Contemporary Mathematics. Fundamental Directions.

ISSN 2413-3639 (print), 2949-0618 (online)

УДК 517.956.25

DOI: 10.22363/2413-3639-2023-69-1-98-115

EDN: EBRPUC

ЭНТРОПИЙНЫЕ И РЕНОРМАЛИЗОВАННЫЕ РЕШЕНИЯ НЕЛИНЕЙНОЙ ЭЛЛИПТИЧЕСКОЙ ЗАДАЧИ В ПРОСТРАНСТВАХ МУЗИЛАКА—ОРЛИЧА

Π . М. Кожевникова^{1,2}

¹ Стерлитамакский филиал Уфимского университета науки и технологий, Стерлитамак, Россия ² Елабужский институт Казанского федерального университета, Елабуга, Россия

В работе установлена эквивалентность энтропийных и ренормализованных решений эллиптических уравнений второго порядка с нелинейностями, определяемыми функциями Музилака—Орлича, и правой частью из пространства $L_1(\Omega)$. В нерефлексивных пространствах Музилака—Орлича—Соболева доказаны существование и единственность как энтропийных, так и ренормализованных решений задачи Дирихле в областях с липшицевой границей.

Ключевые слова: эллиптическое уравнение второго порядка, энтропийное решение, ренормализованное решение, пространство Музилака—Орлича—Соболева, существование и единственность решений

Для цитирования: Л. М. Кожевникова. Энтропийные и ренормализованные решения нелинейной эллиптической задачи в пространствах Музилака—Орлича// Соврем. мат. Фундам. направл. 2023. Т. 69, № 1. С. 98–115. http://doi.org/10.22363/2413-3639-2023-69-1-98-115

1. Введение

В работе рассматривается задача Дирихле

$$-\operatorname{div} \mathbf{a}(\mathbf{x}, \nabla u) + b(\mathbf{x}, u) = f, \quad f \in L_1(\Omega), \quad \mathbf{x} \in \Omega,$$
(1.1)

$$u\Big|_{\partial\Omega} = 0 \tag{1.2}$$

в строго липшицевой области $\Omega \subset \mathbb{R}^n = \{\mathbf{x} = (x_1, x_2, \dots, x_n)\}, \ n \geqslant 2, \ c$ конечной мерой. Здесь функции $\mathbf{a}(\mathbf{x}, \mathbf{s}) = (a_1(\mathbf{x}, \mathbf{s}), \dots, a_n(\mathbf{x}, \mathbf{s})) : \Omega \times \mathbb{R}^n \to \mathbb{R}^n$ имеют рост, определяемый функцией Музилака—Орлича $M(\mathbf{x}, z)$. При этом на функцию M и сопряженную к ней функцию \overline{M} не требуется никакое условие роста по переменной z. Предполагается, что по переменной $\mathbf{x} \in \Omega$ функция M подчиняется условию log-гельдеровской непрерывности, что приводит к хорошим аппроксимационным свойствам нерефлексивного пространства Музилака—Орлича.

Понятие ренормализованных и энтропийных решений служит основным инструментом для изучения общих вырождающихся эллиптических уравнений с правой частью в виде меры и, в частности, из пространства $L_1(\Omega)$. В работе [18] доказано существование ренормализованного решения задачи Дирихле для уравнения вида

$$-\operatorname{div} \mathbf{a}(\mathbf{x}, \nabla u) = f, \quad f \in L_1(\Omega), \quad \mathbf{x} \in \Omega, \tag{1.3}$$

с неоднородной анизотропной функцией Музилака—Орлича. Кроме того, в работе [15] авторы доказали существование и единственность ренормализованных решений эллиптических включений с многозначным оператором в условиях нерефлексивных и несепарабельных пространств Музилака—Орлича.

Авторы работ [7,17] установили существование ренормализованного и энтропийного решений, соответственно, задачи Дирихле для уравнения вида

$$-\operatorname{div}\left(\mathbf{a}(\mathbf{x}, u, \nabla u) + \mathbf{c}(u)\right) + a_0(\mathbf{x}, u, \nabla u) = f, \quad f \in L_1(\Omega), \quad \mathbf{x} \in \Omega,$$

с функцией $c \in C_0(\mathbb{R}, \mathbb{R}^n)$.

В работах [16, 21], а также [8] (при $a_0 \equiv 0$) доказано существование энтропийного решения задачи Дирихле для уравнения вида

$$-\operatorname{div}\left(\mathbf{a}(\mathbf{x}, u, \nabla u) + \mathbf{c}(\mathbf{x}, u)\right) + a_0(\mathbf{x}, u, \nabla u) = f, \quad f \in L_1(\Omega), \quad \mathbf{x} \in \Omega,$$

с каратеодориевой функцией $c(x, s_0): \Omega \times \mathbb{R} \to \mathbb{R}^n$, подчиняющейся условию роста по переменной s_0 .

В работе [22] в пространствах Музилака—Орлича доказаны существование и единственность энтропийных и ренормализованных решений задачи (1.3), (1.2), установлена их эквивалентность.

В настоящей статье получены некоторые свойства, доказаны единственность ренормализованного и существование энтропийного решений задачи Дирихле (1.1), (1.2) в нерефлексивных пространствах Музилака—Орлича—Соболева. Кроме того, доказана эквивалентность энтропийных и ренормализованных решений рассматриваемой задачи. Заметим, что область Ω с конечной мерой может быть неограниченной. Ранее в работе [4] Л. М. Кожевниковой и А. П. Кашниковой аналогичный результат получен для решения уравнения (1.1) с более жесткими ограничениями на функцию a(x,s).

2. ПРОСТРАНСТВА МУЗИЛАКА—ОРЛИЧА—СОБОЛЕВА

В этом разделе будут приведены необходимые сведения из теории обобщенных N-функций и пространств Музилака—Орлича (см. [5,13,20]).

Определение 2.1. Пусть функция $M(\mathbf{x}, z) : \Omega \times \mathbb{R} \to \mathbb{R}_+$ удовлетворяет следующим условиям:

1) $M(\mathbf{x},\cdot)-N$ -функция по $z\in\mathbb{R}$, то есть она является выпуклой вниз, неубывающей при $z\in\mathbb{R}_+$, четной, непрерывной, $M(\mathbf{x},0)=0$ для п.в. $\mathbf{x}\in\Omega$ и

$$\inf_{\mathbf{x} \in \Omega} M(\mathbf{x}, z) > 0 \quad \text{для всех} \quad z \neq 0, \tag{2.1}$$

$$\lim_{z \to 0} \sup_{\mathbf{x} \in \Omega} \frac{M(\mathbf{x}, z)}{z} = 0, \qquad \lim_{z \to \infty} \inf_{\mathbf{x} \in \Omega} \frac{M(\mathbf{x}, z)}{z} = \infty; \tag{2.2}$$

2) $M(\cdot,z)$ — измеримая функция по $x \in \Omega$ для любых $z \in \mathbb{R}$.

Такая функция M(x,z) называется функцией Mузилака-Орлича, или обобщенной N-функцией.

Сопряженная функция $\overline{M}(\mathbf{x},\cdot)$ к функции Музилака—Орлича $M(\mathbf{x},\cdot)$ в смысле Юнга для п.в. $\mathbf{x}\in\Omega$ и любых $z\geqslant0$ определяется равенством

$$\overline{M}(\mathbf{x}, z) = \sup_{y \geqslant 0} (yz - M(\mathbf{x}, y)).$$

Отсюда следует неравенство Юнга:

$$|zy| \le M(\mathbf{x}, z) + \overline{M}(\mathbf{x}, y), \quad z, y \in \mathbb{R}, \quad \mathbf{x} \in \Omega.$$
 (2.3)

Функция Музилака—Орлича M удовлетворяет Δ_2 -условию, если существуют константы c>0, $z_0\geqslant 0$ и функция $H\in L_1(\Omega)$ такие, что для п.в. $\mathbf{x}\in\Omega$ и любых $|z|\geqslant z_0$ справедливо неравенство

$$M(x, 2z) \leqslant cM(x, z) + H(x).$$

 Δ_2 -условие эквивалентно выполнению для п.в. $\mathbf{x} \in \Omega$ и любых $|z| \geqslant z_0$ неравенства

$$M(\mathbf{x}, lz) \leqslant c(l)M(\mathbf{x}, z) + H_l(\mathbf{x}), \quad H_l \in L_1(\Omega),$$

где l — любое больше единицы, c(l) > 0.

Существуют три класса Музилака—Орлича:

1) $\mathcal{L}_M(\Omega)$ — обобщенный класс Музилака—Орлича, состоящий из измеримых функций $v:\Omega \to \mathbb{R}$ таких, что

$$\varrho_{M,\Omega}(v) = \int_{\Omega} M(\mathbf{x}, v(\mathbf{x})) d\mathbf{x} < \infty;$$

2) $L_M(\Omega)$ — обобщенное пространство Музилака—Орлича, являющееся наименьшим линейным пространством, которое содержит класс $\mathcal{L}_M(\Omega)$, с нормой Люксембурга

$$||v||_{M,\Omega} = \inf \left\{ \lambda > 0 \mid \varrho_{M,\Omega} \left(\frac{v}{\lambda} \right) \leqslant 1 \right\};$$

3) $E_M(\Omega)$ — наибольшее линейное пространство, содержащееся в классе $\mathcal{L}_M(\Omega)$.

Очевидно, $E_M(\Omega) \subset \mathcal{L}_M(\Omega) \subset L_M(\Omega)$. Заметим, что для любого $v \in E_M(\Omega)$ и любого $\mu > 0$ справедливо неравенство $\varrho_{M,\Omega}(v/\mu) < \infty$. Кроме того, для любого $v \in L_M(\Omega)$ найдется $\lambda > 0$ такое, что $\varrho_{M,\Omega}(v/\lambda) < \infty$ (см. [20, п. 7.4]).

Ниже, в обозначениях $\|\cdot\|_{M,Q}$, $\varrho_{M,Q}(\cdot)$, $\|\cdot\|_{1,Q}$, $\|\cdot\|_{\infty,Q}$ будем опускать индекс Q, если $Q=\Omega$. Для $v\in L_M(\Omega)$ справедливо неравенство:

$$||v||_M \leqslant \varrho_M(v) + 1. \tag{2.4}$$

Далее будем рассматривать следующие условия на функцию Музилака—Орлича $M(\mathbf{x},z)$.

(M1) Функция M(x,z) интегрируема, т. е.

$$\varrho_M(z) = \int\limits_{\Omega} M(\mathbf{x}, z) d\mathbf{x} < \infty, \quad \forall z \in \mathbb{R}.$$

(M2) Функция $M(\mathbf{x},z)$ удовлетворяет log-гельдеровой непрерывности по \mathbf{x} , а именно: существуют константы $c>0,\ b\geqslant 1$ такие, что для всех $\mathbf{x},\mathbf{y}\in\Omega,\ |\mathbf{x}-\mathbf{y}|<\frac{1}{2},\ z\in\mathbb{R}$ и выполняется неравенство

$$M(x, z) \le \max \{|z|^{-c/\ln|x-y|}, b^{-c/\ln|x-y|}\} M(y, z).$$

Пусть M и \overline{M} подчиняются условию (M1), тогда пространство $E_M(\Omega)$ сепарабельно и $(E_M(\Omega))^* = L_{\overline{M}}(\Omega)$. Если дополнительно M удовлетворяет Δ_2 -условию, то $E_M(\Omega) = \mathcal{L}_M(\Omega) = L_M(\Omega)$ и $L_M(\Omega)$ сепарабельно. Пространство $L_M(\Omega)$ рефлексивно тогда и только тогда, когда функции Музилака—Орлича M и \overline{M} удовлетворяют Δ_2 -условию.

Последовательность функций $\{v^j\}_{j\in\mathbb{N}}\in L_M(\Omega)$ модулярно сходится к $v\in L_M(\Omega)$ $(v^j\stackrel{M}{\underset{j\to\infty}{\to}}v)$, если существует константа $\lambda>0$ такая, что

$$\lim_{j \to \infty} \varrho_M \left(\frac{v^j - v}{\lambda} \right) = 0.$$

Если M удовлетворяет Δ_2 -условию, то модулярная топология и топология по норме совпадают. Для двух сопряженных функций Музилака—Орлича M и \overline{M} , если $u \in L_M(\Omega)$ и $v \in L_{\overline{M}}(\Omega)$, то выполняется неравенство Гельдера:

$$\left| \int_{\Omega} u(\mathbf{x}) v(\mathbf{x}) d\mathbf{x} \right| \leqslant 2 \|u\|_{M} \|v\|_{\overline{M}}.$$

Определим пространство Музилака—Орлича—Соболева

$$W^{1}L_{M}(\Omega) = \{ v \in L_{M}(\Omega) \mid \nabla v \in (L_{M}(\Omega))^{n} \}$$

с нормой

$$||v||_M^1 = ||v||_M + |||\nabla v|||_M.$$

Для краткости введем обозначения $(L_M(\Omega))^n = \mathbf{L}_M(\Omega), (L_M(\Omega))^{n+1} = \mathbf{L}_M(\Omega), (E_M(\Omega))^n = \mathbf{E}_M(\Omega), (E_M(\Omega))^{n+1} = \mathbf{E}_M(\Omega).$ Пространство $W^1L_M(\Omega)$ отождествляется с подпространством произведения $\mathbf{L}_M(\Omega)$ и является замкнутым по топологии $\sigma(\mathbf{L}_M, \mathbf{E}_{\overline{M}})$.

Пространство $\mathring{W}^1L_M(\Omega)$ определим как замыкание $C_0^{\infty}(\Omega)$ по слабой топологии $\sigma(\mathbf{L}_M, \mathbf{E}_M)$ в $W^1L_M(\Omega)$. Пространство $\mathring{W}^1L_M(\Omega)$ банахово (см. [20, Theorem 10.2]).

Положим

$$\mathring{V}_M(\Omega) = \{ u \in \mathring{W}_1^1(\Omega) : \nabla u \in \mathcal{L}_M(\Omega) \};$$

очевидно, что $\mathring{W}^1L_M(\Omega) \subset \mathring{V}_M(\Omega)$.

3. ПРЕДПОЛОЖЕНИЯ И ФОРМУЛИРОВКА РЕЗУЛЬТАТОВ

Предполагается, что функции

$$b(\mathbf{x}, s_0) : \Omega \times \mathbb{R} \to \mathbb{R}, \quad \mathbf{a}(\mathbf{x}, \mathbf{s}) : \Omega \times \mathbb{R}^n \to \mathbb{R}^n$$

входящие в уравнение (1.1), измеримы по $\mathbf{x} \in \Omega$ для $s_0 \in \mathbb{R}$, $\mathbf{s} = (s_1, \dots, s_n) \in \mathbb{R}^n$, непрерывны по $s_0 \in \mathbb{R}$, $\mathbf{s} = (s_1, \dots, s_n) \in \mathbb{R}^n$ для почти всех $\mathbf{x} \in \Omega$ и выполнено следующее условие.

(M) Существуют неотрицательные функции $\psi \in E_{\overline{M}}(\Omega)$, $\phi \in L_1(\Omega)$ и положительные константы $\widehat{a}, \overline{a}, d$ такие, что для п.в. $x \in \Omega$ и для любых $s, t \in \mathbb{R}^n$, $s \neq t$ справедливы неравенства:

$$\mathbf{a}(\mathbf{x}, s) \cdot \mathbf{s} \geqslant \overline{a} M(\mathbf{x}, d|\mathbf{s}|) - \phi(\mathbf{x}); \tag{3.1}$$

$$|\mathbf{a}(\mathbf{x}, \mathbf{s})| \leqslant \psi(\mathbf{x}) + \widehat{a}\overline{M}^{-1}M(\mathbf{x}, d|\mathbf{s}|); \tag{3.2}$$

$$(a(x,s) - a(x,t)) \cdot (s-t) > 0.$$
 (3.3)

3десь функция Mузилака-Oрлича $M(\mathbf{x},z)$ подчиняется условиям (M1),~(M2),~conpяжен-

ная к
$$M$$
 функция $\overline{M}(\mathbf{x},z)$ удовлетворяет условию $(M1)$, $\mathbf{s}\cdot\mathbf{t}=\sum\limits_{i=1}^{n}s_{i}t_{i},\ |\mathbf{s}|=\left(\sum\limits_{i=1}^{n}s_{i}^{2}\right)^{1/2}$.

Предполагается, что функция $b(\mathbf{x}, s_0)$ — неубывающая по $s_0 \in \mathbb{R}$, $b(\mathbf{x}, 0) = 0$ для п.в. $\mathbf{x} \in \Omega$, поэтому для п.в. $\mathbf{x} \in \Omega$, $s_0 \in \mathbb{R}$ справедливо неравенство

$$b(\mathbf{x}, s_0)s_0 \geqslant 0. \tag{3.4}$$

Сформулируем дополнительное условие, которое используется в теореме существования. Будем считать, что для любого k>0

$$\sup_{|s_0| \le k} |b(\mathbf{x}, s_0)| = \Phi_k(\mathbf{x}) \in L_1(\Omega). \tag{3.5}$$

Заметим, что в работах [4,22] вместо условий (3.1), (3.2) на функцию a(x,s) накладывается более сильное условие:

$$a(x, s) \cdot s \geqslant \overline{a}(M(x, |s|) + \overline{M}(x, |a|)), \quad \overline{a} \in (0, 1).$$

Условию (M) удовлетворяют, например, функции

$$a_i(\mathbf{x}, \mathbf{s}) = M(\mathbf{x}, |\mathbf{s}|) \frac{s_i}{|\mathbf{s}|^2} + \psi_i(\mathbf{x}), \quad \psi_i \in E_{\overline{M}}(\Omega), \quad i = 1, \dots, n.$$

Определим срезающую функцию $T_k(r) = \max(-k, \min(k, r))$. Через $\mathring{\mathcal{T}}_M^1(\Omega)$ обозначим множество измеримых функций $u:\Omega\to\mathbb{R}$ таких, что $T_k(u)\in\mathring{V}_M(\Omega)$ при любом k>0. Заметим, что, как следствие из [9, лемма 2.1], для каждой функции $u\in\mathring{\mathcal{T}}_M^1(\Omega)$ существует единственная измеримая функция $Z_u:\Omega\to\mathbb{R}^n$ такая, что

$$abla T_k(u) = \chi_{\{\Omega: |u| < k|\}} Z_u$$
 для почти каждого $\mathbf{x} \in \Omega$ и для каждого $k > 0$,

где χ_Q — характеристическая функция измеримого множества Q. Обозначим через $Z_u = \nabla u$ обобщенный градиент u.

Таким образом, для любой функции $u\in \mathring{\mathcal{T}}_M^1(\Omega)$ и любого k>0 имеем:

$$\nabla T_k(u) = \chi_{\{\Omega: |u| < k\}} \nabla u \in \mathcal{L}_M(\Omega). \tag{3.6}$$

Введем обозначение $\langle u \rangle = \int_{\Omega} u dx$.

Определение 3.1. Энтропийным решением задачи (1.1), (1.2) называется функция $u \in \mathring{\mathcal{T}}_M^1(\Omega)$ такая, что

1) $b(\mathbf{x}, u) \in L_1(\Omega)$;

- 2) а $(\mathbf{x}, \nabla u)\chi_{\{\Omega:|u|< k\}} \in \mathbf{L}_{\overline{M}}(\Omega)$ при всех k>0;
- 3) при всех k > 0 и $\xi \in C_0^1(\Omega)$ справедливо неравенство:

$$\langle (b(\mathbf{x}, u) - f) T_k(u - \xi) \rangle + \langle \mathbf{a}(\mathbf{x}, \nabla u) \cdot \nabla T_k(u - \xi) \rangle \leqslant 0. \tag{3.7}$$

Определение 3.2. Ренормализованным решением задачи (1.1), (1.2) называется функция $u \in \mathring{\mathcal{T}}^1_M(\Omega)$ такая, что

- 1) $b(\mathbf{x}, u) \in L_1(\Omega)$;
- 2) а $(x, \nabla u)\chi_{\{\Omega:|u|< k\}} \in L_{\overline{M}}(\Omega)$ при всех k>0;
- 3) имеется предел

$$\lim_{h \to \infty} \int_{\{\Omega: h \leqslant |u| < h+1\}} M(\mathbf{x}, d|\nabla u|) d\mathbf{x} = 0; \tag{3.8}$$

4) для любой функции $S \in C^1_0(\mathbb{R})$ и любой функции $\xi \in C^1_0(\Omega)$ справедливо равенство:

$$\langle (b(\mathbf{x}, u) - f)S(u)\xi \rangle + \langle \mathbf{a}(\mathbf{x}, \nabla u) \cdot (S'(u)\xi \nabla u + S(u)\nabla \xi) \rangle = 0.$$
 (3.9)

Основными результатами работы являются теоремы 3.1–3.3, в которых предполагается, что область Ω липшицева и выполнено условие (M).

Теорема 3.1. Функция $u: \Omega \to \mathbb{R}$ является ренормализованным решением задачи (1.1), (1.2) тогда и только тогда, когда эта функция — энтропийное решение задачи (1.1), (1.2). При этом в интегральном неравенстве (3.7) имеет место знак равенства

$$\langle (b(\mathbf{x}, u) - f) T_k(u - \xi) \rangle + \langle \mathbf{a}(\mathbf{x}, \nabla u) \cdot \nabla T_k(u - \xi) \rangle = 0.$$
 (3.7*)

Теорема 3.2. Если u^1, u^2 — ренормализованные или энтропийные решения задачи (1.1), (1.2), то $u^1 = u^2$ п.в. в Ω .

Теорема 3.3. Пусть дополнительно выполнено условие (3.5), тогда существует энтропийное решение задачи (1.1), (1.2).

Из теорем 3.1–3.3 следуют эквивалентность, существование и единственность энтропийного и ренормализованного решений задачи (1.1), (1.2).

4. Подготовительные сведения

В этом разделе будут установлены некоторые свойства энтропийного и ренормализованного решений задачи (1.1), (1.2) и приведены вспомогательные леммы. Предполагается, что область Ω липшицева и выполнено условие (M). Все постоянные, встречающиеся ниже в работе, положительны.

Пользуясь выпуклостью функции \overline{M} , из (3.2) выводим оценку:

$$\overline{M}\left(\mathbf{x}, \frac{|\mathbf{a}(\mathbf{x}, \mathbf{s})|}{2\widehat{a}}\right) \leqslant \frac{1}{2}M(\mathbf{x}, d|\mathbf{s}|) + \frac{1}{2}\overline{M}\left(\mathbf{x}, \frac{\psi}{\widehat{a}}\right) = \frac{1}{2}M(\mathbf{x}, d|\mathbf{s}|) + \frac{1}{2}\Psi(\mathbf{x}) \tag{4.1}$$

с функцией $\Psi \in L_1(\Omega)$.

Предложение 4.1. Пусть $v: \Omega \to \mathbb{R}$ измеримая функция такая, что при всех $k \geqslant 1$ имеем $M(\mathbf{x}, d|\nabla T_k(v)|) \in L_1(\Omega)$ и справедливо неравенство

$$\int_{\{\Omega: |v| < k\}} M(\mathbf{x}, d|\nabla v|) d\mathbf{x} \leqslant C_1 k. \tag{4.2}$$

Тогда для любого $\varepsilon > 0$ найдутся $k_0(C_1, n)$, $h_0(C_1, n)$ такие, что справедливы неравенства

$$\operatorname{meas}\left(\left\{\Omega:|v|\geqslant k\right\}\right)<\varepsilon,\quad k\geqslant k_0,\tag{4.3}$$

$$\operatorname{meas}\left(\left\{\Omega: |\nabla v| \geqslant h\right\}\right) < \varepsilon, \quad h \geqslant h_0. \tag{4.4}$$

Cooтношение (4.3) доказано в [22, Proposition 3.1], а (4.4) устанавливается аналогично в [22, Theorem 1.6].

Лемма 4.1. Пусть u -энтропийное решение задачи (1.1), (1.2), тогда

$$\operatorname{meas}\left(\left\{\Omega:|u|\geqslant k\right\}\right)\to 0,\quad k\to\infty,\tag{4.5}$$

$$\operatorname{meas}\left(\left\{\Omega: |\nabla u| \geqslant h\right\}\right) \to 0, \quad h \to \infty. \tag{4.6}$$

Кроме того, справедливо соотношение

$$\lim_{k \to \infty} \frac{1}{k} \int_{\{\Omega: |u| < k\}} M(\mathbf{x}, d|\nabla u|) d\mathbf{x} = 0.$$

$$(4.7)$$

Доказательство. Неравенство (3.7) при $\xi = 0$ принимает вид

$$\int_{\Omega} b(\mathbf{x}, u) T_k(u) d\mathbf{x} + \int_{\{\Omega: |u| < k\}} \mathbf{a}(\mathbf{x}, \nabla u) \cdot \nabla u d\mathbf{x} \leq \int_{\Omega} f T_k(u) d\mathbf{x}.$$

Учитывая неравенства (3.1), (3.4), выводим оценку

$$\overline{a} \int_{\{\Omega: |u| < k\}} M(\mathbf{x}, d|\nabla u|) d\mathbf{x} \leq \int_{\Omega} |f| |T_k(u)| d\mathbf{x} + \|\phi\|_1 \leq k \|f\|_1 + \|\phi\|_1. \tag{4.8}$$

Отсюда, применяя предложение 4.1, устанавливаем (4.5), (4.6).

Перепишем неравенство (4.8) в виде

$$\frac{\overline{a}}{k} \int_{\Omega: |u| < k} M(\mathbf{x}, d|\nabla u|) d\mathbf{x} \leqslant \int_{\Omega} |f| \frac{|T_k(u)|}{k} d\mathbf{x} + \frac{\|\phi\|_1}{k}. \tag{4.9}$$

Поскольку $\frac{|T_k(u)|}{k} \leqslant 1$, $\frac{T_k(u)}{k} \to 0$ п.в. в Ω при $k \to \infty$ и $f \in L_1(\Omega)$, то по теореме Лебега имеем:

$$\lim_{k \to \infty} \int_{\Omega} |f| \frac{|T_k(u)|}{k} dx = 0.$$
 (4.10)

Соединяя (4.9) и (4.10), выводим (4.7).

Лемма 4.2 (см. [10, Lemma 2]). Пусть функции $\{v^j\}_{j\in\mathbb{N}}\subset L_M(\Omega)$ таковы, что

$$||v^j||_M \leqslant C, \quad j \in \mathbb{N},$$

$$v^j \to v$$
 n.e. $\theta \quad \Omega, \quad j \to \infty.$

Тогда $v \in L_M(\Omega)$ и $v^j \rightharpoonup v$, $j \to \infty$, в топологии $\sigma(L_M, E_{\overline{M}})$ пространства $L_M(\Omega)$.

Приведем теорему Витали в следующей форме (см. [1, гл. III, § 6, теорема 15]).

Лемма 4.3. Пусть последовательность $\{v^j\}_{j\in\mathbb{N}}\subset L_1(\Omega),\ u$

$$v^j \to v$$
 n.s. $e \Omega$, $j \to \infty$.

Тогда для сходимости

$$v^j \to v$$
 сильно в $L_1(\Omega)$, $j \to \infty$,

необходимо и достаточно, чтобы выполнялось условие равномерной интегрируемости:

$$\lim_{\mathrm{meas}(Q)\to 0}\int\limits_{Q}|v^{j}(\mathbf{x})|d\mathbf{x}=0\quad \textit{равномерно no}\quad j\in\mathbb{N}.$$

Следствием теоремы Витали является следующая лемма.

Лемма 4.4 (см. [6, Lemma 2]). Пусть $v, \{v^j\}_{j\in\mathbb{N}} \subset L_M(\Omega)$ и

$$v^j \xrightarrow{M} v$$
 модулярно в $L_M(\Omega)$, $j \to \infty$.

Тогда $v^j \rightharpoonup v, j \rightarrow \infty$, в топологии $\sigma(L_M, L_{\overline{M}})$ пространства $L_M(\Omega)$.

Лемма 4.5. Пусть функции $\{v^j\}_{j\in\mathbb{N}}\subset L_\infty(\Omega)$ таковы, что $\{v^j\}_{j\in\mathbb{N}}$ ограничена в $L_\infty(\Omega)$ и $v^j\to v$ п.в. в $\Omega,\quad j\to\infty.$

Тогда $v \in L_{\infty}(\Omega)$ и $v^j \rightharpoonup v$, $j \to \infty$, в топологии $\sigma(L_{\infty}, L_1)$ пространства $L_{\infty}(\Omega)$. Если, кроме того, $g \in L_M(\Omega)(E_M(\Omega))$, то

$$v^jg \to vg$$
 модулярно (сильно) в $L_M(\Omega)(E_M(\Omega)), \quad j \to \infty.$

Доказательство леммы 4.5 следует из теоремы Лебега.

Лемма 4.6. Если u — энтропийное решение задачи (1.1), (1.2), то неравенство (3.7) справедливо для любой функции $\xi \in \mathring{V}_M(\Omega) \cap L_{\infty}(\Omega)$.

Доказательство аналогично [4, лемма 8].

Лемма 4.7. Пусть u — энтропийное решение задачи (1.1), (1.2), тогда при всех k > 0 справедливо соотношение

$$\lim_{h \to \infty} \int_{\{\Omega: h \leqslant |u| < h + k\}} M(\mathbf{x}, d|\nabla u|) d\mathbf{x} = 0.$$

$$(4.11)$$

Доказательство. Положив в неравенстве (3.7) $\xi = T_h(u)$, будем иметь

$$\int\limits_{\{\Omega: h\leqslant |u|< k+h\}} \mathbf{a}(\mathbf{x}, \nabla u) \cdot \nabla u d\mathbf{x} + \int\limits_{\{\Omega: h\leqslant |u|\}} b(\mathbf{x}, u) T_k(u - T_h(u)) d\mathbf{x} \leqslant k \int\limits_{\{\Omega: h\leqslant |u|\}} |f| d\mathbf{x}.$$

Ввиду (3.4) справедливо неравенство

$$b(\mathbf{x}, u)T_k(u - T_h(u)) \geqslant 0.$$

Учитывая (3.1), для любого k > 0 устанавливаем:

$$\overline{a} \int_{\{\Omega: h \leq |u| < k+h\}} M(\mathbf{x}, d|\nabla u|) d\mathbf{x} \leq \int_{\{\Omega: h \leq |u|\}} (k|f| + \phi) d\mathbf{x}.$$

Отсюда, ввиду того, что $f, \phi \in L_1(\Omega)$, применяя (4.5) и переходя к пределу при $h \to \infty$, выводим соотношение (4.11).

Лемма 4.8. Если и является ренормализованным решением задачи (1.1), (1.2), то равенство (3.9) справедливо для любой функции $S \in C_0^1(\mathbb{R})$ и любой функции $\xi \in \mathring{V}_M(\Omega) \cap L_\infty(\Omega)$.

Доказательство аналогично [4, лемма 9].

Лемма 4.9. Пусть u — ренормализованное решение задачи (1.1), (1.2), тогда справедливы соотношения (4.5)–(4.7).

Доказательство. Зафиксируем k>0 и пусть $\sigma>k$. Определим функцию $S_{\sigma}\in C^{1}(\mathbb{R})$ такую, что $S_{\sigma}(r)=1, \ |r|\leqslant \sigma, \ S_{\sigma}(r)=0, \ |r|\geqslant \sigma+1, \ 0\leqslant S_{\sigma}\leqslant 1$ на \mathbb{R} . Очевидно, что $\sup S_{\sigma}\subset [-\sigma-1,\sigma+1]$ и $\sup S_{\sigma}'\subset [-\sigma-1,-\sigma]\cup [\sigma,\sigma+1]$. Положим в (3.9) $S=S_{\sigma},\ \xi=T_{k}(u)$, получим

$$J_1 + J_2 + J_3 = \langle \mathbf{a}(\mathbf{x}, \nabla u) S_{\sigma}(u) \cdot \nabla T_k(u) \rangle + \langle \mathbf{a}(\mathbf{x}, \nabla u) S_{\sigma}'(u) \cdot \nabla u T_k(u) \rangle + + \langle b(\mathbf{x}, u) S_{\sigma}(u) T_k(u) \rangle = \langle f S_{\sigma}(u) T_k(u) \rangle.$$

$$(4.12)$$

Оценим каждый интеграл:

$$J_1 = \int_{\Omega} \mathbf{a}(\mathbf{x}, \nabla u) S_{\sigma}(u) \cdot \nabla T_k(u) d\mathbf{x} = \int_{\{\Omega : |u| < k\}} \mathbf{a}(\mathbf{x}, \nabla u) \cdot \nabla u d\mathbf{x}, \tag{4.13}$$

$$|J_2| \leqslant C_0 \int_{\{\Omega: \sigma \leqslant |u| \leqslant \sigma + 1\}} |T_k(u)| |\mathbf{a}(\mathbf{x}, \nabla u) \cdot \nabla u| d\mathbf{x} \leqslant C_2 k \int_{\{\Omega: \sigma \leqslant |u| \leqslant \sigma + 1\}} |\mathbf{a}(\mathbf{x}, \nabla u)| |\nabla u| d\mathbf{x}. \tag{4.14}$$

Используя (3.4), выводим неравенство

$$J_3 = \int_{\Omega} b(\mathbf{x}, u) S_{\sigma}(u) T_k(u) d\mathbf{x} \geqslant 0.$$
 (4.15)

$$\int_{\{\Omega: |u| < k\}} \mathbf{a}(\mathbf{x}, \nabla u) \cdot \nabla u d\mathbf{x} \leqslant \int_{\Omega} |f| |T_k(u)| d\mathbf{x} + C_0 k \int_{\{\Omega: \sigma \leqslant |u| \leqslant \sigma + 1\}} |\mathbf{a}(\mathbf{x}, \nabla u)| |\nabla u| d\mathbf{x}.$$

Далее, применяя неравенство (2.3), используя оценки (3.1), (4.1), установим соотношения:

$$\overline{a} \int_{\{\Omega: |u| < k\}} M(\mathbf{x}, d|\nabla u|) d\mathbf{x} \leq \int_{\Omega} |f| |T_k(u)| d\mathbf{x} + \|\phi\|_1 + \frac{\widehat{a}}{d} C_2 k \int_{\{\Omega: \sigma \leq |u| \leq \sigma + 1\}} (3M(\mathbf{x}, d|\nabla u|) + \Psi) d\mathbf{x}.$$

$$(4.16)$$

Учитывая условие 3) определения 3.2, перейдем к пределу при $\sigma \to \infty$, получим неравенство

$$\int_{\{\Omega: |u| < k\}} M(\mathbf{x}, d|\nabla u|) d\mathbf{x} \leqslant C_3 + C_4 k \leqslant C_5 k, \quad k \geqslant 1.$$

Отсюда, согласно предложению 4.1, устанавливаем (4.5), (4.6).

Теперь, снова применяя условие 3) определения 3.2 и (4.5), перейдем к пределу в (4.16) при $\sigma \to \infty$, установим неравенство (4.8). Соотношение (4.7) является следствием неравенства (4.8) (см. лемму 4.1).

Лемма 4.10 (см. [12, лемма 2]). Пусть $(X, \mathcal{T}, \text{meas})$ — измеримое пространство такое, что $\text{meas}(X) < \infty$. Пусть $\gamma : X \to [0, +\infty]$ — измеримая функция такая, что $\text{meas}(\{x \in X : \gamma(x) = 0\}) = 0$. Тогда для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что неравенство

$$\int\limits_{Q} \gamma(\mathbf{x}) d\mathbf{x} < \delta$$

влечет meas $(Q) < \varepsilon$.

Лемма 4.11 (см. [19, Lemma A.4]). Пусть $v^j:\Omega\to\mathbb{R},\ j\in\mathbb{N}$ — измеримые функции такие, что

$$\sup_{j\in\mathbb{N}}\int\limits_{\Omega}M(\mathbf{x},v^{j})d\mathbf{x}<\infty.$$

Тогда последовательность $\{v^j\}_{j\in\mathbb{N}}$ равномерно интегрируема в $L_1(\Omega)$.

Замечание 4.1. Пусть $v^j,\ v:\Omega\to\mathbb{R},\ j\in\mathbb{N}$ — измеримые функции такие, что $v^j\to v$ п.в. в $\Omega,\ j\to\infty.$ Тогда $\chi_{\{\Omega:|v^j|\leqslant k\}}\to\chi_{\{\Omega:|v|\leqslant k\}}$ п.в. на $\Omega,\ j\to\infty$ для таких k, что

$$\max(\{\Omega : |v| = k\}) = 0. \tag{4.17}$$

Для области Ω с конечной мерой таких k, для которых условие (4.17) не выполнено, может быть не более, чем счетное число (см. [14, Lemma 9]). Положительные числа k, для которых выполнено условие (4.17), будем называть «правильными» для функции v.

5. Эквивалентность энтропийного и ренормализованного решений

Для уравнения (1.3) со степенной нелинейностью¹ эквивалентность энтропийного и ренормализованного решений доказана А. А. Ковалевским в работе [3, гл. I, теорема 1.1.6].

Доказательство теоремы 3.1. Пусть $u \in \mathring{\mathcal{T}}_{M}^{1}(\Omega)$ — ренормализованное решение задачи (1.1), (1.2). Зафиксируем произвольные $\varphi \in \mathring{V}_{M}(\Omega) \cap L_{\infty}(\Omega)$ и k>0. Пусть $\widehat{k}=k+\|\varphi\|_{\infty}$, тогда справедливо неравенство

$$|
abla T_k(u-arphi)|\leqslant |
abla T_{\widehat{k}}(u)|+|
abla arphi|$$
 для п.в. $\mathbf{x}\in\Omega.$

Поскольку $T_{\widehat{k}}(u) \in \mathring{V}_M(\Omega)$, то имеем:

$$T_k(u-\varphi) \in \mathring{V}_M(\Omega),$$
 (5.1)
$$\nabla T_k(u-\varphi) = (\nabla u - \nabla \varphi) \chi_{\{\Omega: |u-\varphi| < k\}} \quad \text{для п.в. } \mathbf{x} \in \Omega.$$

 $^{^{1}}$ функция а удовлетворяет условиям (3.1), (3.2) при $M(\mathbf{x},z)=|z|^{p},\;p\in(1,n)$

Определим функцию $h \in C_0^1(\mathbb{R})$ такую, что h(r) = 1 при $|r| \leqslant 1$, h(r) = 0 при $|r| \geqslant 2$, $0 \leqslant h \leqslant 1$ на \mathbb{R} . Для любого $\sigma > 0$ положим $h_{\sigma}(r) = h(r/\sigma)$, $r \in \mathbb{R}$.

Запишем (3.9) с $S(r) = h_{\sigma}(r), \, \xi = T_k(u - \varphi)$:

$$I_1 + I_2 = \langle \mathbf{a}(\mathbf{x}, \nabla u) \cdot \nabla u h_{\sigma}'(u) T_k(u - \varphi) \rangle + \langle (\mathbf{a}(\mathbf{x}, \nabla u) \cdot \nabla T_k(u - \varphi) + (b(\mathbf{x}, u) - f) T_k(u - \varphi)) h_{\sigma}(u) \rangle = 0.$$
(5.2)

Используя свойства функции h_{σ} , для любого $\sigma > 0$ устанавливаем

$$|I_1| \leqslant C_1 \frac{k}{\sigma} \int_{\{\Omega: \sigma \leqslant |u| < 2\sigma\}} |a(\mathbf{x}, \nabla u)| |\nabla u| d\mathbf{x}.$$

Применяя (2.3), (4.1), выводим неравенство

$$|I_1| \leqslant C_2 \frac{k}{\sigma} \int_{\{\Omega: \sigma \leqslant |u| < 2\sigma\}} (M(\mathbf{x}, d|\nabla u|) + \Psi(\mathbf{x})) d\mathbf{x}.$$

Отсюда благодаря (4.7) заключаем, что

$$\lim_{\sigma \to \infty} I_1 = 0.$$

Поскольку f, $b(\mathbf{x},u)$, $\mathbf{a}(\mathbf{x},\nabla u)\chi_{\{\Omega:|u|<\widehat{k}\}}\cdot\nabla T_k(u-\varphi)\in L_1(\Omega)$ (см. (5.1) и пункты 1), 2) определения 3.2), то в интеграле I_2 согласно теореме Лебега можно перейти к пределу при $\sigma\to\infty$. В итоге выводим интегральное тождество

$$\langle (\mathbf{a}(\mathbf{x}, \nabla u) \cdot \nabla T_k(u - \varphi) + (b(\mathbf{x}, u) - f)T_k(u - \varphi) \rangle = 0.$$

Следовательно, u — энтропийное решение задачи (1.1), (1.2).

Пусть $u \in \mathring{\mathcal{T}}_{M}^{1}(\Omega)$ — энтропийное решение задачи (1.1), (1.2) и $S \in C_{0}^{1}(\mathbb{R})$, $\varphi \in \mathring{V}_{M}(\Omega) \cap L_{\infty}(\Omega)$. Существуют числа $L, L_{1} > 0$ такие, что supp $S \subset [-L, L]$ и $|S(r)| \leqslant L_{1}$ для любых $r \in \mathbb{R}$. Зафиксируем $k > L_{1} \|\varphi\|_{\infty}$, и пусть $m \in \mathbb{N}$, m > L. Положим

$$\varphi_m = T_m(u) - S(T_m(u))\varphi \in \mathring{V}_M(\Omega) \cap L_\infty(\Omega),$$

имеем

$$\nabla \varphi_m = (\nabla u - S'(u)\varphi \nabla u - S(u)\nabla \varphi)\chi_{\{\Omega:|u| < m\}} \quad \text{п.в. на} \quad \Omega.$$
 (5.3)

Положим в (3.7) $\xi = \varphi_m$, получим

$$\int_{\{\Omega: |u-\varphi_m| < k\}} \mathbf{a}(\mathbf{x}, \nabla u) \cdot (\nabla u - \nabla \varphi_m) d\mathbf{x} + \int_{\Omega} (b(\mathbf{x}, u) - f) T_k(u - \varphi_m) d\mathbf{x} \leq 0.$$

Если $|u(\mathbf{x})| < m$, то для п.в. $\mathbf{x} \in \Omega$ верно неравенство $|u - \varphi_m| = |S(u)||\varphi(\mathbf{x})| \leqslant ||\varphi||_{\infty} L_1 < k$. Следовательно, для п.в. $\mathbf{x} \in \Omega$ имеет место вложение:

$$\{\Omega : |u| < L\} \subset \{\Omega : |u| < m\} \subset \{\Omega : |u - \varphi_m| < k\}.$$

Тогда, используя (5.3) установим

$$\int_{\{\Omega:|u-\varphi_m|< k\}} \mathbf{a}(\mathbf{x},\nabla u) \cdot \nabla u (1 - \chi_{\{\Omega:|u|< m\}}) d\mathbf{x} + \int_{\{\Omega:|u|< L\}} \mathbf{a}(\mathbf{x},\nabla u) \cdot (\nabla u \varphi S'(u) + \nabla \varphi S(u)) d\mathbf{x} + \int_{\{\Omega:|u-\varphi_m|< k\}} (b(\mathbf{x},u) - f) T_k(u - \varphi_m) d\mathbf{x} = I_m^1 + I_m^2 + I_m^3 \leq 0.$$
(5.4)

Учитывая то, что S(r) = S'(r) = 0 для $|r| \geqslant L$, получаем

$$I_m^2 = \int_{\Omega} \mathbf{a}(\mathbf{x}, \nabla u) \cdot (\nabla u \varphi S'(u) + \nabla \varphi S(u)) d\mathbf{x}.$$
 (5.5)

Далее, применяя (3.1), выводим

$$I_1^m = \int_{\{\Omega: |u-\varphi_m| < k\}} \mathbf{a}(\mathbf{x}, \nabla u) \cdot \nabla u (1 - \chi_{\{\Omega: |u| < m\}}) d\mathbf{x} =$$

Соединяя (5.4), (5.5), (5.6), устанавливаем неравенство

$$\int_{\Omega} \mathbf{a}(\mathbf{x}, \nabla u) \cdot (\nabla u \varphi S'(u) + \nabla \varphi S(u)) d\mathbf{x} +$$

$$+ \int_{\Omega} (b(\mathbf{x}, u) - f) T_k(u - T_m(u) + S(T_m(u))\varphi) d\mathbf{x} \leqslant \int_{\Omega} \phi (1 - \chi_{\{\Omega: |u| < m\}}) d\mathbf{x}. \tag{5.7}$$

Учитывая принадлежность $b(\mathbf{x}, u), f, \phi \in L_1(\Omega)$ и применяя теорему Лебега, в неравенстве (5.7) перейдем к пределу $m \to \infty$, получим

$$\langle \mathbf{a}(\mathbf{x}, \nabla u) \cdot (\nabla u \varphi S'(u) + \nabla \varphi S(u)) \rangle + \langle (b(\mathbf{x}, u) - f) S(u) \varphi \rangle \leqslant 0.$$

Очевидно, что такое же неравенство справедливо для $-\varphi$. Следовательно, для u выполняется равенство (3.9). Из леммы 4.7 следует справедливость соотношения (3.8). Таким образом, доказано, что u— ренормализованное решение задачи (1.1), (1.2).

6. Единственность энтропийного и ренормализованного решений

Доказательство теоремы 3.2. Единственность энтропийного решения доказывается аналогично доказательству [4, теорема 4].

Пусть u^1, u^2 — ренормализованные решения задачи (1.1), (1.2). Запишем (3.9) для u^1 и u^2 с $S = h_\sigma$, $\xi = T_k(u^1 - u^2)h_\sigma(u^2)$ и $\xi = T_k(u^1 - u^2)h_\sigma(u^1)$, соответственно, затем вычтем из первого второе, получим равенство

$$J_{1} + J_{2} + J_{3} + J_{4} = \langle (A^{1} - A^{2}) \cdot \nabla T_{k}(u^{1} - u^{2})h_{\sigma}(u^{1})h_{\sigma}(u^{2}) \rangle +$$

$$+ \langle (A^{1} - A^{2}) \cdot \nabla u^{1}T_{k}(u^{1} - u^{2})h'_{\sigma}(u^{1})h_{\sigma}(u^{2}) \rangle +$$

$$+ \langle (A^{1} - A^{2}) \cdot \nabla u^{2}T_{k}(u^{1} - u^{2})h_{\sigma}(u^{1})h'_{\sigma}(u^{2}) \rangle +$$

$$+ \langle (B^{1} - B^{2})T_{k}(u^{1} - u^{2})h_{\sigma}(u^{1})h_{\sigma}(u^{2}) \rangle = 0.$$

$$(6.1)$$

Здесь $A^{i}(x) = a(x, \nabla u^{i}), B^{i}(x) = b(x, u^{i}), i = 1, 2.$

Оценим каждый интеграл $J_k,\ k=1,2,3,4.$ Учитывая (2.3), (4.1), выводим неравенство

$$|J_{2}| \leq 2C_{1} \frac{k}{\sigma} \left(\left\| \overline{M} \left(\mathbf{x}, |\mathbf{A}^{1}|/(2\widehat{a}) \right) \right\|_{1, \{\Omega: \sigma \leqslant |u^{1}| < 2\sigma\}} + \left\| \overline{M} \left(\mathbf{x}, |\mathbf{A}^{2}|/(2\widehat{a}) \right) \right\|_{1, \{\Omega: |u^{2}| < 2\sigma\}} + 2 \left\| M(\mathbf{x}, d|\nabla u^{1}|) \right\|_{1, \{\Omega: \sigma \leqslant |u^{1}| < 2\sigma\}} \right) \leqslant$$

$$\leqslant C_1 \frac{k}{\sigma} \left(5 \| M(\mathbf{x}, d | \nabla u^1 |) \|_{1, \{\Omega: |u^1| < 2\sigma\}} + 2 \| \Psi \|_1 + \| M(\mathbf{x}, d | \nabla u^2 |) \|_{1, \{\Omega: |u^2| < 2\sigma\}} \right).$$

Благодаря (4.7) имеем:

$$\lim_{\sigma \to \infty} |J_2| = 0. \tag{6.2}$$

Аналогично устанавливается, что

$$\lim_{\sigma \to \infty} |J_3| = 0. \tag{6.3}$$

Пользуясь монотонностью функции $b(\mathbf{x}, s_0)$, выводим

$$J_4 \geqslant 0. \tag{6.4}$$

Соединяя (6.1), (6.4), устанавливаем неравенство

$$J_1 = \int_{\{\Omega: |u^1 - u^2| < k\}} (A^1 - A^2) \cdot \nabla(u^1 - u^2) h_{\sigma}(u^1) h_{\sigma}(u^2) dx \le |J_2| + |J_3|.$$

Пользуясь леммой Фату и соотношениями (6.2), (6.3), выполняя в последнем неравенстве предельный переход при $\sigma \to \infty$, устанавливаем неравенство

$$\int_{\{\Omega: |u^1 - u^2| < k\}} (\mathbf{a}(\mathbf{x}, \nabla u^1) - \mathbf{a}(\mathbf{x}, \nabla u^2) \cdot \nabla (u^1 - u^2) d\mathbf{x} \le 0.$$

Это противоречит условию (3.3), поэтому $\nabla(u^1-u^2)=0$ п.в. в $\{\Omega:|u^1-u^2|< k\}$ при любом k>0. Следовательно, $\nabla T_k(u^1-u^2)=0$ п.в. в Ω . Отсюда, ввиду принадлежностей $T_k(u^1), T_k(u^2)\in \mathring{W}_1^1(\Omega)$, заключаем, что $T_k(u^1-u^2)=0$ п.в. в Ω для любого k>0. Ввиду произвольности k устанавливаем, что $u^1=u^2$ п.в. в Ω .

7. Существование энтропийного решения

Доказательство теоремы 3.3. Запишем доказательство теоремы для неограниченной области Ω . Шаг 1. Энтропийное решение строится как предел последовательности слабых решений аппроксимационной задачи для уравнения

$$-\operatorname{div} \mathbf{a}(\mathbf{x}, \nabla u) + b^{m}(\mathbf{x}, u) = f^{m}(\mathbf{x}), \quad \mathbf{x} \in \Omega(m), \quad m \in \mathbb{N},$$

$$(7.1)$$

с функциями

$$f^{m}(\mathbf{x}) = T_{m} f(\mathbf{x}) \chi_{\Omega(m)}, \quad b^{m}(\mathbf{x}, s_{0}) = T_{m} b(\mathbf{x}, s_{0}) \chi_{\Omega(m)}.$$

Несложно показать, что

$$f^m \to f$$
 B $L_1(\Omega), m \to \infty,$ (7.2)

и при этом

$$|f^m(\mathbf{x})| \le |f(\mathbf{x})|, \quad |f^m(\mathbf{x})| \le m\chi_{\Omega(m)}, \quad \mathbf{x} \in \Omega, \quad m \in \mathbb{N}.$$
 (7.3)

Очевидно, что

$$|b^{m}(\mathbf{x}, s_{0})| \leq |b(\mathbf{x}, s_{0})|, \quad |b^{m}(\mathbf{x}, s_{0})| \leq m\chi_{\Omega(m)}, \quad \mathbf{x} \in \Omega, \quad s_{0} \in \mathbb{R}.$$
 (7.4)

Кроме того, применяя (3.4), устанавливаем неравенство

$$b^m(\mathbf{x}, s_0)s_0 \geqslant 0, \quad \mathbf{x} \in \Omega, \quad s_0 \in \mathbb{R}.$$
 (7.5)

Для каждого $m \in \mathbb{N}$ существует обобщенное решение $u^m \in \mathring{V}_M(\Omega(m))$ уравнения (7.1) (см. [11, Theorem 13]). Продолжим u^m нулем на $\Omega \setminus \Omega(m)$, тогда для любой функции $v \in \mathring{V}_M^1(\Omega(l)) \cap L_\infty(\Omega(l))$, $l \leq m$, выполняется интегральное равенство

$$\langle (b^m(\mathbf{x}, u^m) - f^m(\mathbf{x})) v \rangle + \langle \mathbf{a}(\mathbf{x}, \nabla u^m) \cdot \nabla v \rangle = 0, \quad m \in \mathbb{N}.$$
 (7.6)

Шаг 2. В этом шаге установим априорные оценки для последовательности $\{u^m\}_{m\in\mathbb{N}}$. Положив в (7.6) $v=T_{k,h}(u^m)=T_k(u^m-T_h(u^m)),\ h,k>0$, будем иметь

$$\int_{\{h \leqslant |u^m| < k+h\}} \mathbf{a}(\mathbf{x}, \nabla u^m) \cdot \nabla u^m d\mathbf{x} + \int_{\{|u^m| \geqslant h\}} b^m(\mathbf{x}, u^m) T_{k,h}(u^m) d\mathbf{x} \leqslant k \int_{\{|u^m| \geqslant h\}} |f^m| d\mathbf{x}.$$
 (7.7)

Благодаря (7.5) на множестве $\{\Omega: h \leqslant |u^m|\}$ справедливо неравенство

$$b^m(\mathbf{x}, u^m)T_{k,h}(u^m) \geqslant 0.$$

Учитывая это, из (7.7), применяя (7.3), выводим неравенство

$$\int\limits_{\{h\leqslant |u^m|< k+h\}} \mathbf{a}(\mathbf{x},\nabla u^m)\cdot\nabla u^m d\mathbf{x} + k\int\limits_{\{|u^m|\geqslant k+h\}} |b^m(\mathbf{x},u^m)| d\mathbf{x}\leqslant k\int\limits_{\{|u^m|\geqslant h\}} |f| d\mathbf{x}.$$

Отсюда, используя (3.1), устанавливаем неравенство

$$\int_{\{|u^m| \geqslant k+h\}} |b^m(\mathbf{x}, u^m)| d\mathbf{x} \leqslant \int_{\{|u^m| \geqslant h\}} (|f| + \phi) d\mathbf{x}, \quad k \geqslant 1, \quad m \in \mathbb{N}.$$

$$(7.8)$$

$$\int_{\{|u^m| < k\}} \mathbf{a}(\mathbf{x}, \nabla T_k(u^m)) \cdot \nabla u^m d\mathbf{x} + k \int_{\{|u^m| \ge k\}} |b^m(\mathbf{x}, u^m)| d\mathbf{x} \leqslant C_1 k, \quad m \in \mathbb{N}.$$

Отсюда, применяя (3.1), выводим

$$\overline{a} \int_{\{|u^m| < k\}} M(\mathbf{x}, d|\nabla u^m|) d\mathbf{x} + k \int_{\{|u^m| \ge k\}} |b^m(\mathbf{x}, u^m)| d\mathbf{x} \le C_1 k + C_2.$$
 (7.9)

И наконец, благодаря (7.4), (3.5), устанавливаем:

$$\sup_{|u^m| \leq k} |b^m(\mathbf{x}, u^m)| \leqslant \sup_{|u^m| \leq k} |b(\mathbf{x}, u^m)| = \Phi_k(\mathbf{x}) \in L_1(\Omega), \quad m \in \mathbb{N}.$$

$$(7.10)$$

Из оценок (7.9), (7.10) имеем:

$$\int_{\Omega} |b^m(\mathbf{x}, u^m)| d\mathbf{x} \leqslant \int_{\Omega} \Phi_k(\mathbf{x}) d\mathbf{x} + \int_{\{|u^m| \geqslant k\}} |b^m(\mathbf{x}, u^m)| d\mathbf{x} \leqslant C_3(k). \tag{7.11}$$

Кроме того, из (7.9) следует оценка

$$\int_{|u^m| < k\}} M(\mathbf{x}, d|\nabla u^m|) d\mathbf{x} = \int_{\Omega} M(\mathbf{x}, d|\nabla T_k(u^m)|) d\mathbf{x} \leqslant C_4 k, \quad k \geqslant 1.$$
 (7.12)

Соединяя (4.1), (7.12) выводим оценку

$$\int_{\Omega} \overline{M}\left(\mathbf{x}, \frac{|\mathbf{a}(\mathbf{x}, \nabla T_k(u^m)|}{2\widehat{a}}\right) d\mathbf{x} \leqslant C_5(k). \tag{7.13}$$

Шаг 3. Из оценки (7.12), применяя предложение 4.1, имеем:

$$\operatorname{meas}(\{\Omega: |u^m| \geqslant k\}) \to 0$$
 равномерно по $m \in \mathbb{N}, k \to \infty,$ (7.14)

$$\operatorname{meas}(\{\Omega : |\nabla u^m| \geqslant h\}) \to 0$$
 равномерно по $m \in \mathbb{N}, h \to \infty.$ (7.15)

Теперь установим сходимость по подпоследовательности:

$$u^m \to u$$
 п.в. в Ω , $m \to \infty$. (7.16)

Из оценки (7.12) следует ограниченность множества $\{\nabla T_k(u^m)\}_{m\in\mathbb{N}}$ в пространстве $L_M(\Omega)$, а следовательно в $L_1(\Omega)$. Тогда $\{T_k(u^m)\}_{m\in\mathbb{N}}\subset \mathring{W}^1_1(\Omega)$ ограничена в пространстве $\mathring{W}^1_1(\Omega)$.

Отсюда для любого фиксированного k>0 следует сходимость $T_k(u^m)\to v_k$ в $L_1(\Omega)$, а также сходимость по подпоследовательности $T_k(u^m)\to v_k$ почти всюду в Ω . Далее, сходимость (7.16) устанавливается так же, как в работе [2, п. 5.3]. Из сходимости (7.16) следует, что для любого k>0

$$T_k(u^m) \to T_k(u)$$
 п.в. в Ω , $m \to \infty$.

В силу доказанного справедлива сходимость

$$T_k(u^m) \to T_k(u)$$
 B $L_1(\Omega)$, $m \to \infty$. (7.17)

Докажем, что

$$b^m(\mathbf{x}, u^m) \to b(\mathbf{x}, u)$$
 B $L_1(\Omega), m \to \infty.$ (7.18)

Учитывая сходимость (7.16), имеем:

$$b^m(\mathbf{x}, u^m) \to b(\mathbf{x}, u)$$
 п.в. в $\Omega, m \to \infty.$ (7.19)

Из (7.8) при k=1 для любого h>0 получаем:

$$\int\limits_{\{\Omega:|u^m|\geqslant h+1\}}|b^m(\mathbf{x},u^m)|d\mathbf{x}\leqslant\int\limits_{\{\Omega:|u^m|\geqslant h\}}(|f|+\phi)d\mathbf{x},\quad m\in\mathbb{N}.$$

Ввиду того, что $f, \phi \in L_1(\Omega)$, и абсолютной непрерывности интеграла в правой части последнего неравенства, учитывая (7.14), для любого $\varepsilon > 0$ можно выбрать достаточно большое $h(\varepsilon) > 1$ такое, что:

$$\int_{\{\Omega: |u^m| \geqslant h\}} |b^m(\mathbf{x}, u^m)| d\mathbf{x} < \frac{\varepsilon}{2}, \quad m \in \mathbb{N}.$$
(7.20)

Пусть E — произвольное измеримое подмножество в Ω . Применяя (7.10), имеем:

$$\int_{E} |b^{m}(\mathbf{x}, u^{m})| d\mathbf{x} \leqslant \int_{E} \Phi_{h}(\mathbf{x}) d\mathbf{x} + \int_{\{\Omega: |u^{m}| \geqslant h\}} |b^{m}(\mathbf{x}, u^{m})| d\mathbf{x}.$$
 (7.21)

Из принадлежности $\Phi_h \in L_1(\Omega)$ имеем:

$$\int_{E} \Phi_{h}(\mathbf{x}) d\mathbf{x} < \frac{\varepsilon}{2} \tag{7.22}$$

для любого E такого, что meas $(E) < \alpha(\varepsilon)$.

Объединяя (7.20)–(7.22), устанавливаем

$$\int_E |b^m(\mathbf{x}, u^m)| d\mathbf{x} < \varepsilon \quad \forall \ E \quad \text{такого, что meas } (E) < \alpha(\varepsilon), \quad m \in \mathbb{N}.$$

Таким образом, установлена равномерная интегрируемость последовательности $\{b^m(\mathbf{x}, u^m)\}_{m \in \mathbb{N}}$ в $L_1(\Omega)$. Учитывая сходимость (7.19), применяя лемму 4.3, устанавливаем сходимость (7.18). Шаг 4. Докажем сходимость:

$$\nabla u^m \to \nabla u$$
 п.в. в Ω , $m \to \infty$. (7.23)

Из сходимости (7.16) следует сходимость по мере, а значит и фундаментальность u^m по мере:

$$\operatorname{meas}(\{\Omega: |u^m - u^l| \geqslant \nu\}) \to 0$$
 при $m, l \to \infty$ для любого $\nu > 0$. (7.24)

Сначала установим сходимость:

$$\nabla u^m \to \nabla u$$
 по мере, $m \to \infty$. (7.25)

Для $\nu, \theta, h > 0$ рассмотрим множество

$$E_{\nu,\theta,h} = \{\Omega : |u^l - u^m| < \nu, \ |\nabla u^l| \leqslant h, \ |\nabla u^m| \leqslant h, \ |u^l| < h, \ |u^m| < h, \ |\nabla (u^l - u^m)| \geqslant \theta\}.$$

Поскольку справедливо включение

$$\{\Omega: |\nabla(u^l - u^m)| \geqslant \theta\} \subset \{\Omega: |\nabla u^l| > h\} \cup \{\Omega: |\nabla u^m| > h\} \cup \{\Omega: |u^l - u^m| \geqslant \nu\} \cup \{\Omega: |u^l| \geqslant h\} \cup \{\Omega: |u^m| \geqslant h\} \cup E_{\nu,\theta,h},$$

то, в силу (7.14), (7.15), выбором h добьемся неравенств

$$\operatorname{meas}\left(\left\{\Omega:\left|\nabla(u^l-u^m)\right|\geqslant\theta\right\}\right)<4\varepsilon+\operatorname{meas}\left(E_{\nu,\theta,h}\right)+\operatorname{meas}\left(\left\{\Omega:\left|u^l-u^m\right|\geqslant\nu\right\}\right),\quad m,l\in\mathbb{N}.\ \ (7.26)$$

По условию монотонности (3.3) и известному факту, что непрерывная функция на компакте достигает наименьшего значения, найдется $\gamma(\mathbf{x})>0$ п.в. в Ω такая, что при $|\mathbf{s}|\leqslant h,$ $|\mathbf{t}|\leqslant h,$ $|\mathbf{s}-\mathbf{t}|\geqslant \theta$ с достаточно малым θ справедливо неравенство

$$(a(x,s) - a(x,t)) \cdot (s-t) \geqslant \gamma(x) \quad \text{п.в. B} \quad \Omega. \tag{7.27}$$

Введем обозначение $A_0^m(\mathbf{x}) = f^m(\mathbf{x}) + b^m(\mathbf{x}, u^m)$. Из (7.3), (7.11) следует ограниченность последовательности $\{A_0^m\}_{m\in\mathbb{N}}$ в $L_1(\Omega)$. Запишем (7.6) дважды для u^m и u^l и вычтем из первого второе, получим

$$\int_{\Omega} \left(\mathbf{a}(\mathbf{x}, \nabla u^m) - \mathbf{a}(\mathbf{x}, \nabla u^l) \right) \cdot \nabla v d\mathbf{x} + \int_{\Omega} (A_0^m - A_0^l) v d\mathbf{x} = 0.$$

Подставляя пробную функцию $v = T_{\nu}(u^m - u^l)$, устанавливаем соотношение

$$\int_{\Omega} \left(\mathbf{a}(\mathbf{x}, \nabla u^m) - \mathbf{a}(\mathbf{x}, \nabla u^l) \right) \cdot \nabla T_{\nu}(u^m - u^l) d\mathbf{x} = -\int_{\Omega} (A_0^m - A_0^l) T_{\nu}(u^m - u^l) d\mathbf{x} \leqslant C_6 \nu, \quad m, l \in \mathbb{N}.$$
 (7.28)

Далее, применяя (7.27), выводим

$$\int_{E_{\nu,\theta,h}} \gamma(\mathbf{x}) d\mathbf{x} \leqslant \int_{E_{\nu,\theta,h}} \left(\mathbf{a}(\mathbf{x}, \nabla u^m) - \mathbf{a}(\mathbf{x}, \nabla u^l) \right) \cdot \nabla(u^m - u^l) d\mathbf{x} \leqslant
\leqslant \int_{\{\Omega: |u^m - u^l| < \nu\}} (\mathbf{a}(\mathbf{x}, \nabla u^m) - \mathbf{a}(\mathbf{x}, \nabla u^l)) \nabla(u^m - u^l) d\mathbf{x}.$$
(7.29)

Соединяя (7.29), (7.28), получаем

$$\int_{E_{\nu,\theta,h}} \gamma(\mathbf{x}) d\mathbf{x} \leqslant C_6 \nu.$$

Отсюда для произвольного $\delta > 0$ при фиксированном h выбором ν устанавливаем неравенство

$$\int\limits_{E_{\nu,\theta,h}} \gamma(\mathbf{x}) d\mathbf{x} < \delta.$$

Применяя лемму 4.10, для любого $\varepsilon > 0$ выводим

$$\operatorname{meas}\left(E_{\nu,\theta,h}\right) < \varepsilon. \tag{7.30}$$

Ввиду того, что meas $(E_{\nu,\theta,h})=0$ для достаточно больших θ , то неравенство (7.30) справедливо для любых $\theta>0$.

Кроме того, согласно (7.24), можно выбрать $m_0(\nu, \varepsilon)$ такое, что

$$\operatorname{meas}\left(\left\{\Omega: |u^l - u^m| \geqslant \nu\right\}\right) < \varepsilon, \quad m, l \geqslant m_0. \tag{7.31}$$

Соединяя (7.26), (7.30), (7.31), в итоге для любого $\theta > 0$ выводим неравенство

meas
$$(\{\Omega : |\nabla (u^l - u^m)| \ge \theta\}) < 6\varepsilon, \quad m, l \ge m_0.$$

Отсюда следует фундаментальность по мере последовательности $\{\nabla u^m\}_{m\in\mathbb{N}}$, это влечет сходимость (7.25), а также сходимость (7.23) по подпоследовательности.

Так как $\nabla u = 0$ на множестве, где |u| = k, то из сходимости (7.23) заключаем:

$$\nabla T_k(u^m) - \nabla T_k(u) = \chi_{\{\Omega:|u^m| < k\}} (\nabla u^m - \nabla u) +$$

$$+ (\chi_{\{\Omega:|u^m| < k\}} - \chi_{\{\Omega:|u| < k\}}) \nabla u \to 0 \quad \text{fi.b. B} \quad \Omega, \quad m \to \infty.$$

$$(7.32)$$

Кроме того, благодаря оценке (7.12), пользуясь леммой 4.11 устанавливаем равномерную интегрируемость последовательности $\{\nabla T_k(u^m)\}_{m\in\mathbb{N}}$ в $L_1(\Omega)$. Отсюда по теореме Витали устанавливаем сходимость

$$\nabla T_k(u^m) \to \nabla T_k(u)$$
 B $L_1(\Omega)$, $m \to \infty$. (7.33)

Следствием (7.17), (7.33) является принадлежность $T_k(u) \in \mathring{W}_1^1(\Omega)$.

Далее, применяя (2.4) из (7.12), (7.13) выводим оценки

$$\|\nabla T_k(u^m)\|_M \leqslant C_7(k), \quad \|\mathbf{a}(\mathbf{x}, \nabla T_k(u^m))\|_{\overline{M}} \leqslant C_8(k), \quad m \in \mathbb{N}.$$

Отсюда, пользуясь сходимостью (7.32) по лемме 4.2 устанавливаем

$$\nabla T_k(u^m) \rightharpoonup \nabla T_k(u)$$
 по топологии $\sigma(\mathcal{L}_M, \mathcal{E}_{\overline{M}})$ в $\mathcal{L}_M(\Omega), m \to \infty$,

$$a(x, \nabla T_k(u^m)) \rightharpoonup a(x, \nabla T_k(u))$$
 по топологии $\sigma(L_{\overline{M}}, E_M)$ в $L_{\overline{M}}(\Omega), m \to \infty.$ (7.34)

Шаг 5. Пусть $\xi \in C_0^1(\Omega)$, $\sup \xi \subset \Omega(l)$, $l \geqslant l_0$. Чтобы доказать неравенство (3.7), в тождестве (7.6) возьмем пробную функцию $v = T_k(u^m - \xi)$, получим соотношение

$$\langle \mathbf{a}(\mathbf{x}, \nabla u^m) \cdot \nabla T_k(u^m - \xi) \rangle + \langle (b^m(\mathbf{x}, u^m) - f^m) T_k(u^m - \xi) \rangle = I^m + J^m, \quad m \geqslant l_0. \tag{7.35}$$

Положим $\hat{k} = k + \|\xi\|_{\infty}$. Если $|u^m - \xi| < k$, то $|u^m| < \hat{k}$, поэтому $\{\Omega : |u^m - \xi| < k\} \subseteq \{\Omega : |u^m| < \hat{k}\}$, следовательно,

$$I^{m} = \int_{\Omega} \mathbf{a}(\mathbf{x}, \nabla u^{m}) \cdot \nabla T_{k}(u^{m} - \xi) d\mathbf{x} = \int_{\{\Omega: |u^{m} - \xi| < k\}} \mathbf{a}(\mathbf{x}, \nabla u^{m}) \cdot \nabla (u^{m} - \xi) d\mathbf{x} =$$

$$= \int_{\{\Omega: |u^{m} - \xi| < k\}} \mathbf{a}(\mathbf{x}, \nabla T_{\widehat{k}}(u^{m})) \cdot \nabla T_{\widehat{k}}(u^{m}) d\mathbf{x} - \int_{\{\Omega: |u^{m} - \xi| < k\}} \mathbf{a}(\mathbf{x}, \nabla T_{\widehat{k}}(u^{m})) \cdot \nabla \xi d\mathbf{x} = I_{1}^{m} - I_{2}^{m}. \quad (7.36)$$

Применяя (7.16), (7.32), по лемме Фату для правильных k (таких, что meas($\{\Omega: |u-\xi|=k\}$) = 0) имеем сходимость:

$$\lim_{m \to \infty} \inf_{I_1^m} = \lim_{m \to \infty} \int_{\Omega} \mathbf{a}(\mathbf{x}, \nabla T_{\widehat{k}}(u^m)) \cdot \nabla T_{\widehat{k}}(u^m) \chi_{\{\Omega: |u^m - \xi| < k\}} d\mathbf{x} \geqslant
\geqslant \int_{\{\Omega: |u - \xi| < k\}} \mathbf{a}(\mathbf{x}, \nabla T_{\widehat{k}}(u)) \cdot \nabla T_{\widehat{k}}(u) d\mathbf{x}.$$
(7.37)

Используя (7.16), по лемме 4.5 для правильных k имеем сходимость:

$$\nabla \xi \chi_{\{\Omega:|u^m-\xi|< k\}} \to \nabla \xi \chi_{\{\Omega:|u-\xi|< k\}}$$
 сильно в $\mathcal{E}_M(\Omega)$, $m \to \infty$.

Отсюда, учитывая сходимость (7.34), выводим

$$\lim_{m \to \infty} I_2^m = \lim_{m \to \infty} \int_{\Omega} \mathbf{a}(\mathbf{x}, \nabla T_{\widehat{k}}(u^m)) \cdot \nabla \xi \chi_{\{\Omega: |u^m - \xi| < k\}} d\mathbf{x} = \int_{\{\Omega: |u - \xi| < k\}} \mathbf{a}(\mathbf{x}, \nabla T_{\widehat{k}}(u)) \cdot \nabla \xi d\mathbf{x}. \tag{7.38}$$

Соединяя (7.36)–(7.38), устанавливаем

$$\lim_{m \to \infty} I^{m} \geqslant \int_{\{\Omega: |u - \xi| < k\}} \mathbf{a}(\mathbf{x}, \nabla T_{\widehat{k}}(u)) \cdot \nabla T_{\widehat{k}}(u) d\mathbf{x} - \int_{\{\Omega: |u - \xi| < k\}} \mathbf{a}(\mathbf{x}, \nabla T_{\widehat{k}}(u)) \cdot \nabla \xi d\mathbf{x} = \int_{\{\Omega: |u - \xi| < k\}} \mathbf{a}(\mathbf{x}, \nabla u) \cdot \nabla (u - \xi) d\mathbf{x}. \tag{7.39}$$

Из сходимости (7.16) по лемме 4.5 имеем:

$$T_k(u^m - \xi) \rightharpoonup T_k(u - \xi)$$
 в топологии $\sigma(L_\infty, L_1)$ пространства $L_\infty(\Omega), \quad m \to \infty.$

Отсюда, используя (7.18), (7.2), устанавливаем

$$\lim_{m \to \infty} J^m = \lim_{m \to \infty} \int_{\Omega} (b^m(\mathbf{x}, u^m) - f^m) T_k(u^m - \xi) d\mathbf{x} = \int_{\Omega} (b(\mathbf{x}, u) - f) T_k(u - \xi) d\mathbf{x}.$$
 (7.40)

Соединяя (7.35), (7.39), (7.40), выводим (3.7). Таким образом, $u \in \mathring{\mathcal{T}}_M^1(\Omega)$ является энтропийным решением задачи (1.1), (1.2).

СПИСОК ЛИТЕРАТУРЫ

- 1. Данфорд Н., Шварц Дж. Т. Линейные операторы. Общая теория. М.: ИЛ, 1962.
- 2. *Кожевникова Л. М.* Энтропийные и ренормализованные решения анизотропных эллиптических уравнений с переменными показателями нелинейностей// Мат. сб. -2019. -210, № 3. С. 131–161.
- 3. *Ковалевский А. А., Скрыпник И. И., Шишков А. Е.* Сингулярные решения нелинейных эллиптических и параболических уравнений. Киев: Наукова думка, 1962.
- 4. Кожевникова Л. М., Кашникова А. П. Эквивалентность энтропийных и ренормализованных решений нелинейной эллиптической задачи в пространствах Музилака—Орлича// Дифф. уравн. 2023. 59. С. 35–51.
- 5. Рутицкий Я. Б., Красносельский М. А. Выпуклые функции и пространства Орлича. М.: Физматлит, 1958
- 6. Ahmida Y., Chlebicka I., Gwiazda P., Youssfi A. Gossez's approximation theorems in Musielak—Orlicz—Sobolev spaces// J. Funct. Anal. -2018.-275, N 9. C. 2538–2571.

- 7. Ait Khellou M., Benkirane A. Renormalized solution for nonlinear elliptic problems with lower order terms and L^1 data in Musielak—Orlicz spaces// An. Univ. Craiova Ser. Mat. Inform. -2016.-43, N^2 2. - C. 164-
- 8. Ait Khellou M., Douiri S. M., El Hadfi Y. Existence of solutions for some nonlinear elliptic equations in Musielak spaces with only the Log-Hölder continuity condition// Mediterr. J. Math. −2020. −17, № 1. −
- 9. Benilan Ph., Boccardo L., Gallouët Th., Gariepy R., Pierre M., Vazquez J. L. An L¹-theory of existence and nuniqueness of solutions of nonlinear elliptic equations // Ann. Sc. Norm. Super. Pisa Cl. Sci. — 1995. — 22, Nº 2. — C. 241–273.
- 10. Benkirane A., Sidi El Vally M. An existence result for nonlinear elliptic equations in Musielak—Orlicz— Sobolev spaces// Bull. Belg. Math. Soc. Simon Stevin. -2013. -20, No. 1. -C. 57–75.
- 11. Benkirane A., Sidi El Vally M. Variational inequalities in Musielak—Orlicz—Sobolev spaces// Bull. Belg. Math. Soc. Simon Stevin. — 2014. — 21, $N_{\underline{0}}$ 5. — C. 787–811.
- 12. Boccardo L., Gallouët Th. Nonlinear elliptic equations with right-hand side measures // Commun. Part. Differ. Equ. -1992. -17, No. 3-4. -C. 641-655.
- 13. Chlebicka I. A pocket guide to nonlinear differential equations in Musielak—Orlicz spaces// Nonlinear Anal. -2018. -175. - C. 1-27.
- 14. Chlebicka I. Measure data elliptic problems with generalized Orlicz growth// Proc. Roy. Soc. Edinburgh Sect. A. -2023. -153, No. 2. -C. 588-618.
- 15. Denkowska A., Gwiazda P., Kalita P. On renormalized solutions to elliptic inclusions with nonstandard growth// Calc. Var. Partial Differ. Equ. -2021.-60, N = 21.-C. 1-44.
- 16. Elarabi R., Rhoudaf M., Sabiki H. Entropy solution for a nonlinear elliptic problem with lower order term in Musielak—Orlicz spaces // Ric. Mat. -2018.-67, \mathbb{N}_{2} . $-\mathbb{C}$. 549-579.
- 17. Elemine Vall M. S. B., Ahmedatt T., Touzani A., Benkirane A. Existence of entropy solutions for nonlinear elliptic equations in Musielak framework with L^1 data// Bol. Soc. Parana Mat. -2018.-36, N 1.-C. 125-125150.
- 18. Gwiazda P., Skrzypczaka I., Zatorska-Goldstein A. Existence of renormalized solutions to elliptic equation in Musielak—Orlicz space// Differ. Equ. -2018. -264. - C.341-377.
- 19. Gwiazda P., Świerczewska-Gwiazda A., Wróblewska A. Monotonicity methods in generalized Orlicz spaces for a class of non-Newtonian fluids // Math. Methods Appl. Sci. − 2010. − № 2. − C. 125–137.
- 20. Musielak J. Orlicz spaces and modular spaces. Berlin: Springer, 1983.
- 21. Talha A., Benkirane A. Strongly nonlinear elliptic boundary value problems in Musielak—Orlicz spaces// Monatsh. Math. -2018. -186, No 4. -C. 745-776.
- 22. Ying Li, Fengping Y., Shulin Zh. Entropy and renormalized solutions to the general nonlinear elliptic equations in Musielak—Orlicz spaces// Nonlinear Anal. Real World Appl. -2021.-61.-C. 1–20.

Л. М. Кожевникова

Стерлитамакский филиал Уфимского университета науки и технологий, Стерлитамак, Россия; Елабужский институт Казанского федерального университета, Елабуга, Россия

E-mail: kosul@mail.ru

UDC 517.956.25

DOI: 10.22363/2413-3639-2023-69-1-98-115

EDN: EBRPUC

Entropy and renormalized solutions for a nonlinear elliptic problem in Musielak–Orlicz spaces

L. M. Kozhevnikova^{1,2}

¹Sterlitamak Branch of Bashkir State University, Sterlitamak, Russia ²Elabuga Institute of Kazan Federal University, Elabuga, Russia

In this paper, we establish the equivalence of entropy and renormalized solutions of second-order elliptic equations with nonlinearities defined by the Musielak-Orlicz functions and the right-hand side from the space $L_1(\Omega)$. In nonreflexive Musielak-Orlicz-Sobolev spaces, we prove the existence and uniqueness of both entropy and renormalized solutions of the Dirichlet problem in domains with a Lipschitz boundary.

Keywords: second-order elliptic equation, entropy solution, renormalized solution, Musielak–Orlicz–Sobolev space, existence and uniqueness of solutions

For citation: L. M. Kozhevnikova, "Entropy and renormalized solutions for a nonlinear elliptic problem in Musielak-Orlicz spaces," *Sovrem. Mat. Fundam. Napravl.*, 2023, vol. **69**, No. 1, 98–115. http://doi.org/10.22363/2413-3639-2023-69-1-98-115

REFERENCES

- 1. N. Dunford and J. T. Schwartz, *Lineynye operatory*. Obshchaya teoriya [Linear Operators. Part I: General Theory], IL, Moscow, 1962 (Russian translation).
- 2. L. M. Kozhevnikova, "Entropiynye i renormalizovannye resheniya anizotropnykh ellipticheskikh uravneniy s peremennymi pokazatelyami nelineynostey" [Entropy and renormalized solutions of anisotropic elliptic equations with variable nonlinearity exponents], *Mat. sb.* [Math. Digest], 2019, 210, No. 3, 131–161 (in Russian).
- 3. A. A. Kovalevskiy, I. I. Skrypnik, and A. E. Shishkov, Singulyarnye resheniya nelineynykh ellipticheskikh i parabolicheskikh uravneniy [Singular Solutions of Nonlinear Elliptic and Parabolic Equations], Naukova Dumka, Kiev, 1962 (in Russian).
- 4. L. M. Kozhevnikova and A. P. Kashnikova, "Ekvivalentnost' entropiynykh i renormalizovannykh resheniy nelineynoy ellipticheskoy zadachi v prostranstvakh Muzilaka—Orlicha" [Equivalence of Entropy and Renormalized Solutions of a Nonlinear Elliptic Problem in Musielak—Orlicz Spaces], *Diff. uravn.* [Differ. Equ.], 2023, **59**, 35–51 (in Russian).
- 5. Ya. B. Rutitskiy and M. A. Krasnosel'skiy, *Vypuklye funktsii i prostranstva Orlicha* [Convex Functions and Orlicz Spaces], Fizmatlit, Moscow, 1958 (in Russian).
- 6. Y. Ahmida, I. Chlebicka, P. Gwiazda, and A. Youssfi, "Gossez's approximation theorems in Musielak—Orlicz—Sobolev spaces," *J. Funct. Anal.*, 2018, **275**, No. 9, 2538–2571.
- M. Ait Khellou and A. Benkirane, "Renormalized solution for nonlinear elliptic problems with lower order terms and L¹ data in Musielak—Orlicz spaces," An. Univ. Craiova Ser. Mat. Inform., 2016, 43, No. 2, 164–187.
- 8. M. Ait Khellou, S. M. Douiri, and Y. El Hadfi, "Existence of solutions for some nonlinear elliptic equations in Musielak spaces with only the Log-Hölder continuity condition," *Mediterr. J. Math.*, 2020, **17**, No. 1, 1–18.

- 9. Ph. Benilan, L. Boccardo, Th. Gallouët, R. Gariepy, M. Pierre, J. L. Vazquez, "An L¹-theory of existence and nuniqueness of solutions of nonlinear elliptic equations," *Ann. Sc. Norm. Super. Pisa Cl. Sci.*, 1995, **22**, No. 2, 241–273.
- 10. A. Benkirane and M. Sidi El Vally, "An existence result for nonlinear elliptic equations in Musielak—Orlicz—Sobolev spaces," *Bull. Belg. Math. Soc. Simon Stevin.*, 2013, **20**, No. 1, 57–75.
- 11. A. Benkirane and M. Sidi El Vally, "Variational inequalities in Musielak—Orlicz—Sobolev spaces," *Bull. Belg. Math. Soc. Simon Stevin.*, 2014, **21**, No. 5, 787–811.
- 12. L. Boccardo and Th. Gallouët, "Nonlinear elliptic equations with right-hand side measures," *Commun. Part. Differ. Equ.*, 1992, **17**, No. 3-4, 641–655.
- 13. I. Chlebicka, "A pocket guide to nonlinear differential equations in Musielak—Orlicz spaces," *Nonlinear Anal.*, 2018, **175**, 1–27.
- 14. I. Chlebicka, "Measure data elliptic problems with generalized Orlicz growth," *Proc. Roy. Soc. Edinburgh Sect. A*, 2023, **153**, No. 2, 588–618.
- 15. A. Denkowska, P. Gwiazda, and P. Kalita, "On renormalized solutions to elliptic inclusions with nonstandard growth," *Calc. Var. Partial Differ. Equ.*, 2021, **60**, No. 21, 1–44.
- 16. R. Elarabi, M. Rhoudaf, and H. Sabiki, "Entropy solution for a nonlinear elliptic problem with lower order term in Musielak—Orlicz spaces," *Ric. Mat.*, 2018, **67**, No. 2, 549–579.
- 17. M. S. B. Elemine Vall, T. Ahmedatt, A. Touzani, and A. Benkirane, "Existence of entropy solutions for nonlinear elliptic equations in Musielak framework with L^1 data," Bol. Soc. Parana Mat., 2018, 36, No. 1, 125–150.
- 18. P. Gwiazda, I. Skrzypczaka, and A. Zatorska-Goldstein, "Existence of renormalized solutions to elliptic equation in Musielak—Orlicz space," *Differ. Equ.*, 2018, **264**, 341–377.
- 19. P. Gwiazda, Á. Swierczewska-Gwiazda, and A. Wróblewska, "Monotonicity methods in generalized Orlicz spaces for a class of non-Newtonian fluids," *Math. Methods Appl. Sci.*, 2010, No. 2, 125–137.
- 20. J. Musielak, Orlicz spaces and modular spaces, Springer, Berlin, 1983.
- 21. A. Talha and A. Benkirane, "Strongly nonlinear elliptic boundary value problems in Musielak—Orlicz spaces," *Monatsh. Math.*, 2018, **186**, No. 4, 745–776.
- 22. Li Ying, Y. Fengping, and Zh. Shulin, "Entropy and renormalized solutions to the general nonlinear elliptic equations in Musielak—Orlicz spaces," *Nonlinear Anal. Real World Appl.*, 2021, **61**, 1–20.

L. M. Kozhevnikova

Sterlitamak Branch of Bashkir State University, Sterlitamak, Russia;

Elabuga Institute of Kazan Federal University, Elabuga, Russia

E-mail: kosul@mail.ru