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Abstract

Aims of research. Due to the growing interest in the design, calculation and
application of architectural structures and structures in the form of a variety of
smooth and composite surfaces, it is interesting to illustrate the use of analytical
surfaces, i.e. surfaces that can be defined by vector, parametric or explicit equa-
tions, in parametric architecture. Methods. Parametric design unlike other styles
has a relationship with mathematics. This article continues the author’s series of
works devoted to the application of analytical surfaces in architecture and engi-
neering structures, the study of the influence of studies on the geometric of ruled
surfaces on the creation of unique projects of large-span shell structures and
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buildings. The article provides a list of known analytical surfaces, and each sur-
face is illustrated by a photo of only one real structure, outlined on this surface.
Results. 1t turned out that only degenerate unfolding surfaces described in the
scientific literature found application in the world. For those who are interested
in the mathematical side of the design of analytical surfaces, their computer
modeling, or more detailed information about the real structures in the form of
the surfaces under consideration is a bibliography of 20 items.
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Introduction of which the most prominent architects took part,
or the structurers having the most optimum technical-
and-economic parameters, or the structures noted by
prizes and taking high places in various ratings of pro-
fessional associations and magazines are presented.
In this paper, only structures and erection having
the form of ruled surfaces would be considered. Every
analytical ruled surface is illustrated with one erection

outlined on the corresponding surface.

Nowadays there are known more than 600 analyti-
cal surfaces set by the explicit, implicit, or paramet-
rical equations [1] that are grouped in 38 classes.
There are several options of classifications of analytical
surfaces; the fullest of them is presented in a work [2].
In some works, for example in [3-5], attempts to find
out the most popular analytical surfaces among archi-
tects which were used for design of public, residential,

and industrial buildings were made. The present ma-
nuscript continues the researches begun by the author
in a work [6] in which the known thin-walled shell
erections realized in practice or erections in design
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Ruled surfaces

A surface formed by continuous movement of a
straight line is called a ruled surface. Ruled surfaces
are divided into surfaces of zero and negative Gauss-
ian curvature. Zero Gaussian curvature surfaces are
tangential developable surfaces with an edge of re-
gression [7] and degenerated developable surfaces
i.e. conical, cylindrical surfaces and the plane.
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A vector equation of a ruled surface can be writ-
ten in the following form:

r=r(u,v)=a(v)+ub(v),

where a(v) is the radius-vector of a directrix curve;
b(v) is the directrix vector of a rectilinear generatrix.

1. Tangential developable surfaces (torse surfaces)

Those who want to use analytical method of ana-
lysis may apply the equation of a tangential develop-
able surface in the vector form:

r=r(u,v)=a(v)+ul(v),
where a(v) is the radius-vector of a cuspidal edge,

a(v) =x(v)i + y(vy + z(V);

x(v), ¥(v), z(v) are the parametric coordinates of the cus-
pidal edge; /(v) is a unit tangent vector, given at every
point of the cuspidal edge by

1v) = a(v)'/ |a(v)|.

In the encyclopedia [1], 37 torse surfaces of va-
rious types are considered, but only architect Jess
Maertterer designed a covering from the torse frag-
ments (Figure 1) made by parabolic bending of metal
strips. Now only the architect F.O. Gehry designs
structures of this type [8]. All other offers on the ap-
plication of nondegenerate torse surfaces in construc-
tion are presented in the form of sketches, descrip-
tions, and schemes [9—11].

Figure 1. The MARTa museum in Herford, Germany.

The most part of roof covering is a developable surface.
Geometric modelling of the roof was fulfilled by Jess Maertterer.
The museum was recognized as the best museum of Germany in 2014

2. Conical surfaces

These surfaces are among the most widely used
surfaces in architecture [12] and in machine-building
structures. The scientific-and-technical literature de-
scribes 20 conical surfaces. In these developable sur-
faces, the edge of regression degenerates into a point
that is the vertex of the cone. A conical surface can be
described parametrically as
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S(tu)=v + uq(y),

where v is the radius-vector of a vertex; ¢ is the radius-
vector of a directrix.

A pyramid is a special case of a cone with a poly-
gonal base.

2.1. Conical surface of revolution. 1t is difficult to
single out any structure as a remarkable one. As an illus-
tration, we present the conical shape of the Greek Ortho-
dox Church in Milwaukee, Wisconsin, USA (Figure 2).

Figure 2. Annunciation Greek Orthodox Church,
Milwaukee, Wisconsin, USA

Source: www.arhinovosti.ru

2.2. Inclined circular conical surface. This sur-
face is rarely used by architects, but architect Arthur
Erickson used it successfully for the Museum of Glass
in Tacoma (USA, 2002).

3. Cylindrical surfaces

Both the cylindrical surfaces and the circular co-
nical surfaces are used in the architecture and building
since ancient times. Often this is the only possible
form for some building structures: pipelines, under-
ground utilities, towers and so on. Cylindrical forms
of structures were especially popular from the begin-
ning of the 20th century. This is the architectural
Deco Style. However, cylinders find their place in
modern life. Conventionally, cylindrical structures
can be divided into structures with vertical, horizon-
tal, and inclined axes relatively to the earth’s surface.

A cylindrical surface is given by a vector equation

r(s, M) = p(s) + Ae,

where p(s) is the radius-vector of a director curve;
e is a unit vector coinciding with the axial direction
of the cylinder.

3.1. Cylindrical surface of revolution. In Figure 3,
the house-workshop of the architect K.S. Melnikov is
presented. This is the one-apartment residential house,
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the world famous monument of Soviet avant-garde in
architecture. It was built in 1927-1929 in Moscow on
the project of the outstanding architect K.S. Melnikov for
himself and his family. The architect believed that the
round cylindrical form saves construction materials [13].
Structures in the form of the cylindrical surfaces of
revolution can be found in any major city of the world.

Figure 3. Melnikov’s house in the form of two cylinders of
different heights, but with the same diameter, Moscow, Russia

3.2. Elliptical cylinder. Even in ancient times,
buildings have been built in the form of a vertically
placed elliptical cylinder. Basically, they were stadiums
and theaters. In support of this, it is possible to point to
a stone structure of elliptical shape in plan (149 m in
length, 124 m wide and 36 m high) erected in El Jem,
Tunisia, II-III centuries. It is larger than the Luzhniki
stadium in Moscow and its three-tiered galleries could
accommodate up to 30,000 spectators. At present time,
architects also do not forget about the architectural ad-
vantages of a vertically placed elliptical cylinder. This
is clearly seen on the example of a multi-functional
exhibition-and-hotel complex in Moscow on Krasno-
presnenskaya nab., 14, developed by the company “Zaha
Hadid Architects”. Two elliptical in plan high-rise buil-
dings are assumed to build.

Figure 4. Babushkinskaya metro station, Moscow, Russia, 1978.
The illumination of the station is provided by lamps,
which are located in the slots of the elliptical arch

In Figure 4, another example of the application of
the surface in real structures is shown. Here, the shape
of an elliptical cylinder segment with the horizontal
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axis can be seen in the elliptical vault of the Babush-
kinskaya underground station in Moscow. The struc-
ture of the station is single-vaulted shallow one at a low
depth of 10 m. The station was built of precast con-
crete with the thrust of the vault transmitted to the pre-
constructed “walls in the ground.” V.I. Klokov and
L.N. Popov are the authors of the architectural decora-
tion of Babushkinskaya.

3.3. Parabolic cylinder. This surface can be seen
in parabolic vaults, which can be illustrated by
the example of a hangar in Orly near Paris, France,
1916-1924. The famous French engineer E. Freyssi-
net designed and built a parabolic cylindrical shell to
cover the 30-meter span of the plant in Montlugon,
France, in 1905. The parabolic vault was used by
architects V.S. Andreev and I.G. Taranov in the de-
sign of the pavilion ‘Mechanization” (Figure 5) in
1939. The pavilion was a giant parabolic vault cover-
ing a wide alley. Not all architects reacted positively
to the idea of the authors of the project.

Figure 5. Pavilion “Mechanization”, Moscow, Russia

3.4. Sinusoidal cylindrical surface. Sinusoidal
cylindrical surfaces are used in folded structures of
coatings on the “span”, which take up mainly bend-
ing internal forces. They are effective for small spans
from 12 till 36 m. They are made often of reinforced
concrete and fine-mesh wire-fabric reinforced con-
crete. This surface was used in the design of the bus
station roof in Sochi, Russian Federation (Figure 6).

Figure 6. Central Bus Station in Sochi, Russia
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3.5. Cylindrical helical strip. The need to apply
this surface is caused by technological requirements
for the fences of helical ramps for cars and helical
pedestrian staircases (Figure 7).

¥

Figure 7. The ramp fence in the form of a helical strip

3.6. Cylindrical-and-conical helical strip. This
form of structures has already been encountered in
ancient times [8]. The spiral minaret in Samarra, Iraq,
was built in 836. It was the largest structure in the Is-
lamic world. From the base to the top, this minaret was
made in the form of a cylindrical-and-conical helical
strip. This form is used in modern buildings. For ex-
ample, it can be seen in the form of the facade of the
Guggenheim Museum in New York, USA (architect
F.L. Wright), or the German Historical Museum in Ber-
lin (architect .M. Peu, 2001). In Figure 8, it can be
seen that the upper part of the Snail tower, a 23-storey
residential building, in the Estonian city of Tartu is
made in the form of a cylindrical-and-conical helical
strip. It is the tallest building in the city since 2008.
The height of the building is almost 90 m.

Figure 8. Snail tower, Tartu, Estonia

3.7. Oblique circular cylinder. An oblique circu-
lar cylindrical surface is formed by straight genera-
trixes intersecting a directrix base circle but remaining
parallel to the axial direction of the cylinder. This di-
rection forms an acute angle with the basis of the cyl-
inder. A solid volume limited by a cylindrical lateral
surface and by two circular bases is called an oblique
circular cylinder [1]. A well-known inclined circu-
lar tower objects constitute rather great list. However,
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initially these towers were not planned to be inclined
and their shapes, in the strict mathematical sense, are
not oblique circular cylindrical surfaces. Now, the de-
sign of such structures has become one of the trends
of modern high-rise architecture. As an illustration of
the application of the considered surface in modern
architecture, we can point to the rounded cylindrical
cantilever part of the Karolinska medical Institute,
Sweden, which became one of the most striking archi-
tectural details of this building (Figure 9).

Figure 9. Lecture Hall of Karolinska Medical Institute, Sweden

4. Ruled surfaces of negative Gaussian curvature

Classification of ruled surfaces of negative Gaus-
sian curvature containing 36 names is given in a pa-
per [14] and then in the modernized form was repro-
duced in a monograph [3].

Figure 10. A helical staircase

4.1. Right helicoid. There are 5 types of ruled
helical surfaces of negative Gaussian curvature. They
can be seen in the structures of machines of various
purposes, in the form of special building equipment.
Right helicoids can be one of the main elements of
the building, for example, ramps of multistoried gara-
ges. Complex highway and urban transportation fa-
cilities: reinforced concrete and metal scaffold bridg-
es, overpasses, and complex multi-intersection often
include helical sections of the artificial structures.
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In the civil and housing construction, helical staircases
are widely used, where the right helicoids are taken
as their basis (Figure 10). The rectilinear generatrix
of a right helicoid crosses the axis of the helicoid at
the right angles. Right helicoid is the only ruled min-
imal surface.

4.2. One-sheet hyperboloid of revolution. This
surface is embodied in hundreds of cooling towers.
In addition, it has found application in many civil
and industrial structures, for example, in the form of
a planetarium building in San Louis (USA).

Figure 11. One of the few lattice water towers of V.G. Shukhov
in our days, Krasnodar, Russia

The advantages of this surface, formed by two
families of straight lines, were well illustrated by
V.G. Shukhov in his openwork towers (Figure 11).
The idea of V.G. Shukhov to create a supporting part
of water towers from lattice structures, the rods of
which coincide with the straight generatrixes of a one-
sheet hyperboloid of revolution, was used in many
structures. Structures in the form of a one-sheet hy-
perboloid of revolution were subsequently used by
many great architects including Gaudi, Le Corbusier,
and Oscar Niemeyer. The most complete possibili-
ties of these surfaces for architecture are described in
a paper [15].

4.3. Conoids. Conoids can be given with the help
of parametrical equations:

x =x(u, v) = ucosv + af(v),

v =y(u, v) = usinv + BAv), z = z(v) = yAv),

where {a, B, v} is the unit vector having the direction
of the conoidal axis; f(v) is any function.

Usually, conoidal shells are designed with spans
from 12 m to 24 m and with the ratio of the span —
rise equal to 2:1. Calculations show that the span can
reach 60 m. In the former USSR, in countries of
Eastern Europe, France and Italy, the conoid shells
were widely used in 1950-1960 to cover industrial
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buildings with a span of up to 60 m. These shells are
an ideal form for buildings with cantilever coverings.
One can learn more about the application of conoidal
shells in building from the work [16] or in the mono-
graph [3]. This ruled surface in the hands of experi-
enced architects becomes an architectural sight and
a landmark building of the city or the architect.

4.3.1. Right sinusoidal conoid. This surface was
glorified by the famous Spanish architect A. Gaudi.
He took it as a basis of a covering of a cheap school
for children of builders of a Cathedral in Barcelona,
Spain (Figure 12). Some architects call this construc-
tion ingenious. Another world-famous Spanish archi-
tect S. Calatrava spread the idea of A. Gaudi and
used of a sinusoidal conoid for the sculpture “Wave”
which was installed in front of the museum in Dallas,
USA in 2000 [16].

Figure 12. A school with a conoidal roof, Barcelona (Spain):
a — the walls of the school are made of bricks without facing;
b — the metal beams coincide with the straight generatrixes of
the conoidal surface

4.3.2. Parabolic conoid. A classic parabolic
conoid was selected for reinforced concrete cover
of the Summer Theater in Szczecin, Poland, 1998.
The 1:100 scale cover model was tested in an aero-
dynamic wind tunnel at the technical University of
Szczecin. The span of the real shell is 60.68 m,
its length is 43.3 m, the height is 22.73 m, the thick-
ness is 8.5 ¢cm [17]. The idea of architects Marcel
Breuer, Pier Luigi Nervi, and Bernard Zehrfuss to
use a combination of two different parabolic conoids
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and a cylinder between them for the device of a dy-
namic and graceful console canopy in front of the en-
trance to the UNESCO building (1953) in Paris was
later repeatedly used by other architects.

4.4. Hyperbolic paraboloid. Hyperbolic para-
boloid (hypar) is twice-ruled surface of negative Gaus-
sian curvature. Any two rectilinear generatrixes of
hypar belonging to different families intersect. Since
the early fifties of the 20™ century, a burst of interest
to structures made in the form of hypar or composed
from fragments of hyperbolic paraboloid took place.

YN o
R

Figure 13. Denver, Colorado, 1959, Courtesy of
Princeton University Tedesko Archive [41]

The structures containing several fragments of
the hypar aroused the greatest interest and became
popular among architects (Figure 13). It is impossible
to list all structures in which the form of hyperbolic
paraboloid was used, there are hundreds of them.
The regularities of the formation of the form of hypar
often lead to external similarity, but the plastic capa-
bilities of hypar are so great and visually so various
that it is always possible to obtain a structure with
individual features. The popularity of the form of
hyperbolic paraboloid is evidenced by the fact that
Anton Tedesco who is the father of thin-walled shell
reinforced concrete structures also participated in the
design of the hypar, which, at one time, was consid-
ered the world’s longest hypar (Denver, Colorado,
1959, courtesy of Princeton University, Tedesko ar-
chive).

4.5. Cylindroids. A cylindroid is a ruled surface
formed by the movement of rectilinear generatrix
along two curvilinear directrixes and in all positions,
the generating straight line is parallel to any plane of
parallelism. Cylindrical surfaces (K = 0) may become
cylindroids in certain cases. A cylindroid having one
of two directrix curves in the form of a straight line is
called a conoid. So, a conoid is a particular case of
a cylindroid. Now, five cylindroids are known [1]:
cylindroid with two directrix ellipses, cylindroid with
two directrix circles lying in mutually perpendicular
planes, Frezier’s Cylindroid, Ball’s Cylindroid, cylin-
droid with a parabola and a sinusoid lying on the pa-
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rallel ends. Architectural company “Ishibashi, Tokugawa
& Associates” creates expressive structures in Japan.
Located in Tokyo, a team of five architects led by
the President of the company Toshihiko Ishibashi has
achieved recognition in the architectural world and
received several prizes for their work, including
the Awards for Merit for the “Chiba City Award for
Excellence in Architecture” and “The AICA (Aica
Kogyo Company, Limited) Jolypate Contest”. This
company is trying to introduce elements of modern
styles in Japanese architecture. The AICA proposed
several types of light corrugated metal roofs in the
form of cylindroids (Figure 14) [16].

Figure 14. Different types of roofs from corrugated metal
in the form of cylindroids, “Ishibashi, Tokugawa & Associates”,
Tokyo, Japan

Conclusion

The study shows that out of the 86 ruled surfac-
es of zero Gaussian curvature and 46 ruled surfaces
of negative Gaussian curvature listed in the encyclo-
pedia [1] only 16 surfaces have been used in archi-
tecture and building in the world. These data suggest
that geometricians are significantly ahead of the needs
of architects and builders, or architects have not yet
mastered the entire set of analytical ruled surfaces
proposed by geometricians, or architects and engi-
neers consider the most analytical surfaces unsuita-
ble for their creative concepts. They prefer analyti-
cally undefined surfaces. Often the shape of surface
is designed by architects and geometricians make
later its mathematical description. In a number of
works related to the design of objects in the form of
analytical surfaces, errors in their definition or dis-
crepancies occur [18-20]. The author in their manu-
script tried to use the correct definitions of surfaces
and the corresponding terms.

For clarity, a classification of analytical surfaces
of zero Gaussian curvature is given in Figure 15 and
a classification of ruled surfaces of negative Gaussi-
an curvature is given in Figure 16 [3; 14]. The sur-
faces, found the application in architecture and build-
ing, are darkened.
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With the advent of variation difference method,
finite element method, and other numerical methods,
engineers received a powerful tool for the expanded
using of thin-walled large-span shells and other types
of structures of various shapes.
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Annomayus

Ilenv uccnenoBanusi, 00yCIOBICHHAs pOCTOM MHTEpeca K MPOSKTHPOBAHUIO,
pacuery ¥ IPUMEHEHHUIO apXUTEKTYPHO-CTPOUTEIIbHBIX KOHCTPYKIIMIA U COOPY>KEHHH B
(opme pazHO0Opa3HBIX IMIAIKUX U COCTABHBIX NOBEPXHOCTEH, — IPOUILTIOCTPUPO-

BaTh NMPUMEHEHHE aHAJIMTUUYECKHUX MOBEPXHOCTEH, TO €CTh NMOBEPXHOCTEH, KOTO-
pble MOXKHO 331aTh BEKTOPHBIMU, IIAPaMETPUIECKUMH WIH SIBHBIMU YPaBHCHUSIMH,
B IIapaMeTpuyecKoi apxurexrype. Memoowt. I1apamerprudeckoe NpOeKTUPOBAHUE,
B OTJIMUME OT APYTHX CTUIEH, MMeeT B3auMOCBSI3b C MaTeMATHKOI. DTa cTaThs IPo-
JOJKAeT ceprio paboT aBTOpPa, MOCBALICHHBIX MPUMEHEHUIO aHATTUTUYECKUX
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Hna yumuposanus

Mamieva I.A. Influence of the geometrical
researches of ruled surfaces on design of
unique structures (BiistHIIE TeoMeTpUYecKUX
UCCJIEJI0BAHUI JTMHEHYaThIX MOBEPXHOCTEH
Ha CO3/IaHHMe YHHKATBHBIX COOPYXKEHHUH) //
CrpouTtenbHas MEXaHHKA MHKEHEPHBIX KOH-
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IIOBEPXHOCTEN B apXUTEKTypE U UHKEHEPHBIX KOHCTPYKIMAX, U3yYEHHIO BIMSHUA
UCCJIEJ0BAHUM N0 T€OMETPUM JIMHEHYATBIX TOBEPXHOCTEH HA CO37aHME YHHMKalb-
HBIX TIPOEKTOB OOJBIIEIPONICTHBIX 00OJIOYEUHBIX CTPYKTYp M 3maHUH. B craTbe
IPUBOJUTCS IEPEUEHb U3BECTHBIX aHATMTHYECKUX MOBEPXHOCTEH, KaXasi U3 HUX
HIToCTpUpyetcs ororpadueil OTHOTO PearTbHOTO COOPYKEHNUS, OUePUEHHOTO 110
OITUCBHIBAEMOM MOBEPXHOCTH. Bb1600bl. BBIACHIIIOCH, UTO TOJBKO BBIPOXKICHHBIE Pa3-
BEPTHIBAIOILMECS IOBEPXHOCTH, ONUCAHHbIE B HAYYHOM JIUTEPAType, HALLIY IIPUME-
HeHue B mMupe. 1 TeX, KTO MHTEpEeCyeTCs MaTeMaTUYeCKOI CTOPOHON MPOEKTHU-
POBaHMS AHAIUTHYECKUX IIOBEPXHOCTEN, UX KOMIIBIOTEPHBIM MOJEIUPOBAaHUEM
M OoJsiee MOAPOOHBIMU CBEICHHSIMU O PEANBHBIX COOPYKEHHSIX B QopmMe pac-
CMaTpUBaeMBbIX [IOBEPXHOCTEH, IIpuBeaeHa 6ubauorpadus u3 20 HauMeHoBaHuUI.

Krouesvle cnosa: nmapameTpuyecKasi apXUTEKTypa; T€OMETPHs IOBEPXHOCTEH;
JIMHEeHYaThle MOBEPXHOCTH; POpMOOOpa30BaHUE MMOBEPXHOCTEH; Kitaccu(puKanus
JIMHEWYAThIX MOBEPXHOCTEH; rayccoBa KpUBH3HA TMOBEPXHOCTEH; 000JI0YKA; GOJIb-

LIENPOJIETHbIE 000I04EUHBIE CTPYKTYPbI
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