Numerical analysis of the stress-strain state of thin shells based on a joint triangular finite element

Cover Page

Abstract


Relevance. The use of the finite element method for determining the stressstrain state of thin-walled elements of engineering structures predetermines their discretization into separate finite elements. Splitting irregular parts of the structure is impossible without the use of triangular areas. The triangular elements of shell structures are joint in displacements and in their derivatives only at the nodal points. Therefore, ways to improve the compatibility conditions at the boundaries of triangular elements are relevant. Aims of research. The aim of the work is to improve the compatibility conditions at the boundaries of adjacent triangular elements based on equating the derivatives of normal displacements in the middle of the boundary sides. Methods. In order to improve the compatibility conditions at the boundaries of triangular elements in this work, the Lagrange functional is used with the condition of ensuring equality in the middle of the sides of adjacent elements derived from normal displacements in the directions of perpendiculars tangent to the middle surface of the shell. Results. Using the example of analysing an elliptical shell, the efficiency of using a joint triangular finite element is shown, whose stiffness matrix is formed in accordance with the algorithm outlined in this article.


About the authors

Yuriy V Klochkov

Volgograd State Agricultural University

Author for correspondence.
Email: klotchkov@bk.ru
SPIN-code: 9436-3693
26 University Ave., Volgograd, 400002, Russian Federation

DSc. in Technical Sciences, Professor, Head of the Higher Mathematics Department, Volgograd State Agricultural University. He published 165 scientific articles, 4 monographs, 4 titles of educational literature

Anatoliy P Nikolaev

Volgograd State Agricultural University

Email: anpetr40@yandex.ru
SPIN-code: 2653-5484
26 University Ave., Volgograd, 400002, Russian Federation

DSc. in Technical Sciences, Professor, Professor of the Applied Geodesy, Environmental Engineering and Water Use Department, Volgograd State Agricultural University. He published 149 scientific articles, 6 monographs, 5 titles of educational literature

Olga V Vakhnina

Volgograd State Agricultural University

Email: ovahnina@bk.ru
SPIN-code: 3593-0159
26 University Ave., Volgograd, 400002, Russian Federation

PhD in Technical Sciences, Associate Professor of Higher Mathematics Department, Volgograd State Agricultural University. She published 47 scientific articles, 1 monograph, 8 titles of educational literature.

References

  1. Krivoshapko S.N., Gbaguidi-Aisse G.L. (2016). Geometry, static, vibration and bucking analysis and applications to thin elliptic paraboloid shells. The Open Construction and Building Technology Journal, 10, 3-28.
  2. Krivoshapko S.N., Galishnikova V.V. (2015). Arhitekturno-stroitel’nye konstrukcii: uchebnik dlya akademicheskogo bakalavriata [Architectural and building structures: a textbook for academic undergraduate]. Moscow: Urait Publ., 476. (In Russ.)
  3. Storozhuk E.A., Chernyshenko I.S., Yatsura A.V. (2018). Stress-Strain State Near a Hole in a Shear-Compliant Composite Cylindrical Shell with Elliptical Cross-Section. International Applied Mechanics, 54(5), 559-567.
  4. Pyatikrestovskiy K.P., Travush V.I. (2015). O programmirovanii nelineynogo metoda rascheta derevyannyh konstruktsiy [On programming nonlinear method for calculating wooden structures]. Academia. Arhitektura i stroitel’stvo, (2), 115-119. (In Russ.)
  5. Kim A.Yu., Polnikov S.V. (2016). Sravnenie ehksperimental'nogo i chislennogo issledovaniya bol'sheproletnogo pnevmaticheskogo linzoobraznogo sooruzheniya [Comparison of experimental and numerical studies of largespan pneumatic lenticular structures]. Nauchnoe obozrenie, (15), 36-41. (In Russ.)
  6. Khayrullin F.S., Sakhbiev O.M. (2016). Metod opredeleniya napryazhenno-deformirovannogo sostoyaniya trekhmernykh konstruktsiy slozhnoy formy [The method for determining the stress-strain state of three-dimensional structures of complex shape]. Structural Mechanics of Engineering Constructions and Buildings, (1), 36-42. (In Russ.)
  7. Kayumov R.A. (2016). Bol'shie progiby balok, arok i panelej v uprugoj srede s uchetom deformacij sdviga [Large deflections of beams, arches and panels in an elastic medium with regard to shear deformations]. Dinamicheskie i tekhnologicheskie problemy mekhaniki konstrukcij i sploshnyh sred: materialy XXII Mezhdunarodnogo simpoziuma imeni A.G. Gorshkova, 111-113. (In Russ.)
  8. Ignat’ev A.V., Ignat’ev V.A., Gazmatova E.A. (2018). Raschet tonkih plastin po metodu konechnih elementov v forme klassicheskogo smeshannogo metoda s isklyucheniem peremesheniy konechnih elementov kak zhestkogo tselogo [Analysis of thin plates according to the finite element method in the form of the classical mixed method with the exception of the displacements of finite elements as a rigid whole]. Izvestiya visshih uchebnih zavedeniy. Stroitel’stvo, 3(711), 5-13. (In Russ.)
  9. Golovanov A.I., Tyuleneva O.N., Shigabutdinov A.F. (2006). Metod konechnih elementov v statike i dinamike tonkostennyh konstruktsiy [The finite element method in statics and dynamics of thin-walled structures]. Moscow: Fizmatlit Publ., 392. (In Russ.)
  10. Zheleznov L.P., Kabanov V.V., Boiko D.V. (2018). Nelineynoye deformirovaniye i ustoychivost' diskretno podkreplennykh ellipticheskikh tsilindricheskikh kompozitnykh obolochek pri kruchenii i vnutrennem davlenii [Nonlinear deformation and stability of discretely supported elliptical cylindrical composite shells under torsion and internal pressure]. Izvestiya vysshikh uchebnykh zavedeniy. Aviatsionnaya tekhnika, (2), 27-34. (In Russ.)
  11. Sheshenin S.V., Bakhmetev S.G. (2014). Model effektivnogo sloya dlya rezinokordnogo meteriala [Effective layer model for the rubber-cord material]. Vestnik Moskovskogo universiteta. Seriya 1: Matematika. Mekhanika, (5), 41-45. (In Russ.)
  12. Agapov V.P., Aydemirov K.R. (2016). Raschet ferm metodom konechnyh elementov s uchetom geometricheskoy nelineynosti [Analysis of farms by the method of finite elements taking into account the geometric nonlinearity]. Promyshlennoe i grazhdanskoe stroitel’stvo [Industrial and civil engineering], (11), 4-7. (In Russ.)
  13. Nguyen N., Waas A.M. (2016). Nonlinear, finite deformation, finite element analyses. Z. Angew. Math. and Phys., 67( 9), 35/1-35/24.
  14. Lei Z., Gillot F., Jezeguel L. (2015). Developments of the mixed grid isogeometric Reissner - Mindlin shell: serendipity basis and modified reduced quadrature. Int. J. Mech, 54, 105-119.
  15. Hanslo P., Larson M.G., Larson F. (2015). Tangential differential calculus and the finite element modeling of a large deformation elastic membrane problem. Comput. Mech, 56(1), 87-95.
  16. Yamashita H., Valkeapaa A.I., Jayakumar P., Syqiyama H. (2015). Continuum mechanics based bilinear shear deformable shell element using absolute nodal coordinate formulation. Trans. ASME. J. Comput. and Nonlinear Dyn, 10(5), 051012/1-051012/9.
  17. Ren H. (2015). Fast and robust full guadrature triangular elements for thin plates/shells, with large deformations and large rotations. Trans. ASME. J. Comput. and Nonlinear Dyn,10(5), 051018/1-051018/13.
  18. Sartorato M., de Medeiros R., Tita V. (2015). A finite element formulation for smart piezollectric composite shells: mathematical formulation, computational analysis and experimental evaluation. Compos. Struct., (127), 185-198.
  19. Pogorelov A.V. (1974). Differencial'naja geometrija [Differential geometry]. M.: Nauka Publ., 176. (In Russ.)
  20. Sedov L.I. (1976). Mekhanika sploshnoy sredy [Continuum mechanics]. M.: Nauka Publ., 574. (In Russ.)
  21. Klochkov Y.V., Nikolaev A.P., Kiseleva T.A., Marchenko S.S. (2016). Comparative analysis of the results of finite element calculations based on an ellipsoidal shell. Journal of machinery manufacture and reliability, 45(4), 328-336.

Statistics

Views

Abstract - 325

PDF (Russian) - 217

Cited-By


PlumX

Dimensions


Copyright (c) 2019 Klochkov Y.V., Nikolaev A.P., Vakhnina O.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies