УДК 517.9

О СКОРОСТИ СХОДИМОСТИ НЕПРЕРЫВНОГО МЕТОДА НЬЮТОНА

© 2016 г. А. ГИБАЛИ, Д. ШОЙХЕТ, Н. ТАРХАНОВ

Аннотация. На основе недавних достижений геометрической теории спиральных функций изучается сходимость непрерывного метода Ньютона для решения нелинейных уравнений с голоморфными отображениями в банаховых пространствах. Доказываются теоремы о сходимости, результаты иллюстрируются численным моделированием.

СОДЕРЖАНИЕ

	Введение	152
1.	Спиральные отображения	153
2.	Общие результаты для банаховых пространств	154
3.	Условие типа Неванлинны	155
4.	Каноническая редукция	156
5.	Локальный непрерывный метод Ньютона	158
6.	Пример	160
7.	Условие выпуклости	160
8.	Рисунки	162
	Список литературы	163

Введение

Рассмотрим классическую задачу нахождения приближенного решения нелинейного уравнения

f(z) = 0

в области D комплексной плоскости \mathbb{C} , где $f: D \to \mathbb{C} - функция,$ голоморфная в D. Чтобы решить ее, используют различные модификации рекуррентной формулы

$$z_{n+1} = z_n - \lambda_n \frac{f(z_n)}{f'(z_n)} \tag{0.1}$$

для n = 0, 1, ..., где z_0 — начальное приближение в D, а $\lambda_n > 0$. Формула (0.1), в которой последовательность $\{\lambda_n\}$ подобрана правильным образом, называется модифицированным методом Ньютона, а при $\lambda_n \equiv 1 - \kappa_n accuческим$ методом Ньютона (см. [7]).

Будем рассматривать классический метод Ньютона. Сходимость (0.1) широко исследована; она зависит от выбора начальной точки $z_0 \in D$.

Рекуррентная формула (0.1) приводит к начальной задаче

$$\begin{cases} \dot{z} = -\frac{f(z)}{f'(z)} & \text{при} \quad t > 0, \\ z(0) = z_0 \end{cases}$$
(0.2)

для кривой z = z(t) в D, начинающейся в точке z_0 . При f(z) = 0 ее решение a принадлежит D. Если $\lambda \neq 0$, то, чтобы f(a) обратилось в нуль, необходимо и достаточно, чтобы

$$-\lambda \, \frac{f(a)}{f'(a)} = 0,$$

Второй автор благодарит Германское исследовательское сообщество (DFG) за поддержку (грант TA 289/12-1), а Потсдамский университет — за приглашение и гостеприимство.

что равносильно условию

$$a - \lambda \, \frac{f(a)}{f'(a)} = a$$

Стандартные последовательные приближения для решения этого уравнения имеют вид

$$z_{n+1} = z_n - \lambda \, \frac{f(z_n)}{f'(z_n)}$$

для n = 0, 1, ... Положим $z_n = z(n)$ и перейдем к непрерывному неотрицательному параметру t; получим, что

$$\frac{z(t+\Delta t)-z(t)}{\Delta t}=-\frac{f(z(t))}{f'(z(t))},$$

где $\Delta t = \lambda$. Переходя к пределу при $\Delta t \to 0$, получаем, что (0.2) выполняется, что и требовалось.

Метод Ньютона в его непрерывной формулировке (0.2), по-видимому, впервые введен в [1]. Впоследствии этот метод и различные его модификации изучался в основном в рамках вещественного анализа (см., например, [7, 13]). В [4, 5] развивается непрерывный метод Ньютона в гильбертовых пространствах. В [9] изучается скорость сходимости непрерывного метода Ньютона для голоморфных функций в единичном круге комплексной плоскости. В [11] непрерывный метод Ньютона и его грубая версия сравниваются с известными результатами для задачи о потоке энергии. В [12, гл. 22] представлены интересные и актуальные задачи о непрерывном методе Ньютона и полугруппах в банаховых пространствах.

Отметим, что векторное поле в правой части (0.2) есть не что иное, как логарифмическая производная от f (взятая с обратным знаком). Легко проверить, что первый интеграл от (0.2) при $t \ge 0$ есть

$$f(z(t)) = f(z_0)e^{-t}.$$

Отсюда следует, что $f(z(t)) \to 0$ при $t \to \infty$. Отметим, что f(z(t)) описывает невязку приближенного решения z(t) при условии, что z(t) сходится к $a \in D$ при $t \to \infty$.

Суммируя сказанное выше, заключаем, что изучение непрерывной версии метода Ньютона состоит из двух основных шагов. На первом шаге определяется, для каких начальных данных $z_0 \in D$ начальная задача (0.2) имеет решение z(t), определенное для всех неотрицательных t. Из общих соображений следует, что решение единственно всегда, когда оно существует. Второй шаг заключается в том, чтобы изучить асимптотическое поведение глобального решения z(t) при $t \to \infty$. Именно в этом и состоит цель настоящей работы.

1. Спиральные отображения

В этой статье под D подразумевается область в комплексном банаховом пространстве X, снабженном нормой $\|\cdot\|$. Через $\operatorname{Hol}(D, X)$ обозначим пространство всех голоморфных (т. е. дифференцируемых в смысле Фреше) в D отображений со значениями в X. Если $f \in \operatorname{Hol}(D, X)$ то f'(x)обозначает производную Фреше функции f в точке $x \in X$. По определению, это — ограниченный линейный оператор в X.

Как обычно, X^* — пространство, двойственное к X. По теореме Хана—Банаха, для каждого $x \in X$ существует функционал $l_x \in X^*$, обладающий следующим свойством: $l_x(x) = ||l_x|| ||x||$. Нормируя l_x , получаем функционал, норма которого равна ||x||. Используем обозначение x^* для любого функционала $l \in X^*$, удовлетворяющего условию $\operatorname{Re} l(x) = ||x||^2 = ||l||^2$, и обозначение *x для множества всех функционалов l, обладающих этим свойством (ср. звездный оператор Ходжа). Вообще говоря, такой функционал x^* не единствен. Однако, если X — гильбертово пространство, то, в силу теоремы Рисса о представлении, элемент x^* единствен и его можно отождествить с x.

Отображение $f \in \operatorname{Hol}(D, X)$ называется локально биголоморфным, если для любого $x \in D$ существует такая окрестность $U \subset D$ точки x и такая окрестность V точки f(x), что $f|_U$ есть биективное отображение U на V и обратное к нему отображение голоморфно. Хорошо известно, что $f \in \operatorname{Hol}(D, X)$ локально биголоморфно на D тогда и только тогда, когда для любого $x \in D$ производная Фреше f'(x) есть биективное отображение X. По теореме Банаха об обратном отображении, биективность отображения f'(x) влечет за собой ограниченность обратного к нему отображения. Для конечномерного пространства X отображение $f \in \operatorname{Hol}(D, X)$ локально

биголоморфно тогда и только тогда, когда оно является локально взаимно однозначным. Однако для общего случая (когда пространство X бесконечномерно) это утверждение неверно (см., например, [6]).

Оператор A, линейный и ограниченный в пространстве X, называется сильно аккретивным, если существует такая положительная постоянная k, что $\operatorname{Re}\langle Ax, x^* \rangle \ge k ||x||^2$ для всех $x \in X$ и всех $x^* \in *x$. Следующее утверждение характеризует те линейные ограниченные операторы в X, спектры которых расположены в открытой правой полуплоскости { $\operatorname{Re} \lambda > 0$ }.

Лемма 1.1. Пусть $A: X \to X$ — линейный ограниченный оператор. Тогда следующие утверждения равносильны друг другу:

- 1. спектр оператора A лежит в открытой правой полуплоскости $\{ \text{Re } \lambda > 0 \};$
- 2. линейная полугруппа $\exp(-tA)$ сходится к 0 в операторной норме при $t \to \infty$;
- 3. в X существует такая эквивалентная норма, что A сильно аккретивен относительно соответствующей полуторалинейной формы.

Доказательство. Равносильность утверждений 1 и 2 вытекает из теоремы о спектральном отображении. Однако, требуются некоторые дополнительные подробности.

Обозначим через $\chi(A)$ нижний экспоненциальный индекс оператора A, т. е.

$$0 < \chi(A) := \inf_{\lambda \in \operatorname{sp} A} \operatorname{Re} \lambda = \lim_{t \to \infty} \frac{\ln \| \exp(-tA) \|}{-t}, \tag{1.1}$$

где sp A обозначает спектр оператора A (см. [3]). Тогда для любого $\lambda \in (0, \chi(A))$ существует такое положительное C, что

$$\|\exp(-tA)\| \leqslant C \exp(-\lambda \|A\|)$$

для всех неотрицательных t. Полагая

$$\|x\|_1 := \sup_{t \ge 0} \|\exp(-t(A - \lambda I))x\|$$

заключаем, в силу (1.1), что $||x|| \leq ||x||_1 \leq C ||x||$ для всех $x \in X$ и

$$\|\exp(-tA)x\|_{1} \leq \exp(-\lambda \|A\|) \|x\|_{1}$$
(1.2)

для $t \ge 0$. Отсюда следует, что

$$\operatorname{Re}\langle Ax, x^* \rangle_1 \ge \lambda \|x\|_1^2$$

для всех $x \in X$. Используя экспоненциальную формулу Хилле—Иосиды (см. [19]), доказываем, что последняя оценка влечет за собой формулу (1.2) (а, значит, и утверждение 2 леммы), чем и завершается доказательство.

Определение 1.1. Пусть A — линейный и ограниченный в X оператор со спектром в открытой правой полуплоскости, а D — выпуклая область в X, содержащая начало координат. Отображение $f \in \text{Hol}(D, X)$ называется A-спиральным относительно начала координат, если $\exp(-tA)f(x) \in f(D)$ для всех $x \in D$ и всех неотрицательных t.

Если $A = \lambda I$ и $\text{Re } \lambda > 0$, то мы говорим (для краткости), что $f - \lambda$ -спиральное отображение. Если в последнем определении A = I, то отображение f называется звездным относительно начала координат.

2. Общие результаты для банаховых пространств

Предположим, что $f \in Hol(D, X)$ — такое локально биголоморфное отображение в D, что замыкание множества f(D) содержит начало координат. Для отыскания приближенного решения нелинейного уравнения f(x) = 0 в D можно, аналогично (0.2), применить непрерывный аналог классического метода Ньютона

$$\begin{cases} \dot{x} + (f'(x))^{-1} f(x) = 0 & \text{при } t > 0, \\ x(0) = x_0, \end{cases}$$
(2.1)

где *x*₀ ∈ *D* − начальное приближение. Обобщим его следующим образом:

$$\begin{cases} \dot{x} + (f'(x))^{-1} A f(x) = 0 \quad \text{при} \quad t > 0, \\ x(0) = x_0, \end{cases}$$
(2.2)

где *А* — линейный ограниченный оператор в *X*.

Определение 2.1. Метод (2.2) называется *корректным* на D, если для любых данных $x_0 \in D$ начальная задача имеет единственное решение x = x(t), причем $x(t) \in D$ для всех положительных t и невязка f(x(t)) стремится к нулю при $t \to \infty$.

Следующая теорема дает критерий корректности непрерывной версии метода Ньютона.

Теорема 2.1. Предположим, что f — отображение, биголоморфное в области $D \subset X$, а А удовлетворяет одному из равносильных условий леммы 1.1. Тогда метод (2.2) корректен тогда и только тогда, когда f A-спирально в X.

Доказательство. Пусть метод, определенный соотношениями (2.2), корректен. Какое бы $x_0 \in D$ ни было задано, начальная задача (2.2) имеет единственное решение x = x(t) со значениями в D и $f(x(t)) \to 0$ при $t \to \infty$. Положим y(t) = f(x(t)). Из дифференциального уравнения получаем, что

$$\dot{y} = f'(x)\dot{x} = -f'(x)\left[f'(x)\right]^{-1}Af(x) = -Ay$$

для всех положительных t. C другой стороны, при наших условиях на A начальная задача

$$\begin{cases} \dot{y} + Ay &= 0 & \text{при} \quad t > 0, \\ y(0) &= y_0 \end{cases}$$

имеет единственное решение $y(t) = \exp(-tA)y_0$ для любого $y_0 \in f(D)$. Отсюда следует, что $\exp(-tA)y_0 = f(x(t)) \in f(D)$ для всех положительных t. Значит, f A-спирально.

И наоборот, если f A-спирально, то для любого $x_0 \in D$ траектория $x(t) = f^{-1}(\exp(-tA)f(x_0))$ при $t \ge 0$ корректно определена и не выходит за пределы области D. Непосредственные вычисления показывают, что функция x = x(t) удовлетворяет начальной задаче (2.2) и функция $f(x(t)) = \exp(-tA)f(x_0)$ стремится к нулю равномерно относительно x_0 из каждого шара внутри D, что и завершает доказательство.

Можно показать, что, если f — локально биголоморфное отображение, обращающееся в нуль в точке $a \in D$, а A — линейный оператор в X, удовлетворяющий одному из равносильных условий леммы 1.1, то f биголоморфно, если метод, заданный соотношениями (2.2), корректен. В частности, f A-спирально.

3. Условие типа Неванлинны

Через $D = \mathbb{D}$ обозначим единичный круг в \mathbb{C} с центром в начале координат. В одномерном случае (т. е., когда $X = \mathbb{C}$) критерий звездности отображения $f \in Hol(\mathbb{D}, \mathbb{C})$ относительно начала координат задается известным условием Неванлинны:

$$\operatorname{Re}\left(z\frac{f'(z)}{f(z)}\right) > 0$$

для всех $z \in \mathbb{D}$. Однако, в силу вычислительных сложностей, это условие не всегда легко проверить. Следующее достаточное условие упрощает использование теоремы 2.1.

Теорема 3.1. Пусть f — голоморфная в \mathbb{D} функция, обращающаяся в нуль в начале координат и удовлетворяющая условию

$$f'(z) \neq 0,$$

 $\operatorname{Re} \frac{f(z)f''(z)}{(f'(z))^2} < 1$
(3.1)

для всех $z \in \mathbb{D}$. Тогда f звездна в \mathbb{D} .

Доказательство. Достаточно показать, что условие (3.1) влечет за собой условие Неванлинны, т. е. $\operatorname{Re} a(z) > 0$

$$\operatorname{Re} g(z) >$$

для всех $z \in \mathbb{D}$, где

$$g(z) := \frac{1}{z} \frac{f(z)}{f'(z)}.$$

Для этого рассмотрим функцию zg(z) и заметим, что условие (3.1) равносильно тому, что

$$\operatorname{Re}\left(zg\right)'(z) > 0$$

для всех $z \in \mathbb{D}$, поскольку

$$(zg)'(z) = \frac{(f'(z))^2 - f(z)f''(z)}{(f'(z))^2};$$

дальнейшее доказательство очевидно.

Итак, нам надо показать, что неравенство $\operatorname{Re}(g(z) + zg'(z)) > 0$ влечет за собой неравенство $\operatorname{Re}g(z) > 0$. Полагая $z = re^{i\varphi}$ для $r \in [0,1)$ и $\varphi \in [0,2\pi)$, получаем, что

$$zg'(z) = r\frac{\partial}{\partial r}g,$$

а значит, и

$$\operatorname{Re}\left(g(z) + zg'(z)\right) = \operatorname{Re}g(re^{i\varphi}) + \operatorname{Re}\left(r\frac{\partial}{\partial r}g\right) > 0.$$
(3.2)

Вначале покажем, что из (3.2) следует, что $\operatorname{Re} g(z) \ge 0$ для всех $z \in \mathbb{D}$. Предположим, напротив, что в \mathbb{D} существует такое $z_0 = r_0 e^{i\varphi_0}$, что $\operatorname{Re} g(z_0) < 0$. Из (3.2) получаем, что $\operatorname{Re} g(0) > 0$. Следовательно, существует такое $r_1 \in (0, r_0)$, что

$$\operatorname{Re} g(r_1 e^{i\varphi_0}) = 0,$$

$$\operatorname{Re} g(r_0 e^{i\varphi_0}) < 0,$$

а значит, можно найти такое $r_2 \in (r_1, r_0)$, что $\operatorname{Re} g(r_2 e^{i \varphi_0}) < 0$ и

$$\operatorname{Re}\left(\frac{\partial}{\partial r}g\right)(r_2e^{i\varphi_0}) < 0$$

что противоречит (3.2). Таким образом, мы заключаем, что $\operatorname{Re} g(z) \ge 0$ всюду в \mathbb{D} .

Если предположить, что $\operatorname{Re} g(z_0) = 0$ для некоторого $z_0 \in \mathbb{D}$, то из принципа максимума для голоморфных функций будет следовать, что g(z) = ic для всех $z \in \mathbb{D}$, где c – вещественная постоянная. Следовательно, $\operatorname{Re} (g(z) + zg'(z)) = 0$, чего быть не может.

Пример 3.1. Пусть f – голоморфная в \mathbb{D} функция, определенная следующим образом:

$$f(z) = -f'(z) (z + 2\ln(1 - z))$$

Тогда

$$\operatorname{Re}\left(z\frac{f'(z)}{f(z)}\right) = -\operatorname{Re}\frac{z}{z+2\ln(1-z)}$$

и непонятно, как проверить, выполняется ли условие Неванлинны. С другой стороны, поскольку

$$\operatorname{Re}\frac{f(z)f''(z)}{(f'(z))^2} = \operatorname{Re}\left(1 - \left(\frac{f(z)}{f'(z)}\right)'\right).$$

легко проверить, что

$$\operatorname{Re}\frac{f(z)f''(z)}{(f'(z))^2} = \operatorname{Re}\left(1 - \frac{1+z}{1-z}\right) < 1,$$

а значит, непрерывный метод Ньютона корректен.

4. Каноническая редукция

Чтобы прояснить замечание после теоремы 2.1, вначале рассмотрим более общий вариант непрерывного метода Ньютона. А именно, пусть g — голоморфное отображение D в X (не обязательно локально биголоморфное), а $h \in Hol(D, X)$ имеет обратимую полную производную h'(x) в каждой точке $x \in D$.

Изучается поведение решения x = x(t) (если оно существует) начальной задачи

$$\begin{cases} \dot{x} + (h'(x))^{-1} A g(x) = 0 \quad \text{при} \quad t > 0, \\ x(0) = x_0 \end{cases}$$
(4.1)

для больших значений t, где $x_0 \in D$ — начальное приближение. Если g локально биголоморфно, то, выбрав h = g =: f, получим непрерывный метод Ньютона, заданный выражениями (2.2). Обратное (в некотором смысле) утверждение тоже справедливо.

Теорема 4.1. Пусть g и h — биголоморфные отображения на D, и h'(x) обратима в каждой точке $x \in D$. Предположим, что (4.1) корректен на D, где g(a) = 0 и $A = h'(a) (g'(a))^{-1}$ для некоторого $a \in D$. Тогда на D существует такое биголоморфное отображение f, что метод (2.1) корректен на D, а решения (4.1) и (2.1) совпадают друг с другом и сходятся к a при $t \to \infty$.

Доказательство. Пусть $x_0 \in D$, а $x = x(t, x_0)$ — решение задачи (4.1). Определим отображение f следующим образом:

$$f(x_0) = \lim_{t \to \infty} e^t \left(x(t, x_0) - a \right).$$
(4.2)

Вначале покажем, что этот предел существует для любого $x_0 \in D$. Для простоты положим a = 0. Рассмотрим отображение $Q \in Hol(D, X)$, заданное формулой $Q(x) := (h'(x))^{-1}Ag(x)$. Поскольку Q(0) = 0 и Q'(0) = I, разложение Тейлора отображения Q имеет вид

$$Q(x) = x + \sum_{k=k_0}^{\infty} P_k(x)$$

для $x \in B_r \subset D$, т. е. принадлежащих шару положительного радиуса r с центром в начале координат, где $k_0 \ge 2$, а P_k — однородные полиномы степени k на X. По лемме Шварца имеем неравенство

$$||Q(x) - x|| \leq \frac{M}{r^{k_0}} ||x||^{k_0},$$

где $M = \sup_{x \in D} \|Q(x) - x\|$ (см., например, [14]).

Простые вычисления показывают, что $\operatorname{Re}\langle Q(x), x^* \rangle > 0$ для любого отличного от нуля x, удовлетворяющего условию

$$||x|| < \min\left\{\left(\frac{M}{r^{k_0}}\right)^{\frac{1}{k_0-1}}, r\right\} = r_1.$$

Это значит, что шар B_{r_1} инвариантен для решения $x(t, \cdot)$ задачи (4.1), т. е. $||x(t, x_0)|| < r_1$ для всех неотрицательных t и всех $x_0 \in B_{r_1}$. Без ограничения общности можно считать, что $r_1 = 1$. Тогда из [14, Сог. 9.1] следует, что

$$||x(t, x_0)|| \leq e^{-t} \frac{||x_0||}{(1 - ||x_0||)^2},$$

а значит, и

$$\|e^t \left(Q(x(t,x_0)) - x(t,x_0)\right)\| \leqslant e^t \frac{M}{r^{k_0}} \|x(t,x_0)\|^{k_0} \leqslant e^{(1-k_0)t} \frac{M}{r^{k_0}} \frac{\|x_0\|^{k_0}}{(1-\|x_0\|)^{2k_0}} \to 0$$

поскольку $k_0 \ge 2$. Теперь, полагая $y(t, x_0) = e^t x(t, x_0)$, получаем, что

$$\dot{y}(t, x_0) = e^t \left(x(t, x_0) - Q(x(t, x_0)) \right) \to 0$$

при $t \to \infty$ для каждого $x_0 \in B_1$. Тогда предел (4.2), т. е.

$$\lim_{t \to \infty} e^t x(t, x_0) = \lim_{t \to \infty} y(t, x_0) =: f(x_0),$$

существует для всех $x_0 \in B_1$.

Теперь глобальная сходимость для всех $x_0 \in D$ следует из того факта, что можно найти такое достаточно большое положительное T, что $x(T, x_0) \in B_1$. Отсюда, используя полугрупповое свойство, заключаем, что

$$\lim_{t \to \infty} e^{T+t} x(T+t, x_0) = e^T \lim_{t \to \infty} e^t x(t, x(T, x_0)) = e^T f(x(T, x_0)).$$

Таким образом, мы доказали, что

$$e^{-s}f(x_0) = f(x(s, x_0)) \in D$$

для любого неотрицательного s, что означает, что f — звездное отображение. Дифференцируя последнее равенство по неотрицательной переменной s, мы видим, что $x(s, x_0)$ удовлетворяет (2.1), что и завершает доказательство.

5. Локальный непрерывный метод Ньютона

В этом разделе изучается следующая задача. Пусть $f \in Hol(D, X)$ — такое локально биголоморфное отображение, что f(0) = 0. В общей постановке задача формулируется так: определить, существует ли в D такой шар B_r , что непрерывный метод Ньютона корректен на B_r . Например, для одномерного случая хорошо известен результат (см. [2]) о том, что каждая функция f, однозначная в единичном диске \mathbb{D} , звездна в D_r , $0 < r \leq th(\pi/4)$. В многомерном случае это утверждение уже неверно — требуется накладывать дополнительные условия. В [17,18], показано, что отображение, голоморфное в открытом единичном шаре $\mathbb{B} := \{x \in X : ||x|| < 1\}$ и удовлетворяющее условию f(0) = 0, звездно тогда и только тогда, когда $\text{Re}\langle (f'(x))^{-1}f(x), x^* \rangle \ge 0$ для всех $x^* \in *x$.

Рассмотрим более слабое условие на f:

$$\operatorname{Re}\langle (f'(x))^{-1}f(x), x^* \rangle \ge -m \|x\|^2$$

(5.1)

для всех $x^* \in *x$, где m — неотрицательная постоянная. Покажем, что ответ на поставленный выше вопрос — положительный, т. е. такой шар действительно существует.

Другие локальные задачи описываются следующим образом. Пусть λ — такое комплексное число, что $\operatorname{Re} \lambda > 0$ и $\operatorname{arg} \lambda \in (0, \pi/2)$. Предположим, что $f : \mathbb{B} \to X$ — такое локально биголоморфное на \mathbb{B} отображение, что f(0) = 0 и обобщенный непрерывный метод Ньютона корректен при $A = \lambda I$. Корректен ли непрерывный метод Ньютона на меньшем шаре? И наоборот, если непрерывный метод Ньютона корректен, то существует ли в интервале (0, 1) такое r, зависящее от λ , что обобщенный непрерывный метод Ньютона корректен в шаре B_r ?

Чтобы ответить на этот вопрос, неравенство (5.1) заменяется на более общее условие, а именно:

$$\operatorname{Re}\langle e^{i\varphi}(f'(x))^{-1}f(x), x^* \rangle \ge -m \|x\|^2$$
(5.2)

для всех $x^* \in *x$.

Теорема 5.1. Пусть f — такое локально биголоморфное на \mathbb{B} отображение, что f(0) = 0. Предположим, что условие (5.2) выполнено с некоторым неотрицательным m и некоторым φ из интервала $(-\pi/2, \pi/2)$. Тогда для любого r из интервала $(0, r_0)$ непрерывный метод Ньютона, заданный соотношениями (2.1), корректен на B_r и сходится κ началу координат, где $r_0 = r_0(\varphi) \leq 1$ — единственный корень квадратного уравнения

$$(1 - r2) - 2r(1 - r\cos\varphi)(m + \cos\varphi) = 0, \tag{5.3}$$

лежащий в полуинтервале (0,1].

Доказательство. Введем обозначение $g(x) := (f'(x))^{-1} f(x)$. По условию,

$$\operatorname{Re}\langle e^{i\varphi}g(x), x^* \rangle \ge -m \, \|x\|^2$$

для всех $x^* \in *x$. Представим x в виде zv, где $z \in \mathbb{C}$, а $||v|| = ||v^*|| = 1$. Рассмотрим функцию $h(z) = \langle g(zv), v^* \rangle$. Справедливо соотношение

$$\operatorname{Re}\langle e^{i\varphi}g(zv),(zv)^*\rangle = \operatorname{Re}e^{i\varphi}h(z)\overline{z} \ge -m|z|^2.$$

Из соотношения h(0) = 0 следует существование такой голоморфной в круге \mathbb{D} функции Q, что h(z) = zQ(z). Тогда h'(0) = Q(0) = 1 и, в силу вышеизложенного,

$$\operatorname{Re}(e^{i\varphi}|z|^2Q(z)) \ge -m|z|^2$$

и $\operatorname{Re}(e^{i\varphi}Q(z)) \ge -m$, если |z| < 1. Применяя неравенство из [8], получаем, что

$$\operatorname{Re}\left(Q(z) - Q(0)\right) = \operatorname{Re}\left(e^{-i\varphi}\left(\left(e^{i\varphi}Q\right)(z) - \left(e^{i\varphi}Q\right)(0)\right)\right) \geqslant$$
$$\geqslant \frac{2r(1 - r\cos\varphi)}{1 - r^2} \left(\inf_{|\zeta| < 1} \operatorname{Re}\left(e^{i\varphi}Q\right)(\zeta) - \operatorname{Re}\left(e^{i\varphi}Q\right)(0)\right) \geqslant$$
$$\geqslant \frac{2r(1 - r\cos\varphi)}{1 - r^2} \left(-m - \cos\varphi\right)$$

для всех $z \in B_r$ и всех $r \in (0, 1)$.

Поскольку $\operatorname{Re} Q(0) = 1$, получаем неравенство

$$\operatorname{Re} Q(z) \ge 1 + \frac{2r(1 - r\cos\varphi)}{1 - r^2} \left(-m - \cos\varphi\right),$$

которое равносильно следующему неравенству:

$$F(r,\varphi) := (1-r^2) - 2r(1-r\cos\varphi)(m+\cos\varphi) \ge 0.$$

По условию, $-\pi/2 < \varphi < \pi/2$, а значит, $F(0,\varphi) = 1 > 0$ и $F(1,\varphi) = -2(1 - \cos \varphi)(m + \cos \varphi) \leq 0$. Следовательно, уравнение $F(r,\varphi) = 0$ имеет в полуинтервале (0,1] единственное решение $r_0 = r_0(\varphi)$. Отсюда вытекает, что $F(r,\varphi) \ge 0$ для всех $r \in (0,r_0]$. Таким образом, f звездно в шаре B_r , если $0 < r \leq r_0$, что и завершает доказательство.

При $\varphi = 0$ формулировка теоремы 5.1 особенно проста.

Следствие 5.1. Пусть f — локально биголоморфное на \mathbb{B} отображение, обращающееся в нуль в начале координат. Предположим, что условие (5.1) выполняется для некоторого неотрицательного m. Тогда для каждого r из интервала (0, 1/(1 + 2m)) непрерывный метод Ньютона корректен на B_r и сходится к началу координат.

Пример 5.1. Пусть $f(z) = \frac{z}{1-z-k}$, где $k \in [0,1)$. В этом случае имеет место соотношение

$$(f'(z))^{-1}f(z) = \frac{1}{1-k}z(1-z-k).$$

Очевидно,

$$\operatorname{Re}\langle (f'(z))^{-1}f(z),\overline{z}\rangle \ge -\frac{k}{1-k}|z|^2,$$

что означает, что m = k/(1-k) неравенстве в (5.1). Таким образом, применима теорема 5.1, показывающая, что непрерывный метод Ньютона с данным f корректен в B_r , если $r < r_0 = (1-k)/(1+k)$. Кроме того, этот метод сходится к началу координат, и оценка

$$\frac{\|x(t)\|}{1 - \|x(t)\|^2} \le e^{-t} \frac{\|x_0\|}{1 - \|x_0\|^2}$$

имеет место для любых начальных данных $x_0 \in B_{r_0}$.

Компьютерное моделирование показывает, что для x_0 вне шара B_{r_0} траектория не сходится к началу координат (см. рис. 1).

Полагая m = 0 в следствии 5.1 и решая уравнение (5.3), получаем, таким же образом, следующее утверждение:

Следствие 5.2. Пусть $f: \mathbb{B} \to X$ — локально биголоморфное в \mathbb{B} отображение, удовлетворяющее условию f(0) = 0. Пусть обобщенный непрерывный метод Ньютона, соответствующий $A = \lambda I$, где $|\arg \lambda| < \pi/2$, корректен. Тогда непрерывный метод Ньютона корректен в шаре B_r , если

$$r \leqslant (\sqrt{2}\cos(\arg \lambda - \pi/4)^{-1} < 1.$$

Обратные рассуждения приводят к следующему результату:

Теорема 5.2. Пусть $f: \mathbb{B} \to X$ — локально биголоморфное в единичном шаре отображение, удовлетворяющее условию f(0) = 0, а непрерывный метод Ньютона корректен. Тогда для любого $\varphi \in (-\pi/2, \pi/2)$ и любого r, удовлетворяющего неравенству $0 < r \leq (1 - |\sin \varphi|) / \cos \varphi < 1$, обобщенный непрерывный метод Ньютона, соответствующий $A = \lambda I$, где $\arg \lambda = \varphi$, корректен в меньшем шаре B_r .

6. Пример

В этом разделе рассматривается пример, упомянутый в [15]. Как обычно, D обозначает открытый единичный круг в комплексной плоскости. Рассмотрим функцию

$$f(z) = \frac{z}{1-z}.$$

Тогда, как легко проверить,

$$g(z) = \frac{f(z)}{f'(z)} = z(1-z).$$

Поскольку $\operatorname{Re} g(z)\overline{z} \ge 0$ для всех $z \in \mathbb{D}$, непрерывный метод Ньютона корректен.

На рис. 2 представлены несколько траекторий аналитического решения и приближение, полученное непрерывным методом Ньютона. На рис. 3 представлена норма разности между двумя последовательными приближениями. Теперь, если выбрать то же самое g, но положить $A = e^{-i(\pi/4)}$, то на рис. 4 видно, что обобщенный метод Ньютона не является корректным. Например, если положить $z_0 = (1 + i)/\sqrt{2}$, то решение уже не является инвариантным относительно всего единичного круга. Однако на рис. 5 видно, что решение инвариантно для (меньшего) диска радиуса $r_0 = \sqrt{2} - 1$.

7. Условие выпуклости

В одномерном случае можно сформулировать достаточные геометрические условия, гарантирующие не только сходимость непрерывного метода Ньютона, но и однозначную разрешимость. Одним из таких простых условий является выпуклость: при его выполнении работает и общий непрерывный метод Ньютона, заданный соотношениями (4.1), где A = I, а $h(x) \equiv x$. Он основан на начальной задаче

$$\begin{cases} \dot{z} + f(z) = 0 & \text{при } t > 0, \\ z(0) = z_0, \end{cases}$$
(7.1)

где z_0 — начальное приближение. Даже если $f(0) \neq 0$, на f(0) можно наложить ограничение, гарантирующее существование нулевой точки отображения f и сходимость траектории задачи (7.1) к этой точке.

Теорема 7.1. Пусть f — голоморфная в круге \mathbb{D} функция, такая что f(0) < 1/2, f'(0) = 1 и $f(\mathbb{D})$ выпукло. Тогда справедливы следующие утверждения:

- 1. уравнение f(z) = 0 в \mathbb{D} имеет единственное решение a;
- 2. задача Коши (7.1) в \mathbb{D} имеет единственное решение, которое сходится к а для любого $z_0 \in \mathbb{D};$
- 3. если выполняется дополнительное условие f(0) = 0, то можно оценить еще и скорость сходимости, а именно: $|z(t, z_0)| \leq e^{-\varrho t} |z_0|$ для всех неотрицательных t, где $\varrho \in (0, 1/2]$.

Доказательство.

1. Рассмотрим отображение g(z) := f(z) - f(0). Поскольку $f(\mathbb{D})$ выпукло, $g(\mathbb{D})$ тоже выпукло, и g'(0) = f' = 1. Из выпуклости $g(\mathbb{D})$ следует (см. [10, 16]), что

$$\operatorname{Re} g(z)\bar{z} \ge \frac{1}{2} \, |z|^2.$$

Это сводится к следующему неравенству для исходной функции f:

$$\operatorname{Re} f(z)\bar{z} \ge \frac{1}{2}|z|^2 - |f(0)||z|$$

Надо показать, что правая часть этого неравенства положительна, т. е.,

$$\frac{1}{2}|z|^2 - |f(0)||z| > 0.$$
(7.2)

Возьмем произвольное ε из интервала (0,1) и положим $r := 1 - \varepsilon$; тогда

$$\frac{1}{2}|z| - |f(0)| = \frac{1}{2}(1 - \varepsilon) - |f(0)|$$

По условию, |f(0)| < 1/2, а значит, существует такое положительное ε , что $|f(0)| < \frac{1}{2}(1-\varepsilon)$. Полагая $r = 1 - \varepsilon$, получаем, что

$$\operatorname{Re} f(z)\bar{z} \geqslant \varepsilon \tag{7.3}$$

для всех $z \in \mathbb{D}$, удовлетворяющих соотношению |z| = r. По принципу Руше, неравенство (7.3) обеспечивает существование и единственность нулевой точки отображения f в круге радиуса r с центром в начале координат. Поскольку r можно взять сколько угодно близким к 1, эта нулевая точка единственна в \mathbb{D} , что доказывает первое утверждение теоремы.

С другой стороны, из неравенства (7.3) следует, что задача Коши (7.1) разрешима в D, что доказывает второе утверждение теоремы.

Теперь, если f(0) = 0, то g = f, и из выпуклости $f(\mathcal{D})$ следует (см. [10, 16]), что

$$\operatorname{Re}\frac{f(z)}{z} > \frac{1}{2}$$

или, как легко видеть,

$$\operatorname{Re} f(z)\bar{z} > \frac{1}{2} \, |z|^2.$$

Значит, для скорости сходимости мы получаем оценку

$$|z(t,z_0)| \leqslant e^{-\varrho t} |z_0|$$

с некоторым $\varrho \in (0, 1/2]$ (см. [14]), что доказывает третье утверждение теоремы.

Применимость теоремы 7.1 иллюстрируется следующим примером, который легко решается в явном виде.

Пример 7.1. Рассмотрим уравнение f(z) = 0 относительно неизвестной $z \in \mathbb{D}$, где

$$f(z) = \frac{1}{2} \left(\frac{1+z}{1-z} - \frac{1}{2} \right)$$

Поскольку f(0) = 1/4, отсюда следует, что $|f(0)| < 1/2 - \varepsilon$ для всех $\varepsilon \in (0, 1/4)$. Кроме того, справедливо соотношение

$$f'(z) = \frac{1}{(1-z)^2},$$

откуда следует, что f'(0) = 1. Все условия последней теоремы выполняются, а значит, непрерывный метод Ньютона, заданный соотношениями (7.1), сходится. Решение можно найти при помощи простых вычислений: $a = -1/3 \in \mathbb{D}$.

На рис. 6 представлено несколько траекторий аналитического решения и его приближений, полученных методом Эйлера. На рис. 7 можно видеть норму разности между любыми двумя последовательными приближениями.

Теорема 7.1 непосредственно распространяется на голоморфные отображения в единичном шаре В, действующие из \mathbb{C}^n в \mathbb{C}^n . Доказательство остается прежним, за исключением того, что вместо [10,16] используется недавний результат Мюира об аккретивности нормализованных голоморфных отображений шара В. Из его устного сообщения известно, что следующее утверждение справедливо и должно быть опубликовано в трудах конференции Cortona-2014. Предположим, что $f: \mathbb{B} \to \mathbb{C}^n$ — такое голоморфное отображение, что f(0) = 0, f'(0) = I, и $f(\mathbb{B})$ выпукло. Тогда $\operatorname{Re}\langle 2f(z) - z, \overline{z} \rangle > 0$, т. е. $\operatorname{Re}\langle f(z), \overline{z} \rangle > (1/2)|z|^2$ для всех $z \in \mathbb{B}$. Отметим, что, в силу принципа Руше, условие $\langle f(z), \overline{z} \rangle \neq 0$, выполненное для всех z на границе шара В, влечет за собой то, что в В существует одна и только одна нулевая точка a отображения f. Более сильное условие $\operatorname{Re}\langle f(z), \overline{z} \rangle > 0$, выполненное для всех $z \in \mathbb{B}$, влечет за собой то, что траектории $z = z(t, z_0)$ уравнения $\dot{z} + f(z) = 0$ при $z_0 \in \mathbb{B}$ отражаются от границы $\partial \mathbb{B}$ внутрь шара. Однако они не обязательно сходятся к a при $t \to \infty$ для любого $z_0 \in \mathbb{B}$, за исключением тех случаев, когда отображение fаккретивно.

8. Рисунки

Рис. 1. Траектория для двух разных точек x_0 .

Рис. 2. Траектории приближенного решения (ромбики), выходящие из разных точек x_0 . Непрерывными линиями показаны точные решения.

Рис. 3. Норма разности двух последовательных итераций непрерывного метода Ньютона.

Рис. 4. Траектория решения, найденного обобщенным непрерывным методом Ньютона при $Ag(z) = e^{-i(\pi/4)}z(1-z).$

круга радиуса $r_0 = \sqrt{2} - 1$.

Рис. 5. Решение инвариантно только для малого Рис. 6. Ромбиками показаны траектории приближенного решения, выходящие из разных точек z_0 . Непрерывными линиями показаны точные решения.

Рис. 7. Норма разности двух последовательных итераций.

СПИСОК ЛИТЕРАТУРЫ

- 1. Гавурин М.К. Нелинейные функциональные уравнения и непрерывные аналоги итерационных методов// Изв. вузов. Сер. Мат. – 1958. – 5. – С. 18–31.
- 2. Голизин Г. М. Геометрическая теория функций комплексного переменного. М.: Наука, 1966.
- 3. Далецкий Ю. Н., Крейн М. Г. Устойчивость решений дифференциальных уравнений в банаховых пространствах. — М.: Наука, 1970.
- 4. Airapetyan R.G. Continuous Newton method and its modification// Appl. Anal. 1999. 1. C. 463-484.
- 5. Airapetyan R. G., Ramm A. G., Smirnova A. B. Continuous analog of the Gauss-Newton method// Math. Methods Appl. Sci. – 1999. – 9. – C. 1–13.
- 6. Heath L.F., Suffridge T.J. Holomorphic retracts in complex n-space// Illinois J. Math. 1981. 25. -C. 125-135.
- 7. Kantorovich L., Akilov G. Functional analysis in normed spaces. New York: The Macmillan Co., 1964.
- 8. Kresin G., Maz'ya V. G. Sharp real-part theorems. A unified approach. Berlin: Springer, 2007.

- 9. *Lutsky Ya*. Continuous Newton method for star-like functions// Electron. J. Differ. Equ. Conf. 2005. 12. C. 79–85.
- 10. Marx A. Untersuchungen über schlichte Abbildungen// Math. Ann. 1933. 107, № 1. C. 40–67.
- 11. *Milano F.* Continuous Newton's method for power flow analysis// IEEE Trans. Power Syst. 2009. 24. C. 50–57.
- 12. Neuberger J. W. A sequence of problems on semigroups. New York: Springer, 2011.
- 13. Ortega J. M., Rheinboldt W. C. Iterative solution of nonlinear equations in several variables. New York– London: Academic Press, 1970.
- 14. *Reich S., Shoikhet D.* Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces. London: Imperial College Press, 2005.
- 15. *Siskakis A. G.* Semigroups of composition operators on spaces of analytic functions, a review// Contemp. Math. 1998. 213. C. 229–252.
- 16. Strohhäcker E. Beiträge zur Theorie der schlichiten Functionen// Math. Z. 1933. 37. C. 356–380.
- 17. Suffridge T.J. Starlike and convex maps in Banach spaces// Pacific J. Math. 1973. 46. C. 575-589.
- 18. *Suffridge T.J.* Starlikeness, convexity and other geometric properties of holomorphic maps in higher dimensions// Lecture Notes Math. 1976. 599. C. 146–159.
- 19. Yosida K. Functional analysis. Berlin-New York: Springer, 1980.

Авив Гибали Department of Mathematics, Ort Braude College, Karmiel 2161002, Israel E-mail: avivg@braude.ac.il

Давид Шойхет Department of Mathematics, Ort Braude College, Karmiel 2161002, Israel E-mail: davs@braude.ac.il

Николай Тарханов

Institute of Mathematics, University of Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany E-mail: tarkhanov@math.uni-potsdam.de

UDC 517.9

On the Convergence Rate of Continuous Newton Method

© 2016 A. Gibali, D. Shoikhet, N. Tarkhanov

Abstract. In this paper, we study the convergence of continuous Newton method for solving nonlinear equations with holomorphic mappings in complex Banach spaces. Our contribution is based on a recent progress in the geometric theory of spirallike functions. We prove convergence theorems and illustrate them by numerical simulations.

REFERENCES

- M. K. Gavurin, "Nelineynye funktsional'nye uravneniya i nepreryvnye analogi iteratsionnykh metodov" [Nonlinear functional equations and continuous analogues of iterative methods], *Izv. vuzov. Ser. Mat.*, 1958, 5, 18-31.
- 2. G. M. Goluzin, *Geometricheskaya teoriya funktsiy kompleksnogo peremennogo* [Geometric Theory of Functions of a Complex Variable], Nauka, M., 1966.
- 3. Yu. L. Daletskii and M. G. Krein, Ustoychivost' resheniy differentsial'nykh uravneniy v banakhovykh prostranstvakh [Stability of Solutions of Differential Equations in Banach Spaces], Nauka, M., 1970.
- 4. R.G. Airapetyan, "Continuous Newton method and its modification," Appl. Anal., 1999, 1, 463-484.
- 5. R. G. Airapetyan, A. G. Ramm, and A. B. Smirnova, "Continuous analog of the Gauss-Newton method," *Math. Methods Appl. Sci.*, 1999, **9**, 1-13.

- 6. L. F. Heath and T. J. Suffridge, "Holomorphic retracts in complex *n*-space," *Illinois J. Math.*, 1981, **25**, 125–135.
- 7. L. Kantorovich and G. Akilov, *Functional Analysis in Normed Spaces*, The Macmillan Co., New York, 1964.
- 8. G. Kresin and V.G. Maz'ya, Sharp Real-Part Theorems. A Unified Approach, Springer, Berlin, 2007.
- 9. Ya. Lutsky, "Continuous Newton method for star-like functions," *Electron. J. Differ. Equ. Conf.*, 2005, **12**, 79–85.
- 10. A. Marx, "Untersuchungen über schlichte Abbildungen," Math. Ann., 1933, 107, No. 1, 40-67.
- 11. F. Milano, "Continuous Newton's method for power flow analysis," *IEEE Trans. Power Syst.*, 2009, **24**, 50–57.
- 12. J. W. Neuberger, A Sequence of Problems on Semigroups, Springer, New York, 2011.
- 13. J. M. Ortega and W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York-London, 1970.
- 14. S. Reich and D. Shoikhet, Nonlinear Semigroups, Fixed Points, and Geometry of Domains in Banach Spaces, Imperial College Press, London, 2005.
- 15. A.G. Siskakis, "Semigroups of composition operators on spaces of analytic functions, a review," *Contemp. Math.*, 1998, **213**, 229–252.
- 16. E. Strohhäcker, "Beiträge zur Theorie der schlichiten Functionen," Math. Z., 1933, 37, 356-380.
- 17. T.J. Suffridge, "Starlike and convex maps in Banach spaces," Pacific J. Math., 1973, 46, 575-589.
- 18. T.J. Suffridge, "Starlikeness, convexity and other geometric properties of holomorphic maps in higher dimensions," *Lecture Notes Math.*, 1976, **599**, 146–159.
- 19. K. Yosida, Functional Analysis, Springer, Berlin-New York, 1980.

Aviv Gibali

Department of Mathematics, Ort Braude College, Karmiel 2161002, Israel E-mail: avivg@braude.ac.il

David Shoikhet

Department of Mathematics, Ort Braude College, Karmiel 2161002, Israel E-mail: davs@braude.ac.il

Nikolai Tarkhanov

Institute of Mathematics, University of Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany E-mail: tarkhanov@math.uni-potsdam.de