Effective modules of two-phase construction composites with grain filler

Cover Page

Abstract


In the book of R.M. Christensen, “Introduction to the Mechanics of Composites” (1982), a calculation formula is given for the bulk module of polydisperse composites with spherical inclusions. This formula has been known to the Russianspeaking reader for almost 40 years, but unfortunately, it is not used in the practice of building materials science. To identify applied possibilities, R.M. Christensen's formula is modified and reduced to a dimensionless function k = k ( w , η, θ), which depends on three dimensionless parameters, i.e., it depends on three quantities: w is the volume fraction of the inclusion, η - the ratio of the shear modulus of the matrix material to the volume modulus of the same matrix, θ is the ratio of the volume moduli of the matrix materials and inclusion. Numerical studies of this function reveal that in two-phase granular composites, the range of effective moduli is significantly narrowed compared to the region limited by Voigt and Reuss estimates (in the sense of the upper and lower bounds of real values). At the same time, the lower Christensen score is the same as the Reuss score. Numerical and graphically presented results are given on the examples of the study of two characteristic groups of composite materials. In addition, the dimensionless form of the effective module allows to construct a system of visual graphic dependencies of the functions k ( w ) in a flat space k - w . For different values of θ, the function k = k ( w , η) displays a bunch of curved segments, which sets the position of the plane figure in flat space. Examples of constructing figures for characteristic regions of the values of the function k (η, θ, w ) are given.


About the authors

Vladimir T. Erofeev

National Research Ogarev Mordovia State University (National Research University)

Author for correspondence.
Email: tingaev.s1@gmail.com
68 Bolshevistskaya St., Saransk, 430005, Russian Federation

Aleksej S. Tyuryahin

National Research Ogarev Mordovia State University (National Research University)

Email: tingaev.s1@gmail.com
68 Bolshevistskaya St., Saransk, 430005, Russian Federation

Tatyana P. Tyuryahina

National Research Ogarev Mordovia State University (National Research University)

Email: tingaev.s1@gmail.com
68 Bolshevistskaya St., Saransk, 430005, Russian Federation

Aleksandr V. Tingaev

National Research Ogarev Mordovia State University (National Research University)

Email: tingaev.s1@gmail.com
68 Bolshevistskaya St., Saransk, 430005, Russian Federation

References

  1. Bezukhov N.I. (1968). Osnovy teorii uprugosti, plastichnosti i polzuchesti [Fundamentals of the theory of elasticity, plasticity and creep]. Moscow, Vysshaya shkola Publ. (In Russ.)
  2. Bobryshev A.N., Erofeev V.T., Kozomazov V.M. (2012). Fizika i sinergetika dispersno-neuporyadochennyh kondensirovannyh kompozitnyh sistem [Physics and synergetics of dispersively disordered condensed composite systems]. Saint Petersburg, Nauka Publ. (In Russ.)
  3. Vasil'ev V.V., Protasov V.V., Bolotin V.V. (1990). Kompozitnye materialy [Composite materials]: reference book. Moscow, Mashinostroenie Publ. (In Russ.)
  4. Gusev B.V., Kondrashenko V.I., Maslov B.P., Faysovich A.S. (2006). Formirovanie struktury kompozicionnyh materialov i ih svojstva [Formation of the structure of composite materials and their properties]. Moscow, Nauchnyj mir Publ. (In Russ.)
  5. Erofeev V.T., Tyuryakhin A.S., Erofeeva I.V. (2018). On the connections of the carrier parameters with effective parameters in models of grain composites. Structural Mechanics and Analysis of Constructions, (3), 7–17. (In Russ.)
  6. Erofeev V., Tyuryakhin A., Tyuryakhina T. (2019). Flat space of values of volume module of grain composite with spherical fill-lem. International Journal of Civial Engineering and Technology (IJCIET), (8), 333–342.
  7. Berlin A.A., Vol'fson S.A., Oshmyan V.G., Enikolopov N.S. (1990). Principy sozdaniya kompozitnyh polimernyh materialov [Principles of creating composite polymer materials]. Moscow, Himiya Publ. (In Russ.)
  8. Askadskij A.A., Goleneva L.M., Bychko K.A., Kazanceva V.V., Konstantinov K.V., Almaeva E.S., Klinskih A.F., Kovriga O.V. (2001). Gradientnye polimernye materialy [Gradient materials]. Russian Chemical Journal, 45(3), 123–128. (In Russ.)
  9. Duan K., Hu Xiao, Wittmann F.H. (2003). Boundary effect on concrete fracture and non-constant fracture energy distribution. Fracture Mechanics, (70), 2257–2268.
  10. Сarpinteri A., Chiaia B., Cornetti P. (2003). On the mechanics of quasi-brittle materials with a fractal microstructure. Engineering Fracture Mechanics, (70), 2321–2349.
  11. Ayatollahi M.R., Akbardoost J. (2012). Size effects on fracture toughness of quasi-brittle materials – a new approach. Engineering Fracture Mechanics, (92), 89–100.
  12. Hu X., Guan J., Wang Y., Keating A., Yang S. (2017). Comparison of boundary and size effect models based on new developments. Engineering Fracture Mechanics, (22), 146–167.
  13. Muralidhara S., Raghu Prasad B.K., Eskandari H., Karihaloo B.L. (2010). Fracture process zone size and true fracture energy of concrete using acoustic emission. Construction and Building Materials, (24), 479–486.
  14. Muralidhara S., Raghu Prasad B.K., Karihaloo B.L., Singh R.K. (2011). Size-independent fracture energy in plain concrete beams using tri-linear model. Construction and Building Materials, (25), 3051–3058.
  15. Shafigullin L.N., Bobrishev A.A., Erofeev V.T., Treshchev A.A., Shafigullina A.N. (2015). Development of the recommendations on selection of glass-fiber reinforced polyurethanes for vehicle parts. International Journal of Applied Engineering Research, 210(23), 43758–43762.
  16. Shafigullin L.N., Treshchev A.A., Hodorovich P.Y., Erofeev V.T. (2017). The Stress-Strain State of Layered Orthotropic Conditional Half-Space Taking into Account Different Resistance. Revista Publicando, 4 (13–2), 109–127.
  17. Christensen R.M. (1982). Vvedenie v mekhaniku kompozitov [Introduction to the mechanics of composites]. Moscow, Mir Publ. (In Russ.)
  18. Cherkasov V.D., Tyuryakhin A.S. (2009). Teoriya dvuhsvyaznyh modelej mikromekhaniki kompozitov [The theory of biconnected models of micromechanics of composites]: monograph. Saransk, Publishing House of Mordovia University. (In Russ.)
  19. Hashin Z. (1962). The elastic moduli of heterogeneous materials. J. Appl. Mech., 29(1), 143–150.
  20. Reuss A., Angew Z. (1929) Berechung der Fliessgrenze von Mischkristallen auf Grund der Plastizitatsbedingund. Math. und Mech., 9(1), 49–58.
  21. Voigt W. (1928). Lehrbuch der Kristallphysik. Berlin, Teubner.

Statistics

Views

Abstract - 132

PDF (Russian) - 130

Cited-By


PlumX

Dimensions


Copyright (c) 2019 Erofeev V.T., Tyuryahin A.S., Tyuryahina T.P., Tingaev A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies