ISSN 2413-3639 (Print)

DOI: 10.22363/2413-3639-2021-67-3-472-482 УДК 517.518

О НЕРАВЕНСТВЕ ГЕЛЬДЕРА В ЛЕБЕГОВЫХ ПРОСТРАНСТВАХ С ПЕРЕМЕННЫМ ПОРЯДКОМ СУММИРУЕМОСТИ

© 2021 г. **В.И. БУРЕНКОВ, Т.В. ТАРАРЫКОВА**

Аннотация. В статье вводится новый вариант определения квази-нормы (в частности, нормы) в лебеговых пространствах с переменным порядком суммируемости и с его помощью доказывается аналог неравенства Гельдера для таких пространства, более общий и более точный по сравнению с известными ранее.

ОГЛАВЛЕНИЕ

1.	Введение	172
2.	Основные результаты	174
3.	Примеры	179
	Список литературы	180

1. Введение

В последние три десятилетия проявляется значительный интерес к изучению лебеговых пространств с переменным порядком суммируемости, представляющих интерес как с точки зрения развития теории функциональных пространств (см., например, [1,6-8,10,11,13,14,16,17]), так и с точки зрения применений к теории дифференциальных и интегральных уравнений (см., например, [2,4,12,15]).

Историю вопроса и подробное изложение теории лебеговых пространствах с переменным порядком суммируемости можно найти в книгах [9,12]. Одной из первых работ в этом направлении была статья [5].

Всюду в этой статье $\Omega \subset \mathbb{R}^n$ — это измеримое по Лебегу множество, а $p,q:\Omega \to (0,\infty]$ — измеримые по Лебегу функции.

В случае, когда $p:\Omega \to (0,\infty)$, стандартное определение лебеговых пространств с переменным порядком суммируемости $L_{p(\cdot)}(\Omega)$ имеет следующий вид: $f\in L_{p(\cdot)}(\Omega)$, если $f:\Omega \to \mathbb{C}, f$ измерима по Лебегу на Ω и

$$||f||_{L_{p(\cdot)}(\Omega)} = \inf\left\{\lambda > 0 : \int_{\Omega} \left(\frac{|f(x)|}{\lambda}\right)^{p(x)} dx \leqslant 1\right\} < \infty.$$
(1.1)

В случае, когда $p:\Omega\to [1,\infty]$, О. Ковачик и Й. Ракосник [13, с. 593] дополнили это определение и дали следующее определение. Пусть $\Omega_\infty=\{x\in\Omega:p(x)=\infty\}$. Тогда $f\in L^{KR}_{p(\cdot)}(\Omega)$, если $f:\Omega\to\mathbb{C},\ f$ измерима по Лебегу на Ω и

$$||f||_{L_{p(\cdot)}(\Omega)}^{KR} = \inf\left\{\lambda > 0: \int\limits_{\Omega \setminus \Omega_{\infty}} \left(\frac{|f(x)|}{\lambda}\right)^{p(x)} dx + \left\|\frac{f}{\lambda}\right\|_{L_{\infty}(\Omega_{\infty})} \leqslant 1\right\} < \infty.$$
 (1.2)

Отметим, что $L_{p(\cdot)}^{KR}(\Omega)=L_{p(\cdot)}(\Omega\setminus\Omega_{\infty})\cap L_{\infty}(\Omega_{\infty}),$ это нормированное пространство с нормой $\|f\|_{L_{p(\cdot)}(\Omega)}^{KR}$ и

$$\max\left\{\|f\|_{L_{p(\cdot)}(\Omega\setminus\Omega_{\infty})}, \|f\|_{L_{\infty}(\Omega_{\infty})}\right\} \leqslant \|f\|_{L_{p(\cdot)}(\Omega)}^{KR} \leqslant \|f\|_{L_{p(\cdot)}(\Omega\setminus\Omega_{\infty})} + \|f\|_{L_{\infty}(\Omega_{\infty})}. \tag{1.3}$$

В частности, если $p:\Omega\to [1,\infty)$, то

$$||f||_{L_{p(\cdot)}(\Omega)}^{KR} = ||f||_{L_{p(\cdot)}(\Omega \setminus \Omega_{\infty})}, \tag{1.4}$$

а если $p(x)=\infty$ для любых $x\in\Omega$, то

$$||f||_{L_{p(\cdot)}(\Omega)}^{KR} = ||f||_{L_{\infty}(\Omega_{\infty})}.$$
 (1.5)

В [13, с. 594-595] доказан приводимый ниже вариант неравенства Гельдера для пространств $L_{p(\cdot)}(\Omega)$. Пусть $\Omega_1=\{x\in\Omega:p(x)=1\}, \Omega_*=\Omega\setminus(\Omega_1\cup\Omega_\infty);\ p_*=\operatornamewithlimits{ess\,inf}_{x\in\Omega_*}p(x),\ p^*=\operatornamewithlimits{ess\,sup}_{x\in\Omega_*}p(x),$ если meas $\Omega_*>0$, и $p_*=p^*=1$, если meas $\Omega_*=0$. Считается также, что $\frac{1}{\infty}=0$.

Теорема 1.1. Пусть $p:\Omega\to [1,\infty]$. Тогда

$$\int_{\Omega} |f(x)g(x)| dx \leqslant K_{p(\cdot)}^{(1)} ||f||_{L_{p(\cdot)}(\Omega)}^{KR} ||g||_{L_{p'(\cdot)}(\Omega)}^{KR}$$
(1.6)

для любых $f \in L_{p(\cdot)}(\Omega), g \in L_{p'(\cdot)}(\Omega),$ где

$$K_{p(\cdot)}^{(1)} = \|\chi_{\Omega_1}\|_{L_{\infty}(\Omega)} + \|\chi_{\Omega_*}\|_{L_{\infty}(\Omega)} + \|\chi_{\Omega_{\infty}}\|_{L_{\infty}(\Omega)} + \frac{1}{p_*} - \frac{1}{p^*}, \tag{1.7}$$

 χ_G обозначает характеристическую функцию множества G, а $p'(\cdot)$ — показатель, сопряженный к $p(\cdot)$: $p'(x) = \frac{p(x)}{p(x)-1}$, если $1 < p(x) < \infty$, $p'(x) = \infty$, если p(x) = 1, и p'(x) = 1, если $p(x) = \infty$.

В [9, с. 27-28] неравенство (1.6) доказано с немного большей постоянной

$$K_{p(\cdot)}^{(2)} = \|\chi_{\Omega_1}\|_{L_{\infty}(\Omega)} + \|\chi_{\Omega_{\infty}}\|_{L_{\infty}(\Omega)} + \|\chi_{\Omega_*}\|_{L_{\infty}(\Omega)} \left(1 + \frac{1}{p} - \frac{1}{\overline{p}}\right)$$
(1.8)

вместо $K_{p(\cdot)}^{(1)}$, где $\underline{p} = \operatorname*{ess\,inf}_{x \in \Omega} p(x)$, $\overline{p} = \operatorname*{ess\,sup}_{x \in \Omega} p(x)$. (Если meas $\Omega_1 = \operatorname*{meas}_{\infty} \Omega_{\infty} = 0$, то $K_{p(\cdot)}^{(2)} = K_{p(\cdot)}^{(1)}$, а если meas $\Omega_1 > 0$ или meas $\Omega_{\infty} > 0$, то может оказаться, что $\underline{p} < p_*$ или $\overline{p} > p^*$, и тогда $K_{p(\cdot)}^{(2)} > K_{p(\cdot)}^{(1)}$.)

Таким образом, $\frac{1}{p_*} - \frac{1}{p^*} \leqslant K_{p(\cdot)}^{(1)} \leqslant K_{p(\cdot)}^{(2)} \leqslant 4$. Если $p:\Omega \to (1,\infty)$, то $K_{p(\cdot)}^{(2)} = K_{p(\cdot)}^{(1)} = 1 + \frac{1}{\underline{p}} - \frac{1}{\overline{p}}$ и неравенство (1.6) принимает вид

$$\int_{\Omega} |f(x)g(x)| dx \le \left(1 + \frac{1}{\underline{p}} - \frac{1}{\overline{p}}\right) ||f||_{L_{p(\cdot)}(\Omega)}^{KR} ||g||_{L_{p'(\cdot)}(\Omega)}^{KR}. \tag{1.9}$$

В [9, с. 28-29] также доказано приводимое далее следствие из неравенства (1.6) (с $K_{p(\cdot)}^{(2)}$ вместо $K_{p(\cdot)}^{(1)}$).

Следствие 1.1. Пусть $p,q:\Omega \to [1,\infty],\ \partial$ ля любых $x\in\Omega$ $p(x)\leqslant q(x),\ r(x)=\frac{p(x)q(x)}{q(x)-p(x)},\ e$ сли $p(x)< q(x)<\infty,\ r(x)=1,\ e$ сли $p(x)< q(x)=\infty,\ u\ r(x)=\infty,\ e$ сли p(x)=q(x). Тогда

$$||fg||_{L_{p(\cdot)}(\Omega)}^{KR} \leqslant K_{p(\cdot),q(\cdot)}^{(3)} ||f||_{L_{q(\cdot)}(\Omega)}^{KR} ||g||_{L_{r(\cdot)}(\Omega)}^{KR}$$
(1.10)

для любых $f \in L_{q(\cdot)}(\Omega)$ и $g \in L_{r(\cdot)}(\Omega)$, где

$$K_{p(\cdot),q(\cdot)}^{(3)} = K_{s(\cdot)}^{(2)} + 1,$$
 (1.11)

$$a\ s(x)=rac{q(x)}{p(x)},$$
 если $p(x)<\infty,$ $q(x)<\infty,$ $s(x)=1,$ если $p(x)=q(x),$ и $s(x)=\infty,$ если $p(x)<\infty,$ $q(x)=\infty.$

Целью данной работы является введение нового варианта определения квази-нормы (в частности, нормы) в пространствах $L_{p(\cdot)}(\Omega)$ и доказательство с его помощью более общих и более точных аналогов неравенства Гельдера для этих пространств по сравнению с неравенствами (1.6) и (1.10).

2. Основные результаты

В данной статье, в отличие от [13], мы будем пользоваться определением (1.1) пространств $L_{p(\cdot)}(\Omega)$ и в случае, когда $p:\Omega\to(0,\infty]$, считая, что $a^\infty=0$ для $0\leqslant a<1,\ 1^\infty=1,\ a^\infty=\infty$ для a>1 и что интеграл по множеству нулевой лебеговой меры равен 0 для любой функции $\varphi:\Omega\to[0,\infty]$. Соответственно, для $p:\Omega\to(0,\infty]$ мы говорим, что $f\in L^{BT}_{p(\cdot)}(\Omega)$. если $f:\Omega\to\mathbb{C}$, f измерима по Лебегу на Ω и

$$||f||_{L_{p(\cdot)}(\Omega)}^{BT} = \inf\left\{\lambda > 0 : \int\limits_{\Omega} \left(\frac{|f(x)|}{\lambda}\right)^{p(x)} dx\right\} < \infty.$$
 (2.1)

Отметим, что $L_{p(\cdot)}^{BT}(\Omega) = L_{p(\cdot)}(\Omega \setminus \Omega_{\infty}) \cap L_{\infty}(\Omega_{\infty})$, это квази-нормированное пространство с квазинормой $\|f\|_{L_{p(\cdot)}(\Omega)}^{BT}$ (нормой, если $p(x) \geqslant 1$ на Ω). Таким образом, пространства $L_{p(\cdot)}^{BT}(\Omega)$ и $L_{p(\cdot)}^{KR}(\Omega)$ совпадают как множества.

Mы также будем пользоваться следующим обозначением. Для любого измеримого по Лебегу множества $G\subset\Omega$ и $\lambda>0$

$$\rho_{\lambda}(p(\cdot), f, G) = \int_{G} \left(\frac{|f(x)|}{\lambda}\right)^{p(x)} dx,$$

в частности,

$$\rho_{\lambda}(p(\cdot), f, \Omega_{\infty}) = \int_{G_{\infty}} \left(\frac{|f(x)|}{\lambda}\right)^{\infty} dx.$$

Если $\|f\|_{L_\infty(\Omega)}<\infty$, то для любого $\lambda>\|f\|_{L_\infty(\Omega)}$ неравенство $\frac{|f(x)|}{\lambda}<1$ выполняется на некотором подмножестве $G_\lambda\subset\Omega_\infty$ полной меры и

$$\rho_{\lambda}(p(\cdot), f, \Omega_{\infty}) = \int_{G_{\lambda}} \left(\frac{|f(x)|}{\lambda}\right)^{\infty} dx = 0,$$

а при $\lambda<\|f\|_{L_\infty(\Omega)}$ существует такое подмножество $H_\lambda\subset\Omega$ положительной меры, что $|f(x)|>\lambda$ для любых $x\in H_\lambda$ и

$$\rho_{\lambda}(p(\cdot), f, \Omega) = \int\limits_{\Omega} \left(\frac{|f(x)|}{\lambda}\right)^{p(x)} dx \geqslant \int\limits_{H_{\lambda}} \left(\frac{|f(x)|}{\lambda}\right)^{\infty} dx = \infty.$$

В этих обозначениях

$$||f||_{L_{p(\cdot)}(\Omega)}^{BT} = \inf\{\lambda > 0 : \rho_{\lambda}(p(\cdot), f, \Omega) \leq 1\}.$$

Лемма 2.1. Пусть $p:\Omega \to (0,\infty]$. Тогда для любой функции $f\in L_{p(\cdot)}^{BT}(\Omega)=L_{p(\cdot)}(\Omega\setminus\Omega_{\infty})\cap L_{\infty}(\Omega_{\infty})$ справедливо равенство

$$||f||_{L_{p(\cdot)}(\Omega)}^{BT} = \max\{||f||_{L_{p(\cdot)}(\Omega\setminus\Omega_{\infty})}, ||f||_{L_{\infty}(\Omega_{\infty})}\}.$$
(2.2)

Доказательство.

1. Пусть $\sigma:(0,\infty)\to(0,\infty)$ — невозрастающая функция и $\lambda_0>0$. Если $\sigma(\lambda_0)\leqslant 1$, то

$$\{\lambda \geqslant \lambda_0 : \sigma(\lambda) \leqslant 1\} = [\lambda_0, \infty), \quad \{\lambda > \lambda_0 : \sigma(\lambda) \leqslant 1\} = (\lambda_0, \infty),$$

а если $\sigma(\lambda_0)>1$, то $\lambda_0\notin\{\lambda\geqslant\lambda_0:\sigma(\lambda)\leqslant1\}$ и

$$\{\lambda \geqslant \lambda_0 : \sigma(\lambda) \leqslant 1\} = \{\lambda > \lambda_0 : \sigma(\lambda) \leqslant 1\}.$$

В обоих случаях

$$\inf\{\lambda \geqslant \lambda_0 : \sigma(\lambda) \leqslant 1\} = \inf\{\lambda > \lambda_0 : \sigma(\lambda) \leqslant 1\}. \tag{2.3}$$

2. Как отмечено выше, если $\lambda<\|f\|_{L_\infty(\Omega_\infty)},$ то $\int\limits_{\Omega_\infty}\left(rac{|f(x)|}{\lambda}
ight)^\infty\,dx=\infty,$ а если $\lambda>\|f\|_{L_\infty(\Omega_\infty)},$

то $\int\limits_{\Omega_{\infty}} \left(\frac{|f(x)|}{\lambda}\right)^{\infty} dx = 0$, поэтому с учетом равенства (2.3) имеем

$$||f||_{L_{p(\cdot)}(\Omega)}^{BT} = \inf\left\{\lambda > 0: \int\limits_{\Omega \setminus \Omega_{\infty}} \left(\frac{|f(x)|}{\lambda}\right)^{p(x)} dx + \int\limits_{\Omega_{\infty}} \left(\frac{|f(x)|}{\lambda}\right)^{\infty} dx \leqslant 1\right\} =$$

$$= \inf\left\{\lambda \geqslant ||f||_{L_{\infty}(\Omega_{\infty})}: \int\limits_{\Omega \setminus \Omega_{\infty}} \left(\frac{|f(x)|}{\lambda}\right)^{p(x)} dx + \int\limits_{\Omega_{\infty}} \left(\frac{|f(x)|}{\lambda}\right)^{\infty} dx \leqslant 1\right\} =$$

$$= \inf\left\{\lambda \geqslant ||f||_{L_{\infty}(\Omega_{\infty})}: \int\limits_{\Omega \setminus \Omega_{\infty}} \left(\frac{|f(x)|}{\lambda}\right)^{p(x)} dx + \int\limits_{\Omega_{\infty}} \left(\frac{|f(x)|}{\lambda}\right)^{\infty} dx \leqslant 1\right\} =$$

$$= \inf\left\{\lambda \geqslant ||f||_{L_{\infty}(\Omega_{\infty})}: \int\limits_{\Omega \setminus \Omega_{\infty}} \left(\frac{|f(x)|}{\lambda}\right)^{p(x)} dx \leqslant 1\right\} =$$

$$= \inf\left\{\lambda \geqslant ||f||_{L_{\infty}(\Omega_{\infty})}: \int\limits_{\Omega \setminus \Omega_{\infty}} \left(\frac{|f(x)|}{\lambda}\right)^{p(x)} dx \leqslant 1\right\} =$$

 $=\inf\{\lambda>\|f\|_{L_{\infty}(\Omega_{\infty})}:\rho_{\lambda}(p(\cdot),f,\Omega\setminus\Omega_{\infty})\leqslant 1\}.$

3. Пусть $\|f\|_{L_{p(\cdot)}(\Omega\setminus\Omega_{\infty})} \leqslant \|f\|_{L_{\infty}(\Omega_{\infty})}$. Тогда $\rho_{\lambda}(p(\cdot),f,\Omega\setminus\Omega_{\infty}) \leqslant 1$ для любого $\lambda>\|f\|_{L_{p(\cdot)}(\Omega\setminus\Omega_{\infty})}$, а значит, и для любого $\lambda>\|f\|_{L_{\infty}(\Omega_{\infty})}$. Поэтому

$$\{\lambda > \|f\|_{L_{\infty}(\Omega_{\infty})} : \rho_{\lambda}(p(\cdot), f, \Omega \setminus \Omega_{\infty}) \leqslant 1\} = (\|f\|_{L_{\infty}(\Omega_{\infty})}, \infty)$$

и согласно п. 2

$$||f||_{L_{p(\cdot)}(\Omega)}^{BT} = ||f||_{L_{\infty}(\Omega_{\infty})}.$$
 (2.4)

4. Пусть $\|f\|_{L_{p(\cdot)}(\Omega\setminus\Omega_{\infty})}>\|f\|_{L_{\infty}(\Omega_{\infty})}.$ Тогда $\rho_{\lambda}(p(\cdot),f,\Omega\setminus\Omega_{\infty})>1$ для любого $\lambda<\|f\|_{L_{p(\cdot)}(\Omega\setminus\Omega_{\infty})},$ и с учетом равенства (2.3)

$$\begin{split} \{\lambda > \|f\|_{L_{\infty}(\Omega_{\infty})} : \rho_{\lambda}(p(\cdot), f, \Omega \setminus \Omega_{\infty}) \leqslant 1\} = \\ = \{\lambda \geqslant \|f\|_{L_{p(\cdot)}(\Omega \setminus \Omega_{\infty})} : \rho_{\lambda}(p(\cdot), f, \Omega \setminus \Omega_{\infty}) \leqslant 1\} = \\ = \{\lambda > \|f\|_{L_{p(\cdot)}(\Omega \setminus \Omega_{\infty})} : \rho_{\lambda}(p(\cdot), f, \Omega \setminus \Omega_{\infty}) \leqslant 1\} = (\|f\|_{L_{p(\cdot)}(\Omega \setminus \Omega_{\infty})}, \infty). \end{split}$$

Поэтому согласно п. 2

$$||f||_{L_{p(\cdot)}(\Omega)}^{BT} = ||f||_{L_{p(\cdot)}(\Omega \setminus \Omega_{\infty})}.$$
(2.5)

Равенства (2.4) и (2.5) означают, что выполняется равенство (2.2).

Замечание 2.1. Если $p(x) = \infty$ для любых $x \in \Omega$, то согласно (2.2)

$$||f||_{L_{p(\cdot)}(\Omega)}^{BT} = ||f||_{L_{\infty}(\Omega)}.$$
 (2.6)

Замечание 2.2. Пусть $p:\Omega \to [1,\infty]$. Тогда $\|f\|_{L_{p(\cdot)}(\Omega)}^{BT}$ является нормой на $L_{p(\cdot)}(\Omega)$, эквивалентной норме $\|f\|_{L_{p(\cdot)}(\Omega)}^{KR}$. Действительно, согласно (1.3) и (2.2)

$$\frac{1}{2} \|f\|_{L_{p(\cdot)}(\Omega)}^{KR} \leqslant \|f\|_{L_{p(\cdot)}(\Omega)}^{BT} \leqslant \|f\|_{L_{p(\cdot)}(\Omega)}^{KR}. \tag{2.7}$$

Замечание 2.3. Пусть $\Omega=\Omega_1\cup\Omega_\infty,\ \Omega_1\cap\Omega_\infty=\oslash,\ \mathrm{meas}\ \Omega_1<\infty,\ \mathrm{meas}\ \Omega_\infty>0,\ a_1,a_2\geqslant 0;$ $p(x)=1,\ f(x)=a_1$ на $\Omega_1;\ p(x)=\infty,\ f(x)=a_\infty$ на $\Omega_\infty.$ Тогда

$$\begin{split} &\|f\|_{L_{p(\cdot)}(\Omega)}^{KR} = \inf\left\{\lambda > 0: \int\limits_{\Omega_1} \frac{a_1}{\lambda} \, dx + \left\|\frac{a_\infty}{\lambda}\right\|_{L_\infty(\Omega_\infty)} \leqslant 1\right\} = \\ &= \inf\{\lambda > 0: a_1 \operatorname{meas} \Omega_1 + a_\infty \leqslant \lambda\} = a_1 \operatorname{meas} \Omega_1 + a_\infty \end{split}$$

И

$$||f||_{L_{p(\cdot)}(\Omega)}^{BT} = \max\{||f||_{L_1(\Omega_1)}, ||f||_{L_{\infty}(\Omega_{\infty})}\} = \max\{a_1 \operatorname{meas} \Omega_1, a_{\infty}\}.$$

Если $a_1, a_{\infty} > 0$, то

$$||f||_{L_{p(\cdot)}(\Omega)}^{BT} < ||f||_{L_{p(\cdot)}(\Omega)}^{KR}$$

причем если $a_1 \operatorname{meas} \Omega_1 = a_{\infty}$, то $\|f\|_{L_{p(\cdot)}(\Omega)}^{KR} = 2\|f\|_{L_{p(\cdot)}(\Omega)}^{BT}$ и левое неравенство в (2.7) обращается в равенство.

Если же $a_1 = 0$ или $a_{\infty} = 0$, то правое неравенство в (2.7) обращается в равенство.

Пусть $\Omega\subset\mathbb{R}^n$ — измеримое множество, α,X,Y — неотрицательные измеримые на Ω функции,

$$\alpha(x) \leqslant 1, \quad \int_{\Omega} X(x) \, dx \leqslant 1, \quad \int_{\Omega} Y(x) \, dx \leqslant 1,$$

 $\underline{\alpha} = \operatorname*{ess\,inf}_{x \in \Omega} \alpha(x), \ \overline{\alpha} = \operatorname*{ess\,sup}_{x \in \Omega} \alpha(x).$

В приводимых ниже рассуждениях мы будем часто пользоваться следующим простым неравенством:

$$\int_{\Omega} (\alpha(x)X(x) + (1 - \alpha(x))Y(x)) dx \leqslant 1 + \overline{\alpha} - \underline{\alpha}.$$
 (2.8)

При $\alpha(x)=0$ или $\alpha(x)=1$ может встретиться произведение $0\cdot\infty$. В этом случае мы считаем, что $0\cdot\infty=0$. Если Ω_1 и Ω_2 — не пересекающиеся измеримые по Лебегу подмножества Ω ,

$$X(x)=0$$
 на $\Omega\setminus\Omega_1,$ $\int\limits_{\Omega_1}X(x)\,dx=1;$ $Y(x)=0$ на $\Omega\setminus\Omega_2,$ $\int\limits_{\Omega_2}Y(x)\,dx=1,$

и $\alpha(x) = \overline{\alpha}$ на Ω_1 , $\alpha(x) = \underline{\alpha}$ на Ω_2 , то неравенство (2.8) обращается в равенство.

Теорема 2.1. Пусть $\Omega \subset \mathbb{R}^n$ — измеримое по Лебегу множество; $p,q:\Omega \to (0,\infty]$ — измеримые по Лебегу функции такие, что

- для любых $x \in \Omega$ $0 < p(x) \leqslant q(x) \leqslant \infty$;
- $r(x) = \frac{p(x)q(x)}{q(x) p(x)}$, $ecnu \ p(x) < q(x) < \infty$, r(x) = p(x), $ecnu \ p(x) < q(x) = \infty$, $u \ r(x) = \infty$, $ecnu \ p(x) = q(x)$;
- $m = \operatorname{ess\,inf}_{x \in \Omega} \frac{p(x)}{q(x)}, M = \operatorname{ess\,sup}_{x \in \Omega} \frac{p(x)}{q(x)}, \underline{p} = \operatorname{ess\,inf}_{x \in \Omega} p(x).$

Eсли p > 0, то

$$||fg||_{L_{p(\cdot)}(\Omega)}^{BT} \leq (1+M-m)^{\frac{1}{p}} ||f||_{L_{q(\cdot)}(\Omega)}^{BT} ||g||_{L_{r(\cdot)}(\Omega)}^{BT}$$
(2.9)

для любых $f \in L^{BT}_{g(\cdot)}(\Omega)$ и $g \in L^{BT}_{r(\cdot)}(\Omega)$.

Доказательство.

Шаг 1. Пусть сначала $0 < p(x) < q(x) < \infty$ для любых $x \in \Omega$, при этом $\Omega_* = \Omega$. Воспользуемся неравенством Юнга

$$ab \leqslant \frac{a^s}{s} + \frac{b^{s'}}{s'},$$

где $a, b \geqslant 0, \ s > 1$ и $s' = \frac{s}{s-1}$. Пусть

$$\lambda > \|f\|_{L_{q(\cdot)}(\Omega)}^{BT}, \quad \mu > \|g\|_{L_{r(\cdot)}(\Omega)}^{BT}.$$
 (2.10)

Полагая
$$s = \frac{q(x)}{p(x)}, \ a = \left(\frac{|f(x)|}{\lambda}\right)^{p(x)}$$
 и $b = \left(\frac{|g(x)|}{\mu}\right)^{p(x)}$, получим, что $s' = \frac{q(x)}{q(x) - p(x)} = \frac{r(x)}{p(x)}$ и $\left(\frac{|f(x)|}{\lambda} \cdot \frac{|g(x)|}{\mu}\right)^{p(x)} \leqslant \frac{p(x)}{q(x)} \left(\frac{|f(x)|}{\lambda}\right)^{q(x)} + \left(1 - \frac{p(x)}{q(x)}\right) \left(\frac{|g(x)|}{\mu}\right)^{r(x)}.$

Следовательно,

$$\int_{\Omega} \left(\frac{|f(x)g(x)|}{\lambda \mu} \right)^{p(x)} dx \leqslant \int_{\Omega} \left(\frac{p(x)}{q(x)} \left(\frac{|f(x)|}{\lambda} \right)^{q(x)} + \left(1 - \frac{p(x)}{q(x)} \right) \left(\frac{|g(x)|}{\mu} \right)^{r(x)} \right) dx. \tag{2.11}$$

Согласно (2.10) и определению пространств $L_{q(\cdot)}^{BT}(\Omega)$ и $L_{r(\cdot)}^{BT}(\Omega)$ имеем

$$\int\limits_{\Omega} \left(\frac{|f(x)|}{\lambda}\right)^{q(x)} dx \leqslant 1, \quad \int\limits_{\Omega} \left(\frac{|g(x)|}{\mu}\right)^{r(x)} dx \leqslant 1.$$

В силу неравенства (2.8) с

$$\alpha(x) = \frac{p(x)}{q(x)}, \quad X(x) = \left(\frac{|f(x)|}{\lambda}\right)^{q(x)}, \quad Y(x) = \left(\frac{|g(x)|}{\mu}\right)^{r(x)}$$

из неравенства (2.11) следует, что

$$\int_{\Omega} \left(\frac{|f(x)g(x)|}{\lambda \mu} \right)^{p(x)} dx \leqslant 1 + M - m.$$

Значит, поскольку $(1+M-m)^{-\frac{p(x)}{\underline{p}}} \leqslant (1+M-m)^{-1}$ для почти всех $x \in \Omega,$

$$\int\limits_{\Omega} \left(\frac{|f(x)| \cdot |g(x)|}{(1+M-m)^{\frac{1}{p}} \lambda \mu} \right)^{p(x)} dx \leqslant \int\limits_{\Omega} \frac{1}{(1+M-m)} \left(\frac{|f(x)| \cdot |g(x)|}{\lambda \mu} \right)^{p(x)} dx \leqslant 1$$

И

$$||fg||_{L_{p(\cdot)}(\Omega)}^{BT} \le (1+M-m)^{\frac{1}{p}} \lambda \mu.$$
 (2.12)

Взяв инфимум по всем рассматриваемым λ и μ , получим неравенство (2.9).

Шаг 2. Пусть теперь $0 < p(x) \leqslant q(x) < \infty$ для любых $x \in \Omega$, $G_1 = \{x \in \Omega : p(x) < q(x)\}$, $G_2 = \{x \in \Omega : p(x) = q(x)\}$ и выполняются неравенства (2.10). Согласно неравенству (2.8) с Ω , замененным на G_1 , и с учетом того, что для почти всех $x \in G_2$ согласно равенству (2.6)

$$|g(x)| \le ||g||_{L_{\infty}(G_2)} = ||g||_{L_{r(\cdot)}(G_2)}^{BT} \le ||g||_{L_{r(\cdot)}(\Omega)}^{BT},$$
 (2.13)

следовательно, $\frac{|g(x)|}{\mu} < 1$, получим, что

$$\int_{\Omega} \left(\frac{|f(x)g(x)|}{\lambda \mu} \right)^{p(x)} dx = \int_{G_1} \left(\frac{|f(x)g(x)|}{\lambda \mu} \right)^{p(x)} dx + \int_{G_2} \left(\frac{|f(x)|}{\lambda} \right)^{p(x)} \left(\frac{|g(x)|}{\mu} \right)^{p(x)} dx \leqslant$$

$$\leqslant \int_{G_1} \left(\frac{p(x)}{q(x)} \left(\frac{|f(x)|}{\lambda} \right)^{q(x)} + \left(1 - \frac{p(x)}{q(x)} \right) \left(\frac{|g(x)|}{\mu} \right)^{r(x)} \right) dx + \int_{G_2} \frac{p(x)}{q(x)} \left(\frac{|f(x)|}{\lambda} \right)^{q(x)} dx \leqslant$$

$$\leqslant \int_{G_1} \left(\frac{p(x)}{q(x)} \left(\frac{|f(x)|}{\lambda} \right)^{q(x)} + \left(1 - \frac{p(x)}{q(x)} \right) \left(\frac{|g(x)|}{\mu} \right)^{r(x)} \right) dx. \tag{2.14}$$

Далее, используя неравенство (2.8), с учетом неравенств (2.10), как в шаге 1, получим неравенство (2.12) и, значит, и неравенство (2.9).

Шаг 3. Пусть далее $0 < p(x) \leqslant q(x) \leqslant \infty$ и $p(x) < \infty$ для любых $x \in \Omega$, $G_3 = \{x \in \Omega, \ q(x) < \infty\}$, $G_4 = \{x \in \Omega, \ q(x) = \infty\}$ и выполняются неравенства (2.10). Согласно неравенству (2.14) с Ω , замененным на G_3 , и с учетом того, что для почти всех $x \in G_4$ согласно равенству (2.6)

$$|f(x)| \le ||f||_{L_{\infty}(G_4)} = ||f||_{L_{q(\cdot)}(G_4)}^{BT} \le ||f||_{L_{q(\cdot)}(\Omega)}^{BT},$$
 (2.15)

следовательно, $\frac{|f(x)|}{\lambda} < 1$, получим, что

$$\int\limits_{\Omega} \Big(\frac{|f(x)g(x)|}{\lambda\mu}\Big)^{p(x)}\,dx = \int\limits_{G_3} \Big(\frac{|f(x)g(x)|}{\lambda\mu}\Big)^{p(x)}\,dx + \int\limits_{G_4} \Big(\frac{|f(x)|}{\lambda}\Big)^{p(x)} \Big(\frac{|g(x)|}{\mu}\Big)^{p(x)}\,dx \leqslant$$

$$\leqslant \int_{G_3} \left(\frac{p(x)}{q(x)} \left(\frac{|f(x)|}{\lambda} \right)^{q(x)} + \left(1 - \frac{p(x)}{q(x)} \right) \left(\frac{|g(x)|}{\mu} \right)^{r(x)} \right) dx + \int_{G_4} \left(1 - \frac{p(x)}{q(x)} \right) \left(\frac{|g(x)|}{\mu} \right)^{r(x)} dx \leqslant$$

$$\leqslant \int_{G_4} \left(\frac{p(x)}{q(x)} \left(\frac{|f(x)|}{\lambda} \right)^{q(x)} + \left(1 - \frac{p(x)}{q(x)} \right) \left(\frac{|g(x)|}{\mu} \right)^{r(x)} \right) dx. \tag{2.16}$$

Далее, используя неравенство (2.8), с учетом неравенств (2.10), как в шаге 1, получим неравенство (2.12) и, значит, неравенство (2.9).

Шаг 4. Пусть, наконец, $0 < p(x) \leqslant q(x) \leqslant \infty$ для любых $x \in \Omega$, $G_5 = \{x \in \Omega, \ p(x) < \infty\}$, $G_6 = \{x \in \Omega, \ p(x) = q(x) = \infty\}$ и выполняются неравенства (2.10). Согласно неравенству (2.16) с Ω , замененным на G_5 , и с учетом того, что на G_6 $q(x) = r(x) = \infty$ и что согласно равенству (2.15) с G_4 , замененным на G_5 , и (2.13) с G_2 , замененным на G_6 , для почти всех $x \in G_6$

$$|f(x)| \le ||f||_{L_q(\Omega)}^{BT}, \quad |g(x)| \le ||g||_{L_r(\cdot)(\Omega)}^{BT},$$

получим, что

$$\int_{G_6} \left(\frac{|f(x)g(x)|}{\lambda \mu} \right)^{p(x)} dx \leqslant \int_{G_6} \left(\frac{\|f\|_{L_q(\Omega)}}{\lambda} \cdot \frac{\|g\|_{L_r(\Omega)}}{\mu} \right)^{\infty} dx = 0$$

И

$$\int_{\Omega} \left(\frac{|f(x)g(x)|}{\lambda \mu} \right)^{p(x)} dx = \int_{G_5} \left(\frac{|f(x)g(x)|}{\lambda \mu} \right)^{p(x)} dx \leqslant
\leqslant \int_{G_5} \left(\frac{p(x)}{q(x)} \left(\frac{|f(x)|}{\lambda} \right)^{q(x)} + \left(1 - \frac{p(x)}{q(x)} \right) \left(\frac{|g(x)|}{\mu} \right)^{r(x)} \right) dx \leqslant
\leqslant \int_{\Omega} \left(\frac{p(x)}{q(x)} \left(\frac{|f(x)|}{\lambda} \right)^{q(x)} + \left(1 - \frac{p(x)}{q(x)} \right) \left(\frac{|g(x)|}{\mu} \right)^{r(x)} \right) dx$$

(здесь, в дополнение к принятым ранее соглашениям, мы считаем, что $\frac{\infty}{\infty}=1$). Далее, используя неравенство (2.8), с учетом неравенств (2.10), как в шаге 1, получим неравенство (2.12) и, значит, неравенство (2.9).

Отметим некоторые частные случаи неравенства (2.9).

Если $1 \leqslant p(x) \leqslant \infty$ для любого $x \in \Omega$, то

$$\int_{\Omega} |f(x)g(x)| \, dx \leqslant \left(1 + \frac{1}{\underline{p}} - \frac{1}{\overline{p}}\right) \|f\|_{L_{p(\cdot)}(\Omega)}^{BT} \|g\|_{L_{p'(\cdot)}(\Omega)}^{BT}. \tag{2.17}$$

Если в теореме 1.1 $\max\Omega_1>0$ или $\max\Omega_\infty>0$ и $\max\Omega_*>0$, то постоянная в неравенстве (2.17) меньше постоянной в неравенстве (1.6), которая в этом случае равна $3+\frac{1}{p_*}-\frac{1}{p^*}$.

Если же в теореме 1.1 meas $\Omega_1 = \text{meas } \Omega_\infty = 0$, meas $\Omega_* > 0$, то $p_* = \underline{p}$, $p^* = \overline{p}$ и постоянная в неравенстве (2.17) совпадает с постоянной в неравенстве (1.6), принимающем вид (1.9), но и в этом случае неравенство (2.17) точнее неравенства (2.12), так как согласно неравенству (2.7)

$$||f||_{L_{p(\cdot)}(\Omega)}^{BT}||g||_{L_{p'(\cdot)}(\Omega)}^{BT} \leqslant ||f||_{L_{p(\cdot)}(\Omega)}^{KR}||g||_{L_{p'(\cdot)}(\Omega)}^{KR}.$$

Если $0 < p(x) \leqslant \infty$ для любого $x \in \Omega, \ c \geqslant 1, \ c' = \frac{c}{c-1},$ если $c > 1, \ c' = \infty,$ если c = 1, то

$$||fg||_{L_{p(\cdot)}(\Omega)}^{BT} \le ||f||_{L_{cp(\cdot)}(\Omega)}^{BT} ||g||_{L_{c'p(\cdot)}(\Omega)}^{BT},$$
 (2.18)

в частности.

$$||fg||_{L_{p(\cdot)}(\Omega)}^{BT} \le ||f||_{L_{2p(\cdot)}(\Omega)}^{BT} ||g||_{L_{2p(\cdot)}(\Omega)}^{BT}, \tag{2.19}$$

$$||fg||_{L_{p(\cdot)}(\Omega)}^{BT} \le ||f||_{L_{p(\cdot)}(\Omega)}^{BT} ||g||_{L_{\infty}(\Omega)}^{BT}.$$
 (2.20)

Если $\operatorname{meas} \Omega < \infty, \ 0 < p(x) \leqslant q(x) \leqslant \infty$ и p > 0, то

$$||f||_{L_{p(\cdot)}(\Omega)}^{BT} \le (1 + M - m)^{\frac{1}{\underline{p}}} ||1||_{L_{r(\cdot)}(\Omega)}^{BT} ||f||_{L_{q(\cdot)}(\Omega)}^{BT}, \tag{2.21}$$

где при $\underline{r} > 0, \, \overline{r} < \infty$

$$\|1\|_{L_{r(\cdot)}(\Omega)}^{BT}\leqslant \begin{cases} (\operatorname{meas}\Omega)^{\frac{1}{r}}, & \text{если }\operatorname{meas}\Omega\leqslant 1,\\ (\operatorname{meas}\Omega)^{\frac{1}{r}}, & \text{если }\operatorname{meas}\Omega>1. \end{cases}$$

Действительно, пусть meas $\Omega \leqslant 1$. Так как $\left(\frac{1}{\lambda}\right)^{r(x)} \leqslant \left(\frac{1}{\lambda}\right)^{\overline{r}}$ при $0 < \lambda \leqslant 1$, то

$$\left\{0 < \lambda \leqslant 1 : \int\limits_{\Omega} \left(\frac{1}{\lambda}\right)^{\overline{r}} dx \leqslant 1\right\} \subset \left\{0 < \lambda \leqslant 1 : \int\limits_{\Omega} \left(\frac{1}{\lambda}\right)^{r(x)} dx \leqslant 1\right\}$$

И

$$\begin{aligned} \|1\|_{L_{r(\cdot)}(\Omega)}^{BT} &\leqslant \inf\left\{0 < \lambda \leqslant 1 : \int\limits_{\Omega} \left(\frac{1}{\lambda}\right)^{r(x)} dx \leqslant 1\right\} \leqslant \\ &\leqslant \inf\left\{0 < \lambda \leqslant 1 : \int\limits_{\Omega} \left(\frac{1}{\lambda}\right)^{\overline{r}} dx \leqslant 1\right\} = \inf\left\{0 < \lambda \leqslant 1 : \lambda \geqslant (\operatorname{meas}\Omega)^{\frac{1}{\overline{r}}}\right\} = (\operatorname{meas}\Omega)^{\frac{1}{\overline{r}}}. \end{aligned}$$

Аналогично рассматривается случай, когда $\operatorname{meas} \Omega > 1$.

3. Примеры

1. Пусть Ω_1,Ω_2 — не пересекающиеся измеримые по Лебегу множества конечной меры, $\Omega=\Omega_1\cup\Omega_2,\ 0< p_1,p_2<\infty,0\leqslant a_1,a_2<\infty,$

$$\varphi(x) = \begin{cases} a_1, & \text{если } x \in \Omega_1, \\ a_2, & \text{если } x \in \Omega_2, \end{cases} \qquad p(x) = \begin{cases} p_1, & \text{если } x \in \Omega_1, \\ p_2, & \text{если } x \in \Omega_2. \end{cases}$$

В этом случае

$$\|\varphi\|_{L_{p(\cdot)}(\Omega)}^{BT} = \inf\left\{\lambda > 0 : \int_{\Omega} \left(\frac{|\varphi(x)|}{\lambda}\right)^{p(x)} dx \leqslant 1\right\} =$$

$$= \inf\left\{\lambda > 0 : \left(\frac{a_1}{\lambda}\right)^{p_1} \max \Omega_1 + \left(\frac{a_2}{\lambda}\right)^{p_2} \max \Omega_2 \leqslant 1\right\} = \lambda_*,$$

где λ_* — единственный положительный корень уравнения

$$t_1 \left(\frac{1}{\lambda}\right)^{p_1} + t_2 \left(\frac{1}{\lambda}\right)^{p_2} - 1 = 0,$$
 (3.1)

где

где

$$t_1 = a_1^{p_1} \operatorname{meas} \Omega_1, \quad t_2 = a_2^{p_2} \operatorname{meas} \Omega_2.$$
 (3.2)

2. Пусть в примере 1 $p_1=2, p_2=1,$ тогда (3.1) — квадратное уравнение и

$$\|\varphi\|_{L_{p(\cdot)}(\Omega)}^{BT} = \frac{1}{2} \left(\sqrt{t_2^2 + 4t_1} + t_2 \right).$$

В этом случае p'(x) = 2, если $x \in \Omega_1$, и $p'(x) = \infty$, если $x \in \Omega_2$. Пусть $0 < b_1, b_2 < \infty$ и

$$\psi(x) = \begin{cases} b_1, & \text{если } x \in \Omega_1, \\ b_2, & \text{если } x \in \Omega_2. \end{cases}$$

Согласно формуле (2.2)

$$\|\psi\|_{L_{p'(\cdot)}(\Omega)}^{BT} = \max\left\{\|b_1\|_{L_2(\Omega_1)}, \|b_2\|_{L_\infty(\Omega_2)}\right\} = \max\left\{b_1\sqrt{\max\Omega_1}, b_2\right\} = \max\{\tau_1, \tau_2\},$$

$$\tau_1 = b_1\sqrt{\max\Omega_1}, \quad \tau_2 = b_2.$$

Кроме того,

$$\int_{\Omega} |\varphi(x)\psi(x)| dx = a_1b_1 \operatorname{meas} \Omega_1 + a_2b_2 \operatorname{meas} \Omega_2 = \sqrt{t_1} \tau_1 + t_2\tau_2.$$

Пусть C>0. Рассмотрим для определенной выше функции p(x) неравенство

$$\int_{\Omega} |f(x)g(x)| \, dx \leqslant C \|f\|_{L_{p(\cdot)}(\Omega)}^{BT} \|g\|_{L_{p'(\cdot)}(\Omega)}^{BT}, \tag{3.3}$$

выполняющееся для любых $f\in L_{q(\cdot)}^{BT}(\Omega)$ и $g\in L_{r(\cdot)}^{BT}(\Omega)$. В этом случае $\underline{p}=1,\overline{p}=2$ и согласно неравенству (2.17) $C\leqslant 1,$ 5. С другой стороны, выбирая в (3.3) $f=\varphi$ и $g=\psi$, имеем

$$C\geqslant \sup_{t_1,t_2,\tau_1,\tau_2>0}\frac{2(\sqrt{t_1}\,\tau_1+t_2\tau_2)}{\left(\sqrt{t_2^2+4t_1}+t_2\right)\max\{\tau_1,\tau_2\}}=\sup_{t_1,t_2>0}\frac{2(\sqrt{t_1}+t_2)}{\sqrt{t_2^2+4t_1}+t_2}=\max_{\xi>0}\frac{2(1+\xi)}{\sqrt{\xi^2+4}+\xi}=1,25.$$

Отметим еще, что согласно неравенству (2.7) из неравенства (2.17) следует, что для рассматриваемой функции p(x)

$$\int_{\Omega} |f(x)g(x)| \, dx \le 1.5 \, ||f||_{L_{p(\cdot)}(\Omega)}^{KR} ||g||_{L_{p'(\cdot)}(\Omega)}^{KR}$$

для любых $f \in L_{p(\cdot)}(\Omega)$ и $g \in L_{p'(\cdot)}(\Omega)$, в то время как из неравенства (1.6) следует только, что это неравенство выполняется с постоянной 2 (вместо 1,5).

В заключение, авторы благодарят рецензента за тщательное чтение статьи и ряд замечаний, которые были учтены авторами.

СПИСОК ЛИТЕРАТУРЫ

- 1. Бандалиев Р. А. О структурных свойствах весового пространства $L_{p(x),\omega}$ для 0 < p(x) < 1// Мат. заметки. $-2014.-95, \, \mathbb{N}\!\!\!_{2} \, 4.-$ С. 492-506.
- 2. Жиков В. В. Усреднение функционалов вариационного исчисления и теории упругости// Изв. АН СССР. Сер. Мат. -1986. -50, № 4. С. 675-710.
- 3. *Рабинович В. С., Самко С. Г.* Сингулярные интегральные операторы в весовых пространствах Лебега с переменными показателями на сложных карлесоновских кривых// Функц. анализ и его прилож. 2012. 46, № 1. С. 87–92.
- 4. *Самко С. Г., Умархаджиев С. М.* О регуляризации одного многомерного интегрального уравнения в пространствах Лебега с переменным показателем// Мат. заметки. 2013. 93, № 1. С. 575–585.
- 5. Шарапудинов И. И. О топологии пространства $L^{p(t)}([0,1])$ // Мат. заметки. 1979. 26, № 4. С. 613—632.
- 6. Bandaliev R. A. On Hardy-type inequalities in weighted variable exponent spaces $L_{p(x),\omega}$ for 0 < p(x) < 1// Eurasian Math. J. -2013.-4, N 4. C. 5-16.
- 7. Bandaliev R. A., Hasanov S. G. On denseness of $C_0^\infty(\Omega)$ and compactness in $L_{p(x)}(\Omega)$ for 0 < p(x) < 1//Moscow Math. J. <math>-2018. -18, No 1. -C. 1-13.
- 8. Bendaoud S. A., Senouci A. Inequalities for weighted Hardy operators in weighted variable exponent Lebesgue space with 0 < p(x) < 1// Eurasian Math. J. -2018.-9, N 1.-C. 30-39.
- 9. *Cruz-Uribe D., Fiorenza A.* Variable Lebesgue spaces. Foundations and harmonic analysis. Basel: Birkhäuser, 2013.
- 10. Cruz-Uribe D., Fiorenza A., Neugebauer C. The maximal function on variable L_p spaces// Ann. Acad. Sci. Fenn. Math. -2003. -28. C. 223–238.
- 11. Diening L. Maximal function on generalized Lebesgue spaces $L_{p(.)}//$ Math. Inequal. Appl. -2004.-7, No. 2. -C. 245-254.
- 12. *Diening L., Harjulehto P., Hasto P., Ruzhichka M.* Lebesgue and Sobolev spaces with variable exponents. Berlin: Springer, 2011.
- 13. Kovachik O., Rakosnik J. On spaces $L^{p(x)}$ and $W^{k,p(x)}//$ Czechoslovak Math. J. -1991.-41, N 4.- C. 592-618.
- 14. Nekvinda A. Hardy—Littlewood maximal operator on $L^{p(x)}(M_n)//$ Math. Inequal. Appl. -2004.-1, No. 2. -C. 255-266.
- 15. Ruzhichka M. Electrorheological fluids: modeling and mathematical theory. Berlin: Springer, 2000.
- 16. Samko S. Convolution type operators in $L_{p(x)}//$ Integral Transforms Spec. Funct. -1998.-7, \mathbb{N} 1-2. C. 123-144.

17. Senouci A., Zanou A. Some integral inequalities for quasimonotone functions in weighted variable exponent Lebesgue space with 0 < p(x) < 1// Eurasian Math. J. -2020. - 11, № 4. - C. 58–65.

В. И. Буренков

Российский университет дружбы народов, Москва, Россия;

Cardiff University, Cardiff, UK

E-mail: Burenkov@cardiff.ac.uk

Т. В. Тарарыкова

Российский университет дружбы народов, Москва, Россия;

Cardiff University, Cardiff, UK

E-mail: tararykovat@cardiff.ac.uk

DOI: 10.22363/2413-3639-2021-67-3-472-482 UDC 517.518

On Holder's Inequality in Lebesgue Spaces with Variable Order of Summability

© 2021 V. I. Burenkov, T. V. Tararykova

Abstract. In this paper, we introduce a new version of the definition of a quasi-norm (in particular, a norm) in Lebesgue spaces with variable order of summability. Using it, we prove an analogue of Hölder's inequality for such spaces, which is more general and more precise than those known earlier.

REFERENCES

- 1. R. A. Bandaliev, "O strukturnykh svoystvakh vesovogo prostranstva $L_{p(x),\omega}$ dlya 0 < p(x) < 1" [Structural properties of the weighted space $L_{p(x),\omega}$ for 0 < p(x) < 1], Mat. zametki [Math. Notes], 2014, 95, No. 4, 492-506 (in Russian).
- 2. V. V. Zhikov, "Usrednenie funktsionalov variatsionnogo ischisleniya i teorii uprugosti" [Averaging of functionals of the calculus of variations and the elasticity theory], Izv. AN SSSR. Ser. Mat. [Bull. Acad. Sci. USSR. Ser. Math.], 1986, **50**, No. 4, 675–710 (in Russian).
- 3. V. S. Rabinovich and S. G. Samko, "Singulyarnye integral'nye operatory v vesovykh prostranstvakh Lebega s peremennymi pokazatelyami na slozhnykh karlesonovskikh krivykh" [Singular integral operators in weighted Lebesgue spaces with variable indices on complex Carleson curves], Funkts. analiz i ego prilozh. [Funct. Anal. Appl.], 2012, **46**, No. 1, 87–92 (in Russian).
- 4. S. G. Samko and S. M. Umarkhadzhiev, "O regulyarizatsii odnogo mnogomernogo integral'nogo uravneniya v prostranstvakh Lebega s peremennym pokazatelem" [On the regularization of a multidimensional integral equation in Lebesgue spaces with variable index], Mat. zametki [Math. Notes], 2013, 93, No. 1, 575-585 (in Russian).
- 5. I. I. Sharapudinov, "O topologii prostranstva $L^{p(t)}([0,1])$ " [On the topology of the space $L^{p(t)}([0,1])$], Mat. zametki [Math. Notes], 1979, 26, No. 4, 613-632 (in Russian).
- 6. R. A. Bandaliev, "On Hardy-type inequalities in weighted variable exponent spaces $L_{p(x),\omega}$ for 0 < p(x) < 1," Eurasian Math. J., 2013, 4, No. 4, 5-16.
- 7. R. A. Bandaliev and S. G. Hasanov, "On denseness of $C_0^{\infty}(\Omega)$ and compactness in $L_{p(x)}(\Omega)$ for $0 < p(x) < \infty$ 1," Moscow Math. J., 2018, 18, No. 1, 1-13.
- 8. S. A. Bendaoud and A. Senouci, "Inequalities for weighted Hardy operators in weighted variable exponent Lebesgue space with 0 < p(x) < 1," Eurasian Math. J., 2018, **9**, No. 1, 30–39.

- 9. D. Cruz-Uribe and A. Fiorenza, *Variable Lebesgue Spaces. Foundations and Harmonic Analysis*, Birkhäuser, Basel, 2013.
- 10. D. Cruz-Uribe, A. Fiorenza, and C. Neugebauer, "The maximal function on variable L_p spaces," Ann. Acad. Sci. Fenn. Math., 2003, **28**, 223–238.
- 11. L. Diening, "Maximal function on generalized Lebesgue spaces $L_{p(.)}$," Math. Inequal. Appl., 2004, 7, No. 2, 245–254.
- 12. L. Diening, P. Harjulehto, P. Hasto, and M. Ruzhichka, *Lebesgue and Sobolev Spaces with Variable Exponents*, Springer, Berlin, 2011.
- 13. O. Kovachik and J. Rakosnik, "On spaces $L^{p(x)}$ and $W^{k,p(x)}$," Czechoslovak Math. J., 1991, **41**, No. 4, 592-618.
- 14. A. Nekvinda, "Hardy-Littlewood maximal operator on $L^{p(x)}(M_n)$," Math. Inequal. Appl., 2004, 1, No. 2, 255–266.
- 15. M. Ruzhichka, Electrorheological Fluids: Modeling and Mathematical Theory, Springer, Berlin, 2000.
- 16. S. Samko, "Convolution type operators in $L_{p(x)}$," Integral Transforms Spec. Funct., 1998, 7, No. 1-2, 123-144.
- 17. A. Senouci and A. Zanou, "Some integral inequalities for quasimonotone functions in weighted variable exponent Lebesgue space with 0 < p(x) < 1," *Eurasian Math. J.*, 2020, **11**, No. 4, 58–65.

V. I. Burenkov

Peoples' Friendship University of Russia (RUDN University), Moscow, Russia;

Cardiff University, Cardiff, UK

E-mail: Burenkov@cardiff.ac.uk

T. V. Tararykova

Peoples' Friendship University of Russia (RUDN University), Moscow, Russia;

Cardiff University, Cardiff, UK

E-mail: tararykovat@cardiff.ac.uk