNε r

N

|A(t)| , t ∈ [r/ε, T (y)].

Заметив, что |A(t)| � |Bα(t)| = ωNα(t)
N , путём сравнения с решением α уравнения (3.18) заклю-

чаем, что
α(t) � α(t), ∀t ∈ [r/ε, T (y)].

Мы утверждаем, что u2(T (y), y) = uφ(y). А именно,

u2(T (y), y) = α(T (y)) = φ(z) + |z − y| � uφ(y),

так что утверждение следует из максимальности uφ.
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Из соотношения
uφ(y) = α(T (y)) � α(T (y))

мы приходим к выводу, что

T (y) � uφ(y)
N+1 +N rN+1

(N + 1)ε rN
� τ :=

[min
∂Ω

φ+ diam(Ω)]N+1 +N rN+1

(N + 1)ε rN
.

Наконец, поскольку f � ε в трубчатой окрестности J, то f � f2 и, следовательно, по принципу
сравнения и тому факту, что u(T (y), y) = uφ(y), получаем, что u(t, y) = uφ(y) для любого t � τ.
Если y ∈ J, но Br(y) не содержится в Ω, то можно модифицировать приведенное выше до-

казательство, учитывая, что Ω удовлетворяет равномерному внутреннему условию конуса. Это
означает, что существует положительная константа γ такая, что |Br(y) ∩ Ω| � γ|Br(y)| для лю-
бого y ∈ Ω, и можно доказать, что α(t) := u2(t, y) � γ α(t) для t ∈ [r/ε, T (y)], так что мы можем
получить равномерную оценку сверху для времени T (y), определённого выше.
Следовательно, существует время τ ′ � τ такое, что u(t, y) = uφ(y) для любого t � τ ′ и для

любого y ∈ J, так что заключение следует из [9, Theorem 5.5].

4. Стационарные решения

В этом разделе мы изучаем стационарные решения (2.2), т. е. решения задачи
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− div(v∇u) = f − ν в R
N ,

|∇u| � 1, v � 0, (1− |∇u|)v = 0 п.в. в Ω,

0 � u � φ на ∂Ω,
u(x) = φ(x) для ν-п.в. x ∈ ∂Ω,

(4.1)

где f ∈ L1
+(Ω) и φ : ∂Ω → [0,+∞[— такие же, как и в предыдущих разделах. Точнее, (u, v, ν)

называется стационарным решением (4.1), если u ∈ Xφ, v ∈ L1
+(Ω), ν ∈ M+(∂Ω) удовлетворяют

условиям (1− |∇u|)v = 0 п.в. в Ω, u = φ ν-п.в. на ∂Ω, и
∫

Ω

v∇u · ∇ψ dx =

∫

Ω

f ψ dx−
∫

∂Ω

ψ dν, ∀ψ ∈ C∞
c (RN ). (4.2)

Сначала напомним стационарную версию теоремы 2.2, доказанную в [10, Theorem 3.2].

Теорема 4.1. Следующие утверждения эквивалентны:
(i) Если (u, v, ν) ∈ Xφ × L1

+(Ω)×M+(∂Ω) является решением задачи (4.1), то
∫

Ω

f(x) (w(x) − u(x)) dx � 0 ∀w ∈ Xφ. (4.3)

(ii) Если u ∈ Xφ удовлетворяет условию максимальности (4.3), то существует (v, ν) ∈
L1
+(Ω)×M+(∂Ω) такое, что (u, v, ν) является решением задачи (4.1).

Теперь докажем, что задачу (4.1) можно переформулировать без какой-либо ссылки на меру
ν ∈ M+(∂Ω).

Теорема 4.2 (эквивалентная формулировка для стационарных решений). Пусть Ω, φ, f удо-
влетворяют условиям (D1), (D2), (D3), пусть Γf ⊂ ∂Ω—множество, определённое в (2.4),
и пусть Xf ⊂ W 1,∞(Ω)—множество, определённое в (3.4). Тогда эквивалентны следующие
утверждения:
(i) Если (u, v, ν) ∈ Xφ ×L1

+(Ω)×M+(∂Ω) является решением задачи (4.1), то (u, v) является
решением задачи

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− div(v∇u) = f в Ω,

|∇u| � 1, v � 0, (1− |∇u|)v = 0 п.в. в Ω,

0 � u � φ на ∂Ω,
u(x) = φ(x) на Γf ,

(4.4)
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т. е. (u, v) ∈ Xf × L1
+(Ω) удовлетворяет (1− |∇u|)v = 0 п.в. в Ω и

∫

Ω

v∇u · ∇ψ dx =

∫

Ω

fψ dx ∀ψ ∈ C∞
c (RN \ Γf ). (4.5)

(ii) Если (u, v) ∈ Xf×L1
+(Ω) является решением задачи (4.4), то существует мера ν ∈ M+(∂Ω)

такая, что (u, v, ν) является решением задачи (4.1).

Прежде чем доказывать теорему 4.2, напомним, что задача существования и единственности
решений уравнения (4.4) была подробно проанализирована в [9] в более общем случае выпуклого
ограничения на ∇u и для невыпуклой области Ω.
Основные результаты [9], относящиеся к нашей задаче, можно сформулировать в следующей

теореме.

Теорема 4.3. В условиях теоремы 4.2 справедливы утверждения:
(i) [существование] Существует единственная vf ∈ L1

+(Ω) такая, что (uφ, vf ) является ре-
шением задачи (4.4);

(ii) [единственность v и характеристика u] Пара (u, v) ∈ Xf × L1
+(Ω) является решением зада-

чи (4.4) тогда и только тогда, когда v = vf и uf � u � uφ;
(iii) [единственность] (uφ, vf ) является единственным решением задачи (4.4) тогда и только

тогда, когда J ⊆ supp(f), где J ⊂ Ω—множество конечных точек транспортных лучей,
определённых в (3.3).

Доказательство теоремы 4.2.
(i) По теореме 2.1 мы уже знаем, что supp(ν) ⊆ Γf , следовательно,

∫

∂Ω

ψ dν = 0 для любого

ψ ∈ C∞
c (RN \ Γf ), так что (4.5) легко следует из (4.2). Осталось доказать, что u = φ на Γf .

Поскольку (u, v, ν) является решением (4.1), функция u удовлетворяет условию
∫

Ω

f(w−u) dx � 0

для любого w ∈ Xφ. Выбрав w = uφ, мы заключаем, что u = uφ на supp(f). Пусть y ∈ Γf . По
определению (2.4) функции Γf , существует x ∈ supp(f) такой, что uφ(x) = u(x) = φ(y) + |x− y|,
следовательно, u(y) � u(x)−|x−y| � φ(y).Поскольку u � φ на ∂Ω, мы заключаем, что u(y) = φ(y).
(ii) Пусть (u, v) ∈ Xf ×L1

+(Ω) удовлетворяет (4.5) и (1− |∇u|)v = 0 п.в. в Ω. По теореме 4.3 (ii)
получаем, что v = vf и uf � u � uφ. По теореме 3.1 (i) мы также знаем, что u = uφ на supp(f),
следовательно, ∫

Ω

f(w − u) dx =

∫

supp(f)

f(w − uφ) dx � 0 ∀w ∈ Xφ,

так что (4.3) выполняется, и заключение следует из теоремы 4.1 (ii).

Сравнивая информацию об эволюции, предоставленную теоремой 2.1, с информацией о ста-
ционарных решениях, предоставленной теоремой 4.3, можно заметить, что в процессе эволюции
динамика стоящего слоя единственна, в то время как скатывающийся слой может принимать
различные конфигурации. Для стационарных конфигураций стоящий слой может меняться (со-
храняя память об исходной конфигурации насыпи), в то время как скатывающийся слой остается
фиксированным.

5. Заключение

Мы рассмотрели систему (2.2), описывающую эволюцию насыпи песка в вертикальном бункере
под действием внешнего вертикального источника песка, постоянного во времени. В теореме 3.2
мы доказали, что профиль насыпи песка сходится к стационарному решению задачи. В приме-
рах 3.1 и 3.2 мы показали, что, вообще говоря, сходимости за конечное время ожидать не следует.
Тем не менее, на основе анализа этих примеров мы сформулировали предположение 3.1 и дока-
зали в теореме 3.3 достаточное условие на источник, гарантирующее сходимость профиля за
конечное время. Наконец, в теореме 4.2 мы установили эквивалентную формулировку для стаци-
онарных решений, не зависящую от граничной меры ν, встречающейся в исходной формулировке,
а в теореме 4.3 мы охарактеризовали все возможные стационарные конфигурации задачи.
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On the differential model of sandpiles growing in a silo

G. Crasta and A. Malusa

Sapienza Università di Roma, Roma, Italy

Abstract. We discuss some features of a boundary value problem for a system of PDEs that describes
the growth of a sandpile in a container under the action of a vertical source. In particular, we
characterize the long-term behavior of the profiles, and we provide a sufficient condition on the vertical
source that guarantees the convergence to the equilibrium in a finite time. We show by counterexamples
that a stable configuration may not be reached in a finite time, in general, even if the source is time-
independent. Finally, we provide a complete characterization of the equilibrium profiles.
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