УДК 519.21+517.9

АНАЛИЗ БЕЛОГО ШУМА В ПРИЛОЖЕНИЯХ К СТОХАСТИЧЕСКИМ УРАВНЕНИЯМ В ГИЛЬБЕРТОВЫХ ПРОСТРАНСТВАХ

© 2014 г. И.В. МЕЛЬНИКОВА, М.А. АЛЬШАНСКИЙ

Введение

Стохастические дифференциальные уравнения возникают в многочисленных приложениях как математические модели, отражающие случайные воздействия типа белого шума на рассматриваемую систему. В дальнейшем мы ограничимся случаем гауссовского белого шума. Намерение ввести шум в дифференциальное уравнение встречает несколько препятствий, одно из которых связано с тем, что процесс белого шума (неформально) определяется как случайный процесс, значения которого при разных t являются независимыми одинаково распределенными случайными величинами с равными нулю математическими ожиданиями и бесконечными отклонениями. Это означает, что белый шум не является случайным процессом в обычном смысле.

Можно выделить два подхода к преодолению препятствия, связанного с сингулярностью белого шума. Первый состоит в использовании исчисления Ито. Главная идея этого подхода может быть в общих чертах описана следующим образом. Вместо того, чтобы работать собственно с шумом, работают с его «первообразной» — броуновским движением B(t), или винеровским процессом. Основы этой теории были заложены Н. Винером [35], который первым ввел математическую модель броуновского движения, построив вероятностную меру на пространстве всех непрерывных на отрезке [0;1] функций так, что эти функции можно считать траекториями процесса броуновского движения. В силу конструкции меры Винера эти непрерывные траектории оказываются нигде не дифференцируемыми с вероятностью единица.

В основе исчисления Ито лежит понятие интеграла от стохастического процесса X(t) по броуновскому движению — интеграла Ито:

$$\int_{0}^{T} X(t) dB(t).$$

Этот математический аппарат позволяет изучать задачу Коши для стохастического дифференциального уравнения вида

$$dX(t) = a(t, X(t)) dt + b(t, X(t)) dB(t), \quad X(0) = \zeta,$$

которое, на самом деле, представляет собой краткую запись интегрального уравнения

$$X(t) - \zeta = \int_{0}^{t} a(s, X(s)) ds + \int_{0}^{t} b(s, X(s)) dB(s).$$

Такие уравнения называются уравнениями Ито, а их решения— процессами Ито. Эти процессы можно считать функционалами траекторий броуновского движения, и исчисление Ито часто называют анализом броуновских функционалов.

Второй подход появился в последних декадах XX столетия и известен как анализ белого шума. Этот термин появился в работе Т. Хиды [13], где он предложил рассматривать функционалы броуновского движения как функционалы белого шума. Поскольку белый шум можно считать

Работа частично поддержана министерством образования и науки РФ (Программа 1.1016.2011), РФФИ, проект 13-01-00090, и программой государственной поддержки лидирующих университетов РФ (соглашение №. 02.A03.21.0006 от 27.08.2013).

производной броуновского движения, траектории которого непрерывны, но нигде не дифференцируемы в обычном смысле, естественно считать траектории белого шума элементами пространства Шварца \mathcal{S}' обобщенных функций медленного роста. Поэтому при построении вероятностного пространства белого шума, являющегося базовым понятием анализа белого шума, берут $\Omega = \mathcal{S}'$ и вводят гауссовскую нормализованную меру μ на σ -алгебре $\mathcal{B}(\mathcal{S}')$ борелевских подмножеств \mathcal{S}' . Построение этой меры основано на знаменитой теореме Бохнера—Минлоса—Сазонова. Этой теме и дальнейшему развитию анализа белого шума посвящена обширная литература (см., например, [7,15,17,20–25,30]).

Анализ белого шума дает математический аппарат, в рамках которого все случайные переменные рассматриваются как функционалы траекторий белого шума, т. е. функции, определенные на \mathcal{S}' . Для того, чтобы охватить все необходимые функционалы, Хида построил обобщение теории обобщенных функций Шварца на случай функций, определенных на \mathcal{S}' . С помощью теории оснащенных гильбертовых пространств он построил тройку Гельфанда

$$(\mathcal{S}) \subset (L^2) \subset (\mathcal{S})^*,\tag{1}$$

которая является аналогом хорошо известной тройки $\mathcal{S} \subset L^2(\mathbb{R}) \subset \mathcal{S}'$. Здесь (L^2) — пространство всех случайных величин на \mathcal{S}' с конечным моментом второго порядка; в тройке (1) оно играет роль пространства $L^2(\mathbb{R})$. Значения белого шума принадлежат пространству $(\mathcal{S})^*$ в правой части тройки (1). Оно называется пространством обобщенных случайных величин, или распределений Хиды над пространством основных функций Хиды (\mathcal{S}) .

В работе [20] Кондратьев и Стрейт расширили пространство Хиды обобщенных случайных величин $(S)^*$, столкнувшись с необходимостью охватить некоторые функционалы белого шума, необходимые в приложениях. Они ввели в рассмотрение пространство $(S)_{-\rho}$ как правый элемент тройки Гельфанда с тем же пространством (L^2) в центре и более узким пространством основных функций $(S)_{\rho}$, где $0 \leqslant \rho \leqslant 1$ — фиксированный параметр. Пространства основных и обобщенных случайных величин Хиды стали частным случаем пространств Кондратьева и Стрейта, соответствующими случаю параметра $\rho=0$, а именно, справедливы следующие вложения:

$$(\mathcal{S})_{\rho} \subset (\mathcal{S})_0 = (\mathcal{S}) \subset (L^2) \subset (\mathcal{S})^* = (\mathcal{S})_{-0} \subset (\mathcal{S})_{-\rho}.$$

Чрезвычайно важным является то, что в рамках анализа белого шума, процесс белого шума оказывается бесконечно дифференцируемой функцией переменной t со значениями в пространстве обобщенных случайных величин. Кроме того, становится возможным перейти от рассмотрения проинтегрированных уравнений Ито к изучению собственно дифференциальных уравнений.

Математический аппарат анализа белого шума позволяет не только ввести шум непосредственно в уравнение, но также ставить и решать стохастические дифференциальные уравнения без ограничений, связанных с такими понятиями, как адаптированность рассматриваемых процессов к фильтрации, порожденной броуновским движением, и предсказуемость. Наличие этих свойств у подынтегрального выражения существенно для определения интеграла Ито и, следовательно, для всех построений исчисления Ито. Адаптированность случайного процесса к фильтрации можно грубо описать как зависимость его значения в любой момент t только от истории броуновского движения до момента t (которая представлена фильтрацией) и независимость от будущего. В рамках анализа белого шума можно изучать и решать некоторые уравнения с «предвосхищением» (anticipating equations) (см., например, [2, 8, 26, 29]). Это дает перспективу введения «зависимости от будущего» в математическую модель, что уже нашло применения, например, в финансовой математике, где позволило моделировать рынки с учетом влияния инсайдерской информации (см., например, [1, 7, 16, 31]).

Стохастические дифференциальные уравнения в бесконечномерных гильбертовых пространствах начали изучать в начале 80-х (см. [18,19], где впервые рассмотрено обобщение исчисления Ито на случай стохастических процессов со значениями в гильбертовом пространстве). Дальнейшее развитие этой теории можно найти в более поздних работах, таких, например, как [4,5,12]. Такие уравнения имеют многочисленные приложения в физике, математической биологии и финансовой математике (см., например, [11,28,33]).

Ввиду преимуществ, которыми обладает анализ белого шума по сравнению с исчислением Ито, представляется разумным и естественным расширить эту теорию на гильбертовозначный случай.

Первая попытка такого расширения была предпринята в работе [10], где были введены пространства основных и обобщенных случайных величин со значениями в гильбертовом пространстве и, с помощью преобразования Эрмита, изучены уравнения с аддитивным шумом. В настоящей работе рассматривается несколько другой подход, предложенный в работе [27]. Мы используем пространства скалярнозначных основных случайных величин чтобы определить обобщенные случайные величины со значениями в гильбертовом пространстве как линейные непрерывные операторы на этих пространствах со значениями в гильбертовом пространстве Н, следуя подходу к определению обобщенных функций со значениями в банаховом пространстве, использованному в работе [9]. Полученные таким образом пространства обобщенных Ш-значных случайных величин имеют ту же линейную и топологическую структуру, что и пространства, построенные в [10], однако предлагаемый подход позволяет определить в гильбертовозначном случае S-преобразование, которое оказывается мощным инструментом исследования. С его помощью удается естественным образом определить произведение Уика и доказать связь между интегралом Ито и интегралом Хицуды-Скорохода от операторнозначных случайных величин и, таким образом, обосновать постановку стохастических дифференциальных уравнений в пространствах гильбертовозначных обобщенных случайных величин как обобщение соответствующих уравнений Ито. Все это позволило получить результат о существовании единственного решения задачи Коши для уравнения с мультипликативным шумом.

Дадим описание настоящей работы по разделам.

В разделе 1 рассмотрено определение и основные свойства пространств обобщенных \mathbb{H} -значных случайных величин $(S)_{-\rho}(\mathbb{H})$, где \mathbb{H} — сепарабельное гильбертово пространство, и даны определения \mathbb{H} -значного цилиндрического белого шума и Q-белого шума как $(S)_{-\rho}(\mathbb{H})$ -значных процессов. В разделе 2 обсуждаются понятия непрерывности, дифференцируемости и интегрируемости $(S)_{-\rho}(\mathbb{H})$ -значных функций.

В разделе 3 введено S-преобразование обобщенных \mathbb{H} -значных случайных величин, которое оказывается эффективным инструментом исследования линейных стохастических дифференциальных уравнений, и дана характеристическая теорема S-преобразований обобщенных \mathbb{H} -значных случайных величин. В разделе 4 с помощью S-преобразования определено произведение Уика операторнозначной и гильбертовозначной обобщенных случайных величин.

Раздел 5 посвящен понятию интеграла Хицуды—Скорохода от функции со значениями в пространстве операторнозначных обобщенных случайных величин. Показано (теорема 5.2), что этот интеграл можно считать обобщением интеграла Ито в бесконечномерном случае. Это оправдывает постановку стохастических дифференциальных уравнений в пространствах гильбертовозначных обобщенных случайных величин, которые рассмотрены далее в разделе 6.

В разделе 6 получен результат о существовании и единственности решения задачи Коши для линейного бесконечномерного стохастического дифференциального уравнения с аддитивным шумом и с мультипликативным шумом. Заметим, что условия, при которых получены эти результаты, не требуют предсказуемости или адаптированности начальных значений задачи Коши.

1. Обобщенные случайные величины

Вероятностное пространство белого шума играет фундаментальную роль в нашей конструкции пространств гильбертовозначных обобщенных случайных величин. Дадим его определение и рассмотрим его основные свойства.

Пусть \mathcal{S}' — пространство медленно растущих распределений над пространством быстро убывающих основных функций \mathcal{S} . Пространство \mathcal{S} является счетно-гильбертовым. Это означает, что

$$S = \bigcap_{p \in \mathbb{N}} S_p$$
, где $S_p = \{ \varphi \in L^2(\mathbb{R}) \mid (\varphi, \varphi)_p < \infty \}$, (1.1)

и скалярное произведение $(\cdot,\cdot)_p$ определяется равенством

$$(\varphi,\psi)_p:=(\hat{D}^p\varphi,\hat{D}^p\psi)_{L^2(\mathbb{R})},$$
 где $\hat{D}=-rac{d^2}{dx^2}+x^2+1.$

Обозначим через $|\cdot|_p$ норму, порожденную этим скалярным произведением. Из определения пространств \mathcal{S}_p следует, что для любого p вложение $\mathcal{S}_{p+1} \hookrightarrow \mathcal{S}_p$ является ядерным оператором, т. е.

пространство S ядерное. В силу этого, по теореме Бохнера—Минлоса—Сазонова (см., например, [17, теорема 4.7]), существует единственная вероятностная мера μ , определенная на борелевской σ -алгебре $\mathcal{B}(S')$ подмножеств S', удовлетворяющая условию

$$\int_{\mathcal{S}'} e^{i\langle\omega,\theta\rangle} d\mu(\omega) = e^{-\frac{1}{2}|\theta|_0^2}, \quad \theta \in \mathcal{S},$$
(1.2)

где $|\cdot|_0$ — норма пространства $L^2(\mathbb{R})$ (в дальнейшем через $(\cdot,\cdot)_0$ будем обозначать скалярное произведение в $L^2(\mathbb{R})$).

Мера μ называется нормализованной гауссовской мерой на \mathcal{S}' , т. к. для любых $\theta_1, \theta_2, \ldots, \theta_n \in \mathcal{S}$, ортогональных в $L^2(\mathbb{R})$, случайная величина $\omega \mapsto (\langle \omega, \theta_1 \rangle, \langle \omega, \theta_2 \rangle, \ldots, \langle \omega, \theta_n \rangle)$ является гауссовской с плотностью распределения

$$\frac{1}{(2\pi)^{\frac{n}{2}} \prod_{i=1}^{n} |\theta_i|_0} \exp\left(-\frac{1}{2} \sum_{i=1}^{n} \frac{x_i^2}{|\theta_i|_0^2}\right).$$

Эквивалентно,

$$E\Big(f\big(\langle\cdot,\theta_1\rangle,\ldots,\langle\cdot,\theta_n\rangle\big)\Big) = \frac{1}{(2\pi)^{\frac{n}{2}} \prod_{i=1}^{n} |\theta_i|_0} \int_{\mathbb{R}^n} f(x_1,\ldots,x_n) e^{-\frac{1}{2} \sum_{i=1}^{n} \frac{x_i^2}{|\theta_i|_0^2}} dx_1 \ldots dx_n$$
(1.3)

для любой $f:\mathbb{R}^n \to \mathbb{R}$, такой, что существует интеграл в правой части равенства.

Тройка $(S', \mathcal{B}(S'), \mu)$ называется вероятностным пространством белого шума.

Обозначим через (L^2) пространство $L^2(\mathcal{S}',\mu;\mathbb{R})$ всех \mathbb{R} -значных интегрируемых с квадратом по μ функций (случайных величин), определенных на \mathcal{S}' . Обозначим через $\|\cdot\|_0$ норму этого пространства. Из равенства (1.3) следует, что для любых $\theta,\eta\in\mathcal{S}$ выполняются следующие равенства:

$$(\langle \cdot, \theta \rangle, \langle \cdot, \eta \rangle)_{(L^2)} = E(\langle \cdot, \theta \rangle \langle \cdot, \eta \rangle) = (\theta, \eta)_0, \quad \|\langle \cdot, \theta \rangle\|_0^2 = E\langle \cdot, \theta \rangle^2 = |\theta|_0^2. \tag{1.4}$$

Отсюда следует, что отображение $\theta \mapsto \langle \cdot, \theta \rangle$ можно по непрерывности продолжить с \mathcal{S} на $L^2(\mathbb{R})$. Таким образом, случайная величина $\langle \cdot, \theta \rangle$ определена как элемент пространства (L^2) для любого $\theta \in L^2(\mathbb{R})$. Равенство (1.2) остается верным для $\theta \in L^2(\mathbb{R})$, а равенство (1.3) остается верным для $\theta_1, \ldots, \theta_n \in L^2(\mathbb{R})$. В частности, для любого $t \geqslant 0$ случайная величина

$$B(t) := \langle \cdot, 1_{[0:t]} \rangle \tag{1.5}$$

определена как элемент пространства (L^2) . Она является гауссовской с равным нулю математическим ожиданием, а из равенства (1.4) следует, что

$$E\big[B(t)B(s)\big] = (1_{[0;t]},1_{[0;s]})_0 = \min\{t,s\}, \quad E\big[B^2(t)\big] = |1_{[0;t]}|_0^2 = t.$$

Более того, при $0 \leqslant s < t$ имеет место равенство

$$E[(B(t) - B(s))^4] = E[\langle \cdot, 1_{(s,t]} \rangle^4] = \frac{1}{\sqrt{2\pi(t-s)}} \int_{\mathbb{R}} x^4 e^{-\frac{x^2}{2(t-s)}} dx = 3(t-s)^2.$$

Отсюда по теореме Колмогорова о непрерывности (см. [34]) следует, что B(t) имеет непрерывную версию, которая является броуновским движением. Будем далее обозначать ее тем же символом.

Как это обычно делается в теории обобщенных функций, запишем неформально правую часть

равенства (1.5) в виде интеграла: $\langle \omega, 1_{[0;t]} \rangle = \int\limits_0^t \omega(s) \, ds$ для любого $\omega \in \mathcal{S}'$. Таким образом, получим

$$B(t) = \int_{0}^{t} \omega(s) \, ds. \tag{1.6}$$

Равенство (1.6) означает, что элементы пространства \mathcal{S}' , являющиеся элементарными исходами, в рамках аппарата вероятностного пространства белого шума можно представлять себе как траектории белого шума, который является производной броуновского движения.

1.1. Пространства обобщенных случайных величин: $(S)_{-\rho}$. Пусть $\{\xi_k\}_{k=1}^{\infty}$ — ортонормированный базис пространства $L^2(\mathbb{R})$, состоящий из функций Эрмита

$$\xi_k(x) = \pi^{-\frac{1}{4}} ((k-1)!)^{-\frac{1}{2}} e^{-\frac{x^2}{2}} h_{k-1}(x)$$

где $\{h_k(x)\}_{k=0}^{\infty}$ — полиномы Эрмита

$$h_k(x) = (-1)^n e^{\frac{x^2}{2}} \frac{d^k}{dx^k} e^{-\frac{x^2}{2}}.$$

В дальнейшем мы будем пользоваться следующими известными оценками функций Эрмита (см. [14]):

$$\int_{0}^{t} \xi_{i}(s) \, ds = O(i^{-\frac{3}{4}}),\tag{1.7}$$

$$\xi_i(t) = O(i^{-\frac{1}{4}}),$$
 (1.8)

$$\sup_{t \in \mathbb{R}} |\xi_i(t)| = O(i^{-\frac{1}{12}}). \tag{1.9}$$

Пусть $\mathcal{T} \subset (\mathbb{N} \cup \{0\})^{\mathbb{N}}$ — множество всех финитных мультииндексов. Стохастические полиномы Эрмита определяются следующими равенствами:

$$\mathbf{h}_{\alpha}(\omega) := \prod_{k} h_{\alpha_{k}}(\langle \omega, \xi_{k} \rangle), \quad \omega \in \mathcal{S}', \alpha \in \mathcal{T}.$$

Произведение здесь, на самом деле, является конечным, так как каждый мультииндекс α финитный и, значит, $h_{\alpha_k}(x) = h_0(x) = 1$ для всех достаточно больших k.

Пусть $\alpha, \beta \in \mathcal{T}$ и $n = \max\{k \in \mathbb{N} \mid \alpha_k \neq 0 \text{ или } \beta_k \neq 0\}$. Из равенства (1.3) и ортогональности полиномов Эрмита в пространстве $L^2\left(\mathbb{R}; \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}dx\right)$ следует

$$(\mathbf{h}_{\alpha}, \mathbf{h}_{\beta})_{(L^{2})} = E \left[\prod_{k=1}^{n} h_{\alpha_{k}} (\langle \omega, \xi_{k} \rangle) \prod_{k=1}^{n} h_{\beta_{k}} (\langle \omega, \xi_{k} \rangle) \right] =$$

$$= \frac{1}{(2\pi)^{\frac{n}{2}} \prod_{i=1}^{n} |\xi_{i}|_{0} \mathbb{R}^{n}} \int_{k=1}^{n} h_{\alpha_{k}}(x_{k}) \prod_{k=1}^{n} h_{\beta_{k}}(x_{k}) e^{-\frac{1}{2} \sum_{k=1}^{n} \frac{x_{k}^{2}}{|\xi_{k}|_{0}^{2}} dx_{1} \dots dx_{n} = }$$

$$= \frac{1}{(2\pi)^{\frac{n}{2}}} \prod_{k=1}^{n} \int_{\mathbb{R}^{n}} h_{\alpha_{k}}(x_{k}) h_{\beta_{k}}(x_{k}) e^{-\frac{1}{2}x_{k}^{2}} dx_{k} = \begin{cases} 0, & \alpha \neq \beta, \\ \alpha!, & \alpha = \beta, \end{cases} \qquad \alpha! := \prod_{k} \alpha_{k}!.$$

$$(1.10)$$

Таким образом, стохастические полиномы Эрмита образуют ортогональную систему в пространстве (L^2) . Более того, $\{\mathbf{h}_\alpha \,|\, \alpha \in \mathcal{T}\}$ — ортогональный базис пространства (L^2) (см. [15, теорема 2.2.3]). Из этого факта и равенства (1.10) следует, что для скалярного произведения и нормы в (L^2) выполняются следующие равенства:

$$(\Phi, \Psi)_{(L^2)} = \sum_{\alpha \in \mathcal{T}} \alpha! \Phi_{\alpha} \overline{\Psi}_{\alpha}, \quad \|\Phi\|_{(L^2)}^2 = \sum_{\alpha \in \mathcal{T}} \alpha! \Phi_{\alpha}^2,$$

где

$$\Phi = \sum_{\alpha \in \mathcal{T}} \Phi_{\alpha} \mathbf{h}_{\alpha}, \quad \Psi = \sum_{\alpha \in \mathcal{T}} \Psi_{\alpha} \mathbf{h}_{\alpha}, \quad \Phi_{\alpha} = \frac{1}{\alpha!} (\Phi, \mathbf{h}_{\alpha})_{(L^{2})}, \quad \Psi_{\alpha} = \frac{1}{\alpha!} (\Psi, \mathbf{h}_{\alpha})_{(L^{2})}.$$

В силу равенства (1.10) можно неформально представлять себе пространство (L^2) как

$$L^{2}\left(\mathbb{R}^{\infty}; \prod_{k=1}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x_{k}^{2}}{2}} dx_{k}\right),$$

отождествляя любой элемент $\omega \in \mathcal{S}'$ с последовательностью его «коэффициентов Фурье» $\langle \omega, \xi_k \rangle$ по системе функций Эрмита. Таким образом, интегрируемые с квадратом случайные величины на вероятностном пространстве белого шума $(\mathcal{S}', \mathcal{B}(\mathcal{S}'), \mu)$ можно считать функциями бесконечного

множества действительных переменных. Эта линейная структура области определения случайных величин приводит к обобщению на бесконечномерный случай теории распределений Шварца, при этом пространство (L^2) играет ту же роль, что $L^2(\mathbb{R})$ в тройке

$$\mathcal{S} \subset L^2(\mathbb{R}) \subset \mathcal{S}'$$
.

В результате появляется тройка Гельфанда

$$(\mathcal{S})_{\rho} \subset (L^2) \subset (\mathcal{S})_{-\rho},\tag{1.11}$$

где $\rho \in [0;1]$ фиксировано. Тройка (1.11) была впервые введена в работе [20] и используется в [15,21] и других работах. Рассмотрим ее построение подробнее.

Напомним, что благодаря тому, что функции Эрмита ξ_i являются собственными функциями дифференциального оператора $\hat{D} = -\frac{d^2}{dx^2} + x^2 + 1$, для которых выполняются равенства $\hat{D}\xi_i = (2i)\xi_i, i \in \mathbb{N}$, пространства \mathcal{S}_p , определенные равенствами (1.1), можно описать в терминах разложений по функциям Эрмита следующим образом:

$$S_p = \left\{ \varphi = \sum_{i=1}^{\infty} \varphi_i \xi_i \in L^2(\mathbb{R}) \, \middle| \, (\varphi, \varphi)_p = \sum_{i=1}^{\infty} |\varphi_i|^2 (2i)^{2p} < \infty \right\}.$$

Пространства $(S_p)_\rho$ определяются по аналогии с S_p :

$$(\mathcal{S}_p)_{\rho} = \Big\{ \varphi = \sum_{\alpha \in \mathcal{T}} \varphi_{\alpha} \mathbf{h}_{\alpha} \in (L^2) : \sum_{\alpha \in \mathcal{T}} (\alpha!)^{1+\rho} |\varphi_{\alpha}|^2 (2\mathbb{N})^{2p\alpha} < \infty \Big\},$$

с нормами $|\cdot|_{p,\rho}$, порожденными скалярными произведениями

$$(\varphi,\psi)_{p,\rho} = \sum_{\alpha \in \mathcal{T}} (\alpha!)^{1+\rho} \varphi_{\alpha} \overline{\psi}_{\alpha} (2\mathbb{N})^{2p\alpha}, \quad (2\mathbb{N})^{p\alpha} := \prod_{i \in \mathbb{N}} (2i)^{p\alpha_i}.$$

Чтобы прояснить эту аналогию, заметим, что другой способ определить скалярное произведение $(\cdot,\cdot)_{p,\rho}$ при $\rho=0$ — сделать это в терминах так называемого оператора вторичного квантования $\Gamma(\hat{D})$, который обычно определяется через отождествление пространства (L^2) с пространством Фока $\bigoplus_{n=0}^{\infty} \hat{L}^2(\mathbb{R}^n)$ с помощью разложения хаоса Винера—Ито (см., например, [21]). Для упрощения изложения определим его эквивалентным образом, положив для любого $\alpha \in \mathcal{T}$

$$\Gamma(\hat{D})\mathbf{h}_{\alpha} := \prod_{i=1}^{\infty} (2i)^{\alpha_i} h_{\alpha_i} (\langle \cdot, \xi_i \rangle).$$

Тогда

$$(\varphi, \psi)_{p,0} = \left(\Gamma(\hat{D})^p \varphi, \Gamma(\hat{D})^p \psi\right)_{(L^2)}.$$

Пространство $(S)_{\rho}$ определяется как $(S)_{\rho} = \bigcap_{p \in \mathbb{N}} (S_p)_{\rho}$ с топологией проективного предела и называется пространством основных случайных переменных.

Пространство $(S)_{-\rho}$ определяется как $(S)_{-\rho} = \bigcup_{p \in \mathbb{N}} (S_{-p})_{-\rho}$ с топологией индуктивного предела, где $(S_{-p})_{-\rho}$ — сопряженное к пространству $(S_p)_{\rho}$. Элементы $(S)_{-\rho}$ называются обобщенными случайными величинами. Пространство $(S_{-p})_{-\rho}$ можно отождествить с гильбертовым пространством всех формальных разложений $\Phi = \sum_{\alpha \in \mathcal{T}} \Phi_{\alpha} \mathbf{h}_{\alpha}$, удовлетворяющих условию

$$\sum_{\alpha \in \mathcal{T}} (\alpha!)^{1-\rho} |\Phi_{\alpha}|^2 (2\mathbb{N})^{-2p\alpha} < \infty,$$

со скалярным произведением

$$(\Phi, \Psi)_{-p, -\rho} = \sum_{\alpha \in \mathcal{T}} (\alpha!)^{1-\rho} \Phi_{\alpha} \overline{\Psi}_{\alpha} (2\mathbb{N})^{-2p\alpha}.$$

Будем обозначать норму пространства $(S_{-p})_{-\rho}$ через $|\cdot|_{-p,-\rho}$. Для $\Phi = \sum_{\alpha \in \mathcal{T}} \Phi_{\alpha} \mathbf{h}_{\alpha} \in (S)_{-\rho}$, $\varphi = \sum_{\alpha \in \mathcal{T}} \varphi_{\alpha} \mathbf{h}_{\alpha} \in (S)_{\rho}$ имеем:

$$\langle \Phi, \varphi \rangle = \sum_{\alpha \in \mathcal{T}} \alpha! \Phi_{\alpha} \overline{\varphi}_{\alpha}.$$

В дальнейшем важную роль играет понятие ограниченного множества в пространстве $(S)_{\varrho}$.

Определение 1.1. Множество $M \subseteq (S)_{\rho}$ называется *ограниченным*, если для любой последовательности $\{\varphi_n\} \subseteq M$ и любой последовательности $\{\varepsilon_n\} \subset \mathbb{R}$, сходящейся к нулю, последовательность $\{\varepsilon_n\varphi_n\}$ сходится к нулю в $(S)_{\rho}$.

Нетрудно получить следующую характеристику ограниченных множеств в $(\mathcal{S})_{\rho}$.

Предложение 1.1. Множество ограничено в $(S)_{\rho}$ тогда и только тогда, когда оно ограничено в любом $(S_p)_{\rho}$, $p \in \mathbb{N}$.

1.2. Пространства гильбертовозначных обобщенных случайных величин: $(S)_{-\rho}(\mathbb{H})$. Пусть \mathbb{H} — сепарабельное комплексное гильбертово пространство со скалярным произведением (\cdot,\cdot) и соответствующей нормой $\|\cdot\|$. Через $(L^2)(\mathbb{H})$ будем обозначать пространство всех \mathbb{H} -значных функций, определенных на S', интегрируемых с квадратом по Бохнеру по гауссовской мере μ , определенной на $\mathcal{B}(S')$.

Пусть $\{e_j\}_{j=1}^{\infty}$ — ортонормированный базис в \mathbb{H} . Тогда семейство $\{\mathbf{h}_{\alpha}e_j\}_{\alpha\in\mathcal{T},j\in\mathbb{N}}$ \mathbb{H} -значных функций образует ортогональный базис пространства $(L^2)(\mathbb{H})$. Любая функция $f\in(L^2)(\mathbb{H})$ раскладывается в ряд Фурье по этому базису следующим образом:

$$f = \sum_{\alpha \in \mathcal{T}, j \in \mathbb{N}} f_{\alpha,j} \mathbf{h}_{\alpha} e_j = \sum_{\alpha \in \mathcal{T}} f_{\alpha} \mathbf{h}_{\alpha} = \sum_{j=1}^{\infty} f_j e_j,$$

$$f_{\alpha,j} \in \mathbb{R}, \ f_{\alpha} = \sum_{j} f_{\alpha,j} e_j \in \mathbb{H}, \ f_j = \sum_{\alpha \in \mathcal{T}} f_{\alpha,j} \mathbf{h}_{\alpha} \in (L^2),$$

$$(1.12)$$

при этом

$$||f||_{(L^2)(\mathbb{H})}^2 = \sum_{\alpha \in \mathcal{T}, j \in \mathbb{N}} \alpha! |f_{\alpha,j}|^2 = \sum_{\alpha \in \mathcal{T}} \alpha! ||f_{\alpha}||_{\mathbb{H}}^2 = \sum_{j=1}^{\infty} ||f_j||_{(L^2)}^2.$$

Обозначим через $(S)_{-\rho}(\mathbb{H})$ пространство всех линейных непрерывных операторов $\Phi:(S)_{\rho}\to\mathbb{H}$, оснащенное топологией равномерной сходимости на ограниченных подмножествах пространства $(S)_{\rho}$. Будем называть эту сходимость сильной сходимостью в $(S)_{-\rho}(\mathbb{H})$ а элементы этого пространства называть \mathbb{H} -значными обобщенными случайными величинами над пространством основных функций (случайных величин) $(S)_{\rho}$. Действие $\Phi \in (S)_{-\rho}(\mathbb{H})$ на основную случайную величину $\varphi \in (S)_{\rho}$ будем обозначать через $\Phi[\varphi]$.

Для построения анализа $(S)_{-\rho}(\mathbb{H})$ -значных функций переменной $t \in \mathbb{R}$ сначала опишем структуру этого пространства.

Предложение 1.2. Любой элемент $\Phi \in (S)_{-\rho}(\mathbb{H})$ является ограниченным оператором из $(S_p)_{\rho}$ в \mathbb{H} для некоторого $p \in \mathbb{N}$.

Доказательство. Предположим противное. Пусть $\Phi \in (\mathcal{S})_{-\rho}(\mathbb{H})$. Для любого $p \in \mathbb{N}$ выберем $\varphi_p \in (\mathcal{S}_p)_\rho$ так, что $|\varphi_p|_{p,\rho} = 1$ и $\|\Phi[\varphi_p]\| \geqslant p$. В силу неравенств $|\varphi_k|_{p,\rho} \leqslant |\varphi_k|_{k,\rho}$, которые верны для всех k > p, последовательность $\left\{\frac{\varphi_k}{k}\right\}$ сходится к нулю в пространстве $(\mathcal{S})_\rho$. В то же время, имеем $\left\|\Phi\left[\frac{\varphi_k}{l_*}\right]\right\| \geqslant 1$, что противоречит непрерывности Φ .

Пространство основных функций $(S)_{\rho}$ является счетно-гильбертовым ядерным пространством, так как для любого $p \in \mathbb{N}$ оператор вложения $I_{p,p+1}: (S_{p+1})_{\rho} \hookrightarrow (S_p)_{\rho}$ является оператором Гильберта—Шмидта. Чтобы проверить это, возьмем следующий ортонормированный базис пространства $(S_{p+1})_{\rho}$:

$$\left\{ \frac{\mathbf{h}_{\alpha}}{(\alpha!)^{\frac{1+\rho}{2}} (2\mathbb{N})^{(p+1)\alpha}} \right\}.$$

Имеем:

$$\sum_{\alpha \in \mathcal{T}} \left| \frac{\mathbf{h}_{\alpha}}{(\alpha!)^{\frac{1+\rho}{2}} (2\mathbb{N})^{(p+1)\alpha}} \right|_{p,\rho}^{2} = \sum_{\alpha \in \mathcal{T}} \frac{1}{(2\mathbb{N})^{2\alpha}}.$$
(1.13)

В [15] доказано, что $A(p):=\sum_{\alpha\in\mathcal{T}}\frac{1}{(2\mathbb{N})^{p\alpha}}$ сходится для любого p>1. Таким образом, ряд (1.13) сходится.

Благодаря ядерности пространства $(S)_{\rho}$ имеет место следующая характеристика обобщенных \mathbb{H} -значных случайных величин.

Предложение 1.3. Любой элемент $\Phi \in (\mathcal{S})_{-\rho}(\mathbb{H})$ является оператором Гильберта—Шмидта из $(\mathcal{S}_p)_{\rho}$ в \mathbb{H} для некоторого $p \in \mathbb{N}$.

Доказательство. Пусть $\Phi \in (\mathcal{S})_{-\rho}(\mathbb{H})$. В силу предложения 1.2 элемент Φ ограничен как оператор, действующий из $(\mathcal{S}_p)_{\rho}$ в \mathbb{H} для некоторого $p \in \mathbb{N}$. Обозначим через $\tilde{\Phi}$ его продолжение на $(\mathcal{S}_p)_{\rho}$ по непрерывности. Тогда оператор Φ может быть записан в виде $\tilde{\Phi}I_{p,p+1}$ как оператор, действующий из $(\mathcal{S}_{p+1})_{\rho}$ в \mathbb{H} , а значит, является оператором Гильберта—Шмидта как композиция оператора Гильберта—Шмидта $I_{p,p+1}$ и ограниченного оператора $\tilde{\Phi}$.

Далее в разделе 2 для исследования топологии равномерной сходимости на ограниченных подмножествах пространства $(S)_{\rho}$, которую мы ввели в пространстве $(S)_{-\rho}(\mathbb{H})$, нам понадобится представление этого пространства в виде счетного объединения сепарабельных гильбертовых пространств.

Для любого $\Phi \in (\mathcal{S})_{-\rho}(\mathbb{H})$ обозначим через Φ_j линейный функционал, определенный для $\varphi \in (\mathcal{S})_{\rho}$ равенством $\langle \Phi_j, \varphi \rangle := (\Phi[\varphi], e_j)$. Пусть p таково, что Φ является оператором Гильберта— Шмидта из $(\mathcal{S}_p)_{\rho}$ в \mathbb{H} . Тогда все $\Phi_j, j \in \mathbb{N}$ принадлежат одному и тому же сопряженному пространству $(\mathcal{S}_{-p})_{-\rho}$ и поэтому раскладываются в ряды

$$\Phi_j = \sum_{\alpha \in \mathcal{T}} \Phi_{\alpha,j} \mathbf{h}_{\alpha}, \quad \sum_{\alpha \in \mathcal{T}} (\alpha!)^{1-\rho} |\Phi_{\alpha,j}|^2 (2\mathbb{N})^{-2p\alpha} < \infty.$$

Обозначим через $\|\Phi\|_{-p,ho}$ норму Гильберта—Шмидта $\Phi:(\mathcal{S}_p)_
ho o\mathbb{H}$. Имеем:

$$\|\Phi\|_{-p,-\rho}^{2} = \sum_{\alpha \in \mathcal{T}} \left\| \Phi \left[\frac{\mathbf{h}_{\alpha}}{(\alpha!)^{\frac{1+\rho}{2}} (2\mathbb{N})^{p\alpha}} \right] \right\|^{2} = \sum_{\alpha \in \mathcal{T}} \sum_{j=1}^{\infty} \left| \left\langle \Phi_{j}, \frac{\mathbf{h}_{\alpha}}{(\alpha!)^{\frac{1+\rho}{2}} (2\mathbb{N})^{p\alpha}} \right\rangle \right|^{2} =$$

$$= \sum_{\alpha \in \mathcal{T}, j \in \mathbb{N}} (\alpha!)^{1-\rho} |\Phi_{\alpha,j}|^{2} (2\mathbb{N})^{-2p\alpha}.$$
(1.14)

Обозначим через $(S_{-p})_{-\rho}(\mathbb{H})$ пространство операторов Гильберта—Шмидта, действующих из $(S_p)_{\rho}$ в \mathbb{H} . Это сепарабельное гильбертово пространство. Операторы $\mathbf{h}_{\alpha} \otimes e_j$, $\alpha \in \mathcal{T}$, $j \in \mathbb{N}$, определенные равенством

$$(\mathbf{h}_{\alpha} \otimes e_j)\varphi := (\mathbf{h}_{\alpha}, \varphi)_{(L^2)}e_j, \quad \varphi \in (\mathcal{S}_p)_{\rho},$$

образуют в нем ортогональный базис. Из предложения 1.3 следует, что

$$(\mathcal{S})_{-\rho}(\mathbb{H}) = \bigcup_{p \in \mathbb{N}} (\mathcal{S}_{-p})_{-\rho}(\mathbb{H})$$

и любой $\Phi \in (\mathcal{S})_{-\rho}(\mathbb{H})$ имеет следующее разложение:

$$\Phi[\cdot] = \sum_{j \in \mathbb{N}} \langle \Phi_j, \cdot \rangle e_j = \sum_{\alpha \in \mathcal{T}, j \in \mathbb{N}} \Phi_{\alpha, j}(\mathbf{h}_{\alpha} \otimes e_j) = \sum_{\alpha \in \mathcal{T}} \Phi_{\alpha}(\mathbf{h}_{\alpha}, \cdot)_{(L^2)},$$

где $\Phi_j=(\Phi[\cdot],e_j)\in (\mathcal{S}_{-p})_{ho}$ для некоторого $p\in\mathbb{N},$ $\Phi_{\alpha}=\sum_{j\in\mathbb{N}}\Phi_{\alpha,j}e_j\in\mathbb{H},$ при этом

$$\|\Phi\|_{-p,-\rho}^{2} = \sum_{j \in \mathbb{N}} |\Phi_{j}|_{-p,-\rho}^{2} = \sum_{\alpha \in \mathcal{T}, j \in \mathbb{N}} (\alpha!)^{1-\rho} |\Phi_{\alpha,j}|^{2} (2\mathbb{N})^{-2p\alpha} =$$

$$= \sum_{\alpha \in \mathcal{T}} (\alpha!)^{1-\rho} \|\Phi_{\alpha}\|^{2} (2\mathbb{N})^{-2p\alpha} < \infty.$$

Нетрудно видеть, что

$$(\mathcal{S}_{-p_1})_{-\rho}(\mathbb{H}) \subseteq (\mathcal{S}_{-p_2})_{-\rho}(\mathbb{H}), \quad p_1 < p_2, \tag{1.15}$$

И

$$\|\Phi\|_{-p_1,-\rho} \geqslant \|\Phi\|_{-p_2,-\rho}, \quad \Phi \in (\mathcal{S}_{-p_1})_{-\rho}(\mathbb{H}).$$
 (1.16)

1.3. Основные примеры гильбертовозначных обобщенных случайных процессов. Сначала введем последовательность независимых одинаково распределенных броуновских движений на вероятностном пространстве белого шума.

Для этого возьмем некоторую биекцию $n(\cdot,\cdot):\mathbb{N}\times\mathbb{N}\to\mathbb{N}$, удовлетворяющую условию

$$n(i,j) \geqslant ij, \quad i,j \in \mathbb{N}.$$
 (1.17)

Это может быть сделано разными способами, например, с помощью следующей таблицы:

\overline{j}								
i	1	2	3	4	5	6	7	
1	1	3	6	10	15	21	28	
2	2	5	9	14	20	27		
2 3 4	4	8	13	19	26			
4	7	12	18	25				
5	11	17	24					n(i,j).
6	16	23						
7	22							

Определим последовательность линейных операторов $\mathfrak{J}_j, j \in \mathbb{N}$, в пространстве $L_2(\mathbb{R})$, положив

$$\mathfrak{J}_{j}f = \sum_{i=1}^{\infty} (f, \xi_{i})\xi_{n(i,j)}.$$
 (1.18)

Пусть $L^2(\mathbb{R})_j$ — замыкание линейной оболочки множества $\{\xi_{n(i,j)}, i\in\mathbb{N}\}$. Для любого $j\in\mathbb{N}$ оператор \mathfrak{J}_j является изометрическим изоморфизмом пространств $L^2(\mathbb{R})$ и $L^2(\mathbb{R})_j$, так как для любых $f,g\in L^2(\mathbb{R})$ имеем

$$(\mathfrak{J}_j f, \mathfrak{J}_j g)_{L^2(\mathbb{R})_j} = \sum_{i=1}^{\infty} (f, \xi_i)(g, \xi_i) = (f, g)_0.$$
 (1.19)

Пространства $L^2(\mathbb{R})_j$ с разными индексами j порождаются непересекающимися семействами функций ξ_i , поэтому они являются попарно ортогональными подпространствами $L^2(\mathbb{R})$. Более того, $\{\xi_i\}_{i=1}^{\infty} = \bigcup_{j=1}^{\infty} \{\xi_{n(i,j)}\}_{i=1}^{\infty}$, откуда следует

$$L^2(\mathbb{R}) = \bigoplus_{j=1}^{\infty} L^2(\mathbb{R})_j.$$

В последствии нам потребуются ортогональные проекторы $\pi_j, j \in \mathbb{N},$ пространства $L_2(\mathbb{R})$ на $L_2(\mathbb{R})_j,$ определенные равенствами

$$\pi_{j}\xi_{n} = \begin{cases} \xi_{n}, & n \in \{n(i,j), i \in \mathbb{N}\}, \\ 0, & n \notin \{n(i,j), i \in \mathbb{N}\}. \end{cases}$$
 (1.20)

Положим $1^j_{[a,b]}:=\mathfrak{J}_j1_{[a,b]},$ где $1_{[a,b]}$ — индикатор отрезка [a,b]. Для любых $a,b,c,d\in\mathbb{R}$ функции $1^{j_1}_{[a,b]}$ и $1^{j_2}_{[c,d]},$ где $j_1\neq j_2,$ ортогональны в $L^2(\mathbb{R}).$

Рассмотрим случайные процессы, определенные равенствами

$$\beta_j(t) := \langle \cdot, 1^j_{[0,t]} \rangle, \quad j = 1, 2, \dots, \ t \in \mathbb{R}.$$
 (1.21)

В силу (1.4) и (1.19) имеем:

$$E\left[\beta_{j}(t)\beta_{j}(s)\right] = (1_{[0,t]}^{j}, 1_{[0,s]}^{j})_{0} = (1_{[0,t]}^{j}, 1_{[0,s]}^{j})_{L^{2}(\mathbb{R})_{j}} = (1_{[0,t]}, 1_{[0,s]})_{0} = \min\{t; s\},$$

кроме того,

$$E\left[\beta_{j_1}(t)\beta_{j_2}(s)\right] = (1^{j_1}_{[0,t]}, 1^{j_2}_{[0,s]})_0 = 0$$

при $j_1 \neq j_2$. Отсюда следует, что $\{\beta_j(t)\}_{j=1}^{\infty}$ — последовательность независимых броуновских движений.

Для них имеют место разложения

$$\beta_{j}(t) = \left\langle \cdot, \sum_{i=1}^{\infty} \int_{0}^{t} \xi_{i}(s) \, ds \, \xi_{n(i,j)} \right\rangle = \sum_{i=1}^{\infty} \int_{0}^{t} \xi_{i}(s) \, ds \, \left\langle \cdot, \xi_{n(i,j)} \right\rangle =$$

$$= \sum_{i=1}^{\infty} \int_{0}^{t} \xi_{i}(s) \, ds \, \mathbf{h}_{\varepsilon_{n(i,j)}},$$

где $\varepsilon_n := (0, 0, \dots, 1, 0, \dots).$

Случайный процесс, определенный формальным рядом

$$W(t) = \sum_{j \in \mathbb{N}} \beta_j(t) e_j = \sum_{n \in \mathbb{N}} W_{\varepsilon_n}(t) \mathbf{h}_{\varepsilon_n}, \quad W_{\varepsilon_n}(t) := \int_0^t \xi_{i(n)}(s) \, ds \, e_{j(n)} \in \mathbb{H}, \tag{1.22}$$

где $i(n), j(n) \in \mathbb{N}$ таковы, что n(i(n), j(n)) = n, и $t \in \mathbb{R}$, называется цилиндрическим винеровским процессом.

Пусть $Q \in \mathcal{L}_1(\mathbb{H}; \mathbb{H})$ — положительный оператор¹, определенный следующим разложением²:

$$Q = \sum_{j=1}^{\infty} \sigma_j^2(e_j \otimes e_j). \tag{1.23}$$

Конечность следа Q означает $\sum\limits_{i=1}^{\infty}\sigma_{i}^{2}<\infty.$

Случайный процесс, определенный равенством

$$W_Q(t) = \sum_{j \in \mathbb{N}} \sigma_j \beta_j(t) e_j = \sum_{n \in \mathbb{N}} W_{\varepsilon_n}^Q(t) \, \mathbf{h}_{\varepsilon_n}, \quad W_{\varepsilon_n}^Q(t) := \sigma_j \int_0^t \xi_{i(n)}(s) \, ds \, e_{j(n)} \in \mathbb{H}, \ t \in \mathbb{R},$$
 (1.24)

называется Q-винеровским процессом.

Легко проверить, что $W_Q(t) \in (L^2)(\mathbb{H})$, но $W(t) \notin (L^2)(\mathbb{H})$ для всех $t \in \mathbb{R}$. В то же время, для любого $x \in \mathbb{H}$ имеем:

$$E(W(t), x)^2 = \sum_{j \in \mathbb{N}} (e_j, x)^2 E[\beta_j^2(t)] = t ||x||^2.$$

Таким образом, $(W(t),x)\in L^2(\mathcal{S}',\mathcal{B}(\mathcal{S}'),\mu)$. Из оценки (1.7) и условия (1.17), следует, что

$$||W(t)||_{-1,-\rho}^2 = \sum_{i,j\in\mathbb{N}} \left| \int_0^t \xi_i(s) \, ds \right|^2 \left(2n(i,j)\right)^{-2} \leqslant \sum_{i,j\in\mathbb{N}} O\left(i^{-\frac{3}{2}-2}j^{-2}\right) < \infty.$$

Поэтому $W(t) \in (\mathcal{S}_{-1})_{-\rho}(\mathbb{H}) \subset (\mathcal{S})_{-\rho}(\mathbb{H})$ для любого $0 \leqslant \rho \leqslant 1$.

Определим \mathbb{H} -значный Q-белый шум равенством

$$\mathbb{W}_{Q}(t) := \sum_{i,j \in \mathbb{N}} \sigma_{j} \xi_{i}(t) \, \mathbf{h}_{\varepsilon_{n(i,j)}} e_{j} = \sum_{n \in \mathbb{N}} \mathbb{W}_{\varepsilon_{n}}^{Q}(t) \, \mathbf{h}_{\varepsilon_{n}}, \quad \mathbb{W}_{\varepsilon_{n}}^{Q}(t) = \sigma_{j} \xi_{i(n)}(t) \, e_{j(n)} \in \mathbb{H},$$

 $[\]overline{\ ^1}$ Через $\mathcal{L}_1(\mathbb{H};\mathbb{H})$ обозначаем пространство операторов с конечным следом, действующих из \mathbb{H} в $\mathbb{H}.$

 $^{^2}$ Для $v \in V$, $u \in U$, где V и U — гильбертовы пространства, обозначим через $v \otimes u$ оператор, действующий из U в V, определенный равенством $(v \otimes u)h := v(u, h)_U$.

полученным формальным дифференцированием равенства (1.24), и цилиндрический белый шум — равенством

$$\mathbb{W}(t) := \sum_{i,j \in \mathbb{N}} \xi_i(t) \, \mathbf{h}_{\varepsilon_{n(i,j)}} e_j = \sum_{n \in \mathbb{N}} \mathbb{W}_{\varepsilon_n}(t) \, \mathbf{h}_{\varepsilon_n}, \quad \mathbb{W}_{\varepsilon_n}(t) = \xi_{i(n)}(t) \, e_{j(n)} \in \mathbb{H}, \tag{1.25}$$

полученным формальным дифференцированием равенства (1.22). В силу оценки (1.8) имеем $\|\mathbb{W}_Q(t)\|_{-1,-\rho}^2 < \infty$, и $\|\mathbb{W}(t)\|_{-1,-\rho}^2 < \infty$. Таким образом, и Q-белый шум и цилиндрический белый шум принадлежат $(\mathcal{S}_{-1})_{-\rho}(\mathbb{H}) \subset (\mathcal{S})_{-\rho}(\mathbb{H}), \rho \in [0;1]$.

В следующем разделе мы определим дифференцирование и интегрирование по переменной $t \in \mathbb{R}$ для $(S)_{-\rho}(\mathbb{H})$ -значных функций и покажем, что для всех $t \in \mathbb{R}$ выполнены равенства

$$\frac{d}{dt}W_Q(t) = \mathbb{W}_Q(t)$$
 и $\frac{d}{dt}W(t) = \mathbb{W}(t).$

2. Анализ $(S)_{-\rho}(\mathbb{H})$ -значных функций

Чтобы ввести дифференцирование и интегрирование $(S)_{-\rho}(\mathbb{H})$ -значных функций переменной $t \in \mathbb{R}$, сначала опишем более детально топологию в $(S)_{-\rho}(\mathbb{H})$, определенную как топология равномерной сходимости на ограниченных подмножествах пространства $(S)_{\rho}$. Для этого нам понадобится понятие ограниченности множества в пространстве $(S)_{-\rho}(\mathbb{H})$, которое определяется так же, как и в $(S)_{\rho}$.

Определение 2.1. Множество $\mathcal{M}\subseteq (\mathcal{S})_{-\rho}(\mathbb{H})$ называется *ограниченным*, если для любых последовательностей $\{\Phi_n\}\subseteq \mathcal{M}$ и $\{\varepsilon_n\}\subset \mathbb{R}$ сходимость $\varepsilon_n\to 0$ влечет за собой сходимость $\{\varepsilon_n\Phi_n\}$ к нулю в $(\mathcal{S})_{-\rho}(\mathbb{H})$.

Следующее предложение дает характеристику ограниченных множеств в $(S)_{-\rho}(\mathbb{H})$.

Предложение 2.1. Множество \mathcal{M} ограничено в пространстве $(S)_{-\rho}(\mathbb{H})$ тогда и только тогда, когда для любого ограниченного множества $M \subset (S)_{\rho}$

$$\{\Phi[\varphi] \mid \Phi \in \mathcal{M}, \varphi \in M\}$$

является ограниченным множеством в \mathbb{H} .

Доказательство. Чтобы доказать необходимость условия, возьмем некоторое ограниченное подмножество \mathcal{M} пространства $(\mathcal{S})_{-\rho}(\mathbb{H})$. Предположим, существует ограниченное $M \subset (\mathcal{S})_{\rho}$ такое, что для любого $n \in \mathbb{N}$ существуют $\varphi_n \in M$ и $\Phi_n \in \mathcal{M}$, для которых $\|\Phi_n[\varphi_n]\| > n$. Тогда $\sup_{k \in \mathbb{N}} \left\|\frac{1}{n}\Phi_n[\varphi_k]\right\| \geqslant \left\|\frac{1}{n}\Phi_n[\varphi_n]\right\| > 1$ и, следовательно, $\left\{\frac{1}{n}\Phi_n\right\}$ не сходится к нулю равномерно на

ограниченном множестве $\{\varphi_k, k \in \mathbb{N}\} \subseteq M$. Таким образом, $\left\{\frac{1}{n}\Phi_n\right\}$ не сходится к нулю в $(\mathcal{S})_{-\rho}(\mathbb{H})$. Достаточность условия очевидна.

Предложение 2.2. Множество $\mathcal{M} \subset (\mathcal{S})_{-\rho}(\mathbb{H})$ ограничено тогда и только тогда, когда существуют такие $p \in \mathbb{N}$ и K > 0, что для любого $\Phi \in \mathcal{M}$ неравенство $\|\Phi[\varphi]\| \leqslant K|\varphi|_{p,\rho}$ выполняется для всех $\varphi \in (\mathcal{S})_{\rho}$.

Доказательство. Сначала докажем необходимость этого условия. Предположим, что для любого $p \in \mathbb{N}$ существуют $\Phi_p \in \mathcal{M}$ и $\varphi_p \in M$ такие, что $\|\Phi_p[\varphi_p]\| > p|\varphi_p|_{p,\rho}$. Обозначим

$$\psi_n := \frac{\varphi_n}{|\varphi_n|_{n,\rho}}.$$

Множество $M = \{\psi_n \, | \, n \in \mathbb{N}\}$ ограничено в $(\mathcal{S})_{\rho}$, так как для любого $p \in \mathbb{N}$ выполнено $|\psi_n|_{p,\rho} = \frac{|\varphi_n|_{p,\rho}}{|\varphi_n|_{n,\rho}} \leqslant 1$ при n > p. В силу предложения 2.1 множество $\{\Phi[\varphi] \mid \Phi \in \mathcal{M}, \varphi \in M\}$ ограничено в \mathbb{H} , что противоречит неравенству $\|\Phi[\psi_n]\| > n$.

Для доказательства достаточности возьмем p и K>0 так, что для любых $\Phi\in\mathcal{M}$ и $\varphi\in(\mathcal{S})_{\rho}$ выполнено

$$\|\Phi[\varphi]\| \leqslant K|\varphi|_{p,\rho}.\tag{2.1}$$

Возьмем ограниченное множество $M \subset (\mathcal{S})_{\rho}$. Поскольку в силу предложения 1.1 оно ограничено в любом $(\mathcal{S}_p)_{\rho}$, из (2.1) следует, что множество $\{\Phi[\varphi] \mid \Phi \in \mathcal{M}, \varphi \in M\}$ ограничено в \mathbb{H} . Доказательство завершается применением предложения 2.1.

Отсюда следует:

Предложение 2.3. Множество \mathcal{M} ограничено в $(S)_{-\rho}(\mathbb{H})$ тогда и только тогда, когда $\mathcal{M} \subset (S_{-p})_{-\rho}(\mathbb{H})$ для некоторого $p \in \mathbb{N}$ и \mathcal{M} ограничено в $(S_{-p})_{-\rho}(\mathbb{H})$.

Доказательство. Пусть \mathcal{M} ограничено в $(S)_{-\rho}(\mathbb{H})$. В силу предложения 2.2 любой $\Phi \in \mathcal{M}$ ограничен как оператор, действующий из $(S_p)_{\rho}$ в \mathbb{H} для некоторого $p \in \mathbb{N}$, при этом

$$\|\Phi\|_{\mathcal{L}((\mathcal{S}_p)_\rho;\mathbb{H})} \leqslant K$$

для некоторого K>0. Обозначая через $\tilde{\Phi}$ продолжение Φ по непрерывности на $(\mathcal{S}_p)_{\rho}$ и взяв произвольный ортонормированный базис $\{\zeta_i\}_{i=1}^{\infty}$ в $(\mathcal{S}_{p+1})_{\rho}$, получаем

$$\|\Phi\|_{\mathcal{L}_{2}((\mathcal{S}_{p+1})_{\rho};\mathbb{H})}^{2} = \|\tilde{\Phi}I_{p,p+1}\|_{\mathcal{L}_{2}((\mathcal{S}_{p+1})_{\rho};\mathbb{H})}^{2} = \sum_{i=1}^{\infty} \|\tilde{\Phi}I_{p,p+1}\zeta_{i}\|_{\mathbb{H}}^{2} \leqslant$$

$$\leqslant K^{2} \sum_{i=1}^{\infty} \|I_{p,p+1}\zeta_{i}\|_{\mathbb{H}}^{2} = K^{2} \|I_{p,p+1}\|_{\mathcal{L}_{2}((\mathcal{S}_{p+1})_{\rho};(\mathcal{S}_{p})_{\rho})}.$$

Обратное очевидно.

Следующее предложение дает характеристику сильной сходимости в $(S)_{-\rho}(\mathbb{H})$.

Предложение 2.4. Пусть $\Phi_n = \sum_{\alpha} \Phi_{\alpha}^{(n)} \mathbf{h}_{\alpha}, \Psi = \sum_{\alpha} \Psi_{\alpha} \mathbf{h}_{\alpha} \in (\mathcal{S})_{-\rho}(\mathbb{H}).$ Следующие утверждения эквивалентны:

- 1. $\{\Phi_n\}$ сходится к Ψ в пространстве $(S)_{-\rho}(\mathbb{H})$.
- 2. Для любого $\alpha \in \mathcal{T}$ выполнено $\lim_{n \to \infty} \|\Phi_{\alpha}^{(n)} \Psi_{\alpha}\| = 0$, вся $\{\Phi_n\}$ и Ψ принадлежат $(\mathcal{S}_{-p})_{-\rho}(\mathbb{H})$ для некоторого $p \in \mathbb{N}$ и $\{\Phi_n\}$ ограничена в этом пространстве.
- 3. Все элементы последовательности $\{\Phi_n\}$ и Ψ принадлежат $(S_{-p})_{-\rho}(\mathbb{H})$ для некоторого $p \in \mathbb{N}$ и $\lim_{n \to \infty} \|\Phi_n \Psi\|_{-p,-\rho} = 0$.

Доказательство. $1 \Rightarrow 2$. Пусть $\{\Phi_n\}$ сходится к Ψ в пространстве $(\mathcal{S})_{-\rho}(\mathbb{H})$. Тогда для любого $\alpha \in \mathcal{T}$ имеем

$$\|\Phi_{\alpha}^{(n)} - \Psi_{\alpha}\| = \frac{1}{\alpha!} \|\Phi^{(n)}[\mathbf{h}_{\alpha}] - \Psi[\mathbf{h}_{\alpha}]\| \to 0, \quad n \to \infty.$$

В силу предложения 1.3, $\Psi \in (\mathcal{S}_{-p})_{-\rho}(\mathbb{H})$ для некоторого $p \in \mathbb{N}$. Для любого ограниченного множества $M \subset (\mathcal{S})_{\rho}$ при достаточно больших n для всех $\varphi \in M$ выполнено неравенство $\|\Phi_n[\varphi] - \Psi[\varphi]\| < 1$, следовательно,

$$\|\Phi_n[\varphi]\| \le 1 + \|\Psi\|_{-p,-\rho} |\varphi|_{p,\rho} \le 1 + \|\Psi\|_{-p,-\rho} K_p,$$

где $K_p = \sup_{\varphi \in M} |\varphi|_{p,\rho}$. В силу предложения 2.1 последовательность $\{\Phi_n\}$ ограничена в $(\mathcal{S})_{-\rho}(\mathbb{H})$. Из предложения 2.3 следует, что последовательность принадлежит некоторому $(\mathcal{S}_{-q})_{-\rho}(\mathbb{H})$ и ограничена в нем.

 $2 \Rightarrow 3$. Пусть $\{\Phi_n\}$ и Ψ удовлетворяют условию 2. В силу (1.15) и (1.16) можно считать, что существует такое q, что для всех p>q последовательность $\{\Phi_n\}$ и Ψ принадлежат $(\mathcal{S}_{-p})_{-\rho}(\mathbb{H})$ и $\{\Phi_n\}$ ограничена по норме каждого из этих пространств некоторым K>0.

Пусть Index $\alpha := \max\{n \in \mathbb{N}, \alpha_n \neq 0\}$. Верна следующая оценка:

$$\|\Phi_{n} - \Psi\|_{-(p+1),-\rho}^{2} = \sum_{\text{Index }\alpha \leqslant k} (\alpha!)^{1-\rho} \|\Phi_{\alpha}^{(n)} - \Psi_{\alpha}\|^{2} (2\mathbb{N})^{-2(p+1)\alpha} + \sum_{\text{Index }\alpha > k} (\alpha!)^{1-\rho} \|\Phi_{\alpha}^{(n)} - \Psi_{\alpha}\|^{2} (2\mathbb{N})^{-2(p+1)\alpha} \leqslant$$

$$\leqslant \max_{\text{Index }\alpha \leqslant k} \left[(\alpha!)^{1-\rho} \|\Phi_{\alpha}^{(n)} - \Psi_{\alpha}\|^{2} \right] \sum_{\text{Index }\alpha \leqslant k} (2\mathbb{N})^{-2(p+1)\alpha} +$$

$$+ \sum_{\text{Index }\alpha > k} \left[(\alpha!)^{1-\rho} (2\|\Phi_{\alpha}^{(n)}\|^{2} + 2\|\Psi_{\alpha}\|^{2}) (2\mathbb{N})^{-2p\alpha} \right] (2\mathbb{N})^{-2\alpha} \leqslant$$

$$\leqslant \max_{\text{Index }\alpha \leqslant k} \left[(\alpha!)^{1-\rho} \|\Phi_{\alpha}^{(n)} - \Psi_{\alpha}\|^{2} \right] A (2p+1) + 4K^{2} \sum_{\text{Index }\alpha > k} (2\mathbb{N})^{-2\alpha}.$$

Для любого $\varepsilon > 0$ сначала выберем k так, что

$$\sum_{\text{Index }\alpha>k} (2\mathbb{N})^{-2\alpha} < \frac{\varepsilon}{8K^2}.$$

Затем выберем N так, что для всех n > N выполнено

$$\max_{\operatorname{Index}\,\alpha\leqslant k}\left[(\alpha!)^{1-\rho}\|\Phi_{\alpha}^{(n)}-\Psi_{\alpha}\|^2\right]<\frac{\varepsilon}{2A(2p+2)}.$$

Тогда $\|\Phi_n - \Psi\|_{-(p+1),-\rho}^2 < \varepsilon$ для всех n > N.

$$3 \Rightarrow 1$$
. Очевидно.

Будем понимать предел функции $\Phi(\cdot): \mathbb{R} \to (\mathcal{S})_{-\rho}(\mathbb{H})$ в точке $t_0 \in \mathbb{R}$ в смысле сильной сходимости в пространстве $(\mathcal{S})_{-\rho}(\mathbb{H})$. Производная будет определена как обычно, с пределом, понимаемым в вышеописанном смысле.

Следующее следствие вытекает из предложения 2.4.

Следствие 2.1. Пусть $t_0 \in (a,b), \ \Phi(t) = \sum_{\alpha} \Phi_{\alpha}(t) \mathbf{h}_{\alpha} \in (\mathcal{S})_{-\rho}(\mathbb{H})$ для всех $t \in (a,b) \setminus \{t_0\}$. Пусть $\Psi = \sum_{\alpha} \Psi_{\alpha} \mathbf{h}_{\alpha} \in (\mathcal{S})_{-\rho}(\mathbb{H}),$ тогда следующие утверждения эквивалентны:

- 1. $\lim_{t \to t_0} \Phi(t) = \Psi$ в пространстве $(\mathcal{S})_{-\rho}(\mathbb{H})$.
- 2. $\lim_{t \to t_0} \|\Phi_{\alpha}(t) \Psi_{\alpha}\| = 0$ для любого $\alpha \in \mathcal{T}$ и существуют $\delta > 0, \ p \in \mathbb{N}, \ M > 0$ такие, что $\|\Phi(t)\|_{-p,-\rho} \leqslant M$ для всех $t \in (a;b),$ удовлетворяющих $0 < |t t_0| < \delta, \ \Psi \in (\mathcal{S}_{-p})_{-\rho}(\mathbb{H}).$
- 3. Существуют $\delta > 0, p \in \mathbb{N}$ такие, что $\Phi(t) \in (\mathcal{S}_{-p})_{-\rho}(\mathbb{H})$ для всех $t \in (a;b)$, таких, что $0 < |t t_0| < \delta, \ \Psi \in (\mathcal{S}_{-p})_{-\rho}(\mathbb{H})$ и $\lim_{t \to t_0} \|\Phi(t) \Psi\|_{-p,-\rho} = 0$.

Доказательство целиком повторяет шаги доказательства предложения 2.4, поэтому мы его опускаем. Применяя следствие 2.1, получаем следующее утверждение.

Следствие 2.2. Пусть
$$t_0\in(a,b),\ \Phi(t)=\sum\limits_{\alpha}\Phi_{\alpha}(t)\mathbf{h}_{\alpha}\in(\mathcal{S})_{-\rho}(\mathbb{H})$$
 для всех $t\in(a,b)\setminus\{t_0\}.$

- 1. $\Phi(t)$ дифференцируема в точке t_0 , при этом $\frac{d}{dt}\Phi(t_0)=\Psi.$
- 2. Для любого $\alpha \in \mathcal{T}$ функция $\Phi_{\alpha}:(a;b) \to \mathbb{H}$ дифференцируема в точке $t_0, \Psi:=\sum_{\alpha}\Phi'_{\alpha}(t_0)\mathbf{h}_{\alpha}$ принадлежит $(\mathcal{S}_{-p})_{-\rho}(\mathbb{H})$ и существуют $\delta>0, p\in\mathbb{N}, M>0$ такие, что

$$\left\|\frac{\Phi(t)-\Phi(t_0)}{t-t_0}\right\|_{-p,-\rho}\leqslant M \quad \text{dir scex} \quad t\in(a;b) \quad \text{makux, umo} \quad 0<|t-t_0|<\delta.$$

3.
$$\frac{d\Phi}{dt}:=\lim_{t\to t_0}\frac{\Phi(t)-\Phi(t_0)}{t-t_0}$$
 существует в пространстве $(\mathcal{S}_{-p})_{-\rho}(\mathbb{H})$ для некоторого p .

Используя это следствие, можно доказать, что цилиндрический винеровский процесс W(t), определенный равенством (1.22), дифференцируем всюду в $\mathbb R$ и его производная совпадает с белым шумом $\mathbb W(t)$, определенным равенством (1.25). Это действительно так, поскольку для любого $t_0 \in \mathbb R$ и любого $n \in \mathbb N$ имеем $\frac{dW_{\varepsilon_n}}{dt}(t_0) = \mathbb W_{\varepsilon_n}(t_0)$. Более того, используя оценку (1.9), получаем

$$\left\| \frac{W(t) - W(t_0)}{t - t_0} \right\|_{-p, -\rho} = \sum_{i, j \in \mathbb{N}} \left\| \frac{1}{t - t_0} \int_{t_0}^t \xi_i(\tau) d\tau e_j \right\|^2 (2\mathbb{N})^{-2p\varepsilon_{n(i, j)}} \leqslant$$

$$\leqslant \sum_{i, j \in \mathbb{N}} \left(\sup_{t \in \mathbb{R}} |\xi_i(t)| \right)^2 (2n(i, j))^{-2p} \leqslant K \sum_{i, j \in \mathbb{N}} i^{-2p - \frac{1}{6}} j^{-2p} < \infty$$

для любого $p \geqslant 1$, что показывает, что условие 2 следствия 2.2 выполнено.

Похожим образом, используя оценку (1.9) и известное свойство функций Эрмита

$$\xi_1'(t) = \xi_2(t), \quad \xi_i'(t) = \sqrt{\frac{i}{2}} \xi_{i-1}(t) + \sqrt{\frac{i+1}{2}} \xi_{i+1}(t), \ i = 2, 3, \dots,$$

из которых следует оценка

$$\sup_{t \in \mathbb{R}} |\xi_i^{(n)}(t)| = O(i^{-\frac{1}{12} + \frac{n}{2}}),$$

можно показать, что $\mathbb{W}(t)$ бесконечно дифференцируема как $(\mathcal{S})_{ho}(\mathbb{H})$ -значная функция.

Будем называть функцию $\Phi(\cdot): \mathbb{R} \to (\mathcal{S})_{-\rho}(\mathbb{H})$ интегрируемой на измеримом множестве $C \subset \mathbb{R}$, если существует такое $p \in \mathbb{N}$, что $\Phi(t) \in (\mathcal{S}_{-p})_{-\rho}(\mathbb{H})$ для всех $t \in C$ и Φ интегрируема по Бохнеру на C как функция со значениями в гильбертовом пространстве $(\mathcal{S}_{-p})_{-\rho}(\mathbb{H})$.

Из равенства (1.14), выражающего норму $\|\cdot\|_{-p,-\rho}$, следует, что для любого $\alpha\in\mathcal{T}$ имеем оценку

$$\|\Phi_{\alpha}\|_{\mathbb{H}}^{2} \leqslant \frac{(2\mathbb{N})^{2p\alpha}}{(\alpha!)^{1-\rho}} \|\Phi\|_{-p,-\rho}^{2},$$

из которой следует, что если $\Phi(t)=\sum_{\alpha}\Phi_{\alpha}(t)\mathbf{h}_{\alpha}$ интегрируема на C, то для любого $\alpha\in\mathcal{T}$ функция $\Phi_{\alpha}(t)$ интегрируема по Бохнеру на C как \mathbb{H} -значная функция. Более того, имеет место следующее достаточное условие интегрируемости.

Предложение 2.5. Пусть функция $\Phi(\cdot): \mathbb{R} \to (\mathcal{S})_{-\rho}(\mathbb{H})$ задана разложением

$$\Phi(t) := \sum_{\alpha \in \mathcal{T}} \Phi_{\alpha}(t) \mathbf{h}_{\alpha}.$$

Если для любого $\alpha \in \mathcal{T}$ функции $\Phi_{\alpha}: \mathbb{R} \to \mathbb{H}$ интегрируемы с квадратом по Бохнеру на множестве $C \subset \mathbb{R}$ с мерой Лебега $\mu_L(C) < \infty, \ \Phi(t) \in (\mathcal{S}_{-q})_{-\rho}(\mathbb{H})$ для всех $t \in C$ и

$$\sum_{\alpha} (\alpha!)^{1-\rho} \int_{C} \|\Phi_{\alpha}(t)\|_{\mathbb{H}}^{2} dt (2\mathbb{N})^{-2q\alpha} < \infty \tag{2.2}$$

для некоторого $q\in\mathbb{N},$ тогда $\Phi(t)$ интегрируема на C и

$$\int_{C} \Phi(t) dt = \sum_{\alpha} \int_{C} \Phi_{\alpha}(t) dt \, \mathbf{h}_{\alpha}. \tag{2.3}$$

Доказательство. Пусть $\{\alpha^{(k)}\}_{n=1}^{\infty}$ — фиксированное упорядочение множества мультииндексов \mathcal{T} . Пусть оно таково, что $\lim_{k \to \infty} |\alpha^{(k)}| = \infty$ и $\lim_{k \to \infty} \operatorname{Index} \alpha^{(k)} = \lim_{n \to \infty} \max\{n \in \mathbb{N}, \alpha_n^{(k)} \neq 0\} = \infty$. Поскольку $\Phi(t) \in (\mathcal{S}_{-q})_{-\rho}(\mathbb{H})$, последовательность

$$F_n(t) := \sum_{k=1}^n \Phi_{\alpha^{(k)}}(t) \mathbf{h}_{\alpha^{(k)}}$$

сходится к $\Phi(t)$ в этом пространстве для любого $t \in C$. Из равенства

$$\left\|\Phi_{\alpha^{(k)}}(t)\mathbf{h}_{\alpha^{(k)}}\right\|_{-p,-\rho} = \left(\alpha!\right)^{\frac{1-\rho}{2}}\left\|\Phi_{\alpha^{(k)}}(t)\right\|_{\mathbb{H}}(2\mathbb{N})^{-p\alpha}$$

следует, что любая $\Phi_{\alpha^{(k)}}(t)\mathbf{h}_{\alpha^{(k)}}, k \in \mathbb{N}$, и, следовательно, все $F_n(t)$ интегрируемы по Бохнеру как $(\mathcal{S}_{-p})_{-\rho}(\mathbb{H})$ -значные функции для всех $p \in \mathbb{N} \cup \{0\}$. Таким образом, имеем $\int\limits_C \|F_n(t)\|_{-p,-\rho} dt < \infty$ для любого $p \in \mathbb{N} \cup \{0\}$. Легко также видеть, что

$$\int_{C} \Phi_{\alpha^{(k)}}(t) \mathbf{h}_{\alpha^{(k)}} dt = \int_{C} \Phi_{\alpha^{(k)}}(t) dt \mathbf{h}_{\alpha^{(k)}}$$

(заметим, что левая часть — интеграл Бохнера $(S_{-p})_{-\rho}(\mathbb{H})$ -значной функции, а интеграл в правой части — интеграл Бохнера \mathbb{H} -значной функции). Таким образом,

$$\int_{C} F_n(t) dt = \sum_{k=1}^{n} \int_{C} \Phi_{\alpha^{(k)}}(t) dt \mathbf{h}_{\alpha^{(k)}}.$$
(2.4)

Используя условие (2.2), получаем

$$\int_{C} \|F_{n}(t)\|_{-q,-\rho} dt \leqslant \sqrt{\mu_{L}(C)} \left(\int_{C} \|F_{n}(t)\|_{-q,-\rho}^{2} dt \right)^{\frac{1}{2}} =$$

$$= \sqrt{\mu_{L}(C)} \left(\sum_{k=1}^{n} \left((\alpha^{(k)})! \right)^{1-\rho} \int_{C} \|\Phi_{\alpha^{(k)}}(t)\|_{\mathbb{H}}^{2} dt (2\mathbb{N})^{-2q\alpha^{(k)}} \right)^{\frac{1}{2}} \leqslant$$

$$\leqslant \sqrt{\mu_{L}(C)} \left(\sum_{k=1}^{\infty} \left((\alpha^{(k)})! \right)^{1-\rho} \int_{C} \|\Phi_{\alpha^{(k)}}(t)\|_{\mathbb{H}}^{2} dt (2\mathbb{N})^{-2q\alpha^{(k)}} \right)^{\frac{1}{2}} =: M.$$

Отсюда следует, что так как $\|F_n(t)\|_{-q,-\rho} \to \|\Phi(t)\|_{-q,-\rho}$ при $t\in C$, то по теореме Фату $\int\limits_C \|\Phi(t)\|_{-q,-\rho} dt <\infty$ и

$$\lim_{n \to \infty} \int_{C} ||F_n(t)||_{-q, -\rho} dt = \int_{C} ||\Phi(t)||_{-q, -\rho} dt.$$

Поэтому $\Phi(t)$ интегрируема по Бохнеру на C как $(S_{-q})_{-\rho}(\mathbb{H})$ -значная функция.

Мы также получаем $\int\limits_{C}\|\Phi(t)\|_{-q,ho}dt < M$ и

$$\int_{C} \|F_{n}(t) - \Phi(t)\|_{-q, -\rho} dt \leqslant \int_{C} \|F_{n}(t)\|_{-q, -\rho} dt + \int_{C} \|\Phi(t)\|_{-q, -\rho} dt \leqslant 2M.$$

Так как $\|F_n(t)-\Phi(t)\|_{-q,-\rho}\to 0$, то по теореме Фату получаем $\int\limits_C \|F_n(t)-\Phi(t)\|_{-q,-\rho}dt\to 0$, а в силу того, что

$$\left\| \int_{C} F_{n}(t) dt - \int_{C} \Phi(t) dt \right\|_{-q,-\rho} \leq \int_{C} \|F_{n}(t) - \Phi(t)\|_{-q,-\rho} dt,$$

в конце концов, получаем $\lim_{n\to\infty}\int\limits_C F_n(t)\,dt=\int\limits_C \Phi(t)\,dt$ в $(\mathcal{S}_{-p})_{-\rho}(\mathbb{H}),$ так что равенство (2.3) следует из (2.4).

3. S-преобразование обобщенных случайных величин со значениями в гильбертовом пространстве

Рассмотрим функцию, определенную на \mathcal{S}' равенством $\mathcal{E}_{\theta}(\cdot) := e^{\langle \cdot, \theta \rangle - \frac{1}{2} |\theta|_0^2}$. Ее называют экспоненциальной функцией, ассоциированной с θ , или ренормализованной экспонентой. Она играет важную роль в анализе белого шума, в частности, она используется в определении S-преобразования.

Для \mathcal{E}_{θ} имеет место следующее разложение в ряд по стохастическим полиномам Эрмита:

$$\mathcal{E}_{\theta} = \sum_{\alpha \in \mathcal{T}} \mathcal{E}_{\alpha,\theta} \mathbf{h}_{\alpha}, \quad \mathcal{E}_{\alpha,\theta} = \frac{1}{\alpha!} \prod_{i=1}^{\infty} (\theta, \xi_i)_0^{\alpha_i}. \tag{3.1}$$

Это можно увидеть из следующего непосредственного вычисления. Возьмем $\theta \in \mathcal{S}$ и стохастический полином Эрмита $\mathbf{h}_{\alpha} = \prod_{i=1}^n h_{\alpha_i} \big(\langle \cdot, \xi_i \rangle \big)$. Обозначая $\theta^{\perp} := \theta - \sum_{i=1}^n (\theta, \xi_i)_0 \xi_i$, получим разложение θ в конечную сумму попарно ортогональных слагаемых:

$$\theta = \sum_{i=1}^{n} (\theta, \xi_i)_0 \xi_i + \theta^{\perp}.$$

Поскольку

$$\begin{split} &\mathcal{E}_{\alpha,\theta} = \frac{1}{\alpha!} \big(\mathcal{E}_{\theta}, \mathbf{h}_{\alpha} \big)_{(L^{2})} = \frac{1}{\alpha!} E \left[\mathcal{E}_{\theta} \mathbf{h}_{\alpha} \right] = \frac{1}{\alpha!} \int_{\mathcal{S}'} e^{\langle \omega, \theta \rangle - \frac{1}{2} |\theta|_{0}^{2}} \mathbf{h}_{\alpha}(\omega) \, d\mu(\omega) = \\ &= \frac{1}{\alpha!} \int_{\mathcal{S}'} e^{\sum_{i=1}^{n} \langle \omega, \xi_{i} \rangle (\theta, \xi_{i})_{0} + \langle \omega, \theta^{\perp} \rangle - \frac{1}{2} \left(\sum_{i=1}^{n} (\theta, \xi_{i})_{0}^{2} + |\theta^{\perp}|_{0}^{2} \right)} \prod_{i=1}^{n} h_{\alpha_{i}} \left(\langle \omega, \xi_{i} \rangle \right) d\mu(\omega), \end{split}$$

можем применить формулу (1.3), где

$$f(x_1, \dots, x_{n+1}) = e^{\sum_{i=1}^{n} x_i(\theta, \xi_i)_0 + x_{n+1} - \frac{1}{2} \left(\sum_{i=1}^{n} (\theta, \xi_i)_0^2 + |\theta^{\perp}|_0^2 \right)} \prod_{i=1}^{n} h_{\alpha_i}(x_i).$$

Следовательно,

$$\mathcal{E}_{\alpha,\theta} = E\left[f(\langle \cdot, \xi_1 \rangle, \dots, \langle \cdot, \xi_n \rangle, \langle \cdot, \theta^{\perp} \rangle)\right] =$$

$$= \frac{1}{\alpha! (2\pi)^{\frac{n+1}{2}} |\theta^{\perp}|_0} \int_{\mathbb{R}^{n+1}} f(x_1, \dots, x_{n+1}) e^{-\frac{1}{2} \sum_{i=1}^n x_i^2 + \frac{x_{n+1}^2}{|\theta^{\perp}|_0^2}} dx_1 \dots dx_{n+1} =$$

$$= \frac{1}{\alpha!} \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{x_i(\theta, \xi_i)_0 - \frac{1}{2}(\theta, \xi_i)_0^2} h_{\alpha_i}(x_i) e^{-\frac{1}{2}x_i^2} dx_i \cdot \frac{1}{\sqrt{2\pi} |\theta^{\perp}|_0} \int_{\mathbb{R}} e^{x - \frac{1}{2}|\theta^{\perp}|_0^2 - \frac{1}{2}\frac{x^2}{|\theta^{\perp}|_0^2}} dx.$$

Вспоминая, что для производящей функции полиномов Эрмита

$$\psi(x,t) := e^{xt - \frac{t^2}{2}} = \sum_{n=0}^{\infty} \frac{t^n}{n!} h_n(x)$$

имеет место равенство

$$(\psi(\cdot,t),h_n)_{L^2\left(\mathbb{R};\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}dx\right)} = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{D}} e^{xt-\frac{t^2}{2}}h_n(x)e^{-\frac{x^2}{2}}dx = t^n, \quad n = 0, 1, 2, \dots,$$

получаем (3.1).

Для любого $\theta \in \mathcal{S}$ экспоненциальная функция \mathcal{E}_{θ} принадлежит $(\mathcal{S})_{\rho}$ при любом $0 \leqslant \rho < 1$ со следующей оценкой для любого $p \in \mathbb{N}$:

$$|\mathcal{E}_{\theta}|_{p,\rho} \leqslant 2^{\rho/2} \exp\left[(1-\rho)^{\frac{2\rho-1}{1-\rho}} |\theta|_p^{\frac{2}{1-\rho}} \right]$$
 (3.2)

(см., например, [21]).

Это позволяет определить S-преобразование элемента $\Phi \in (\mathcal{S})_{-\rho}(\mathbb{H}), \ 0 \leqslant \rho < 1$ равенством

$$(S\Phi)(\theta) := \Phi[\mathcal{E}_{\theta}], \quad \theta \in \mathcal{S}. \tag{3.3}$$

S-преобразование элемента $\Phi \in (\mathcal{S})_{-\rho}(\mathbb{H})$ — это \mathbb{H} -значная функция от $\theta \in \mathcal{S}$. Заметим, что если $\Phi \in (L^2)(\mathbb{H})$, то для всех $\theta \in L^2(\mathbb{R})$ имеет место равенство

$$(S\Phi)(\theta) = \int_{S'} \Phi(\omega) \mathcal{E}_{\theta}(\omega) d\mu(\omega) = E(\Phi \mathcal{E}_{\theta}). \tag{3.4}$$

Очень важным свойством экспоненциальных функций $\mathcal{E}_{\theta}, \theta \in \mathcal{S}$ является то, что они образуют линейно плотное подмножество в $(\mathcal{S})_{\rho}$ $(0 \leqslant \rho < 1)$ и, таким образом, в (L^2) и в каждом $(\mathcal{S}_p)_{\rho}$. Отсюда следует, что выполнение равенства $(\mathrm{S}\Phi)(\theta) = 0$ для всех $\theta \in \mathcal{S}$ влечет за собой $\Phi = 0$. Таким образом, каждый элемент пространства $(\mathcal{S})_{-\rho}, (0 \leqslant \rho < 1)$ единственным образом определяется своим S-преобразованием.

Поскольку любой $\Phi \in (\mathcal{S})_{-\rho}(\mathbb{H})$ принадлежит $(\mathcal{S}_{-p})_{-\rho}(\mathbb{H})$ для некоторого $p \in \mathbb{N}$, из оценки (3.2) следует, что для любого $\Phi \in (\mathcal{S})_{-\rho}(\mathbb{H})$ существует $p \in \mathbb{N}$ такое, что

$$\|(\mathrm{S}\Phi)(\theta)\| = \|\Phi[\mathcal{E}_{\theta}]\| \leqslant \|\Phi\|_{-p,-\rho} \|\mathcal{E}_{\theta}\|_{p,\rho} \leqslant 2^{\rho/2} \|\Phi\|_{-p,-\rho} \exp\left[(1-\rho)^{\frac{2\rho-1}{1-\rho}} |\theta|_p^{\frac{2}{1-\rho}}\right]. \tag{3.5}$$

Оказывается, оценка такого типа является достаточным условием для \mathbb{H} -значной функции, действующей из \mathcal{S} в \mathbb{H} , чтобы быть S-преобразованием обобщенной \mathbb{H} -значной случайной величины, а именно, справедлива следующая характеристическая теорема.

Теорема 3.1. Пусть $\Phi \in (\mathcal{S})_{-\rho}(\mathbb{H}), \ 0 \leqslant \rho < 1.$ Тогда функция $F = \mathrm{S}\Phi$ удовлетворяет условиям:

- 1. для любого $\theta, \eta \in \mathcal{S}$ функция $F(\theta + z\eta)$ является целой аналитической функцией от $z \in \mathbb{C}$;
- 2. cywecmbyom $K>0, a>0, p\in\mathbb{N}$, makue, umo

$$||F(\theta)|| \leqslant K \exp\left[a|\theta|_p^{\frac{2}{1-\rho}}\right], \quad \theta \in \mathcal{S}.$$
 (3.6)

Если функция $F: \mathcal{S} \to \mathbb{H}$ удовлетворяет условиям 1 и 2, то существует единственная $\Phi \in (\mathcal{S})_{-\rho}(\mathbb{H})$ такая, что $F = \mathrm{S}\Phi$ для любого q, при котором $e^2\left(\frac{2a}{1-\rho}\right)^{1-\rho}\sum\limits_{i=1}^{\infty}(2i)^{-2(q-p)}<1$, и верно неравенство:

$$\|\Phi\|_{-q,-\rho} \leqslant K \left(1 - e^2 \left(\frac{2a}{1-\rho}\right)^{1-\rho} \sum_{i=1}^{\infty} (2i)^{-2(q-p)}\right)^{-1/2}.$$
 (3.7)

Мы опускаем доказательство, так как оно почти полностью повторяет доказательство в \mathbb{R} -значном случае (см., например, [21]).

Пример. Рассмотрим S-преобразования Q-белого шума и цилиндрического белого шума. Имеем:

$$\left[SW_Q(t)\right](\theta) = W_Q(t)\left[\mathcal{E}_{\theta}\right] = \sum_{i,j\in\mathbb{N}} \xi_i(t)\sigma_j e_j(\xi_{n(i,j)},\theta)_0 = \sum_{j\in\mathbb{N}} \sigma_j e_j[\mathfrak{J}_j^{-1}\pi_j\theta](t), \tag{3.8}$$

и, аналогично,

$$\left[SW(t)\right](\theta) = \sum_{i,j\in\mathbb{N}} \xi_i(t)e_j(\xi_{n(i,j)},\theta)_0 = \sum_{j\in\mathbb{N}} e_j[\mathfrak{J}_j^{-1}\pi_j\theta](t). \tag{3.9}$$

Кроме того, справедливо равенство

$$\left\| \left[SW_Q(\cdot) \right] (\theta) \right\|_{L^2(\mathbb{R}; \mathbb{H})}^2 = \sum_{i, j \in \mathbb{N}} \sigma_j^2 \left| (\xi_{n(i,j)}, \theta)_0 \right|^2$$

и, так как функции $\xi_i(t)e_j$, $i,j\in\mathbb{N}$, образуют ортонормированный базис в пространстве $L^2(\mathbb{R};\mathbb{H})$,

$$\|[SW(\cdot)](\theta)\|_{L^{2}(\mathbb{R};\mathbb{H})}^{2} = \sum_{i,j\in\mathbb{N}} |(\xi_{n(i,j)},\theta)_{0}|^{2} = |\theta|_{0}^{2}.$$

4. ПРОИЗВЕДЕНИЕ УИКА ОБОБЩЕННЫХ СЛУЧАЙНЫХ ВЕЛИЧИН СО ЗНАЧЕНИЯМИ В ГИЛЬБЕРТОВЫХ ПРОСТРАНСТВАХ

Пусть H — еще одно сепарабельное гильбертово пространство. Пространство $\mathcal{L}_2(\mathbb{H};H)$ операторов Гильберта—Шмидта, действующих из \mathbb{H} в H является сепарабельным гильбертовым пространством, поэтому можем ввести пространство $(\mathcal{S})_{-\rho}(\mathcal{L}_2(\mathbb{H};H))$ $\mathcal{L}_2(\mathbb{H};H)$ -значных обобщенных случайных величин над пространством основных функций $(\mathcal{S})_\rho$ так же, как это сделано в пункте 1.2. Рассмотрим $\Psi \in (\mathcal{S})_{-\rho}(\mathcal{L}_2(\mathbb{H};H))$, $\Phi \in (\mathcal{S})_{-\rho}(\mathbb{H})$. Их S-преобразования удовлетворяют условиям 1 и 2 теоремы 3.1. Для любого $\theta \in \mathcal{S}$ имеем: $\mathrm{S}\Psi(\theta) \in \mathcal{L}_2(\mathbb{H};H)$, $\mathrm{S}\Phi(\theta) \in \mathbb{H}$, поэтому значения функции $F(\theta) := \mathrm{S}\Psi(\theta)\mathrm{S}\Phi(\theta)$ принадлежат H, и для любых $\theta, \eta \in \mathcal{S}$ функция $F(\theta+z\eta)$ переменной $z \in \mathbb{C}$ является целой аналитической. Имеем неравенство

$$\|\mathbf{S}\Psi(\theta)\mathbf{S}\Phi(\theta)\|_{H} \leqslant \|\mathbf{S}\Psi(\theta)\|_{\mathcal{L}_{2}(\mathbb{H};H)}\|\mathbf{S}\Phi(\theta)\|_{\mathbb{H}} \leqslant K_{1}K_{2}\exp\left[(a_{1}+a_{2})|\theta|_{p}^{\frac{2}{1-\rho}}\right],$$

где K_1, K_2, a_1, a_2 — константы из условия 2 теоремы 3.1, которое выполнено для Ψ и Φ соответственно (очевидно, можно считать эти условия выполненными с одним и тем же p). Таким образом, F является S-преобразованием некоторой обобщенной случайной величины $\Theta \in (\mathcal{S})_{-\rho}(H)$. Это обосновывает следующее определение.

Определение 4.1. Пусть $\Psi \in (\mathcal{S})_{-\rho} (\mathcal{L}_2(\mathbb{H}; H)), \Phi \in (\mathcal{S})_{-\rho}(\mathbb{H}) \ (0 \leqslant \rho < 1).$ Обобщенная случайная величина $\Theta \in (\mathcal{S})_{-\rho}(H)$ такая, что

$$S\Theta = S\Psi S\Phi$$
,

называется произведением Уика Ψ и Φ и обозначается через $\Psi \diamond \Phi$.

Следующие равенства следуют из разложения (3.1):

$$S\Psi(\theta) = \sum_{\alpha \in \mathcal{T}} \Psi_{\alpha} \prod_{i=1}^{\infty} (\theta, \xi_i)_0^{\alpha_i}, \quad S\Phi(\theta) = \sum_{\alpha \in \mathcal{T}} \Phi_{\alpha} \prod_{i=1}^{\infty} (\theta, \xi_i)_0^{\alpha_i},$$

где $\Psi_{\alpha} \in \mathcal{L}_2(\mathbb{H}; H), \; \Phi_{\alpha} \in \mathbb{H}.$ Отсюда следует

$$S\Psi(\theta)S\Phi(\theta) = \sum_{\gamma \in \mathcal{T}} \left(\sum_{\alpha + \beta = \gamma} \Psi_{\alpha} \Phi_{\beta} \right) \prod_{i=1}^{\infty} (\theta, \xi_i)_0^{\gamma_i}.$$

В силу единственности S-преобразования получаем

$$\Psi \diamond \Phi = \sum_{\gamma \in \mathcal{T}} \left(\sum_{\alpha + \beta = \gamma} \Psi_{\alpha} \Phi_{\beta} \right) \mathbf{h}_{\gamma}.$$

5. Интеграл Хицуды—Скорохода

5.1. Определения и основные свойства. Пусть $Q \in \mathcal{L}_1(\mathbb{H};\mathbb{H})$ — положительный оператор, определенный равенством (1.23), где $\{e_j\}$ — фиксированный выше ортонормированный базис в \mathbb{H} . Обозначим через \mathbb{H}_Q пространство $Q^{\frac{1}{2}}(\mathbb{H})$ со скалярным произведением $(u,v)_{\mathbb{H}_Q}=(Q^{-\frac{1}{2}}u,Q^{-\frac{1}{2}}v)_{\mathbb{H}}$.

Предложение 5.1. При любом $t \in \mathbb{R}$ выполнено $\mathbb{W}_Q(t) \in (\mathcal{S})_{-\rho}(\mathbb{H}_Q)$ для любого $\rho \in [0;1)$ и положительного $Q \in \mathcal{L}_1(\mathbb{H};\mathbb{H})$ вида (1.23). Если, кроме того, выполнено условие

$$\sum_{j=1}^{\infty} \sigma_j^{-2} j^{-2p} < \infty \quad \text{для некоторого } p \in \mathbb{N}, \tag{5.1}$$

то $\mathbb{W}(t) \in (\mathcal{S})_{-\rho}(\mathbb{H}_Q)$ для всех $t \in \mathbb{R}$.

Доказательство. Первое утверждение следует из оценки

$$\|\mathbb{W}_{\varepsilon_{n(i,j)}}^{Q}\|_{\mathbb{H}_{Q}}^{2}(2\mathbb{N})^{-2p\varepsilon_{n(i,j)}} = |\xi_{i}(t)|^{2}(2n(i,j))^{-2p} \leqslant \frac{|\xi_{i}(t)|^{2}}{(2ij)^{2p}} = O(i^{-2p-\frac{1}{2}}j^{-2p}).$$

Второе утверждение следует из оценки

$$\|\mathbb{W}_{\varepsilon_{n(i,j)}}\|_{\mathbb{H}_{Q}}^{2}\big(2\mathbb{N}\big)^{-2p\varepsilon_{n(i,j)}} = |\xi_{i}(t)|^{2}\sigma_{j}^{-2}\big(2n(i,j)\big)^{-2p} \leqslant \frac{|\xi_{i}(t)|^{2}}{\sigma_{j}^{2}\big(2ij\big)^{2p}} = O\big(\sigma_{j}^{-2}i^{-2p-\frac{1}{2}}j^{-2p}\big).$$

Пусть опять H — еще одно сепарабельное гильбертово пространство. Рассмотрим $\mathcal{L}(\mathbb{H};H)$ — пространство линейных ограниченных операторов из \mathbb{H} в H. Поскольку оно не является сепарабельным гильбертовым пространством, нельзя определить пространство $\mathcal{L}(\mathbb{H};H)$ -значных обобщенных случайных величин так же, как выше было определено пространство $(\mathcal{S})_{-\rho}(\mathcal{L}_2(\mathbb{H};H))$. Несмотря на это, введем понятие обобщенной операторнозначной случайной величины с помощью следующего определения.

Определение 5.1. Линейный непрерывный оператор $\Phi:(\mathcal{S})_{\rho}\to\mathcal{L}(\mathbb{H};H)$ называется обобщенной $\mathcal{L}(\mathbb{H};H)$ -значной случайной величиной.

Предложение 5.2. Любая обобщенная $\mathcal{L}(\mathbb{H}; H)$ -значная случайная величина Φ принадлежит пространству $(S)_{-\rho}(\mathcal{L}_2(\mathbb{H}_Q; H))$.

Доказательство. Заметим сначала, что рассуждениями, аналогичными тем, что были проделаны при доказательстве предложения 1.2, можно показать, что любая обобщенная $\mathcal{L}(\mathbb{H};H)$ -значная случайная величина Φ принадлежит $\mathcal{L}\big((\mathcal{S}_p)_\rho;\mathcal{L}(\mathbb{H};H)\big)$ для некоторого $p\in\mathbb{N}$, и, таким образом, мы имеем

$$\|\Phi[\varphi]\|_{\mathcal{L}_2(\mathbb{H}_Q;H)} \leqslant \|\Phi\|_{\mathcal{L}\left((\mathcal{S}_p)_\rho;\mathcal{L}(\mathbb{H};H)\right)} \sqrt{\sum_{j=1}^\infty \sigma_j^2} \|\varphi\|_{p,\rho}, \quad \varphi \in (\mathcal{S})_\rho.$$

Отсюда следует, что Φ — непрерывный оператор из $(S)_{\rho}$ в $\mathcal{L}_2(\mathbb{H}_Q; H)$.

Из предложений 5.1 и 5.2 следует, что для любого обобщенного $\mathcal{L}(\mathbb{H};H)$ -значного случайного процесса $\Phi(t)$ произведение Уика $\Phi(t) \diamond \mathbb{W}_Q(t)$ определено для всех t и принадлежит пространству $(\mathcal{S})_{-\rho}(H)$, так как $\Phi(t)$ можно считать $(\mathcal{S})_{-\rho}(\mathcal{L}_2(\mathbb{H}_Q;\mathbb{H}))$ -значным процессом. Взяв оператор Q, удовлетворяющий условию (5.1) и рассматривая $\Phi(t)$ как $(\mathcal{S})_{-\rho}(\mathcal{L}_2(\mathbb{H}_Q;\mathbb{H}))$ -значный процесс, получим, что произведение Уика $\Phi(t) \diamond \mathbb{W}(t)$ также определено и принадлежит пространству $(\mathcal{S})_{-\rho}(\mathbb{H})$ для всех $t \in \mathbb{R}$. Это обосновывает следующее определение.

Определение 5.2. Будем называть обобщенный $\mathcal{L}(\mathbb{H};H)$ -значный случайный процесс $\Phi(t)$ *ин- тегрируемым по Хицуде—Скороходу* по Q-белому шуму $\mathbb{W}_Q(t)$ (или цилиндрическому белому шуму $\mathbb{W}(t)$ на [0;T]), если $\Phi(t)\diamond\mathbb{W}_Q(t)$ (или $\Phi(t)\diamond\mathbb{W}(t)$, соответственно) интегрируемо на [0;T] как $(\mathcal{S})_{-\rho}(H)$ -значная функция. В таком случае будем называть интегралы

$$\int\limits_0^T \Phi(t) \diamond \mathbb{W}_Q(t) \, dt \quad \mathsf{и} \quad \int\limits_0^T \Phi(t) \diamond \mathbb{W}(t) \, dt$$

интегралами Хицуды—Скорохода от $\Phi(t)$.

5.2. Связь интеграла Хицуды—Скорохода и интеграла Ито. В этом разделе мы установим связь между интегралом Ито и интегралом Хицуды—Скорохода, а именно, покажем, что последний является обобщением интеграла Ито по винеровскому процессу. Для простоты рассмотрим случай Q-винеровского процесса и соответствующего Q-белого шума. Доказательство, которое мы представляем, использует идеи [6], где эта связь доказана в одномерном случае. Мы обобщаем их на бесконечномерный случай.

Пусть $\{\mathcal{B}_t, t \geqslant 0\}$ — σ -алгебра, порожденная случайными величинами $(W_Q(s), x)_{\mathbb{H}}$, где $0 \leqslant s \leqslant t$, $x \in \mathbb{H}$. Семейство $\{\mathcal{B}_t\}$ называется фильтрацией, порожденной Q-винеровским процессом $W_Q(t)$, $t \geqslant 0$. Легко видеть, что $\{\mathcal{B}_t, t \geqslant 0\}$ совпадает с σ -алгеброй, порожденной случайными величинами вида

$$(W(s), x)_{\mathbb{H}} := \sum_{j=1}^{\infty} \beta_j(t)(e_j, x)_{\mathbb{H}}, \quad 0 \leqslant s \leqslant t, \quad x \in \mathbb{H}.$$

Здесь скалярное произведение в левой части не определено, так как W(s) не принадлежит H почти наверное. Несмотря на это, ряд в правой части сходится в (L^2) , так как

$$\sum_{j=1}^{\infty} E[\beta_j(t)(e_j, x)_{\mathbb{H}}]^2 = t \sum_{j=1}^{\infty} (e_j, x)_{\mathbb{H}}^2 < \infty.$$

Заметим, что броуновские движения $\beta_j(t)$ $(j \in \mathbb{N}, t \geqslant 0)$ являются мартингалами относительно \mathcal{B}_t . Пусть \mathcal{H} — сепарабельное гильбертово пространство. \mathcal{H} -значный случайный процесс $\Phi(t), t \geqslant 0$ называется \mathcal{B}_t -адаптированным, если $\Phi(t)$ \mathcal{B}_t -измерима для каждого $t \geqslant 0$.

Мы будем далее рассматривать интегралы Ито по определенному выше \mathbb{H} -значному Q-винеровскому процессу. Они определены для предсказуемых подынтегральных функций $\Phi(t), t \in [0;T]$, со значениями в $\mathcal{H} = \mathcal{L}_2(\mathbb{H}_Q;H)$. Напомним, что \mathcal{H} -значный процесс называется $\mathit{предсказуемым}$, если он измерим как отображение из $([0;T] \times \mathcal{S}',\mathcal{P}_T)$ в $(\mathcal{H},\mathcal{B}(\mathcal{H}))$, где \mathcal{P}_T — предсказуемая σ -алгебра подмножеств $[0;T] \times \mathcal{S}'$. Последняя определяется как σ -алгебра, порожденная множествами вида

$$(s;t] \times B$$
, $0 \leqslant s < t \leqslant T$, $B \in \mathcal{B}_s$.

Нам понадобится несколько лемм, которые характеризуют \mathcal{B}_t -измеримые случайные величины в терминах их S-преобразований. Они используют операторы $\mathfrak{J}_j, j \in \mathbb{N}$, определенные равенствами (1.18), являющиеся изометрическими изоморфизмами $L^2(\mathbb{R})$ и пространств $L^2(\mathbb{R})_j$, и ортогональные проекторы $\pi_j, j \in \mathbb{N}$, пространства $L^2(\mathbb{R})$ на пространства $L^2(\mathbb{R})_j$, определенные равенствами (1.20).

Лемма 5.1. Пусть $\mathcal{H}-$ сепарабельное гильбертово пространство. Для любого $\Theta,\Phi\in (L^2)(\mathcal{H})$ равенство $\Theta=E\left(\Phi|\mathcal{B}_t\right)$ верно тогда и только тогда, когда

$$S\Theta(\theta) = S\Phi\left(\sum_{j=1}^{\infty} \theta_{t,j}\right)$$
 (5.2)

для любого $\theta \in \mathcal{S}$, где $\theta_{t,j} := \mathfrak{J}_j \big(\mathfrak{J}_j^{-1} \pi_j \theta \cdot 1_{[0,t]} \big).$

 \mathcal{I} оказательство. Пусть $\theta_{t,j}^{\perp}=\mathfrak{J}_{j}\big(\mathfrak{J}_{j}^{-1}\pi_{j}\theta\cdot 1_{[0,t]^{c}}\big),\ j\in\mathbb{N},$ для $\theta\in\mathcal{S}$. Имеем

$$\pi_j\theta = \mathfrak{J}_j\mathfrak{J}_j^{-1}\pi_j\theta = \mathfrak{J}_j\big(\mathfrak{J}_j^{-1}\pi_j\theta\cdot 1_{[0,t]} + \mathfrak{J}_j^{-1}\pi_j\theta\cdot 1_{[0,t]^c}\big) = \theta_{t,j} + \theta_{t,j}^{\perp},$$

кроме того, функции $heta_{t,j}$ и $heta_{t,j}^\perp$ ортогональны в $L^2(\mathbb{R})$:

$$(\theta_{t,j}, \theta_{t,j}^{\perp})_0 = \left(\mathfrak{J}_j \big(\mathfrak{J}_j^{-1} \pi_j \theta \cdot 1_{[0,t]}\big), \mathfrak{J}_j \big(\mathfrak{J}_j^{-1} \pi_j \theta \cdot 1_{[0,t]^c}\big)\right)_{L_2(\mathbb{R})} = \left(\mathfrak{J}_j^{-1} \pi_j \theta \cdot 1_{[0,t]}, \mathfrak{J}_j^{-1} \pi_j \theta \cdot 1_{[0,t]^c}\right)_{L_2(\mathbb{R})} = 0.$$

Так как для любых ортогональных в $L^2(\mathbb{R})$ функций θ и η

$$\mathcal{E}_{\theta+\eta} = e^{\langle \cdot, \theta + \eta \rangle - \frac{1}{2} \|\theta + \eta\|_0^2} = e^{\langle \cdot, \theta \rangle - \frac{1}{2} \|\theta\|_0^2} e^{\langle \cdot, \eta \rangle - \frac{1}{2} \|\eta\|_0^2} e^{(\theta, \eta)_0} = \mathcal{E}_{\theta} \mathcal{E}_{\eta}, \tag{5.3}$$

отсюда следует, что

$$S\Theta\left(\sum_{j=1}^{n} \pi_{j} \theta\right) = E\left(\Theta \mathcal{E}_{\sum_{j=1}^{n} \pi_{j} \theta}\right) = E\left(\Theta \prod_{j=1}^{n} \mathcal{E}_{\pi_{j} \theta}\right) = E\left(\Theta \prod_{j=1}^{n} \mathcal{E}_{\theta_{t,j} + \theta_{t,j}^{\perp}}\right).$$

Снова используя свойство (5.3), получаем

SO
$$\left(\sum_{j=1}^{n} \pi_{j} \theta\right) = E\left(\Theta \prod_{j=1}^{n} \mathcal{E}_{\theta_{t,j}} \prod_{j=1}^{n} \mathcal{E}_{\theta_{t,j}^{\perp}}\right).$$

Заметим, что для любого $s \in [0;t]$

$$E\left(\beta_{j}(s)\langle\cdot,\theta_{t,j}^{\perp}\rangle\right) = \left(\langle\cdot,\mathfrak{J}_{j}1_{[0,s]}\rangle,\left\langle\cdot,\mathfrak{J}_{j}\left(\mathfrak{J}_{j}^{-1}\pi_{j}\theta\cdot1_{[0,t]^{c}}\right)\right\rangle\right)_{(L^{2})} =$$

$$= \left(\mathfrak{J}_{j}1_{[0,s]},\mathfrak{J}_{j}\left(\mathfrak{J}_{j}^{-1}\pi_{j}\theta\cdot1_{[0,t]^{c}}\right)\right)_{L_{2}(\mathbb{R})} = \left(1_{[0,s]},\mathfrak{J}_{j}^{-1}\pi_{j}\theta\cdot1_{[0,t]^{c}}\right)_{L_{2}(\mathbb{R})} = 0,$$

таким образом, случайные величины $\langle \cdot, \theta_{t,j}^{\perp} \rangle$ и, следовательно, $\mathcal{E}_{\theta_{t,j}^{\perp}}$, $j \in \mathbb{N}$, не зависят от \mathcal{B}_t . Приближая θ в $L_2(\mathbb{R})$ финитными ступенчатыми функциями, можно легко доказать, что случайные величины $\langle \cdot, \theta_{t,j} \rangle$, $j \in \mathbb{N}$, и, следовательно, функции $\mathcal{E}_{\theta_{t,j}}$ являются \mathcal{B}_t -измеримыми. Таким образом, если $\Theta = E(\Phi | \mathcal{B}_t)$, в силу свойств условных математических ожиданий имеем

$$S\Theta\left(\sum_{j=1}^{n} \pi_{j} \theta\right) = E\left(E(\Phi | \mathcal{B}_{t}) \prod_{j=1}^{n} \mathcal{E}_{\theta_{t,j}} \prod_{j=1}^{n} \mathcal{E}_{\theta_{t,j}^{\perp}}\right) =$$

$$= E\left(E\left(\Phi \prod_{j=1}^{n} \mathcal{E}_{\theta_{t,j}} \middle| \mathcal{B}_{t}\right)\right) E\left(\prod_{j=1}^{n} \mathcal{E}_{\theta_{t,j}^{\perp}}\right) = E\left(\Phi \prod_{j=1}^{n} \mathcal{E}_{\theta_{t,j}}\right) E\left(\prod_{j=1}^{n} \mathcal{E}_{\theta_{t,j}^{\perp}}\right).$$

Снова используя равенство (5.3), получаем

$$S\Theta\left(\sum_{j=1}^{n} \pi_{j} \theta\right) = E\left(\Phi \mathcal{E}_{\sum_{j=1}^{n} \theta_{t,j}}\right) E\left(\mathcal{E}_{\sum_{j=1}^{n} \theta_{t,j}^{\perp}}\right) = S\Phi\left(\sum_{j=1}^{n} \theta_{t,j}\right). \tag{5.4}$$

Поскольку сходимость последовательности θ_n к θ в $L_2(\mathbb{R})$ влечет за собой сходимость $E\left(\Phi \mathcal{E}_{\theta_n}\right)$ к $E\left(\Phi \mathcal{E}_{\theta}\right)$ в \mathcal{H} для любого $\Phi \in (L^2)(\mathcal{H})$, получаем равенство (5.2), устремляя $n \to \infty$ в равенстве (5.4).

Следствие 5.1. $\Phi \in (L^2)(\mathcal{H})$ является \mathcal{B}_t -измеримой тогда и только тогда, когда

$$S\Phi(\theta) = S\Phi\left(\sum_{j\in\mathbb{N}} \theta_{t,j}\right), \quad \theta_{t,j} := \mathfrak{J}_j(\mathfrak{J}_j^{-1}\pi_j\theta \cdot 1_{[0,t]}), \quad \theta \in \mathcal{S}.$$

Лемма 5.2. Если случайная величина $\Phi \in (L^2)(\mathcal{H})$ является \mathcal{B}_t -измеримой, то для любых $k \in \mathbb{N}, \, b > t > 0$ верно

$$S\left(\Phi\langle\cdot, 1_{(t,b]}^k\rangle\right)(\theta) = (1_{(t,b]}^k, \theta)_{L_2(\mathbb{R})} S\Phi(\theta), \quad \theta \in \mathcal{S}.$$

$$(5.5)$$

Доказательство. Имеем:

$$S\left(\Phi\langle\cdot,1_{(t,b]}^{k}\rangle\right)(\theta) = \\
= E\left(\Phi\langle\cdot,1_{(t,b]}^{k}\rangle\mathcal{E}_{\theta}\right) = e^{-\frac{|\theta|_{0}}{2}}E\left(\Phi\frac{d}{d\alpha}e^{\alpha\langle\cdot,1_{(t,b]}^{k}\rangle+\langle\cdot,\theta\rangle}\Big|_{\alpha=0}\right) = \\
= e^{-\frac{|\theta|_{0}}{2}}\frac{d}{d\alpha}E\left(\Phi e^{\langle\cdot,\alpha1_{(t,b]}^{k}+\theta\rangle-\frac{1}{2}|\alpha1_{(t,b]}^{k}+\theta|_{0}^{2}}e^{\frac{1}{2}|\alpha1_{(t,b]}^{k}+\theta|_{0}^{2}}\right)\Big|_{\alpha=0} = \\
= e^{-\frac{|\theta|_{0}}{2}}\frac{d}{d\alpha}\left(e^{\frac{1}{2}|\alpha1_{(t,b]}^{k}+\theta|_{0}^{2}}S\Phi\left(\alpha1_{(t,b]}^{k}+\theta\right)\right)\Big|_{\alpha=0}.$$
(5.6)

Далее, имеем

$$\left. \frac{d}{d\alpha} e^{\frac{1}{2}|\alpha 1_{(t,b]}^k + \theta|_0^2} \right|_{\alpha = 0} = \left. \frac{d}{d\alpha} e^{\frac{1}{2} \left(\alpha^2 |1_{(t,b]}^k|_0^2 + 2\alpha (1_{(t,b]}^k, \theta)_{L_2(\mathbb{R})} + |\theta|_0^2\right)} \right|_{\alpha = 0} = \left. \left(1_{(t,b]}^k, \theta\right)_{L_2(\mathbb{R})} e^{\frac{|\theta|_0}{2}}.$$

Кроме того, в силу \mathcal{B}_t -измеримости Φ , предложения 5.1 и равенства

$$(1_{(t,b]}^k)_{t,j} = \mathfrak{J}_j \big(\mathfrak{J}_j^{-1} \pi_j 1_{(t,b]}^k \cdot 1_{[0,t]} \big) = \begin{cases} \mathfrak{J}_j \big(0 \cdot 1_{[0,t]} \big) = 0, & k \neq j, \\ \mathfrak{J}_j \big(1_{(t,b]} \cdot 1_{[0,t]} \big) = 0, & k = j, \end{cases}$$

получим

$$S\Phi(\alpha 1_{(t,b]}^k + \theta) = S\Phi\left(\sum_{j \in \mathbb{N}} \left(\alpha (1_{(t,b]}^k)_{t,j} + \theta_{t,j}\right)\right) = S\Phi\left(\sum_{j \in \mathbb{N}} \theta_{t,j}\right).$$

Отсюда следует, что $\frac{d}{d\alpha} \mathrm{S}\Phi \left(\alpha 1_{(t,b]}^k + \theta \right) = 0$. Таким образом, из равенства (5.6) следует (5.5).

Теорема 5.1. Для любого предсказуемого $\mathcal{L}_2(\mathbb{H}_Q; H)$ -значного процесса, удовлетворяющего условию

$$E\left[\int_{0}^{T} \|\Phi(t)\|_{\mathcal{L}_{2}(\mathbb{H}_{Q};H)}^{2} dt\right] < \infty, \tag{5.7}$$

верно равенство

$$\int_{0}^{T} \Psi(t) dW_{Q}(t) = \int_{0}^{T} \Psi(t) \diamond W_{Q}(t) dt.$$
 (5.8)

Доказательство. Чтобы доказать утверждение, вспомним, что интеграл Ито по Q-винеровскому процессу сначала определяется для так называемых элементарных процессов, т. е. для процессов вида

$$\Psi(t) = \sum_{k=0}^{N-1} \Psi_k 1_{(t_k, t_{k+1}]}(t), \tag{5.9}$$

где $0=t_0 < t_1 < \cdots < t_N = T$, а $\Psi_k - \mathcal{L}(\mathbb{H};H)$ -значные \mathcal{B}_{t_k} -измеримые случайные величины для всех $k=0,1,\ldots,N-1$. Затем определение распространяется на все предсказуемые $\mathcal{L}_2(\mathbb{H}_Q;H)$ -значные подынтегральные функции, удовлетворяющие условию (5.7). Используя равенство

$$E \left\| \int_{0}^{T} \Psi(t) dW_{Q}(t) \right\|_{H}^{2} = E \left[\int_{0}^{T} \|\Psi(t)\|_{\mathcal{L}_{2}(\mathbb{H}_{Q}; H)}^{2} dt \right] =: \||\Psi||_{T},$$

которое можно проверить для любого элементарного процесса $\Psi(t)$, и тот факт, что любой предсказуемый процесс $\Psi(t)$ со значениями в $\mathcal{L}_2(\mathbb{H}_Q;H)$ может быть аппроксимирован последовательностью элементарных процессов $\{\Psi^{(n)}(t)\}_{n=1}^\infty,\,t\in[0;T]$, сходящихся к Ψ по норме $\||\cdot\||_T$, можно

определить интеграл $\int\limits_0^1 \Psi(t)\,dW_Q(t)$ как предел в $(L^2)(H)$ соответствующей последовательности

интегралов от элементарных процессов $\int\limits_0^T \Psi^{(n)}(t)\,dW_Q(t).$

Таким образом, достаточно доказать равенство (5.8) для элементарного процесса $\Psi(t)$ вида (5.9). Поскольку операторы $g_i \otimes e_j, i, j \in \mathbb{N}$, где $\{g_i\}_{i=1}^{\infty}$ — ортонормированный базис в H, образуют линейно плотное подмножество в $\mathcal{L}_2(\mathbb{H}_Q;H)$, можно без ограничения общности предположить, что Ψ_k имеют вид

$$\Psi_k = \sum_{i,j=1}^M \psi_{k,i,j}(g_i \otimes e_j), \quad \psi_{k,i,j} \in (L^2),$$

где функции $\psi_{k,i,j}$ \mathcal{B}_{t_k} -измеримы для всех $i,j=1,\ldots,M,\ k=0,1,\ldots N-1.$ Рассмотрим S-преобразование левой части равенства (5.8). Для любого $\theta \in \mathcal{S}$ имеем:

$$S\left[\int_{0}^{T} \Psi(t) dW_{Q}(t)\right](\theta) = S\left[\sum_{k=0}^{N-1} \Psi_{k}\left(W_{Q}(t_{k+1}) - W_{Q}(t_{k})\right)\right](\theta) =$$

$$= S\left[\sum_{k=0}^{N-1} \sum_{i,j=1}^{M} \psi_{k,i,j}(g_{i} \otimes e_{j}) \sum_{j=1}^{\infty} \sigma_{j}\left(\beta_{j}(t_{k+1}) - \beta_{j}(t_{k})\right)e_{j}\right] = \sum_{k=0}^{N-1} \sum_{i,j=1}^{M} \sigma_{j}S\left[\psi_{k,i,j}\left\langle 1_{(t_{k},t_{k+1}]}^{j},\cdot\right\rangle\right](\theta)g_{i}.$$

В силу леммы 5.2 получим

$$\begin{split} \mathbf{S} \left[\int\limits_{0}^{T} \Psi(t) \, dW_Q(t) \right] (\theta) &= \sum_{k=0}^{N-1} \sum_{i,j=1}^{M} \sigma_j \left(\mathbf{1}_{(t_k,t_{k+1}]}^j, \theta \right)_{L_2(\mathbb{R})} \mathbf{S} \psi_{k,i,j}(\theta) g_i = \\ &= \sum_{k=0}^{N-1} \sum_{i,j=1}^{M} \sigma_j \left(\mathbf{1}_{(t_k,t_{k+1}]}, \mathfrak{J}_j^{-1} \pi_j \theta \right)_{L_2(\mathbb{R})} \mathbf{S} \psi_{k,i,j}(\theta) g_i = \\ &= \sum_{k=0}^{N-1} \sum_{i,j=1}^{M} \sigma_j \int\limits_{t_k}^{t_{k+1}} \left[\mathfrak{J}_j^{-1} \pi_j \theta \right] (t) dt \mathbf{S} \psi_{k,i,j}(\theta) g_i = \\ &= \sum_{k=0}^{N-1} \int\limits_{t_k}^{t_{k+1}} \sum_{i=1}^{M} \sum_{j=1}^{M} \mathbf{S} \psi_{k,i,j}(\theta) \left[\sigma_j g_i \mathfrak{J}_j^{-1} \pi_j \theta \right] (t) dt. \end{split}$$

Вспоминая формулу (3.8) и определение Ψ_k , окончательно получим

$$\mathbf{S}\left[\int_{0}^{T} \Psi(t) dW_{Q}(t)\right](\theta) = \sum_{k=0}^{N-1} \int_{t_{k}}^{t_{k+1}} \mathbf{S}\Psi_{k}(\theta) \mathbf{S}\mathbb{W}_{Q}(t)(\theta) dt = \int_{0}^{T} \mathbf{S}\left[\Psi(t) \diamond \mathbb{W}_{Q}(t)\right](\theta) dt = \mathbf{S}\left[\int_{0}^{T} \Psi(t) \diamond \mathbb{W}_{Q}(t) dt\right](\theta).$$

В силу единственности S-преобразования это равенство влечет за собой (5.8).

Следующая теорема устанавливает связь между интегралом Ито по цилиндрическому винеровскому процессу и интегралом Хицуды—Скорохода по цилиндрическому белому шуму. Она доказывается аналогично, с использованием равенства (3.9) вместо (3.8).

Теорема 5.2. Для любого предсказуемого $\mathcal{L}_2(\mathbb{H};H)$ -значного процесса, удовлетворяющего условию

$$E\left[\int_{0}^{T} \|\Phi(t)\|_{\mathcal{L}_{2}(\mathbb{H};H)}^{2} dt\right] < \infty,$$

верно равенство

$$\int_{0}^{T} \Psi(t) dW(t) = \int_{0}^{T} \Psi(t) \diamond W(t) dt.$$
 (5.10)

6. Стохастические дифференциальные уравнения в пространствах обобщенных гильбертовозначных случайных величин

Для того, чтобы рассмотреть стохастические дифференциальные уравнения в гильбертовых пространствах как дифференциальные уравнения в пространствах обобщенных гильбертовозначных случайных величин, сначала распространим действие линейных операторов, действующих из \mathcal{H}_1 в \mathcal{H}_2 , где \mathcal{H}_i — сепарабельные гильбертовы пространства, на соответствующие пространства обобщенных случайных величин.

Пусть сначала $A \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$. Определим его действие как оператора из $(\mathcal{S})_{-\rho}(\mathcal{H}_1)$ в $(\mathcal{S})_{-\rho}(\mathcal{H}_2)$ равенством

$$A\Phi := \sum_{\alpha \in \mathcal{T}} A\Phi_{\alpha} \mathbf{h}_{\alpha}, \text{ for } \Phi = \sum_{\alpha \in \mathcal{T}} \Phi_{\alpha} \mathbf{h}_{\alpha} \in (\mathcal{S})_{-\rho}(\mathcal{H}_{1}).$$

$$(6.1)$$

Определенный таким образом, оператор A становится линейным непрерывным оператором, действующим из $(S)_{-\rho}(\mathcal{H}_1)$ в $(S)_{-\rho}(\mathcal{H}_2)$.

Если A неограничен, определим $(\operatorname{dom} A)$ как множество всех $\sum_{\alpha \in \mathcal{T}} \Phi_{\alpha} \mathbf{h}_{\alpha} \in (\mathcal{S})_{-\rho}(\mathcal{H}_1)$ таких, что $\Phi_{\alpha} \in \operatorname{dom} A$ для всех $\alpha \in \mathcal{T}$ и условие

$$\sum_{\alpha \in \mathcal{T}} (\alpha!)^{1-\rho} \|A\Phi_{\alpha}\|_{H_2}^2 (2\mathbb{N})^{-2p\alpha} < \infty$$

выполнено для некоторого $p \in \mathbb{N}$.

Тогда равенство (6.1) определяет на (dom A) линейный оператор, действующий из $(\mathcal{S})_{-\rho}(\mathcal{H}_1)$ в $(\mathcal{S})_{-\rho}(\mathcal{H}_2)$. Нетрудно проверить его замкнутость для оператора A, замкнутого как оператор, действующий из \mathcal{H}_1 в \mathcal{H}_2 .

Предложение 6.1. Пусть A — линейный замкнутый оператор из \mathcal{H}_1 в \mathcal{H}_2 . Для любого $\Phi \in (\text{dom} A) \subseteq (\mathcal{S})_{-\rho}(\mathcal{H}_1), \ \rho \in [0;1), \ верно \ [S\Phi](\theta) \in \text{dom} A \subseteq \mathcal{H}_1$ при всех $\theta \in \mathcal{S}$, и

$$[SA\Phi](\theta) = A[S\Phi](\theta), \quad \theta \in \mathcal{S}.$$

6.1. Уравнения с аддитивным шумом. Пусть $\mathbb H$ и H — сепарабельные гильбертовы пространства, A — замкнутый линейный оператор, действующий в $H, B \in \mathcal L(\mathbb H, H)$. Рассмотрим следующую стохастическую задачу Коши:

$$dX(t) = AX(t)dt + BdW(t), \quad X(0) = \zeta, \tag{6.2}$$

где $W(t)-\mathbb{H}$ -значный цилиндрический винеровский процесс. Это дифференциальная форма записи уравнения Ито

$$X(t) = \int_{0}^{t} AX(t) dt + \int_{0}^{t} B dW(t).$$

Из связи между интегралами Ито и Хицуды—Скорохода следует, что во введенных выше пространствах обобщенных гильбертовозначных случайных величин это уравнение может быть записано в виде

$$X(t) = \int_{0}^{t} AX(t) dt + \int_{0}^{t} B \diamond W(t) dt.$$

Принимая во внимание то, что $B \diamond \mathbb{W}(t) = B\mathbb{W}(t)$ в силу того, что B детерминирован, видим, что задача Коши (6.2) в введенных выше пространствах обобщенных случайных величин принимает следующий вид:

$$X'(t) = AX(t) + BW(t), \quad t \ge 0, \qquad X(0) = \zeta,$$
 (6.3)

где $\mathbb{W}(t)-\mathbb{H}$ -значный белый шум. В этом разделе мы получим результат о существовании и единственности решения этой задачи в пространстве $(\mathcal{S})_{-\rho}(H)$, т. е. о существовании и единственности $(\mathcal{S})_{-\rho}(H)$ -значной дифференцируемой функции X(t), удовлетворяющей (6.3).

Теорема 6.1. Пусть A является генератором полугруппы $\{S(t), t \geqslant 0\}$ класса C_0 в гильбертовом пространстве $H, B \in \mathcal{L}(\mathbb{H}, H), \mathbb{W}$ — определенный выше цилиндрический белый шум. Тогда

$$X(t) = S(t)\zeta + \int_{0}^{t} S(t-s)B\mathbb{W}(s)ds$$
(6.4)

— единственное решение задачи Коши (6.3) в пространстве $(S)_{-\rho}(H)$ для любого $\zeta \in (\text{dom } A)$.

Доказательство. Пусть $X(t) = \sum_{\alpha} X_{\alpha}(t) \mathbf{h}_{\alpha} \in (\mathcal{S})_{-\rho}(H), \ \zeta = \sum_{\alpha} \zeta_{\alpha} \mathbf{h}_{\alpha} \in (\text{dom } A)$. Процесс X(t) является решением задачи (6.3), только если функции $X_{\alpha}(t)$ являются решениями задач Коши

$$X'_{\varepsilon_n}(t) = AX_{\varepsilon_n}(t) + B\mathbb{W}_{\varepsilon_n}(t), \quad X_{\varepsilon_n}(0) = \zeta_{\varepsilon_n}, \quad \text{при } \alpha = \varepsilon_n, \ n \in \mathbb{N},$$
 (6.5)

$$X'_{\alpha}(t) = AX_{\alpha}(t), \quad X_{\alpha}(0) = \zeta_{\alpha}$$
 при $\alpha \neq \varepsilon_n$ (6.6)

в пространстве H.

Поскольку A является генератором полугруппы класса C_0 , а $\zeta_{\alpha} \in \text{dom } A$,

$$X_{\alpha}(t) := S(t)\zeta_{\alpha} \tag{6.7}$$

— единственное решение задачи (6.6) для любого $\alpha \neq \varepsilon_n, \ n \in \mathbb{N}.$

Для любого $n \in \mathbb{N}$ функция $B\mathbb{W}_{\varepsilon_n}(t) = Be_j\xi_i(t)$, где $i,j \in \mathbb{N}$ и n=n(i,j), непрерывно дифференцируема при любом $t \in \mathbb{R}$. Поэтому функция

$$v_n(t) := \int_0^t S(t-s)BW_{\varepsilon_n}(s) ds = \int_0^t S(s)BW_{\varepsilon_n}(t-s) ds$$

дифференцируема и, в силу известных свойств полугрупп класса C_0 , непрерывна и принимает значения, принадлежащие ${\rm dom}\,A$ при всех t>0. Таким образом, по [32, теорема 2.4], задача Коши (6.5) имеет единственное решение

$$X_{\varepsilon_n}(t) = S(t)\zeta_{\varepsilon_n} + \int_0^t S(t-s)B\mathbb{W}_{\varepsilon_n}(s) ds, \quad n \in \mathbb{N}.$$
(6.8)

Рассмотрим $X(t) = \sum_{\alpha} X_{\alpha}(t) \mathbf{h}_{\alpha}$, где $X_{\alpha}(t)$ определены равенствами (6.7) и (6.8). Покажем, что $X(t) \in (\mathcal{S})_{-0}(H)$ и верно (6.4).

Пусть M>0 и a>0 таковы, что $\|S(t)\|\leqslant Me^{at}$ при $t\geqslant 0$. Из оценки

$$\int_{0}^{t} \|S(t-s)BW_{\varepsilon_{n}}(s)\|_{H}^{2} ds \leq M^{2} \|B\|^{2} \int_{0}^{t} e^{2a(t-s)} |\xi_{i(n)}(s)|^{2} ds \leq M^{2} \|B\|^{2} e^{2at}$$

следует, что при $p \geqslant 1$ имеем

$$\sum_{n\in\mathbb{N}}\int_{0}^{t} \left\| S(t-s)BW_{\varepsilon_{n}}(s) \right\|_{H}^{2} ds (2\mathbb{N})^{-2p\varepsilon_{n}} < \infty.$$

В силу предложения 2.5, отсюда следует, что интеграл $\int\limits_0^t S(t-s)B\mathbb{W}(s)ds$ существует как элемент $(\mathcal{S})_{-0}(H)$ при всех $t\geqslant 0$ и

$$\int_{0}^{t} S(t-s)B\mathbb{W}(s)ds = \sum_{n=1}^{\infty} \int_{0}^{t} S(t-s)B\mathbb{W}_{\varepsilon_{n}}(s) ds.$$

Очевидно, $S(t)\zeta = \sum_{\alpha \in \mathcal{T}} S(t)\zeta_{\alpha}\mathbf{h}_{\alpha} \in (\mathcal{S})_{-0}(H)$, таким образом, X(t) в равенстве (6.4) определен как элемент $((S))_{-0}(H)$.

Для завершения доказательства достаточно показать, что X(t) дифференцируема при $t\geqslant 0$. Тогда (6.3) следует из (6.5), (6.6) и замкнутости A.

Пусть $t \in [0; T)$, тогда, поскольку $\zeta_{\alpha} \in \text{dom } A$ для всех $\alpha \in \mathcal{T}$, имеем

$$\left\| \frac{S(t+h)\zeta_{\alpha} - S(t)\zeta_{\alpha}}{h} \right\| = \frac{1}{|h|} \left\| \int_{t}^{t+h} S(s)A\zeta_{\alpha} ds \right\| \leqslant Me^{aT} \|A\zeta_{\alpha}\|.$$

Так как $\zeta \in (\text{dom }A) \subset (\mathcal{S})_{-0}(H)$, имеем $\|A\zeta\|_{-p,-0}^2 = \sum_{\alpha \in \mathcal{T}} (\alpha!) \|A\zeta_\alpha\|^2 (2\mathbb{N})^{-2p\alpha} < \infty$ для некоторого $p \in \mathbb{N}$, таким образом, для всех $h \in \mathbb{R}$ таких, что $t+h \in [0;T]$, имеем

$$\left\| \frac{S(t+h)\zeta - S(t)\zeta}{h} \right\| \leqslant Me^{aT} \|A\zeta\|_{-p,-0}. \tag{6.9}$$

Кроме того,

$$\left\| \frac{1}{h} \left(\int_{0}^{t+h} S(t+h-s) \mathbb{W}_{\varepsilon_{n(i,j)}}(s) \, ds - \int_{0}^{t} S(t-s) \mathbb{W}_{\varepsilon_{n}}(s) \, ds \right) \right\| =$$

$$= \frac{1}{|h|} \left\| \int_{t}^{t+h} S(s) \xi_{i}(t+h-s) Be_{j} \, ds + \int_{0}^{t} S(s) \left(\xi_{i}(t+h-s) - \xi_{i}(t-s) \right) Be_{j} \right\| \leq$$

$$\leq Me^{aT} \|B\| \left(\sup_{[0;T]} |\xi_{i}(t)| + T \sup_{[0;T]} |\xi'_{i}(t)| \right) = O(i^{\frac{5}{12}})$$

в силу оценки (6.9) равномерно по h таким, что $t+h \in [0;T]$. Отсюда следует, что

$$\left\| \frac{1}{h} \left(\int_{0}^{t+h} S(t+h-s)B\mathbb{W}(s) \, ds - \int_{0}^{t} S(t-s)B\mathbb{W}(s) \, ds \right) \right\|_{-p,\rho} \leqslant K \tag{6.10}$$

при $p\geqslant 2$ для некоторых K>0 и h, таких, что $t+h\in [0;T]$. Из (6.9) и (6.10) следует, что $\left\|\frac{X_{\alpha}(t+h)-X_{\alpha}(t)}{h}\right\|_{-p,-0}$ ограничено при $t+h\in [0;T]$ для некоторого $p\in \mathbb{N}$. В силу следствия 2.2 отсюда и из дифференцируемости всех $X_{\alpha},\ \alpha\in \mathcal{T},$ следует, что X'(t) существует.

6.2. Пример. Стохастическое уравнение теплопроводности. Рассмотрим следующую задачу Коши для уравнения теплопроводности:

$$\frac{\partial u(t,\bar{x})}{\partial t} = \Delta u(t,\bar{x}), \quad t \geqslant 0, \quad \bar{x} = (x_1, \dots, x_m) \in \mathcal{D} \subset \mathbb{R}^m,$$

$$u(t,\bar{x}) = 0, \qquad t \geqslant 0, \quad \bar{x} \in \partial \mathcal{D},$$

$$u(0,\bar{x}) = \zeta(\bar{x}), \qquad \bar{x} \in \partial \mathcal{D}.$$

Через $\partial \mathcal{D}$ обозначаем границу области $\mathcal{D} \subset \mathbb{R}^m$. Эту задачу можно записать как задачу Коши для дифференциально-операторного уравнения

$$\frac{du(t)}{dt} = Au(t), \quad t \geqslant 0, \quad u(0) = \zeta \tag{6.11}$$

в гильбертовом пространстве $\mathbb{H}=L^2(\mathcal{D}),$ где $A=\Delta$ с областью определения dom A в пространствах Соболева:

$$\operatorname{dom} A = \left\{ u \in L^{2}(\mathcal{D}) \middle| u \in \mathcal{H}^{2,2} \cap \mathcal{H}_{0}^{1,2} \right\}.$$

Предположим, что $\mathcal{D} = [0;1]^m$. В этом случае множество функций

$$\left\{ \varphi_{n_1,\dots,n_m}(x_1,\dots,x_m) := 2^{m/2} \prod_{k=1}^m \sin(\pi n_k x_k) \, \middle| \, n_1,\dots,n_m \in \mathbb{N} \cup \{0\} \right\}$$
 (6.12)

состоит из собственных функций определенного выше оператора A и образует ортонормированный базис в $\mathbb H$. Соответствующие собственные значения

$$\left\{ -\sum_{k=1}^{m} \pi^2 n_k^2 \, \middle| \, n_1, \dots, n_m \in \mathbb{N} \cup \{0\} \right\}$$
 (6.13)

образуют его спектр. Зафиксируем некоторое упорядочение множеств (6.12) и (6.13) и обозначим их через $\{e_j\}_{j=1}^\infty$ и $\{\lambda_j\}_{j=1}^\infty$ соответственно. Оператор A порождает полугруппу класса C_0 , определенную формулой

$$S(t)u = \sum_{j=1}^{\infty} e^{\lambda_j t} (e_j, u)_{\mathbb{H}} e_j.$$

Рассмотрим следующее стохастическое возмущение задачи (6.11):

$$\frac{dX(t)}{dt} = AX(t) + \mathbb{W}(t), \quad u(0) = \zeta.$$

По теореме 6.1 эта задача имеет единственное решение в пространстве $(S)_{-\rho}(\mathbb{H})$. Для него есть точная формула (6.4), откуда мы получаем

$$X(t) = \sum_{j=1}^{\infty} e^{\lambda_j t} (e_j, \zeta)_{\mathbb{H}} e_j + \sum_{i,j=1}^{\infty} \int_{0}^{t} e^{\lambda_j (t-s)} \xi_i(s) \, ds \mathbf{h}_{\varepsilon_{n(i,j)}} e_j.$$

Рассмотрим норму X(t) в $(S_{-p})_{-\rho}(H)$. Имеем

$$||X(t)||_{-p,-\rho}^2 = ||S(t)\zeta||_{\mathbb{H}}^2 + \sum_{i,j\in\mathbb{N}} \left| \int_0^t e^{\lambda_j(t-s)} \xi_i(s) \, ds \right|^2 \left(2n(i,j)\right)^{-2p}. \tag{6.14}$$

Легко увидеть, что она конечна для любого $p \geqslant 1$. Таким образом, решение принимает значения в $(\mathcal{S}_{-1})_{-0}(H)$.

Заметим, что, поскольку мы имеем

$$\sum_{i \in \mathbb{N}} \left| \int_{0}^{t} e^{\lambda_{j}(t-s)} \xi_{i}(s) \, ds \right|^{2} = \left\| e^{\lambda_{j}(t-s)} \mathbf{1}_{[0;t]} \right\|_{0}^{2} = \int_{0}^{t} e^{2\lambda_{j}(t-s)} ds = \frac{1 - e^{2\lambda_{j}t}}{2|\lambda_{j}|} \leqslant \frac{1}{2|\lambda_{j}|},$$

ряд в правой части равенства (6.14) сходится при p=0 и $\rho=0$, только если m=1. Таким образом, это единственный случай, когда решение принимает значения в пространстве $(L^2)(H)=(\mathcal{S}_{-0})_{-0}(H)$.

6.3. Уравнения с мультипликативным шумом. Пусть H и \mathbb{H} — сепарабельные гильбертовы пространства, A — линейный замкнутый оператор, действующий в H, $B(\cdot) \in \mathcal{L}\big(H, \mathcal{L}(\mathbb{H}; H)\big), \zeta \in (\mathrm{dom} A) \subseteq (\mathcal{S})_{-\varrho}(H)$. Рассмотрим следующую задачу Коши:

$$dX(t) = AX(t)dt + B(X(t))dW(t), \ t \geqslant 0, \quad X(0) = \zeta,$$

где $W(t)-\mathbb{H}$ -значный цилиндрический винеровский процесс. Она соответствует следующему интегральному уравнению Ито:

$$X(t) = \zeta + \int_0^t AX(s)ds + \int_0^t B(X(s))dW(s), \ t \geqslant 0.$$

Заменяя интеграл Ито на интеграл Хицуды—Скорохода и дифференцируя по t, мы приходим к задаче Коши

$$\frac{dX(t)}{dt} = AX(t) + B(X(t)) \diamond W(t), \ t \geqslant 0, \quad X(0) = \zeta. \tag{6.15}$$

Изучим существование и единственность ее решения в пространстве $(\mathcal{S})_{-\rho}(H)$, где $\rho \in [0;1)$, т. е. существование и единственность $(\mathcal{S})_{-\rho}(H)$ -значной дифференцируемой функции, удовлетворяющей (6.15). Заметим, что если Q — ядерный оператор, действующий в $\mathbb H$ и удовлетворяющий условию предложения 5.1 для некоторого $p \in \mathbb N$, то из того факта, что для любого $X(t) \in (\mathcal{S})_{-\rho}(H)$ имеем $B(X(t)) \in (\mathcal{S})_{-\rho}(\mathcal{L}_2(\mathbb H_Q;\mathbb H))$, следует, что произведение Уика в уравнении (6.15) определено.

Применяя S-преобразование к задаче (6.15), получим следующую задачу:

$$\frac{d}{dt}\hat{X}(t,\theta) = A\hat{X}(t,\theta) + B(\hat{X}(t,\theta))\hat{\mathbb{W}}(t,\theta), \ t \geqslant 0, \quad \hat{X}(0,\theta) = \hat{\zeta}(\theta), \quad \theta \in \mathcal{S}, \tag{6.16}$$

где $\hat{X}(t,\theta) := S[X(t)](\theta), \ \hat{\mathbb{W}}(t,\theta) := S[\mathbb{W}(t)](\theta), \ \hat{\Phi}(\theta) := S\Phi(\theta)$ и $\hat{\zeta}(\theta) := S\zeta(\theta)$.

Будем предполагать впоследствии, что оператор B в уравнении удовлетворяет следующему условию:

Предположение 6.1. Для любого $y \in \mathbb{H}$

- (B1) $B(\text{dom}A)y \subseteq \text{dom}A$;
- (B2) Ограничен оператор $C(\cdot)y: \mathrm{dom}A \to \mathcal{L}(H)$, определенный равенством

$$C(x)y := AB(x)y - B(Ax)y, \quad x \in \text{dom}A;$$

(B3) $\ker B(\cdot)y = \{0\}$ для всех $y \in \mathbb{H}, y \neq 0$.

Заметим, что из принципа равномерной ограниченности следует, что если оператор B удовлетворяет предположению 6.1, то существует $M_{AB}>0$ такое, что выполняется следующая оценка:

$$||C(x)y|| \le M_{AB}||x|| \, ||y||, \quad x \in \text{dom}A, \ y \in \mathbb{H}.$$
 (6.17)

Пусть A является генератором полугруппы $\{U(t),\,t\geqslant 0\}$ класса C_0 . Пусть M>0 и $a\in\mathbb{R}$ таковы, что выполнено

$$||U(t)|| \leqslant Me^{at}, \quad t \geqslant 0. \tag{6.18}$$

Используем метод последовательных приближений для доказательства существования решения задачи (6.16).

Определим последовательность линейных операторов $\{T_k(t,\theta)\}, t \geqslant 0, \theta \in \mathcal{S},$ положив

$$T_0(t,\theta) = U(t),$$

$$T_k(t,\theta)x = \int_0^t U(t-s)B(T_{k-1}(s,\theta)x)\hat{\mathbb{W}}(s,\theta) ds, \quad x \in H, \ k = 1, 2, \dots$$

Для получения главного результата нам понадобится несколько лемм.

Лемма 6.1. Для любых $t\geqslant 0,\ \theta\in\mathcal{S}$ и $k\in\mathbb{N}\cup\{0\}$ выполняется следующая оценка:

$$||T_k(t,\theta)||_{\mathcal{L}(H)} \leqslant M^{k+1} ||B||^k e^{at} |\theta|_0^k \sqrt{\frac{t^k}{k!}},\tag{6.19}$$

где M>0 и $a\in\mathbb{R}$ — константы из оценки (6.18), $\|B\|=\|B\|_{\mathcal{L}(H,\mathcal{L}(\mathbb{H};H))}.$

Доказательство. Предположим, что (6.19) выполняется для некоторого $k \in \mathbb{N}$. Тогда для любого $x \in H$ имеем:

$$||T_{k+1}(t,\theta)x|| = \left\| \int_{0}^{t} U(t-s)B(T_{k}(s,\theta)x)\hat{\mathbb{W}}(s,\theta) \, ds \right\| \leq$$

$$\leq \int_{0}^{t} ||U(t-s)B(T_{k}(s,\theta)x)\hat{\mathbb{W}}(s,\theta)|| \, ds \leq$$

$$\leq M||B|| \int_{0}^{t} e^{a(t-s)}||T_{k}(s,\theta)x||||\hat{\mathbb{W}}(s,\theta)|| \, ds \leq$$

$$\leq M^{k+2}||B||^{k+1}e^{at}|\theta|_{0}^{k} \int_{0}^{t} \sqrt{\frac{s^{k}}{k!}} \, ||\hat{\mathbb{W}}(s,\theta)|| \, ds \, ||x|| \leq$$

$$\leq M^{k+2}||B||^{k+1}e^{at}|\theta|_{0}^{k} \left(\int_{0}^{t} \frac{s^{k}}{k!} \, ds \right)^{1/2} \left(\int_{0}^{t} ||\hat{\mathbb{W}}(s,\theta)||^{2} \, ds \right)^{1/2} \, ||x|| \leq$$

$$\leq M^{k+2}||B||^{k+1}e^{at}|\theta|_{0}^{k} \sqrt{\frac{t^{k+1}}{(k+1)!}} \, ||\hat{\mathbb{W}}(s,\theta)||_{L^{2}(\mathbb{R};H)} \, ||x|| \leq$$

$$\leq M^{k+2}||B||^{k+1}e^{at}|\theta|_{0}^{k+1} \sqrt{\frac{t^{k+1}}{(k+1)!}} \, ||x||.$$

Поскольку оценка (6.19) верна при k=0, отсюда следует по индукции, что она верна для всех $k\in\mathbb{N}$

Лемма 6.2. Для любых $t \geqslant 0, \ \theta \in \mathcal{S}, \ k \in \mathbb{N} \cup \{0\}, \ \zeta \in (\text{dom}A)$ выполнена оценка

$$||AT_k(t,\theta)\hat{\zeta}(\theta)|| \leqslant M^{k+1}||B||^{k-1}|\theta|_0^k e^{at} \sqrt{\frac{t^k}{k!}} \left(||B|| ||A\hat{\zeta}(\theta)|| + kM_{AB}||\hat{\zeta}(\theta)|| \right), \tag{6.20}$$

еде M>0 и $a\in\mathbb{R}$ — константы из оценки (6.18), $\|B\|=\|B\|_{\mathcal{L}(H,\mathcal{L}(\mathbb{H};H))},\ M_{AB}$ — константа из оценки (6.17).

Доказательство. При k=0, используя свойства полугрупп класса C_0 , получим:

$$||AT_0(t,\theta)\hat{\zeta}(\theta)|| = ||AU(t)\hat{\zeta}(\theta)|| = ||U(t)A\hat{\zeta}(\theta)|| \leqslant Me^{at}||\hat{\zeta}(\theta)||.$$
(6.21)

Далее, имеем:

$$AT_{k}(t,\theta)\hat{\zeta}(\theta) = \int_{0}^{t} AU(t-s)B(T_{k-1}(s,\theta)\hat{\zeta}(\theta))\hat{\mathbb{W}}(s,\theta) ds =$$

$$= \int_{0}^{t} U(t-s)AB(T_{k-1}(s,\theta)\hat{\zeta}(\theta))\hat{\mathbb{W}}(s,\theta) ds =$$

$$= \int_{0}^{t} U(t-s)\left[B(AT_{k-1}(s,\theta)\hat{\zeta}(\theta))\hat{\mathbb{W}}(s,\theta) + C(T_{k-1}(s,\theta)\hat{\zeta}(\theta))\hat{\mathbb{W}}(s,\theta)\right] ds.$$

Если (6.20) верно для некоторого $k \in \mathbb{N}$, в силу полученного выше представления и оценки (6.19), получаем:

$$\begin{split} \left\|AT_{k+1}(t,\theta)\hat{\zeta}(\theta)\right\| &\leqslant \\ &\leqslant \int_{0}^{t} Me^{a(t-s)} \left[M^{k+1} \|B\|^{k} |\theta|_{L_{2}(\mathbb{R})}^{k} e^{as} \sqrt{\frac{s^{k}}{k!}} \Big(\|B\| \|A\hat{\zeta}(\theta)\| + kM_{AB} \|\hat{\zeta}(\theta)\| \Big) \|\hat{\mathbb{W}}(s,\theta)\| + \\ &\quad + M_{AB} M^{k+1} \|B\|^{k} e^{as} |\theta|_{L_{2}(\mathbb{R})}^{k} \sqrt{\frac{s^{k}}{k!}} \|\hat{\zeta}(\theta)\| \|\hat{\mathbb{W}}(s,\theta)\| \Big] \, ds = \\ &= M^{k+2} \|B\|^{k} |\theta|_{L_{2}(\mathbb{R})}^{k} e^{at} \Big(\|B\| \|A\hat{\zeta}(\theta)\| + (k+1)M_{AB} \|\hat{\zeta}(\theta)\| \Big) \int_{0}^{t} \sqrt{\frac{s^{k}}{k!}} \|\hat{\mathbb{W}}(s,\theta)\| \, ds \leqslant \\ &\leqslant M^{k+2} \|B\|^{k} |\theta|_{L_{2}(\mathbb{R})}^{k} e^{at} \Big(\|B\| \|A\hat{\zeta}(\theta)\| + (k+1)M_{AB} \|\hat{\zeta}(\theta)\| \Big) \times \\ &\quad \times \Big(\int_{0}^{t} \frac{s^{k}}{k!} \, ds \Big)^{1/2} \Big(\int_{0}^{t} \|\hat{\mathbb{W}}(s,\theta)\|^{2} \, ds \Big)^{1/2} \leqslant \\ &\leqslant M^{k+2} \|B\|^{k} |\theta|_{0}^{k+1} e^{at} \sqrt{\frac{t^{k+1}}{(k+1)!}} \Big(\|B\| \|A\hat{\zeta}(\theta)\| + (k+1)M_{AB} \|\hat{\zeta}(\theta)\| \Big). \end{split}$$

Отсюда и из (6.21), по индукции, следует утверждение леммы.

Рассмотрим ряд

$$T(t,\theta) = \sum_{k=0}^{\infty} T_k(t,\theta). \tag{6.22}$$

Из леммы 6.1 следует, что для любых $n,m\in\mathbb{N}$ верна следующая оценка:

$$\sum_{k=n}^{n+m} ||T_k(t,\theta)|| \leq Me^{at} \sum_{k=n}^{n+m} \frac{\left(M\sqrt{2}||B|||\theta|_0\sqrt{t}\right)^k}{\sqrt{k!}} \frac{1}{\sqrt{2^k}} \leq
\leq Me^{at} \left(\sum_{k=n}^{n+m} \frac{\left(2M^2||B||^2|\theta|_0^2t\right)^k}{k!}\right)^{1/2} \left(\sum_{k=n}^{n+m} \frac{1}{2^k}\right)^{1/2}.$$
(6.23)

Отсюда следует, что ряд (6.22) абсолютно сходится в $\mathcal{L}(H)$ для любых $t\geqslant 0,\; \theta\in\mathcal{S}.$ Таким образом, $T(t,h)\in\mathcal{L}(H).$

Предложение 6.2. Для любых $\zeta \in (\text{dom}A), \ \theta \in \mathcal{S}$ функция $\hat{X}(t,\theta) := T(t,\theta)\hat{\zeta}(\theta)$ является единственным решением задачи (6.16).

Доказательство. Из предложения 6.1 и свойств полугрупп класса C_0 следует, что $T_0(t,\theta)\hat{\zeta}(\theta)\in \mathrm{dom}A$ для любых $\zeta\in(\mathrm{dom}A),\ t\geqslant 0$ и $\theta\in\mathcal{S}$. Условие (B1) влечет за собой $B\big(\mathrm{dom}A\big)\hat{W}(t,\theta)\subseteq \mathrm{dom}A$ для всех $t\geqslant 0$ и $\theta\in\mathcal{S}$. По индукции отсюда следует, что $T_k(t,\theta)\hat{\zeta}(\theta)\in \mathrm{dom}A$ для всех $\zeta\in(\mathrm{dom}A),k\in\mathbb{N},\ t\geqslant 0$ и $\theta\in\mathcal{S}$. Из (B1) также следует, что $B\big(T_k(s,\theta)\hat{\zeta}(\theta)\big)\hat{\mathbb{W}}(t,\theta)\in \mathrm{dom}A$. Кроме того, имеем

$$\frac{d}{dt}U(t-s)B\big(T_k(s,\theta)\hat{\zeta}(\theta)\big)\hat{\mathbb{W}}(t,\theta) = AU(t-s)B\big(T_k(s,\theta)\hat{\zeta}(\theta)\big)\hat{\mathbb{W}}(t,\theta), \quad t \geqslant 0, \theta \in \mathcal{S}.$$

Таким образом, для любого $\zeta \in (\mathrm{dom} A)$ получаем

$$\frac{d}{dt}T_0(t,\theta)\hat{\zeta}(\theta) = AT_0(t,\theta)\hat{\zeta}(\theta), \tag{6.24}$$

$$\frac{d}{dt}T_k(t,\theta)\hat{\zeta}(\theta) = \int_0^t AU(t-s)B(T_{k-1}(s,\theta)\hat{\zeta}(\theta))\hat{\mathbb{W}}(s,\theta)\,ds + B(T_{k-1}(t,\theta)\hat{\zeta}(\theta))\hat{\mathbb{W}}(t,\theta). \tag{6.25}$$

Поскольку A замкнут, можем переписать равенство (6.25) в виде

$$\frac{d}{dt}T_k(t,\theta)\hat{\zeta}(\theta) = AT_k(t,\theta)\hat{\zeta}(\theta) + B(T_{k-1}(t,\theta)\hat{\zeta}(\theta))\hat{\mathbb{W}}(t,\theta). \tag{6.26}$$

В силу леммы 6.2 получаем следующую оценку:

$$\begin{split} \sum_{k=n+1}^{m} \|AT_{k}(t,\theta)\hat{\zeta}(\theta)\| &\leqslant \\ &\leqslant Me^{at} \left(\sum_{k=n+1}^{m} \frac{(\sqrt{2}M\|B\||\theta|_{0}\sqrt{t})^{k}}{\sqrt{k!}} \frac{1}{\sqrt{2^{k}}} \right) \|A\hat{\zeta}(\theta)\| + \\ &+ \frac{M}{\|B\|} e^{at} \left(\sum_{k=n+1}^{m} \frac{(\sqrt{2}M\|B\||\theta|_{0}\sqrt{t})^{k}}{\sqrt{k!}} \frac{k}{\sqrt{2^{k}}} \right) M_{AB} \|\hat{\zeta}(\theta)\| &\leqslant \\ &\leqslant Me^{at} \left(\sum_{k=n+1}^{m} \frac{(2M^{2}\|B\|^{2}|\theta|_{0}^{2}t)^{k}}{k!} \right)^{1/2} \left(\sum_{k=n+1}^{m} \frac{1}{2^{k}} \right)^{1/2} \|A\hat{\zeta}(\theta)\| + \\ &+ \frac{M}{\|B\|} e^{at} \left(\sum_{k=n+1}^{m} \frac{(2M^{2}\|B\|^{2}|\theta|_{0}^{2}t)^{k}}{k!} \right)^{1/2} \left(\sum_{k=n+1}^{m} \frac{k^{2}}{2^{k}} \right)^{1/2} M_{AB} \|\hat{\zeta}(\theta)\|. \end{split}$$

Из этой оценки следует, что ряд $\sum_{k=0}^{\infty} AT_k(t,\theta)\hat{\zeta}(\theta)$ сходится в пространстве H для всех $\theta \in \mathcal{S}$, $\zeta \in (\mathrm{dom}A)$. Суммируя равенства (6.24) и (6.26) по $k \in \mathbb{N}$, получим в правой части ряд, сходящийся в H при всех $t \geqslant 0, \ \theta \in \mathcal{S}$. Таким образом, доказано, что $\hat{X}(t,\theta) = T(t,\theta)\hat{\zeta}(\theta)$ является решением задачи (6.16).

Чтобы доказать единственность, заметим, что если $\hat{X}(\cdot,\theta)$ — решение задачи (6.16) для некоторого $\theta \in \mathcal{S}$, то это решение уравнения

$$\hat{X}(t,\theta) = U(t)\hat{\zeta}(\theta) + \int_{0}^{t} U(t-s)B(\hat{X}(s,\theta))\hat{\mathbb{W}}(s,\theta) ds. \quad t \geqslant 0.$$

(Обратное, вообще говоря, неверно.) Поэтому достаточно доказать, что уравнение

$$\int_{0}^{t} U(t-s)B(\hat{X}(s,\theta))\hat{\mathbb{W}}(s,\theta) ds = 0, \quad t \geqslant 0,$$
(6.27)

имеет только тривиальное решение $X(\cdot,h)\equiv 0$ на $[0,\infty)$ для любого $\theta\in\mathcal{S}$.

Применяя преобразование Лапласа к обеим частям (6.27), получим при $\text{Re }\lambda > a$:

$$\int_{0}^{\infty} dt \, e^{\lambda t} \int_{0}^{t} U(t-s)B(\hat{X}(s,\theta))\hat{\mathbb{W}}(s,\theta) \, ds = \int_{0}^{\infty} ds \int_{s}^{\infty} e^{\lambda t} U(t-s)B(\hat{X}(s,\theta))\hat{\mathbb{W}}(s,\theta) \, dt =$$

$$= \int_{0}^{\infty} ds \int_{0}^{\infty} e^{\lambda(t+s)} U(t)B(\hat{X}(s,\theta))\hat{\mathbb{W}}(s,\theta) \, dt = (\lambda - A)^{-1} \int_{0}^{\infty} e^{\lambda s} B(\hat{X}(s,\theta))\hat{\mathbb{W}}(s,\theta) \, ds.$$

Из свойств резольвенты A и преобразования Лапласа следует, что если $\hat{X}(\cdot,\theta)$ — решение уравнения (6.27) при любом $\theta \in \mathcal{S}$, то $B(\hat{X}(\cdot,\theta))\hat{\mathbb{W}}(\cdot,\theta) \equiv 0$ на $[0;\infty)$ для любого $\theta \in \mathcal{S}$. Полагая $\theta = \xi_{n(i,j)}, i,j \in \mathbb{N}$, получим $B(\hat{X}(\cdot,\theta))\hat{\mathbb{W}}(\cdot,\theta) = B(\xi_i(\cdot)\hat{X}(\cdot,\xi_{n(i,j)}))e_j \equiv 0$ на $[0;\infty)$. Следовательно, $\hat{X}(\cdot,\theta) \equiv 0$ на $[0;\infty)$ для всех $\theta \in \mathcal{S}$.

Теорема 6.2. Пусть A — линейный, плотно определенный в H генератор полугруппы класса $C_0, B(\cdot): H \to \mathcal{L}(\mathbb{H}; H)$ удовлетворяет предположению 6.1. Тогда задача Коши (6.15) имеет единственное решение в пространстве $(\mathcal{S})_{-0}(H)$ для любого $\zeta \in (\mathrm{dom} A) \subseteq (\mathcal{S})_{-0}(H)$.

Доказательство. Из предложения 6.2 следует, что в условиях теоремы задача (6.16) имеет единственное решение $\hat{X}(t,\theta) = T(t,\theta)\hat{\zeta}(\theta)$ для любых $\zeta \in (\mathrm{dom}A), \ \theta \in \mathcal{S}$. При этом из (6.23) следует оценка:

$$||T(t,\theta)|| \leq \sum_{k=0}^{\infty} ||T_k(t,\theta)|| \leq Me^{at} \sum_{k=0}^{\infty} \frac{\left(M\sqrt{2}||B|||\theta|_0\sqrt{t}\right)^k}{\sqrt{k!}} \frac{1}{\sqrt{2^k}} \leq$$

$$\leq Me^{at} \left(\sum_{k=0}^{\infty} \frac{\left(2M^2||B||^2|\theta|_0^2t\right)^k}{k!}\right)^{1/2} \left(\sum_{k=0}^{\infty} \frac{1}{2^k}\right)^{1/2} = M\sqrt{2} e^{at} \exp\left(M^2||B||^2|\theta|_0^2t\right).$$

В силу (3.5) имеем:

$$\|\hat{\zeta}(\theta)\| \le \|\zeta\|_{-p,-0} \exp\left(|h|_p^2\right), \quad \theta \in \mathcal{S},$$

для некоторого $p \in \mathbb{N}$. Следовательно, для всех $t \geqslant 0$ имеем следующую оценку:

$$\|\hat{X}(t,\theta)\| \leq M\sqrt{2} e^{at} \exp\left(M^2 \|B\|^2 |\theta|_0^2 t + |\theta|_p^2\right) \|\zeta\|_{-p,-0} \leq$$

$$\leq M\sqrt{2} e^{at} \exp\left(\left(M^2 \|B\|^2 t + 1\right) |\theta|_p^2\right) \|\zeta\|_{-p,-0}, \quad \theta \in \mathcal{S}.$$
(6.28)

Отсюда следует, что для любого $t\geqslant 0$ $\hat{X}(t,\theta)$ является S-преобразованием единственной обобщенной случайной величины $X(t)\in (\mathcal{S})_{-0}(H)$, которая является единственным решением задачи (6.16).

6.4. Пример из популяционной динамики. Рассмотрим пример введения стохастического возмущения в уравнение в частных производных. Рассмотрим упрощенный пример уравнения, возникающего в популяционной динамике.

Начнем с детерминированного уравнения

$$\frac{\partial u(t,s)}{\partial t} = -\frac{\partial u(t,s)}{\partial s} - m(s)u(t,s), \quad t \geqslant 0, \quad 0 \leqslant s \leqslant 1.$$
 (6.29)

Это уравнение Мак Кендрика—фон Ферстера популяции, структурированной по возрасту. Здесь t — время, s обозначает возраст, u(t,s) — функция плотности, так что u(t,s)ds представляет собой количество особей в популяции, возраст которых лежит в интервале [s;s+ds] в момент t. Структура популяции меняется в результате процессов старения и смерти. Старение моделируется первым слагаемым в правой части, так как оператор $-\frac{\partial}{\partial s}$ является генератором полугруппы правого сдвига. Множитель m(s) представляет собой долю особей возраста s, которые погибают. Предположим, что $m \in L_{\infty}[0;1]$. Для простоты рассмотрим граничное условие

$$u(t,0) = 0, \quad t > 0.$$
 (6.30)

Начальная структура популяции описывается условием

$$u(0,s) = \varphi(s), \quad 0 \leqslant s \leqslant 1. \tag{6.31}$$

Задача (6.29)-(6.31) может быть записана как задача Коши

$$u'(t) = Au(t), \ t \geqslant 0, \quad u(0) = \varphi$$
 (6.32)

в гильбертовом пространстве $H=L^2[0,1]$, где A — оператор, определенный равенством

$$[A\varphi](s) = -\frac{d}{ds}\varphi(s) - m(s)\varphi(s) \tag{6.33}$$

с областью определения

$$dom(A) = \{ \varphi \in H, \ \varphi' \in H, \varphi(0) = 0, \ t > 0 \}.$$

Используя методы теории возмущения полугрупп, можно показать, что A является генератором полугруппы класса C_0 в H (см., например, [3, параграф 3.5]).

Предположим теперь, что процесс гибели особей подвержен случайным флуктуациям вследствие влияния внешней среды. Естественно полагать, что функция m представляет среднее значение доли погибающих особей. Таким образом, мы должны заменить эту функцию в уравнении на $m+\mu(t)$, где $\mu(t)$ — «шум». Здесь возникает проблема, связанная с тем, что в данной ситуации невозможно использовать определенные выше гауссовские белые шумы (Q-белый шум и цилиндрический белый шум) непосредственно, так как для любого t величина $\mu(t)$ должна быть функцией переменной s такой, что умножение на нее является ограниченным оператором в $H=L^2[0,1]$. Чтобы преодолеть эту проблему, положим $\mathbb{H}=L^2[0,1]$ и рассмотрим следующий оператор:

$$[B(u)v](s) := \varepsilon(s)u(s) \int_{0}^{1} \psi(s-\tau)v(\tau) d\tau, \quad u \in H, \quad v \in \mathbb{H},$$

где $\psi \in C_0^\infty(\mathbb{R})$ и $\varepsilon \in L_\infty[0;1]$ — фиксированные функции. Взяв подходящую функцию в качестве множителя ψ в свертке (это может быть, например, подходящий элемент последовательности, сходящейся в некотором смысле к δ -функции Дирака), мы можем сделать B как оператор, действующий на u, оператором умножения на «гладкую аппроксимацию v».

Для любых $u \in H$ и $v \in \mathbb{H}$ имеем:

$$||B(u)v||_H \leqslant \sup_{t \in \mathbb{R}} |\psi(t)||u||_H ||v||_{\mathbb{H}}.$$

Таким образом, $B(\cdot) \in \mathcal{L}(H; \mathcal{L}(\mathbb{H}; H))$.

Рассмотрим стохастическое возмущение задачи Коши (6.32) вида (6.15) с определенным выше оператором B. Поскольку значения $\mathbb{W}(t)$ при каждом t представлены рядом

$$\mathbb{W}(t) := \sum_{i,j \in \mathbb{N}} \xi_i(t) e_j(s) \mathbf{h}_{\varepsilon_{n(i,j)}}(\omega),$$

расходящимся в \mathbb{H} для любого $\omega \in \mathcal{S}'$, где $\{e_j\}$ — фиксированный ортонормированный базис в $\mathbb{H}\big(=L^2[0;1]\big)$, можно неформально представлять себе эти значения нерегулярными функциями переменной s. Когда в уравнении в качестве аргумента v оператора B мы подставляем « $\mathbb{W}(t)$ », мы получаем своего рода гладкую аппроксимацию такой функции. Таким образом, оператор $B(\cdot) \otimes \mathbb{W}(t)$ в уравнении можно считать оператором определенного рода умножения на сглаженные значения белого шума, что представляется вполне естественным способом введения стохастического возмущения в оператор умножения на m(s).

Для любых $v \in \mathbb{H}$, $u \in \text{dom}(A)$ имеем:

$$[C(u)v](s) := [AB(u)v - B(Au)v](s) = -u(s) \int_{0}^{1} \psi'(s-\tau)v(tau) d\tau.$$

Таким образом, $C(\cdot)v$ — ограниченный оператор в H и условие (B2) предположения 6.1 выполнено. Условия (B1) и (B3), очевидно, также выполнены, и в результате задача Коши (6.32) удовлетворяет условиям теоремы 6.1 и, следовательно, имеет единственное решение в пространстве (\mathcal{S}) $_{-0}(H)$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Biagini F., Øksendal B. A general stochastic integral approach to insider trading// Appl. Math. Optim. 2005. 52, $\mathbb{N}_24. \mathbb{C}$. 167-181.
- 2. Buckdahn R. Anticipating linear stochastic differential equations. Springer, 1989. C. 18-23.
- 3. Clément Ph., Heijmans H.J.A.M., Angenent S., van Duijn C.J., de Pagter B. One-parameter semigroups. Amsterdam etc.: North-Holland, 1987.
- 4. *Da Prato G.* Stochastic evolution equations by semigroup methods. Barcelona: Center de Recerca Matematica, 1997.
- 5. *Da Prato G., Zabczyk J.* Stochastic equations in infinite dimensions. Cambridge: Cambridge Univ. Press., 1992.
- 6. Deck Th., Potthoff J., Våge G. A rewiev of white noise analysis from a probabilistic standpoint// Acta Appl. Math. -1997.-48, Noldon 1.-C. 91-112.
- 7. *DiNunno G., Øksendal B., Proske F.* Malliavin calculus for Lévy processes with applications to finance. Berlin—Heidelberg: Springer, 2009.
- 8. *Esunge J.* A class of anticipating linear stochastic differential equations// Commun. Stoch. Anal. 2009. 3, № 1. C. 155–164.
- 9. Fattorini H. O. The Cauchy problem. Addison-Wesley: Reading. Mass. etc., 1993.
- 10. Filinkov A., Sorensen J. Differential equations in spaces of abstract stochastic distributions// Stoch. Stoch. Rep. -2002. -72, No 3-4. -C. 129-173.
- 11. Filipović D. Term-structure models. A graduate course. Berlin: Springer, 2009.
- 12. *Gawarecki L., Mandrekar V.* Stochastic differential equations in infinite dimensions with applications to stochastic partial differential equations. Berlin—Heidelberg: Springer-Verlag, 2011.
- 13. Hida T. Analysis of Brownian functionals. Ottawa: Carleton Univ., 1975.
- 14. Hille E., Phillips R. S. Functional analysis and semigroups. Providence: AMS, 1957.
- 15. *Holden H., Øksendal B., Ubøe J., Zhang T.* Stochastic partial differential equations. A modelling, white noise functional approach. Basel: Birkhauser, 1996.
- 16. Hu Y., Øksendal B. Optimal smooth portfolio selection for an insider// J. Appl. Probab. -2007.-44, No.3.-C.742-752.
- 17. *Huang Z., Yan J.* Introduction to infinite dimensional stochastic analysis. Dordrecht: Kluver Academic Publishers, 2000.
- 18. *Ichikawa A*. Stability of semilinear stochastic evolution equations// J. Math. Anal. App. -1982. -90. -C. 12-44.
- 19. *Ichikawa A*. Semilinear stochastic evolution equations: boundedness, stability and invariant measures// Stochastics. -1984. -12. C. 1-39.
- 20. Kondratiev Yu. G., Streit L. Spaces of white noise distribution: constructions, descriptions, applications. I// Rep. Math. Phys. -1993. -33. -C. 341-366.
- 21. Kuo H.-H. White noise distribution theory. Boca Raton: CRC Press, 1996.
- 22. Kubo I., Takenaka S. Calculus on Gaussian white noise. I// Proc. Japan Acad. Ser. A Math. Sci. -1980.-56A.-C.376-380.
- 23. *Kubo I., Takenaka S.* Calculus on Gaussian white noise. II// Proc. Japan Acad. Ser. A Math. Sci. 1980. 56A. C. 411–416.

- 24. *Kubo I., Takenaka S.* Calculus on Gaussian white noise. III// Proc. Japan Acad. Ser. A Math. Sci. 1981. 57A. C. 433–437.
- 25. *Kubo I., Takenaka S.* Calculus on Gaussian white noise. IV// Proc. Japan Acad. Ser. A Math. Sci. 1982. 58A. C. 186–189.
- 26. *Lèon J. A., Protter P.* Some formulas for anticipative Girsanov transformations// B có.: «Chaos expansions, multiple Wiener—Itô integrals and their applications». Boca Raton: CRC Press, 1994. C. 267–291.
- 27. *Melnikova I. V., Alshanskiy M. A.* The generalized well-posedness of the Cauchy problem for an abstract stochastic equation with multiplicative noise// Proc. Steklov Inst. Math. -2013.-280, (Suppl. 1). C. 134-150.
- 28. Musiela M., Rutkowski M. Martingale methods in financial modelling. Berlin: Springer, 2005.
- 29. *Nualart D., Pardoux E.* Stochastic calculus with anticipating integrands// Probab. Theory Related Fields. 1988. 78. C. 535–581.
- 30. *Obata N.* White noise calculus and Fock space. Berlin: Springer, 1994.
- 31. Øksendal B. A universal optimal consumption rate for an insider// Math. Finance. -2006. -16, No. 1.6 C. 119--129.
- 32. *Pazy A*. Semigroups of linear operators and applications to partial differential equations. New York: Springer, 1983.
- 33. Shreve S. E. Stochastic calculus for finance. II. Continuous-time models. New York: Springer, 2004.
- 34. *Stroock D. W., Varadhan S. R. S.* Multidimensional diffusion processes. Berlin—Heidelberg—New York: Springer, 1979.
- 35. Wiener N. Differential space// J. Math. Phys. (M.I.T.). -1923. -2. -C. 131–174.

И.В. Мельникова

Уральский федеральный университет

Институт математики и компьютерных наук

Кафедра математического анализа и теории функций

E-mail: Irina.Melnikova@usu.ru

М. А. Альшанский

Уральский федеральный университет

Институт радиоэлектроники и информационных технологий

Кафедра вычислительных методов и уравнений математической физики

E-mail: mxalsh@gmail.com