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Bﬂaronapnocn& BaOLICTOCA I'€JIMKOUaa. B crarbe 3Ta cucrema l'[pI/IMf:HeHa ﬂﬂﬂvOHpeﬂeHeHI/Iﬂ
Hy6m/u<au1/m TMOZTOTOBJIEHA TP TIOIIEPIKKE Hal'[pﬂ)K?HHO-,I[G(I)OPMI/IPOBE}’HHOI‘O COCTOHHI/EH KOJIbLIEBOU ITI’ KpyTrijion PJ’IaCTIle npu
HpOFpaMMLI PyHH «5—100y. BHCIIHEU OCECUMMETPUYIHOU IMMOBEPXHOCTHOU HArpy3Ke, NCUCTBYIOIICH KaK B IJIOC-

KOCTH IIJIACTHH, TaK U U3 UX IIJIOCKOCTH. HOHy‘IeHHLIe Pe3yabTaThl AJId KOJIbLEC-

BOM TIJIACTHHBI B HCOPTOIOHAJIBHBIX KOOpAWHATAX PacIIUpsAOT KiacC 3aga4, Ko-

st nuTHpoOBanust TOpBIE TENePh MOXHO PEIIUTh aHATMTUYeCKA. OHU MOTYT OBITh HCIIOJIB30BaHbI B
Krivoshapko S.N. An analysis of annular Ka4ecTBE TEPBHIX WICHOB PAJ0B PA3IOKEHHs HCKOMBIX TIepeMEIEH i B CIyyae
plate in curvilinear non-orthogonal coordi- IIPUMEHEHUSI METOA MAJIOrO MapaMeTpa NPUMEHHUTENBHO K JIIMHHOMY pa3Bep-
nates with the help of equations of a shell THIBAIOIEMYCS T€IUKOMLY.
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HBIX KOHCTPYKUMH u coopyxeHuit. 2020.
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10.22363/1815-5235-2020-16-6-472-480

KiioueBsble cj10Ba: HCOPTOrOHAIBHBIC KOOPAMHATHI, TEOPHUsI 000JI0UEK, pa3-
BEPTHIBAIOLIHUIACS TEIMKOW, KOJbIEBas TUIACTUHKA, YPAaBHEHUsI PAaBHOBECHS, OCE-
CHMMETPHYHAs HAarpy3Ka

1. Introduction

It is known, that the simplest equations of theory of thin shells are turned out for middle shell surfaces
given in principle curvatures. But sometimes, it is very difficult to set a surface in principle curvatures and one
must use governing equations of a theory of thin shells in curvilinear non-orthogonal coordinates. The complete
system of equations in curvilinear non-orthogonal coordinates was proposed by A.L. Goldenveizer [1]. This sys-
tem contains internal “pseudoforces”, “pseudomoments”, and Christoffel’s symbols. The system of equations,
presented by Ya.M. Grigorenko and A.M. Timonin [2], is written in tensor form.

The system, proposed by the author, contains internal forces and moments usual for engineers and is free
from Christoffel’s symbols [3]. Hereinafter, the equations presented in a paper [3] will be used.

2. An aim of investigation

Having the systems of the governing equations of a theory of thin shells, set by different scientists,
it is desirable to use them for solution of problems of bending of plates and for solution of plane problems of
their analysis, or to apply the governing equations of a theory of thin shells for solution of test examples of ana-
lysis of plane elements. This approach is illustrated by an example of reducing of general equations of a theory
of thin shells in curvilinear arbitrary coordinates to the equations for analysis of tangential developable helicoid,
and after for analysis of annular plates under action of axisymmetric uniform load of two types.

3. Methods of investigation

3.1. Governing equations of a theory of thin shells in curvilinear non-orthogonal coordinates

A system of the governing equations of a theory of thin shells in curvilinear non-orthogonal coordinates,
proposed by the author, has the following form [3]:
— six equilibrium equations:

N —-N
2(ASV)Jr—” V[a—B—%cosxj+— .
siny \ou ov ou ’
S+S (0B 0A AB
E(ANV)+ L v(a——a—c Xj —_— g—gcosx +ABY sinx =0,
ov siny \ou ov ou ou siny\ R, R,
N N
- ! +i[—(BQ)+i(AQ )} Zsiny =0,
R, siny R siny AB| du ov
_ 9 (am )4 Mt My [OB_OA A oM, Moy siny + ABQ, siny =0,
ov siny ou ov ou ou
0 M, -M,(oB 6A cA oM
—(AM cosy [+—M, — = —*cosyx+AB(Q, +Q, cosx)=0,
M)+ [au 5 x] M. -B— ~ -cosy-+AB(Q, +Q, o))
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(S,—=S,)sinx+(N, —N, )cosx+
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uv vu

— =0,
R, siny R, siny

(M

where X, Y, Z — external uniform surface load in the direction of mobile orthogonal axes x, y, z, and the x-axis

coincides with the tangent to the u-coordinate line;

— six geometrical equations suggested by A.L. Goldenveizer and presented in a monography [1], the first
three of which after submission of Christoffel’s symbols in them can be expressed as [3]

1] ou  o6A(u o(u)l

g, =—| —++—| % |[+Bcosxy—| —~ | |-,
Al ou ov(B ou\B)| R/
1[ou, oB(u o(ul| u

g, =—| —++—| % |+Acosx—| = | |-==,
Bl ov oul A oviA)| R

sy BO() AO(w)] 10x, 1or, w2 omy o)
Aou\ B) Bov\ A Adu B ov siny\ R, R R/

Remaining three equations for the determination of change of curvatures k, and «, and torsion «,, have

rather complex form, for example, for shallow shells

cosy OA du,

&)

« _l_i 1 du,) 1 0(cosxau, N 1 0A 6uz_
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Eight physical equations connecting internal forces N,, N,, S, S, O., O, and moments M,, M,, M,,, M,,, and com-

K, between themselves can be written as [3]

ponents of tangential and bending deformations ¢,, €, €,, ¥,, K,
Eh Eh
N, = ~(g, —g,ctgx +ve,), N,=——(g, —€,ctgx + Ve, ),
1-v 1—
1-v 1-v
SV - C[Euv +(EV _E“)Ctgx]’ Su :TC[EUV +(£u _Ev)Cth]'

3
M, __En
12(1+v)

(x,, - k,c08x), M
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_ERW
v 12(1+v)

—(1-v)(x,sinx +x, ctgx)
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(k,, - ¥,C08X),

-
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~-

where y # 7/2 is the angle between the coordinate lines u and v; v = Poisson’s ratio; 4 = thickness of shell.

A vector of displacements can be written as

r r
U=u,~+u,—~-u,n.
B

A
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Figure. The forces (a) and moments (b), per unit length, needed for equilibrium

The forces and moments, per unit length, needed for equilibrium are shown in Figure and are positive
as shown.

3.2. Developable helicoid
Parametric equations of evolvent (developable) helicoid can be written as
x=x(u,v)=acosv—ausinv /m,
y=y(u,v)=asinv+aucosv/m,

z=z(u,v)=bv+bu/m, (5)

where m=+a’ +b2; b is the lead of a helix u = 0 (cuspidal edge); v is an angle measured from an axis Ox;

a is a radius of a cylinder on which the helical cuspidal edge is lying.
In this case, coefficients of the fundamental forms of the surface (5) and its principal curvatures (k.; &)
can be written as

A=1; F=m; B2=m?+u2a2/m?, N=uab/m?, L=M=0; k,=0; k,=N/B?, (6)
and also

F m . ua 0B ud
cosy=——=—, siny=—0y,—=——.
AB B mB ou m'B

(7

The u-coordinate lines coincide with the straight generatrixes of the helicoid but the v-lines are co-axis helixes.
The formulae (6) show that conjugated (M = 0) non-orthogonal (¥ # 0) system of curvilinear coordinates is used.

For a developable helicoid (5) with coefficients of the fundamental forms (6), the equations (1)—(3) be-
come simpler. Substituting the geometrical equations (2), (3) into the formulae of Hooke’s law (4) but the results
into the equilibrium equations (1) one can obtain a system of three differential equations in partial derivatives of
the 8" order. This was made in a monograph [3]. But this system of equations was not solved analytically.

A system of three differential equations in partial derivatives of the 8" order, presented in a work [4],
was reduced to a system of three ordinary differential equations of the 8" order for a long developable helicoid.
It was assumed that all components of stress-strain state of a long developable helicoid depend only on
the u-coordinate, i. e. all derivatives with respect to parameter v are equal to zero. In this case, a problem of de-
termination of components of stress-strain state yields to analytical solution. With the help of small parameter
method, it was solved in works [4; 5]. With the help of asymptotic semianalytical method, it was solved in
a work [6]. Analogous approach was used in a paper [7] for analysis of a long right helicoid. Two methods of

TEOPUA TOHKUX YMPYTX OBONOYEK 475



Krivoshapko S.N. Structural Mechanics of Engineering Constructions and Buildings. 2020;16(6):472-480

analysis of thin elastic open helicoidal shells were used in a manuscript [8] where the equations of A.L. Golden-
veizer [1] and the equations (1)—(4) were applied. Now five types of helicoidal shells are known [9]. All these
shells can be analyzed with the help of presented equations (1)—(4) [10; 11].

3.3. Governing equations for thin annular plates in curvilinear non-orthogonal coordinates

For annular plates, we have b = 0, therefore, formulae (1)—(7) are simplified and become
m=a; A=1;, F=a;, B’=a?+ uz
N=L=M=0; k,=0; k,=0;

a . uoB u odx a
cosy=—, siny=—,—=—,—=—. (8)
B B ou B ou B

Substituting the values (8) into formulae (1)—(7) gives the possibility easily to obtain corresponding go-
verning equations for annular plate or its fragment subjected to arbitrary uniform surface load or to linear load
along contour of the plate acting in the plane of the plate.

One can obtain a system of three differential equations in partial derivatives in displacements and reduce
them to a system of two differential equations in displacements of the same order. But to solve analytically
the obtained systems it is not possible yet. Of course, this problem can be solved with the help of FEM [12].

Assume that an annular plate is subjected to an axisymmetric load. Then, all parameters of stress-strain
state of the plate will not depend on the v-coordinate, i. e.

at ..
vt

Hence, the system of equations (1)—(4) becomes:
— equilibrium equations:

d
a(uNu +aS,)—N,+uX =0,

d
E(uSu —aN,) + S, +uY =0,

d
—(BQ,) —uZ =
du( Qu) u OI

My + My, +uQ, =0

du ru v ’
d(uMy,

 du

u(Sy —Sy) +a(N, —N,) =0; ©

a

+ M, +aQ,+BQ, =0,

— geometrical equations:

ae u
&y = a' &y = ﬁuw

d_L|J a

By = U gy ~ g7t

B du’

_d (B duz) _ldu,
K”_du udul/’ =

a du,
KUV =77 ;
B* du

(10)
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— physical equations:

N —C[ ad( )+6+ dG]
v uuw w

du, 1 1—v
NuZC[%'l'Zuu B2 u uu],
1—-v dys do
— 27r 7
S0 =0 C(u du adu)
g _1-v ( dlj}+ad6 2a )
vo2 du " udu BEM)
d (1du,
M, ——(1—v)aD—(—du) w =0,
_ D[d Bzduz . dzuz
"7 uldu\u du ( v)u
2d d
Mu=—2 dB du, ) (q_yyd ) (11)
du\ u du du
D= Eh3 = Eh
T 12(1-v2) T 1—v?
New notations were introduced in formulae (10) and (11):
O=u,+— u lIJ—— (12)

4. Results

4.1. Applied load is perpendicular to the middle surface of the plate

Assume that an annular plate subjected to constant surface load Z = const. It means that applied load is
perpendicular to the middle surface of the plate. This assumption eliminates the need to consider in-plane mem-
brane forces that are not considered in the classical theory of bending of thin plates. So, integrating the third
equation of equilibrium (9), we determine

2 -~
BQ,=—Z+(, (13)

where C] is the unknown constant of the integration.
Substituting the values of the shear force Q,, obtained from the fourth equation of equilibrium (9),
into the fifth equation of equilibrium, gives

B? d(uM,, a? a
BQuzﬁ du - v_ﬁMu +£Mvu-

Taking into account expressions (11), the obtained equation can be written as

po - _pBd[1d (Bdu,
Qu = u duludu\u du /|
or with the help of an equality (13) we get
DBZ d[1d Bzduz —UZZ+Z‘/
uwduludu\u du )| 2 L

TEOPUA TOHKUX YMPYTX OBONOYEK 477



Krivoshapko S.N. Structural Mechanics of Engineering Constructions and Buildings. 2020;16(6):472-480

Integration of the last expression gives

u, = C;B?InB? + GInB? + Cyu? + €y — —=u?, (14)

where Ci, C,, C3, C4 are the unknown constants of the integration, that can be determined after satisfaction of
boundary conditions.
Substituting a value of displacement (14) in the expression for the determination of BQ, gives

2

u
BQy = —8DCy +—7Z,

i.e.C; = —8DC;.

At last, we can find

8a a
Qv = ____anu :ﬁ DC1 —EZ

4.2. Applied load is in the plane of the plate

Examine loading annular or circular plate (a = 0) by axisymmetric load acting in the plane of the plate.
In this case, we use the first two equations of equilibrium (9). After substitution the first fourth physical equa-
tions in them and after some transformations, equations (9) take the following form:

d{ld[e ]}_dild[ ]}_u(y X
du lu du u(® = aw) T dulugu ™ty T cp i T WA
d dys d do dao 2u3

_ 3+ _ ) = B —

du(u du)+adu(udu) 2adu (1 —v)CBZ (aX +ub).

Integration of two last expressions gives

1 u u 1
9—al|J=uu=af[uf@(aY—uX)du]du+zD1 +ZD2,

a 1 2u3(aX+uY) D
+—0=-]===" Jdudu+—=2+D,, 15
v u’ u CBz(l—v) ! (13)

where D, D,, D3, Dsare the unknown constants of the integration.

The last two equations give the possibility to find parameters of deflections (12). Substituting these pa-
rameters into the physical equations (11) one can find the internal forces and moments in an annular or circular
plate subjected to an external uniform axisymmetric load acting in the plane of the plate.

Assume that X = Y= 0 then from the last two expressions we determine

1 (u a
0 — D, + uD, +§D3+au2D4 )

~BZ\2
U, 1 au a 1 )
b= =g~ DDt gls+uDe)
u 1
uu =§D1 +ZD2
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The last expression can be applied if uniform loads X, Y are absent, but displacements given in advance or
external moments or forces given in advance are known on the plate edges.
In a paper [13], the analogous axisymmetric problem was solved by using finite difference method.

5. Conclusion

If one assumes that a radius of the inner edge of the annular plate a = 0 then B = u, ¥ = n/2 and the well-
known equations for circular plate in the polar coordinates would be obtained [14].

It shows that governing equations of a shell theory (1)—(4) assumed as a basis of presented investigation
are correct. The results obtained for annular plate in non-orthogonal coordinates widen a class of problems which
now can be solved analytically. Examining a long tangential developable helicoid with the help of a small pa-
rameter method [15], it is possible to use the solutions (14) and (15) as the first terms of series of expansion of
displacements of degrees of the small parameter. Using equations (8)—(15) it is possibly to obtain analytical solu-
tions for plates with different axisymmetric static load and support conditions presented in a paper [16].

The additional information on the application of annular and circular plates and on numerical and analyti-
cal analysis of thin and thick plates is given in manuscripts [17-20].
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