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Received: October 7, 2020 range of problems in construction, hydrodynamics, thermal conductivity, aero-
Revised: January 17, 2021 space research and many other areas of industry. Analytical methods that make
Accepted: February 4, 2021 up one class for solving problems, and numerical calculation methods that

make up another class, including those implemented in computing complexes,
are used for the design and construction of various thin-walled structures such as
shells. Due to the fact that thin-walled spatial structures in the form of various
shells are widely used in many areas of human activity it is useful to understand
and know the capabilities of different calculation methods. Research works on
the study of the stress-strain state of the torse shell of equal slope with an ellipse
at the base are not widely available at the moment. For the first time the deri-
vation of the differential equations of equilibrium of momentless theory of shells
to determine the normal force N, from the action of uniformly distributed load
tangentially directed along rectilinear generatrixes to the middle surface of
the torse of equal slope with a directrix ellipse is presented in this article.
The parameters of the stress state of the studied torse are also obtained by

the finite element method and the variational-difference method. The SCAD
software based on the finite element method and the program SHELLVRM writ-
ten on the basis of the variational-difference method are used. The numerical
results of the parameters of the stress state of the studied torse are analyzed, and
the advantages and disadvantages of the analytical method and two numerical
calculation methods are determined.
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AHHoTanus. Ha ceronssuiHuii 1eHb CYIIECTBYIOT pa3iNyHble METOAbI pacueTa
JUTSL pEILIeHNUs] IMHPOKOTO CIIEKTpa 3a1ad B CTPOUTENBCTBE, THAPOJHHAMUKE, TEII-
JIONPOBOTHOCTH, KOCMUYECKHUX HCCIIENOBAaHHUAX M JPYTHX OTpacisix. sl mpoek-
THPOBAHMS W BO3BEAEHHS Pa3HOOOPA3HBIX TOHKOCTEHHBIX KOHCTPYKIMH THIIA
000JI0YeK MPUMEHSIOTCSI AaHATUTHIECKUE METO/IBI, COCTABIIIONINE OIMH KIace i
pelIeHus 3a/1a4, ¥ YHCJICHHBIE METOABI PAacieTa, COCTaBILIONINE APYIroi Kiacc,
B TOM YHUCJIC PCATIM30BAHHBIC B BbIYMCIIUTEIIbHBIX KOMILUICKCaX. B cBs3u ¢ TEM, 4YTO
TOHKOCTEHHBIE IIPOCTPAHCTBEHHbIE KOHCTPYKIMU B (hopMe pazHOOOpa3HBIX 000-
JIOYEK IIHPOKO HCIOJB3YIOTCS BO MHOTUX Chepax AeATeNbHOCTH YeTI0BeKa, I0JIe3HO
MOHMMATh U 3HATh BO3MOXHOCTH Pa3IMYHBIX METOJOB pacdera. PaGoTsl mo uc-
CJIEIOBAaHUIO HANPSLKEHHO-AE(OPMUPOBAHHOIO COCTOSHUSI TOPCOBOM 000I0UKH OfU-
HAKOBOI'O CKaTa € 3JUIUIICOM B OCHOBaHHY IIPE/ICTABICHB] HA JAHHBIA MOMEHT B MaJIOM
o0beme. B crarbe BriepBbIe TPUBOIUTCS BHIBOA I (epeHIIMaNbHBIX YPaBHEHUH
paBHOBecHs1 OE3MOMEHTHOI TEOpHH O0OJIOUYEK IS ONPENeTICHUs] HOPMaJIbHOTO
yeunusi Ny OT IeHCTBUSI paBHOMEPHO-PACIIPEeNICHHON Harpy3KH, HallpaBJICHHON
10 KacaTeJbHOM BIOJb MPSMOIMHEHHBIX 00pa3yOUIMX K CPEAUHHON MMOBEPXHO-
CTH TOpPCa OIMHAKOBOT'O CKaTa C HANPABILIONIMM JJUTHIICOM. TakKe MOIydeHBI
IapaMeTpsl HAIPSHDKEHHOTO COCTOSHUS HCCIIEyEeMOT0 TOPCa METOAOM KOHEUHBIX
3JIEMCHTOB M BapUallUOHHO-PA3HOCTHBIM METOAOM. I/ICHOJ]I)?)y}OTCﬂ BbIYMCJIN-
tenbHbId KoMIulekc SCAD Office Ha ocHOBE MeTO/a KOHEUHBIX JJIEMEHTOB U
nporpamma SHELLVRM, HanucanHas Ha 6a3e BapHallMOHHO-PA3HOCTHOTO Me-
TOMa. BEINONHEH aHANM3 YHCIOBBIX PE3yJIbTATOB IIAPAaMETPOB HANPSHKEHHOTO
COCTOSIHUSI UCCIIEYEMOI0 TOPCA, YCTAHOBIICHbI ILTIOCHI U MUHYChI IPUMEHEHUS
aHAIUTUYECKOI0 METO/a U IBYX YMCIIEHHBIX METOJIOB pacyera.

KaioueBble cJI0Ba: TEOPUS TOHKUX OOOJOUEK, aHAIUTHIECKOE pelIeHue, 0e3-
MOMEHTHOE COCTOSTHHE, TOPCOBasi 000JI0YKA, TIOBEPXHOCTH OJMHAKOBOTO CKaTa,
METOJT KOHEYHBIX JJIEMEHTOB, BAPHAITMOHHO-PA3HOCTHBIA METOI, BHIYMCITUTENb-
ue1ii komireke SCAD Office, cucrema Mathcad

Introduction

For the design of diverse engineering structures, various calculation methods are used, such as analytical,

numerical and numerical-analytical. In the practice, to get the general parameters of the stress-strain state of spa-
tial-structures, engineers use automated numerical calculation methods because analytical calculation methods
are quite complex and time consuming.

The most common numerical calculation method is the finite element method (FEM). Originally, FEM
was used for solving mathematical problems in a simpler form. The subsequent development of FEM and auto-
mated software systems based on this method such as SIMULIA (www.3ds.com), ANSYS (www.ansys.com),
SAP2000 (www.csiamerica.com), SCAD (www.scadsoft.com), PROKON (www.prokon.com) and others, made it
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possible to apply it to solve a wide range of problems in acrospace research, to model and take into account dyna-
mic loads, to solve various problems in thermal conductivity, hydrodynamics, construction and many other areas.

The idea of discretization on which the FEA is based is very old. Before 1922, Courant used the finite ele-
ment ideas in Dirichlet’s principle. The period of 1962—-1972 is known as the golden age of FEM [1]. There are
five groups of papers (Courant, Argyris, Turner et al., Clough and Zienkiewicz) which may be considered in
the development of the FEM and in one of these the name originated [2]. Clough coined the term “finite ele-
ments”, Turner perfected the direct stiffness method and the works of Huges, Bathe and Zienkiewicz [3] laid
the foundation for further progress of the FEM [1]. In [4], a method for calculating bending plates by the finite
element method in stresses is proposed, and a comparison with the results of the finite element method in dis-
placements is made. The solution of plane problems of the theory of elasticity based on the approximation of
stresses is considered, the calculations of a cantilever beam and a plate with a hole are performed for various fi-
nite element meshes, and comparison is made with solutions by the method of finite elements in displacements
and with exact solutions in the work [5]. A special issue including 35 papers is devoted to research in the field of
development and application of FEM [6].

The finite-difference energy method (FDEM) [7-10] or so called variational-difference method
(VDM) [9-14] is also referred to numerical calculation methods [15; 16]. This method takes into account
the geometric characteristics of the middle surface of the shell, which allows a more accurate representation of
the stress-strain state of thin-walled structures of complex geometry. The VDM (FDEM) is based on the idea
put forward by Courant in 1943 [9; 17; 18], which was continued by Houbolt in 1958 [8], who performed
static analysis of beams and plates combining finite difference analog of derivatives with a variational formula-
tion [19]. Further developed by Griffin and Varga in 1963 [20] who introduced finite difference into the varia-
tional formulation of strain compatibility and boundary conditions for the analysis of plane elasticity prob-
lems [19]. Further Bushnell in 1973, and Brush and Almroth in 1975 [21] who extended the approach to
the analysis of other type of structures [22].

The successful application of VDM largely depends on how well the system of basic functions allows
the qualitative characteristics of the solution. Consequently, it can be expected that the efficient solution of these
variational problems will require numerical schemes that differ from traditional techniques based on continuous
approximations [23].

In the Department of Construction of the Academy of Engineering of the RUDN University of Russia,
the Doctor of Technical Sciences, Professor V.N. Ivanov together with his postgraduate students (currently PhD)
Nasr Younis Ahmed Abboushi (Palestine), Muhammad Rizwan (Pakistan), Bock Hyeng Christian Alain (Came-
roon), Govind Prasad Lamichhane (Nepal) led the development of SHELLVRM, a new Variational-Difference
Method based program. This program allows to determine the stress-strain state of plates and various types of
shells with an orthogonal coordinate system, which middle surfaces are described by analytical equations.
The program includes such classes of shells as: flat shells on rectangular and curved planes, shells of revolution,
shells in the form of Joachimsthal’s channel surfaces, shells in the form of Monge surfaces and normal cyclic
surfaces. The program includes a system of plane curves, on the basis of which sections of surface classes are
formed and coefficients of quadratic forms are calculated. The basics of the VDM and the text of the program for
plate calculations are given in [15].

Analytical calculation methods are used for spatial structures in the form of various surfaces [24]. Analyti-
cal methods are quite complex and time-consuming. More than 600 analytical surfaces are described in the En-
cyclopedia of Analytical Surfaces [25]. The geometry of surfaces and automated possibilities of their construc-
tion are considered in the monograph [26].

Among an extensive variety of analytical surfaces, the torse shells of equal slope possesses the ability to
unfold onto a plane without folds and breaks [27], and this type of shells are widely used in many areas of indus-
try and manufacturing [28-31].

This article is part of a series of research papers devoted to the study of the geometry and stress state of
torse shell of equal slope with an ellipse at the base under the action of different loads. In previous works,
the authors have performed calculations this shell under the action of a linear load on the upper edge and under
the action of self-weight [32; 33] and with a different restraint of the base ellipse [34]. Also, a design of an aw-
ning in the shape of a torse of equal slope was proposed and new results were obtained in the field of geometric
studies [35; 36]. In this article, we consider the uniformly distributed load directed along rectilinear generatrixes
of the torse. The choice of the load type is determined by the possibilities of the momentless shell theory. The main
task of this article is to find an analytical solution and determine the parameters of the stress state of the torse by
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the momentless theory (MLT), followed by comparison with the results of two numerical methods (the finite
element method and the variational-difference method).

The surface of equal slope is a ruled surface generated by a straight line moving in the normal plane of
a flat directrix-curve with a constant angle of inclination to the plane of the directrix. If we take an ellipse as
a flat directrix-curve, then straight lines of equal inclination to the plane of the ellipse will generate the torse sur-
face of equal slope (Figure 1). The surfaces of equal slope are surfaces of zero Gaussian curvature (K = 0).
The papers [37; 38] describe the basic properties of these surfaces. The equal slope surface also belongs to
the class of Monge surfaces [24; 27].

Figure 1. Torse shell of equal slope with an ellipse at the base

As its shown in [27], the directrix ellipse can be defined by parametric equations (1):
x=x(v) =acosv, y=y{W)=bsinv, €))

where a and b are the dimensions of the semi-axes of the directrix ellipse at the base of the torse, and the pa-
rameter v must be in the limits 0 < v < 2m.
According to [27], the parametric form of setting the torse surface with a directrix ellipse is:

ubcosacosv

- H
Va?sin?v + b2cos?v

x = x(u,v) = acosv —

uacosasinv

- H
Va?sin2v + b2cos2v

y = y(u,v) = bsinv —

z = z(u) = usina. 2)

The family of u lines is the rectilinear generatrixes of the torse surface of equal slope, while the coordinate
line u = 0 coincides with the ellipse at the base, a is the angle between the principal normal n = —e X k directed
inwards of the directrix ellipse and the straight generatrix u (Figure 1).

The coefficients of the basic quadratic forms of a given surface and its main curvatures are [27]:

ab sin a
A=1; B=u1/2—uE; F=0; L=M=0;, N=B———;
n il
ab sin a
ki =ky=0; ky=k, =B—u' 3)

where u = u(v) = a?sin?v + b% cos?v, B = abcosa.
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Let us consider the application of the momentless theory of shell calculation, the finite element method
and the variational-difference method on the example of a thin torse shell of equal slope with an ellipse at
the base under the action of a uniformly distributed load ¢ = 1 kN/m? tangentially directed along rectilinear ge-
neratrixes to the middle surface of the torse (Figure 2). Thus, the external surface load is X = —¢, Y =2 = 0.
The geometric parameters of the torse are: a = 3 m, b = 2 m, a = 60°, the length of the straight generatrixes is
u = 2 m. The boundary conditions at the level of the directrix ellipse (¢ = 0 m) are simple (movable) supports,
and at the top (# = 2 m) the edge is free.

fragment of a distributed
surface load

Figure 2. Torse under the action of external distributed surface load

To determine the parameters of the stress state of the considered torse, the momentless theory of shell cal-
culation [24; 27], the SCAD integrated system for finite element structural analysis (FEA), and the SHELLVRM
program based on the variational-difference method [15; 16] are used.

The differential equilibrium equations of the momentless theory are obtained from the general equilibrium
equations of the moment shell theory [24; 27].

Differential equations of equilibrium of the momentless torse shell

The momentless theory is a simplified version of the general theory of thin elastic shells, which neglects
the influence of transverse forces and moments. At the same time, the possibility of existence of the momentless
stress state of the shell depends on a number of conditions [24; 27]. The shell should have the form of a smooth-
ly changing continuous surface, also the load on the shell should be continuous and smooth, and the supports of
the edges should allow the shell to move freely in the direction normal to the middle surface, normal movements
and rotation angles at the edges of the shell should not be restrained.

We obtain differential equations of equilibrium for determining the normal force under the action of a uni-
formly distributed load acting in the direction of a tangent along rectilinear generatrixes to the middle surface of
the considered torse.

General differential equations of equilibrium of the momentless theory [24; 27] have the form:

0B 10
(BNu) N + ——(AZS) + ABX = 0;

aA 10
(ANU) +—=—(B?S) + ABY = 0;
Bou
N, Ny
———7 =
R, + R, 0 4)
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For the considered case of load application (Figure 2), we obtain X = —g and ¥ = Z = 0. The differential
equations of equilibrium (4), taking into account expressions (3), are transformed as following:

aB as
(BNu) — 4+ XB = 0;

ou av
oN, 10,
F™ E(’)_( S) =0;
N,
R =0 5)

The resulting system of differential equations (5) is of second order. To solve it, it is sufficient to have one
boundary condition at each point of the torse shell contour. Thus, at the top of the shell at ¥ = 2 m the force
N, = 0. Moreover, from the second and third equations of system (5) the forces N,, = 0 and § = 0.

By integrating the first equation of system (5), we obtain the expression for the values of normal force N,
along the rectilinear generatrixes u:

N, = B(u ) qu(u V) du+X1(v)] 6)

Here X, (v) is an arbitrary function of integration.
Then, by integrating of (6):

2
f B(u,v) du = w2 =P = E(Bw. v) +ul/2) =

o o5 (= B2, v)), ™

2

To satisfy the boundary condition N;, = 0 on the upper free edge under u = 1 = 2 m, the arbitrary func-
tion of integration X, (v) in (7) must be equal to:

2
X () =—q (nul/z — %) ®)

The equation (6) for the calculation of numerical values of the normal forces N,, along the rectilinear ge-
neratrixes taking into account the value X; (v) of the arbitrary integration function (8) takes the following form:

. q
N = B(u,v)

B

[u”z (w—m) - - nz)]- ©9)
1l

To find numerical results of normal force N, (9) we use the engineering math software Mathcad.

Numerical methods for investigation of the stress state of the shell

The investigation of the stress state of the torse of equal slope was performed by the finite element method
and the variational-difference method. The first calculation is performed by using SCAD software. The view of

\ the 3D computational model when approximating the middle surface by a set of quad-
j‘\ rangular planar shell elements is shown in Figure 2. The maximum distance between
3 : | the nodes of the finite elements of the computational model is 0.228 m. The number of

finite elements is 1680 and of nodes is 1760.

For the implementation of simple (movable) supports, which is a necessary
condition for the momentless work of the torse, the SCAD program has added
short bar elements with hinges (Figure 3). The introduction of hinges in these
support rod elements releases linear movements along the normal to the torse mid-
dle surface (Figure 3, direction z;), angular movements tangent to the surface (Fi-

. _ gure 3, direction y;) and normal to the surface of the shells (Figure 3, direction z;),
Figure 3. Implementing . . . .. . .
of momentless state as well as angular movements in the direction of rectilinear generatrixes u (Figure 3,
in SCAD software direction x 1).
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The second calculation is performed in the program SHELLVRM, based on the variational-difference
method. The calculated grid is similar to the grid in FEM. This calculation also takes into account and imple-
ments all the necessary conditions for the momentless state of the shell. The calculation is performed for
a 1/4 segment of the torse shell, taking into account two planes of symmetry.

Results and discussion

The obtained results of the analytical calculation are compared with the results of numerical methods
(by the finite element method and the variational-difference method) for 11 cross-sections (Figure 4).

Figure 4. Cross-sections of the torse to compare the results

-34 9252 -30,6824
-30,6824 -26,4396
-264396 -22,1967
-22,1967 -17,2539
-17.9539 -13,711
-13711 -9.4682
-9.4632 -5,2254
-5,2254 -0,5825

Figure 5. Normal stress 6(N,) by FEM, kN/m?

The maximum deviations of the analytical results of normal force N, along the rectilinear generatrixes
from the results of two numerical methods are: 7.4% in section 1-1 (Table 1), 5.0% in section 2-2, 1.9% in sec-
tion 3-3, 3.7% in section 44, 4.1% in section 5-5 (Table 2), 3.6% in section 6-6, 2.8% in section 7-7,
2.2% in section 88, 2.0% in section 9-9, 1.9% in section 10-10, and 1.9% in section 11-11 (Table 3).
At nodes of coordinates # =2.00 m in FEM and VRM the values are different from zero when compared with MLT.

For an overall picture of the stress state of torse shell under the action of uniformly distributed load ¢ tan-
gentially applied along rectilinear generatrixes to the torse middle surface, the contour graph distribution of nor-
mal stress o(/V,) obtained in the SCAD software is shown in Figure 5.
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Table 1
Results of normal force /Vu: cross section 1-1
U-axis Nu, MLT, Nu, FEM, Deviation, Nu, VDM, Deviation,
coordinate, m section 1-1, KN/m section 1-1, KN/m MLT and FEM, section 1-1, KN/m MLT and VDM,
section 1-1, % section 1-1, %
0.000 —-1.2500 —1.2438 0.50 -1.2980 3.70
0.200 —1.1432 -1.1906 3.98 -1.1920 4.09
0.400 —1.0353 —-1.0841 4.50 —-1.0860 4.67
0.600 -0.9258 -0.9757 5.11 -0.9767 5.21
0.800 —0.8143 —0.8640 5.75 —0.8645 5.81
1.000 —-0.7000 —0.7477 6.39 —0.7480 6.42
1.200 -0.5818 —0.6253 6.96 —0.6255 6.99
1.400 -0.4579 —0.4942 7.35 —0.4944 7.38
1.600 —-0.3250 —0.3503 7.22 -0.3504 7.25
1.800 -0.1769 -0.1871 5.45 -0.1870 5.40
2.000 0.0000 —0.0563 - —-0.0002 -
Table 2
Results of normal force Vu: cross section 5-5
U-axis Nu, MLT, Nu, FEM, Deviation, Nu, VDM, Deviation,
coordinate, m section 5-5, KN/m section 5-5, KN/m MLT and FEM, section 5-5, KN/m MLT and VDM,
section 5-5, % section 5-5, %
0.000 -1.5623 —1.5004 4.12 —1.5340 1.84
0.200 —1.4292 —1.4004 2.06 -1.4010 2.01
0.400 —-1.2930 -1.2647 2.23 —-1.2650 221
0.600 —-1.1531 -1.1262 2.39 -1.1270 2.32
0.800 —-1.0090 -0.9840 2.54 -0.9842 2.52
1.000 -0.8599 —-0.8375 2.68 -0.8376 2.66
1.200 —-0.7050 —0.6859 2.78 —0.6860 2.77
1.400 —0.5432 —0.5284 2.80 —0.5285 2.78
1.600 -0.3731 -0.3637 2.58 —0.3638 2.56
1.800 -0.1928 -0.1892 1.88 -0.1899 1.53
2.000 0.0000 -0.0572 - —-0.0002 -
Table 3
Results of normal force /Vu: cross section 11-11
U-axis Nu, MLT, Nu, FEM, Deviation, Nu, VDM, Deviation,
coordinate, m section 11-11, KN/m section 11-11, kKN/m MLT and FEM,  section 11-11, kN/m MLT and VDM,
section 11-11, % section 11-11, %
0.000 -1.7778 —-1.7439 1.95 -1.7870 0.51
0.200 -1.6159 -1.6240 0.50 -1.6240 0.50
0.400 -1.4512 —1.4585 0.50 —-1.4590 0.53
0.600 —1.2833 —-1.2899 0.51 -1.2900 0.52
0.800 -1.1122 -1.1178 0.50 -1.1180 0.52
1.000 -0.9375 -0.9420 0.47 —0.9420 0.48
1.200 —-0.7590 -0.7622 0.42 —0.7622 0.42
1.400 -0.5763 —0.5783 0.35 —0.5784 0.36
1.600 -0.3892 —-0.3901 0.23 —0.3902 0.26
1.800 -0.1972 —-0.1973 0.07 -0.1974 0.10
2.000 0.0000 —0.0553 - 0.0000 -
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Comparison of the obtained results of normal force N,, by three calculation methods shows good conver-
gence. The concentration of the largest deviations of the numerical values of the normal force N, by the mo-
mentless theory from the VDM and FEM is in the region of the shell with the largest change in the radius of cur-
vature along the curvilinear directrices, i.e., in the upper nodes of sections 1-1 and 2-2 (Figure 4).

According to the Theory of Strength of Materials, the numerical values of the normal force N,, under the ac-
tion of uniformly distributed load tangentially along rectilinear generatrixes to the torse middle surface at the nodes
of all sections at coordinate # = 2.00 m must be N,, = 0. However, the values of the normal force N,, in the FEM
and VDM are different from zero, and the results of the VDM are more accurate compared to the FEM. It is well
known that the accuracy of the results of FEM and VDM calculations depends on the correct choice of the size of
the finite elements (mesh). Moreover, it is noted in [15] that a comparison of the results of VDM and FEM calcula-
tions at the same mesh shows close accuracy, and in some cases, VDM gives even higher accuracy results.

FEM and VDM allow obtaining numerical values also for normal forces N, along curved directrices,
bending moments M,,, M,,, tangential forces S and shear forces Q,, Q,. The normal forces N, by VDM range
from —0.0246 to 0.0148 kN/m, and by FEM ranges from 0.0490 to 0.0216 kN/m. The shear forces Q,,, Q,, range
from —0.01 to 0.01 kN/m. The tangential forces S ranges from —0.0354 to 0.0354 kN/m by FEM, and from
—0.0162 to 0.0067 kN/m by VDM. The values of bending moment M,, range from —0.0261 to 0.4244 N-m/m by
VDM, and by FEM from —0.1143 to 0.4733 N-m/m. The values of bending moment M,, by VDM range from —
0.4140 to 1.4030 N-m/m, and by FEM range from —0.4398 to 1.5562 N-m/m.

The bending moments M,, and M,, are of particular interest, since the values of bending stresses when
compared with normal stresses can be used to infer the bending state of the torse shell under the action of
the considered load.

The normal stress o), and o from normal forces N, ;, and moments M,, ,, are determined as follows:

N, 6M
on ==L oy =22 (10)

-0,1143 -0,04028
-0,0408 0,0326
00326 0,1061

01061 |0.1785
01795 |0,253

0,253 0,326
[ 0,3264 0,2%99
o399 [04733

Figure 6. Bending moment M, by FEM, N-m/m

The results of the VDM for the maximum ratio of stresses o, to oy, are: in the cross section 1-1 is
156.5% in the node of coordinate u = 2.00 m, 27.2% in the node with the coordinate ¥ = 1.80 m, 13.1% in
the node with the coordinate # = 1.60 m, 7.2% in the node with the coordinate ¥ = 1.40 m, in other nodes does
not exceed 4.4%. In cross section 2-2 is 61.9% in the node of coordinate u = 2.00 m, 25.0% in the node with
coordinate # = 1.80 m, 12.3% in the node with the coordinate u = 1.60 m, 6.8% in the node with the coordinate
u = 1.40 m, other nodes do not exceed 4.2%. In section 3-3 is 25.9% in the node with the coordinate u = 2.00 m,
18.5% in the node with the coordinate ¥ = 1.80 m, 9.9% in a node with coordinate ¥ = 1.60 m, and in the other

AHANUTVYECKME W YNCTEHHBIE METO[IbI PACYETA KOHCTPYKLIA 59



Aleshina 0.0., Ivanov V.N., Cajamarca-Zuniga D. Structural Mechanics of Engineering Constructions and Buildings. 2021;17(1):51-62

nodes does not exceed 5.8%. In section 4—4 is 7.0% in node with coordinate # = 2.00 m, 9.3% in the node with
coordinate ¥ = 1.80 m, 6.7% in the node with coordinate # = 1.60 m, and in all other nodes does not exceed
4.5%. In section 5-5 is 45.5% in the node with the coordinate # = 2.00 m; in section 6—6 is 13.3% in the node
with the coordinate # = 2.00 m; in section 77 is 17.4% in the node with the coordinate # = 2.00 m; in section
88 is 10.9% in the node with the coordinate u = 2.00 m; in section 10-10 is 8.9% in the node with the coordi-
nate u = 2.00 m; in section 11-11 is 34.8% in the node with the coordinate ¥ = 2.00 m, 5.8% in the node with
the coordinate # = 1.80 m. In other nodes of sections 5-5 to 11-11, the stress ratio does not exceed 5.2%.

-04398 -0,1503
-0,1503 0,0582
0,0592 0,3087
0,3057 0,5582
0,5532 08077

0,8077 1,0572
1,0572 1,3067
1,2087 15562

Figure 7. Bending moment M, by FEM, N-m/m

The bending stresses oy, arising from a uniformly distributed load directed tangentially along rectilinear
generatrixes to the middle surface, in the VDM have an even greater influence on the bending state of the con-
sidered torse shell with a directrix ellipse at the base.

The results of studying the influence of bending stresses o,y and oy, in FEM show a similar character.
Figures 6 and 7 show the contour graph distribution of bending moments M,, and M,, obtained in the SCAD
software.

Conclusion

The research is carried out at the Academy of Engineering of the Peoples' Friendship University of Russia
(RUDN University). In the field of geometry and stress-strain state of various shells, in particular torse shells
class, works at RUDN University have been carried out since 1960's. An undeniable contribution to modern the-
ory of shells was made by Prof. V.G. Rekach, Prof. S.N. Krivoshapko and Prof. V.N. Ivanov and their postgra-
duate students (today PhD in Technical Sciences). Currently, S.N. Krivoshapko and V.N. Ivanov continue their
research in the field of shell theory [39—41].

This paper for the first time presents the differential equations of equilibrium for a torse shell of equal
slope with a directrix ellipse and the expression for the normal force N,, determination under the action of uni-
formly distributed load tangentially directed along rectilinear generatrixes to the torse middle surface.

Determination of the internal force N,, of the investigated torse shell by the analytical method is a complex
and time-consuming task that requires a lot of time and increased concentration of attention on its implementa-
tion, since a slight inaccuracy can lead to incorrect results. The comparison of the results of the momentless the-
ory with the results of the finite element method and the variational-difference method shows good convergency,
which indicates the correctness of the obtained differential equilibrium equations and the expression for deter-
mining the values of the normal force N,,. The use of SHELLVRM and SCAD programs simplifies the solution
of this task. However, the calculation in the SHELLVRM program is possible if there is the program text for its
implementation, and in the SCAD program it becomes difficult to implement a momentless state (introduction of
simple-movable supports). When choosing a method of solving the problem, SCAD program, based on the finite
element method, is the simplest and most versatile way for solving the research problem.
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The values of the normal force N,, along the rectilinear generatrixes of the shell indicate that the consi-
dered shell is working in compression. Thus, it is a big plus when selecting materials for the design and manu-
facture of torse shells. Considering the property of this class of shells to be flattened on the plane without folds
and breaks, this is also an advantage when selecting torse shells among similar shaped.

Due to the results of the FEM and VDM, it was found that the bending stresses oy, and oy, have a sig-
nificant influence on the torse shell stress state. Therefore, it is necessary to consider the bending moments M,,
and M,, when designing different structures in the form of this class of shells. The momentless theory does not
allow us to obtain these parameters of the stress state of the torse. Thus, it may be concluded that the momentless
theory is not applicable for the considered torse shell of equal slope with ellipse directrix.
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