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Abstract

Aims of research. The use, design and analysis of architectural and building
structures in the form of smooth and composite surfaces have become relevant and in
demand lately, which determined the purpose of this article — to analyze the use of
analytical surfaces given vector, parametric or explicit equations in real structures.
Methods. The relationship between studies on the geometry of surfaces of revolution
and transport and the creation of new forms of thin-walled structures and buildings is
determined. An example of a real structure is given on each surface. The article does
not consider composite, multifaceted, fractal surfaces, as well as surfaces that are not
defined analytically. Results. It turned out that only a small number of considered
surfaces of these two classes have found application in the world. At the end of
the article, a bibliography is presented, which sets out the mathematical side of
the design of analytical surfaces, their computer modeling, more detailed information
about real structures in the form of the surfaces under consideration.
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Introduction

Nowadays there are known more than 54 analyti-
cal surfaces of revolution, 17 surfaces of right transla-
tion, and several surfaces of oblique translation set by
the explicit, implicit, or parametrical equations that are
listed in an encyclopedia [1] and their graphical pic-
tures are given in a book [2]. In some works, for exam-
ple in [2-5], attempts to find out the most popular ana-
lytical surfaces among architects and builders, which
were used for design of public, residential, and indus-
trial buildings, were made. It was established that the
most wide-spread forms of large-span shell structures
have the middle surfaces in the form of surfaces of revo-
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lution or surfaces of right translation. Examine the known
thin-walled shell erections having the form of these
surfaces of two classes and realized in practice. Every
analytical surface would be illustrated with one erection
outlined on the corresponding surface. The additional
materials and sources connected with the considered
subject will be given in the references.

1. Surfaces of revolution

The class of surfaces of rotation is the following
class of surfaces from where engineers and architects
take analogs of forms of their erections, structures, and
products in the most cases. Everyone can create a huge
number of surfaces of rotation choosing this or that flat
generatrix curve and rotating it around a rotation axis.
But only surfaces attracted attention of architects will
be given here and these surfaces must be embodied in
real structures. From 54 surfaces of revolution, present-
ed in the encyclopedia [1], only spheres and one-sheet
hyperboloids, ellipsoids, and paraboloids of revolution,
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drop-shaped and pseudospherical surfaces, catenoids
and barrel-shaped surfaces found application in archi-
tecture and building. Their geometry is well investigated
but in spite of it, researches try to find the optimal form
of shell of revolution under diverse loading. 24 criteri-
on of optimality are known [6].

An explicit equation of a surface of revolution
can be presented in the following form:

z=f(r)=f{x*+y7),

where 7 =+/x* + y? is the distance a point of the sur-

face from the axis of rotation.

Right circular cylindrical and conical surfaces [7]
are examples of surfaces generated by a straight line.
Hyperboloids of one sheet are also surfaces of revo-
lution [8]. It is better to attribute these three surfaces
to a class of ruled surfaces.

Parametrical equations of arbitrary surface of re-
volution are

r=r(r,p)=rcosPi+rsinfj+ f(r)k.

Here, an equation of a meridian is taken in the
form » = (o) where a is the angle of the normal to
the surface passing through a given point with the axis
of rotation. If an equation of a meridian is given in
the form » = r(z) then an equation of a surface of re-
volution can be written with the help of equations:

x=rsinf, y =rcosp, z =z

where B is the angle of rotation of the plane of the
meridian.

So, one can use a system of basic equations for
stress-strain analysis in principal curvilinear coordi-
nates [9]. A system of curvilinear coordinates in prin-
cipal curvature lines coinciding with meridians and
parallels is used in all researches devoted to geomet-
rical modelling of surfaces of revolution and to strength
analysis of shells of revolution.

1.1. Sphere

This surface is used in four types of structures: small
architecture (Figure 1, a), structures in the form of a full
sphere (Figure 1, b), 3) spherical domes (Figure 1, ¢),
and structures from fragments of a spherical surface.

Figure 1. The application of spherical surfaces:
a — torn sphere, Dublin, Ireland; b — the geodesic sphere “Spaceship Earth”, the AT & T Pavilion at Epcot in Disney World, Florida;
¢ — the world’s largest wooden dome with a 92 m diameter, TRC “Piterland”, Saint Petersburg

The new Opera House in Sydney (Australia) is one
of Australia’s most famous landmarks. The final versi-
on of the building contains 4 main shells, 4 side shells,
and 2 auxiliary shells [10]. The surface of the half of
each shell is a fragment of a sphere. The building covers
an area of 2.2 hectares; the sails reach a height of 67 m
and are faced with Swedish tiles, shiny in the sun. By the
way, one of the reasons for replacing the shape of the
elliptic paraboloid with a spherical one was the danger of
rebounding of the facing plates from the base due to the
difference in temperature deformations.

1.2. Pseudosphere

In the scientific-and-technical literature, examples of
using of surface of a pseudosphere in the building indus-
try were not found. Only Kenneth Brecher [11] pre-

TEOPUA TOHKIX OBONOYEK

sented examples of pseudospheres realized in nature:
a gypsum model of pseudosphere made by V.M. Schil-
ling at the end of the XIX century; a large plywood
model of pseudosphere “Mathematica” exhibited at
the Museum of Science in Boston created by Charles
and Ray Eames; a stainless steel sculpture “Cloud
Gate” in Chicago’s Millennium Park (Anish Kapoor,
2008); the model “Surface of revolution of constant
negative curvature” (author is H. Sugimoto, 2004);
the aluminum and glass sculpture by the same author
“Conceptual Form 009” (2006); the metal wire figure
“Funicular Polygon of Revolution — Pseudosphere”
(Robert Le Ricolais, 1894—1977) (Figure 2). All these
mathematical models serve educational purposes.
In other cases, the authors were limited only to the wishes
or suggestions for the application of these shells of ro-
tation [12].
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Figure 2. Metal wire shape “Funicular Polygon of
Revolution — Pseudosphere”, Robert Le Ricolais

1.3. Paraboloid of revolution

This surface has attracted the attention of ancient
builders, for example, the parabolic dome of the Cathe-
dral of St. Peter in Rome marked the beginning of a se-
ries of similar structures. It is believed that dome ap-
peared in the East and had, above all, a utilitarian pur-
pose. In the absence of wood, roofs for dwellings were
made from clay and bricks. But gradually, thanks to
its exceptional aesthetic and technical qualities, the dome
acquired an independent semantic content as an archi-
tectural form. Intensive experimental and theoretical
studies of parabolic shells of revolution, conducted
recently, show that they are in demand as in practice
s0 in science too. A very large number of examples of
real structures in the form of paraboloid of revolution
is given in a paper [13].

1.4. Ellipsoid of revolution

Buildings and structures in the form of ellipsoids
of revolution can have not only architectural expres-
siveness but also some advantages in the distribution
of internal force factors. In mechanical engineering,
mainly, thin-walled shells in the form of ellipsoids of
revolution are used for the bottoms and head parts of
tanks and vessels for various purposes. However, there
are many examples of the using of ellipsoids of revo-
lution in the building industry. In details, this question
is taken up in works [2; 5].

Figure 3. Palace of President of Georgia
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The Church in Diisseldorf, architect P. Schneider,
can be taken as the most vivid illustration of the func-
tionality and architectural expressiveness of this form.
One can point out the glass dome of Palace of Presi-
dent of Georgia in Tbilisi (Figure 3). Its form is very
similar to an ellipsoid of revolution. The palace has been
built from 2004 till 2009. The author of the project is
G. Batiashvili.

1.5. Catenoid

The only minimal surface of revolution is cate-
noid and it was not used widely in building and ma-
chine-building else. The innovative project of a three-
story pavilion with hollow columns in the form of
a catenoid was presented by B. Janett. This form is
chosen to ensure a smooth transition from the walls
to the ceiling [14].

Figure 4. The design model of the pavilion coverage
in the park of the Queretaro City, Mexico

A pre-stressed tubular rod structure in the form of
a sphere supporting a film coating from polyester in
the form of a catenoid with the help of steel cables was
installed in the Alfalfares Park of Queretaro City, Mexi-
co (Figure 4). The choice of form was dictated by the
requirement of a minimum weight of the structure [15].
The system of catenoid shells from monolithic rein-
forced concrete of a 40 cm thick forms the structure
of the National Theater of Taiwan (National Taichung
Theater). It is also known as Taichung Metropolitan
Opera House and located in Taichung City. The archi-
tectural project was completed by Toyo Ito and archi-
tectural group “Da-Ju Architects”.

Apparently, the pavilion in the city of Queretaro
(Mexico) and the catenoids of the National Theatre
of Taiwan are the first examples of real application
of catenoids in architecture.

1.6. The barrel-shaped surface

Very often this name of the surface is used by ar-
chitects to describe a group of surfaces of rotation of
an arbitrary flat curve, facing its vertex in the opposite
direction from the axis of rotation. However, the ana-
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lytical surface with the same name does not exist, be-
cause it is necessary its broader interpretation. For exam-
ple, a barrel-shaped surface of revolution with a direct-
rix circle exists. This surface was taken as a basis for
the shape of a residential building in Moscow (Figure 5.)
Barrel-shaped surfaces are sometimes called egg-shaped
surfaces. Unfortunately, the authors do not point out
the equations of the selected surfaces, but only give
the overall dimensions.

Figure 5. The House-Egg, Mashkova St., Moscow, Russia

1.7. Drop-shaped surfaces

This group of surfaces includes the surfaces of
revolution resembling in form a drop of liquid lying
on a horizontal plane. A thin-walled metal shell in
the form of this surface is an equal-strength shell.
The first tests of drop-shaped tanks were conducted
in the USA in 1936. In 1944, the Gidrospetsneft In-
stitute for the first time in the practice of the Soviet
Union has developed a project of the drop-shaped
tank with a volume of 2000 m’. S.I. Verevkin and
G.M. Chichko are the authors of the project. Accord-
ing to this project in 1947 in Grozny, the first drop-
shaped tank was built. In the 1950s, the designers of
the USA and Canada worked out drop-shaped shells
as applied to water tanks for water towers. The shape
of the drop was the basis of the project of the build-
ing of the main test stand of the All-Union Electro-
technical Institute in Istra, Moscow region. The struc-
ture had a 234 m diameter and a 112 m height.
In 1984, the building collapsed immediately after
the erection.

The unusual giant complex of the Folk Theater
in the form of a drop which had become a new sym-
bol of China was designed by the famous French
architect Paul Andre. According to the sum of seats,
the theatre of Beijing is already recognized as the
largest cultural complex on Earth. The length of the
theater building reaches 212 m, its width is 143 m,
and the height is 46 m.

TEOPUA TOHKIX OBONOYEK

1.8. Bullet nose

The upper part of London skyscraper “30 St Mary
Axe” till the 17" floor (Foster and Partners, Emporis
Skyscraper Award in 2003), Glass Pavilion at the ex-
hibition in Cologne (1914) and some other erections
are rather like bullet nose in shape. Bullet nose in
shape is very like external surface of bullet (Figure 6).
This surface is formed by rotation of a curve

x:iaz/\/b2 +z°

around the z axis of rotation (Figure 7).

Figure 6. Bullet nose Figure 7. The meridian of

bullet nose

2. Surfaces of translation

These are very functional surfaces and therefore
architects and civil engineers like them. They are often
used as coverings of markets, shopping centers and
sports grounds. Translation surfaces are surfaces formed
by parallel transfer of a curve of some direction along
another curve that is a directrix curve.

A surface of translation is a surface formed by
parallel translation of a curve of some direction that
is a generatrix curve along another curve that is a di-
rectrix curve. So, a point My of the generatrix curve
slides along the directrix curve.

2.1. Surfaces of right translation

Surfaces of right translation can be defined by
an explicit equation:

z = z(x,y) = z1(x) + z2(y),

where z = zi(x) is the equation of a plane generatrix
curve; z = zy(y) is the equation of a plane directrix curve.
Directrix and generatrix curves of a surface can be arbi-
trary curves but usually they are taken of the same type.

These surfaces are typically used as shell models
on a rectangular or square plan (Figure 8, a).
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Figure 8. The application of translation surfaces:
a — Cheryomushkinsky market (circular translation surface), Moscow, b — the layout of the parabolic arches of the gym, Hungary;
¢ — a fragment of the covering of Cultural Centre in Muscat, Oman, designed by Architecture-Studio architects (Paris)

Source: https://www.e-architect.co.uk/oman/cultural-centre-muscat

2.2. Surfaces of oblique translation

This surface is formed by parallel translation of
a plane curve and two of its symmetrical points touch
the plane contour continuously. These surfaces can be
given by an explicit equation

z=gu—v)+h(u+v),

where z = g(u — v) is an equation of a plane genera-
trix curve; z = A(u + v) is an equation of a plane di-
rectrix curve.

Theoretically, such surface can be formed on a con-
tour of an arbitrary outline but the surfaces created on
a contour with symmetry, for example, circumferences,
ellipses, squares, ovals, rectangles, are of the greatest
interest.

For example, in Hungary, a sports hall was built on
an elliptical plan with 93x61 m dimensions in axes and
a height of 10.5 m. Functional and constructive reasons
required the erection of the building on an elliptical plan.
The system of parabolic steel tubular arches located along
the elliptic paraboloid translation networks with a step of
6 m in both directions was chosen as the supporting
structure of the coating (Figure 8, b).

2.3. Velaroidal surfaces

Velaroidal (velaroid, funicular) [16]) surface is
a translation surface with a generatrix curve that changes
its curvature in the process of its movement so that the
result is the surface on a flat rectangular plane [17].
At present, three types of velaroidal surfaces are known
that are parabolic velaroid, sinusoidal velarois, and ellip-
tical velaroid. Sometimes, a velaroidal surface is called
a funicular surface. As an example, one can point out the
reinforced concrete cover of the Nekrasovskiy (Mal’tsev-
skiy) market in Saint Petersburg. The middle surface of
it is the velaroidal surface on a flat square plan with the
dimension of 54x54 m. S.I. Evdokimov, O.B. Golynkin,
G.M. Vlanin are the architects and V.A. II’ina is the en-
gineer. The market was built in autumn of 1960 [4].

Cultural Center in Muscat, Oman, 2011, is the most
interesting velaroidal surface (Figure 8, c) of last time.

312

In some works, velaroidal surfaces on the circular plane
are proposed for using but these surfaces have not yet
found a real embodiment [18].

In the old time in Georgia, builders have built stone
velaroidal domes [19].

Conclusion

The study shows that many analytical surfaces of
revolution and translation surfaces listed in the ency-
clopedia [1] are not used in architecture and build-
ing. These data suggest that geometricians and mecha-
nical engineers are significantly ahead of the needs
of architects and builders, or architects have not yet
mastered the entire set of analytical surfaces proposed
by geometricians, or architects consider the most ana-
lytical surfaces unsuitable for their creative concepts.
It was found by I.A. Mamieva [20] for ruled surfaces
and by the author for surfaces of revolution and trans-
lation surfaces.

With the advent of finite difference energy method,
finite element method, and other numerical methods,
engineers received a powerful tool for the expanded
using of thin-walled large-span domes [12; 14] and
translation shells made of different materials. One
can use the nonlinear physical equations and a large
deformation theory of shell. For instance, a review of
researches of stress-strain state of shells of revolu-
tion with arbitrary form of the meridian can be found
in [21] with 79 references. This problem has attracted
considerable attention from Z.E. Mazurkiewicz and
R.R. Nagorski [22] and A. Zingoni [23].

A great deal of surfaces of revolution exists and
is studied in different scientific publications. Tens of
surfaces of revolution are presented in an encyclope-
dia [1]. Such surfaces of revolution as “Lochdiskus”,
“Jet Surface”, “Apple Surface”, “Kidney Surface”,
“Fish Surface”, “Limpet Torus”, Darwin-de Sitter
spheroid, and others are known but used much less
and may be found in other original sources, for in-
stance, in the internet site [Parametrische Flachen und
Korper, http://www.3d-meier.de/tut3/].
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Annomayus

Ienu. TlpumeHeHue, IPOSKTUPOBAHUE U PACUET aPXUTEKTYPHO-CTPOUTENBHBIX
KOHCTPYKIIHMIA B ()OpME TJIaJIKUX M COCTABHBIX MTOBEPXHOCTEH CTANN aKTyaJbHBIMUA U
BOCTPEOOBaHHBIMH B TIOCJICJHEE BpEMs, YTO 00YCIOBUIIO 1I€JIb JaHHOW CTaThu —

[IPOaHAIM3UPOBATh IPHMMEHEHUE AHAIUTHYECKUX MOBEPXHOCTEH, 3a JaHHBIX BEKTOP-
HbIMH, 1apPAMETPUYECKUMH WUJIM SBHBIMU ypaBHEHUSAMH, B PEajbHBIX KOHCTPYK-
musx. Memoowt. Onpenensercs CBsA3b MEKAY HCCIEA0BAHMAMH IO T€OMETPUU
IIOBEPXHOCTEH BpallleHUs U IIEPeHOca U CO3JJaHUEM HOBBIX ()OPM TOHKOCTEHHBIX
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