Variants of determining correlations of deformation theory of plasticity in the calculation of shell of rotation on the basis of finite element method

Cover Page

Abstract


Relevance. The problems of decline of resource-demanding of objects of building and engineer dictate the necessity of consideration of processes of deformation of constructions at the resiliently-plastic state. The widely in-use theory of account of practical properties of material is a deformation theory of plasticity. The aim of the research is development of variants of receipt of determining correlations on the step of ladening at deformation of material outside a resiliency. Methods. Algorithms over of receipt of determining correlations of theory of small resiliently-plastic deformations are brought on the step of ladening in two variants. In the first they turn out differentiation of expressions of tensions as functions of deformations on the basis of deformation theory of plasticity; in the second determining correlations turn out on the basis of hypothesis about the proportion of components of deviators increases of tensions to components of deviators increases of deformations. Results. On the test example of calculation of the jammed cylindrical shell realization of the got determining correlations is presented.


About the authors

Yuriy V. Klochkov

Volgograd State Agricultural University

Author for correspondence.
Email: klotchkov@bk.ru
SPIN-code: 9436-3693
26 University Ave., Volgograd, 400002, Russian Federation

Doctor of Technical Sciences, Professor, Head of the Higher Mathematics Department

Anatoliy P. Nikolaev

Volgograd State Agricultural University

Email: klotchkov@bk.ru
SPIN-code: 2653-5484
26 University Ave., Volgograd, 400002, Russian Federation

Doctor of Technical Sciences, Professor, Professor of the Applied Geodesy, Environmental Engineering and Water Use Department

Olga V. Vakhnina

Volgograd State Agricultural University

Email: klotchkov@bk.ru
SPIN-code: 3593-0159
26 University Ave., Volgograd, 400002, Russian Federation

Candidate of Technical Sciences, Associate Professor of Higher Mathematics Department

Mikhail Yu. Klochkov

Lomonosov Moscow State University

Email: klotchkov@bk.ru
SPIN-code: 2767-3955
1 Leninskiye Gory, Moscow, 119899, Russian Federation

third-year student of the Faculty of Physics

References

  1. Malinin N.N. (1968). Prikladnaya teoriya plastichnosti i polzuchesti: uchebnik dlya studentov vtuzov [Applied theory of plasticity and creep: textbook for the students of technical colleges]. Moscow, Mashinostroenie Publ., 400. (In Russ.)
  2. Trusov P.V. Shveikin A.I. (2011). Teoriya plastichnosti [Theory of plasticity]. Perm, PNIPU Publ., 419. (In Russ.)
  3. Sedov L.I. (1976). Mehanika sploshnoi sredi [Mechanics of continuous environment]. Moscow, Nauka Publ., 574.
  4. Solodovnikov A.S., Sheshenin S.V. (2017). Numerical study of strength properties for a composite material with short reinforcing fibers. Moscow University Mechanics Bulletin, 72(4), 94–100.
  5. Storozhuk E.A., Chernyshenko I.S., Yatsura A.V. (2018). Stress-Strain State Near a Hole in a Shear-Compliant Composite Cylindrical Shell with Elliptical CrossSection. International Applied Mechanics, 54(5), 559–567.
  6. Storozhuk E.A., Yatsura A.V. (2017). Analyticalnumerical solution of static problems for noncircular cylindrical shells of variable thickness. International Applied Mechanics, 53(3), 313–325.
  7. Pyatikrestovskii K.P., Sokolov B.S., Travush V.I. (2015). Sovremennie kriterii prochnosti drevesini i vozmojnosti programmirovaniya rascheta kompleksnih konstrukcii pri slojnom napryajennom sostoyanii [Modern criteria of durability of wood and possibility of programming of calculation of complex constructions at the difficult tense state]. Academia. Arhitektura i stroitelstvo, (3), 125–131. (In Russ.)
  8. Kayumov R.A. (2017). Postbuckling behavior of compressed rods in an elastic medium. Mechanics of Solids, 52(5), 575–580.
  9. Galishnikova V.V., Pahl P.Ja. (2018). Constrained construction of planar Delaunay triangulations without flipping. Structural Mechanics of Engineering Constructions and Buildings, 14(2), 154–174.
  10. Golovanov A.I., Konoplev Yu.G., Sultanov L.U. (2010). Chislennoe issledovanie konechnih deformacii giperuprugih tel. IV. Konechnoelementnaya realizaciya. Primeri resheniya zadach [Numeral research of eventual deformations of hyperresilient bodies. IV. Finite-elements realization. Examples of decision of tasks]. Uchenie zapiski Kazanskogo universiteta. Seriya: Fiziko-matematicheskie nauki, 152(4), 115–126. (In Russ.)
  11. Hairullin F.S., Mingaliev D.D. (2017). Raschet tonkih obolochek s ispolzovaniem approksimiruyuschih funkcii razlichnogo poryadka [Calculation of thin shells with the use of approximating functions of different order]. Vestnik Kazanskogo tehnologicheskogo universiteta, 20(14), 102–104. (In Russ.)
  12. Paimushin V.N., Kholmogorov S.A. (2018). Physicalmechanical properties of a fiber-reinforced composite based on an elur-p carbon tape and XT-118 binder. Mechanics of Composite Materials, 54(1), 2–12.
  13. Gureeva N.A., Klochkov Yu.V., Nikolaev A.P. (2015). Opredelyayuschie sootnosheniya dlya nelineino uprugih tel i ih realizaciya v raschete osesimmetrichno nagrujennih obolochek vrascheniya na osnove smeshannogo MKE [Determining correlations for nonlinear resilient bodies and their realization in the calculation of axesymmetrical of the loaded shells of rotation on the basis of mixed FEM]. Uchenie zapiski Kazanskogo universiteta. Seriya: Fizikomatematicheskie nauki, 157(2), 28–39. (In Russ.)
  14. Yakupov S.N., Kiyamov H.G., Yakupov N.M., Hasanova L.I., Bikmuhammetov I.I. (2018). Effekt koncentracii napryajenii v sterjne pryamougolnogo secheniya v oblasti krepleniya ot prodolnih usilii [Effect of concentration of tensions in the bar of rectangular section in area of fastening from longitudinal efforts]. Structural Mechanics of Engineering Constructions and Buildings, 14(6), 451–458. (In Russ.)
  15. Agapov V., Golovanov R. (2018). Comparative analysis of the simplest finite elements of plates in bending. Advances in Intelligent Systems and Computing, 692, 1009–1016.
  16. Nguyen Nhung, Waas Anthonym. (2016). Nonlinear, finite deformation, finite element analysis. ZAMP. Z. Angew. Math. and Phys., 67(9), 35/1–35/24.
  17. Lei Z., Gillot F., Jezequel L. (2015). Developments of the mixed grid isogeometric Reissner – Mindlin shell: serendipity basis and modified reduced quadrature. Int. J. Mech., 54, 105–119.
  18. Hanslo P., Larson M.G., Larson F. (2015). Tangential differential calculus and the finite element modeling of a large deformation elastic membrane problem. Comput. Mech., 56(1), 87–95.
  19. Yamashita Hirok, Valkeapaa Antti I., Jayakumar Paramsothy, Syqiyama Hiroyuki. (2015) Continuum mechanics based bilinear shear deformable shell element using absolute nodal coordinate formulation. Trans. ASME. J. Comput. and Nonlinear Dyn., 10(5), 051012,1–051012,9.

Statistics

Views

Abstract - 257

PDF (Russian) - 258

Cited-By


PlumX

Dimensions


Copyright (c) 2019 Klochkov Y.V., Nikolaev A.P., Vakhnina O.V., Klochkov M.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies