A MATHEMATICAL MODEL OF DISCRETIZATION OF ARTICULATED AXISYMMETRIC SHELLS WITH DIFFERENT VALUES OF PHYSICAL-MECHANICAL CHARACTERISTICS OF MATERIALS

Cover Page

Abstract


It is described an algorithm for calculating axisymmetric articulated shells with different physical and mechanical characteristics of materials based on the FEM using scalar and vector interpolations of displacement fields. As part of the sampling, a curved fragment of the merid- ian of the shell with nodes i and j is used. The analysis of VAT thin-walled structures made of heterogeneous materials in the form of a cylinder, articulated to the sphere and ellipsoid is fulfilled.


About the authors

Yu V KLOCHKOV

Volgograd State Agricultural University, Volgograd, Russia

Author for correspondence.
Email: Klotchkov@bk.ru
400002, Волгоград, пр. Университетский, 26

A P NIKOLAEV

Volgograd State Agricultural University, Volgograd, Russia

Email: Klotchkov@bk.ru
400002, Волгоград, пр. Университетский, 26

T A KISELEVA

Volgograd State Agricultural University, Volgograd, Russia

Email: Klotchkov@bk.ru
400002, Волгоград, пр. Университетский, 26

A S ANDREEV

Volgograd State Agricultural University, Volgograd, Russia

Email: Klotchkov@bk.ru
400002, Волгоград, пр. Университетский, 26

References

  1. Kayumov, R.A., Shakirzyanov, F.R., Gavryushin, S.S. (2014) Modelirovanie processa deformirovaniya i ocenka nesushhey sposobnosti sistemi grunt – tonkostennaya konstrukciya, Izvestiya Vishih Uhebnih Zavedeniy. Mashinostroenie. № 6. S. 20-24.
  2. Matvienko, Yu.G., Hernyatin, A.S., Razumovskiy, I.A. (2013). Chislenniy analiz nesingulyarnix sostavlyayushih trexmernogo polya napryazheniy v vershine treshhini smeshannogo tipa, Problemi Mashinostroeniya i Nadejnosti Mashin, № 4, p. 40-48.
  3. Skopcov, K.A., Sheshenin, S.V. (2011). Asimptoticheskiy analiz sloistih plastin i pologix obolochek, Izvestiya Rossiyskoy Akademii Nauk. Mekhanika tverdogo tela, № 1, p. 161-171.
  4. Bazhenov, V.A., Krivenko, O.P., Solovey, N.A. (2013). Nelineynoe deformirovanie i ustoyhivost’ uprugih oboloshek neodnorodnoy strukturi: modeli, metodi, algoritmi, maloizuhennie i novie zadahi, M.: Librikom, 336 p.
  5. Maksimyuk, V.A., Storozhuk, E.A., Chernyshenko, I.S. (2012). Variational finite-difference methods in linear and nonlinear problems of the deformation of metallic and composite shells (review), International Applied Mechanics, V. 48, № 6, p. 613–687.
  6. Golovanov, A.I., Tyuleneva, O.N., Shigabutdinov, A.F. (2006). Metod Konechnih Elementov v Statike i Dinamike Tonkostennih Konstrukciy, M.: Fizmatlit, 392 p.
  7. Bate K.-Yu. (2010). Methodi Konechnix Elementov, M.: Fizmatlit. 1022 p.
  8. Ignat’ev, A.V., Ignat’ev, V.A., Onishhenko, O.V. (2015). Vozmozhnoct’ ispol’zovaniya metoda konechnih elementov v forme klassicheskogo smeshannogo method dlya geometricheski nelineynogo analiza sharnirno-sterzhnevix system, Vestnik MGSU, № 12, p. 47-58.
  9. Klochkov, Yu.V., Nikolaev, A.P., Kiseleva, T.A., Marchenko, S.S. (2016). Comparative analysis of the results of finite element calculations based on an ellipsoidal shell, Journal of Machinery Manufacture and Reliability. Vol. 45, No. 4, pp. 328-336.
  10. Klochkov, Yu.V., Nikolaev, A.P., Marchenko, S.S., Kiseleva, T.A. (2013). Sopostavitel’niy analiz rascheta NDS sochlenennih obolochek na osnove MKE s vektornoy interpolyaciey i kompleksa ANSYS, Izvestiya Volgogradskogo Gosudarstvennogo Texnicheskogo Universiteta, Vol. 8, №15 (118), p. 81-84.
  11. Sedov, L.I. (1976). Mekhanika Sploshnoy Sredi, M.: Nauka, Vol. 1, 536 p.
  12. Novozhilov, V.V. (1962). Teoriya Tonkih Obolochek, L.: Sudostroenie, 432 p.
  13. Belyaev, N.M. (1976). Soprotivlenie Materialov, M.: Nauka, 608 p.

Statistics

Views

Abstract - 188

PDF (Russian) - 101

Cited-By



Copyright (c) 2017 KLOCHKOV Y.V., NIKOLAEV A.P., KISELEVA T.A., ANDREEV A.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies