Development of a method for calculating the stress state in horizontal sections of hydraulic engineering angular-type retaining walls

Cover Page

Abstract


Angular retaining walls are widespread in hydraulic engineering. They are characterized by large dimensions, small percentages of reinforcement, block cutting along the height of the structure. The bulk of the existing retaining walls were built in the 1960s-1980s. The regulatory documents that were in force during this period had certain shortcomings that caused the non-design behavior of a number of retaining walls. Improvement of calculation methods for reinforced concrete structures of retaining walls is required, within the framework of which a more complete account of the characteristic features of their behavior is needed. The aim of the work is to improve methods for calculating reinforced concrete retaining walls of a corner type. Methods of research carried out to improve the calculation of reinforced concrete retaining walls of the corner type included, among others, the classical methods of resistance of materials, the theory of elasticity, and structural mechanics. To determine the actual stress-strain state of the natural structures of retaining walls, visual and instrumental methods for examining retaining walls were used, including the method of unloading reinforcement. Results. To determine the stress state in the elements of the reinforced concrete structure of the retaining wall (in concrete and in reinforcement), a methodology was developed for calculating the stress state of retaining walls, which allows to determine the components of the stress state (stress in concrete in the compressed zone, as well as stress in stretched and compressed reinforcement) in horizontal sections of the vertical cantilever part of the retaining walls.


About the authors

Oleg D. Rubin

Scientific Research Institute of Energy Structures

Author for correspondence.
Email: cskte@mail.ru
7A Stroitel'nyy proyezd, Moscow, 125362, Russian Federation

Doctor of Technical Sciences, Director of a branch of JSC “Institute Hydroproject” - NIIES.

Sergey E. Lisichkin

Engineering Center of Structures, Constructions and Technologies in Power Engineering

Email: cskte@mail.ru
Ltd, 35 Svobody St., bldg. 36, Moscow, 125364, Russian Federation

Doctor of Technical Sciences, Deputy General Director

Fedor A. Pashenko

JSC “LenAeroProect”

Email: cskte@mail.ru
122 Obvodnogo kanala embankment, litera B, Saint Petersburg, 198095, Russian Federation

General Director

References

  1. Malakhanov V.V., Tolstikov V.V., Orekhov V.G., Sainov M.P., Aniskin N.A., Soldatov P.V. (2016). Gidrotekhnicheskie sooruzheniya (rechnye). Ch. 2 [Hydrotechnical structures (river) Part 2]. Moscow: LitRes Publ. (In Russ.)
  2. Volosuhin V.A., Dyba V.P., Evtushenko S.I. (2008). Raschet i proektirovanie podpornyh sten gidrotekhnicheskih sooruzhenij [Calculation and design of retaining walls of hydraulic structures]. Moscow: ASV Publ. (In Russ.) http://www.studentlibrary.ru/book/ISBN9785930935455.html
  3. Snegireva A.I., Murashkin V.G. (2007). Proektirovanie zhelezobetonnyh i kamennyh podpornyh sten: uchebnoe posobie [Design of reinforced concrete and stone retaining walls: Study guide]. Samara: University of Architecture and Civil Engineering. (In Russ.)
  4. Volosuhin V.A., Voropaev V.I., Yaickij L.V. (2000). Raschet podpornyh sten gidrotekhnicheskih sooruzhenij: uchebnoe posobie [Calculation of the retaining walls of hydraulic structures: Study guide]. Novocherkassk. (In Russ.)
  5. Semenyuk S.D., Kotov Yu.N. (2018). Reinforced concrete retaining walls. Bulletin of the BelarusianRussian University, 4(61), 86–101.
  6. Vasil'ev P.I., Kononov Yu.I., Chirkov Ya.N. (1982). Raschet podpornyh sten gidrotekhnicheskih sooruzhenij: uchebnoe posobie [Reinforced concrete structures of hydraulic structures: Study guide]. Kiev: Vishcha shkola Publ. (In Russ.)
  7. Rubin O.D., Lisichkin S.E., Nefedov A.V., Chernenko V.N., Ponomarev D.I., Mukashov R.Z., Lisichkin A.S. (2013). Raschetnye issledovaniya napryazhenno-deformirovannogo sostoyaniya podpornoj stenki pervogo yarusa LV-1 vodopriemnika Zagorskoj GAES, v tom chisle s uchetom dannyh sinhronnyh zamerov pri sutochnom izmenenii urovnya verhnego akkumuliruyushchego bassejna [Computational studies of the stress-strain state of the retaining wall of the first tier LV-1 of the receiving water of the Zagorskaya PSPP, including taking into account the data of synchronous measurements with daily changes in the level of the upper storage pool]. Bezopasnost' energeticheskikh sooruzheniy,(18), 38–50. (In Russ.)
  8. Lisichkin S.E., Rubin O.D., Atabiev I.Zh., Mel'nikova N.I. (2012). Raschetnye issledovaniya ustojchivosti i prochnosti podpornyh sten pervogo yarusa vodopriemnika Zagorskoj GAES [Computational studies of the stability and strength of the retaining walls of the first tier of the receiving basin of the Zagorsk PSP]. Prirodoobustrojstvo, (2), 44–48. (In Russ.)
  9. Rubin O.D., Ponomarev D.I., Mel'nikova N.I. (2011). Raschetnye issledovaniya napryazhenno-deformirovannogo sostoyaniya podpornyh sten pervogo yarusa vodopriemnika Zagorskoj GAES [Computational studies of the stressstrain state of the retaining walls of the first tier of the receiving water of the Zagorsk PSPP]. Prirodoobustrojstvo, (5), 51–55. (In Russ.)
  10. Fedorova N.V., Gubanova M.S. (2018). Crackresistance and strength of a contact joint of a reinforced concrete composite wall beam with corrosion damages under loading [Crack-resistance and strength of a contact joint of a reinforced concrete composite wall beam with corrosion damages under loading]. Russian journal of building construction and architecture, 2(38), 6–18. (In Russ.)
  11. Nikolaev V.B., Gun S.Ya., Lisichkin S.E., Lyapin O.B. (1988). Prochnost' zhelezobetonnyh podpornyh stenok [Strength of reinforced concrete retaining walls. Gidrotekhnicheskoye stroitel'stvo, (10), 54–58. (In Russ.)
  12. Lisichkin S.E., Lyapin O.B. (1989). Poperechnoe armirovanie massivnyh konstrukcij energeticheskih sooruzhenij [Transverse reinforcement of massive structures of power facilities]. Energeticheskoye stroitel'stvo, (11), 40–43. (In Russ.)
  13. Lisichkin S.E., Korolev L.V., Skvorcov A.G. (1999). Sovershenstvovanie rascheta zhelezobetonnyh konstrukcij, oslablennyh prodol'nymi stroitel'nymi shvami [Improving the calculation of reinforced concrete structures weakened by longitudinal construction seams]. Construction and architecture. Series: Building designs and materials, (3), 1–4. (In Russ.)
  14. Lisichkin S.E., Skvorcov A.G. (2000). Povyshenie bezopasnosti massivnyh zhelezobetonnyh konstrukcij s kontaktnymi stroitel'nymi shvami [Improving the safety of massive reinforced concrete structures with contact building joints]. Gidrotekhnicheskoye stroitel'stvo, (6), 17–21. (In Russ.)
  15. Lisichkin S.E. (2001). Povyshenie nadezhnosti konstrukcij TES, imeyushchih kontaktnye shvy, s uchetom soprotivleniya armatury sdvigu [Improving the reliability of designs of thermal power plants with contact seams, taking into account the resistance of reinforcement to shear]. Bezopasnost' energeticheskikh sooruzheniy, (9), 43–60. (In Russ.)
  16. Zalesov A.S., Lisichkin S.E. (1992). Raschet konstrukcij s naklonnoj gran'yu [Calculation of structures with an inclined edge]. Gidrotekhnicheskoye stroitel'stvo, (6), 48–50. (In Russ.)
  17. SN 55-59. (1959). Normy i tekhnicheskiye usloviya proyektirovaniya betonnykh i zhelezobetonnykh konstruktsiy gidrotekhnicheskikh sooruzheniy [Standards and technical conditions for the design of concrete and reinforced structures of hydraulic structures]. Moscow: Gosstroyizdat. (In Russ.)
  18. SNiP II-I.14-69. (1970). Betonnyye i zhelezobetonnyye konstruktsii gidrotekhnicheskikh sooruzheniy. Normy proyektirovaniya [Concrete and reinforced structures of hydraulic structures. Design Standards]. Moscow: Stroyizdat. (In Russ.)
  19. SNiP II-56-77. (1977). Betonnyye i zhelezobetonnyye konstruktsii gidrotekhnicheskikh sooruzheniy [Concrete and reinforced structures of hydraulic structures]. Moscow: Stroyizdat. (In Russ.)
  20. SP 101.13330.2012. (2012). Podpornyye steny, sudokhodnyye shlyuzy, rybopropusknyye i rybozashchitnyye sooruzheniya. Aktualizirovannaya redaktsiya SNiP 2.06.07-87 [Retaining walls, shipping gateways, fishways and fish screen structures. Updated edition of SNiP 2.06.0787]. (In Russ.)
  21. SP 41.13330.2012. (2012). Betonnyye i zhelezobetonnyye konstruktsii gidrotekhnicheskikh sooruzheniy. Aktualizirovannaya redaktsiya SNiP 2.06.08-87 [Concrete and reinforced structures of hydraulic structures. Updated version of SNiP 2.06.08-87]. (In Russ.)

Statistics

Views

Abstract - 168

PDF (Russian) - 109

Cited-By


PlumX

Dimensions


Copyright (c) 2019 Rubin O.D., Lisichkin S.E., Pashenko F.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies