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        This study is part of the development of a model of hydraulic calculation of controlling 
reserves control in drinking water supply systems. To that end, the general expressions of the 
cumulative curves of gravity water supply and pumped water supply as well as the ones of the 
distribution over time were formulated. It appears from this study that for a peak coefficient 
Kp between 1.2 and 1.4, the cumulative consumption evolves linearly and for Kp ranging from 
1.45 to 2.5 the cumulative consumption follows a polynomial curve of degree 3. Then, there is 
a relationship between the respective totals of gravity water supply and pumped water supply 
and the total of the cumulative consumption, which superimposed have enabled the establish-
ment of the mathematical model for determining the volume of the controlling reserves.   

        Keywords: Drinking water supply - Modeling - Water supply - Consumption - Reservoir 
- Volume – Program. 

1. INTRODUCTION 
In drinking water supply systems, drinking water reservoirs are needed in cities where sponta-
neous urban settlements with middle class standing are important. The satisfaction of the pop-
ulation with respect to the water demand is ensured by the continuous service offered by the 
structures and equipment of the water supply system throughout the day. This performance is 
largely ensured by water supply reserves (such as cistern, water towers etc.) that serve as a 
buffer between the production which is fairly constant and the distribution which remains 
highly variable with time. Poor design of these reservoirs in water networks causes severe 
problems on the performance and even on the cost of the entire water supply network [4]. The 
various reserve components (regulation, fire, emergency and maintenance) 
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of the reservoir volume show that the storage capacity varies depending on the controlling 
reserves since the others are estimated with specific standards or guidelines for each region. 
Controlling reserves for a given day represent about 20% of the daily consumption, the maxi-
mum volume of control being calculated from the hourly consumption of the day of the high-
est consumption [5]. However, studies have shown that according to guidelines, the reservoir 
capacity can range from less than 25% to 100% of the daily consumption peak taken for the 
project horizon [2.9]. Indeed, the present study focuses on the development of a rational ap-
proach for the hydraulic calculation of the controlling reserves to reduce differences on the 
basis of the analysis of design approaches currently used by field engineers. 

2. METHODOLOGY 
1.1 Materials 
The cumulative water supply has been modelled using the Laplace transform which is a 

widely used tool for mathematical modelling of physical phenomena (inflow, consumption 
pattern, etc.). The Maple 13 software enabled the adjustments of curves of the cumulative 
consumption for each peak coefficient. MATLAB software is used for the treatment of matrix 
components of the pumped water flow rate and the pumping time.  

2.2 Methods 
The most used method to estimate the controlling volume allows viewing offs between 

the periods of low consumption and those of high consumption in order to adjust the pumping 
periods to minimize the risk of rupture of supply during hours of high consumption [5]. In 
fact, we fix the time for daily pumping, the pumping periods and the pumping rate and we 
successively represent per day the water supply and the consumption, simplified in hourly slot, 
the curves of the accumulated previous flow rates and the superposition of the curves of ac-
cumulated flow rates. A parallel translation of the supply curve for covering the distribution 
curve allows the visualization of both maximum fluctuations. The sum of these two fluctua-
tions indicates the volume of the controlling reserves. These methods have been generally 
replaced by extended period simulation models which can be more flexible than the graphical 
methods. 

Reservoirs operation Analysis showed that the capacity of the reservation distribution is 
function of the supply flow rate and the fluctuations in the distribution flow rate [8]. Let 푟 	(푡)  
the hourly flow rate of water supply, 푟 (푡) the hourly flow rate of distribution and 푥(푡)  the 
flow rate of controlling reserves, then: 

				푥(푡) = 푟 	(푡) −	푟 	(푡).																																																											(1) 
2.2.1 Modelling of the water supply 
Pumped water supply 
The function 푟 	(푡)	reflects the pumped flow rate at time t, defines as [10]: 

푟 	(푡) = 	

⎩
⎪⎪
⎨

⎪⎪
⎧ 푄 																																															푖푓		푡	휖	[푎 , 푎 [

		푄 																																														푖푓		푡	휖	[푎 , 푎 [	
			푄 																																															푖푓		푡	휖	[푎 , 푎 [			
	푄 																																														푖푓		푡	휖	[푎 , 푎 [
푄 																																															푖푓		푡	휖	[푎 , 푎 [
⋮																																																																	⋮										

			푄 																																																푖푓		푡	휖	[푎 , 푎 [

�, 

where:  t is the pumping time, 푎 	–	푎 	 = 24	ℎ,  푄 	 is the pumped flow rate in the nth time 
interval, 푛 is the number of intervals (n, … ,⩾ 1). 
        To obtain the Laplace transform [7] of the function 푟 	(푡) which allows for the accumula-
tion of supply, it is necessary to express it in the form of linear combination of unit step func-
tions: 
푟 	(푡) = 푄 + (푄 − 푄 )푢푎 (푡) + (푄 − 푄 )푢푎 (푡) + (푄 − 푄 )푢푎 (푡) + (푄 − 푄 )푢푎 (푡)

+⋯+ (푄 − 푄 )푢푎 (푡),												 
hence :                              푟 	(푡) = 	∑ (푄 − 푄 )푢푎 (푡)∞ ,																																																		(2) 

With 푢푎 (푡)- the Heaviside function defines as: 
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푢푎 (푡) = 0																			푖푓		푡 < 푎 	
1																			푖푓		푡 ⩾ 푎 		

� 

Let 푅 	(푡) be the cumulative flow rates of supply, 	푅 	(푡) = 	∑ 푟 	(푡)	푑푡		.             
 

       Using the theorem of the Laplace derivations [7], it is established that: 
  ℒ⟦푟 	(푡)	⟧ = 			푠ℒ⟦푅 	(푡)	⟧ −		푅 	(0)	.																																												(3) 

        Whereas	푅 	(0) = 0, since there is no pumping at time	푡	 = 	0 

ℒ⟦푟 	(푡)	⟧ = 			푠ℒ⟦푅 	(푡)	⟧ 													==> 				ℒ⟦푅 	(푡)⟧ = 	ℒ⟦ 	( )	⟧ 		.																													(4)	  

From equation (2), we have: 
 

ℒ⟦푟 	(푡)	⟧ = ∑ (푄 − 푄 )ℒ⟦푢푎 	(푡)	⟧∞ 푎푣푒푐	(푄 − 푄 ) = 푐표푛푠푡푎푛푡푒. 
 

Whereas the Laplace transform of the Heaviside function gives: 
       													ℒ⟦푢푎 	(푡)	⟧ 	=

	
		푤푖푡ℎ		푠 > 0	.																																																								(5)                                          

        From equations (4) and (5), we obtain the Laplace transform of		푅 	(푡) : 

				ℒ⟦푅 	(푡)	⟧ = 	 (푄 − 푄 )
푒
푠 					푤푖푡ℎ	푠 > 0

∞

.																														(6) 

The inverse Laplace transform can enable to express 	푅 	(푡) as 
  	푅 	(푡) 					= 			 ℒ ⟦푅 	(푡)⟧ =			 

											= 	 (푄 − 푄 )
∞

ℒ
푒
푠 	푤푖푡ℎ	푠 > 0.																																		(7) 

 

Whereas    ℒ = 	ℒ 		 . 푒 	 = 	ℒ ! 	 . 푒 	 		= 

 																																		= 	ℒ ⟦퐹(푠). 푒 	⟧.																																																																							(8) 
With 퐹(푠) = ℒ[푓], where	푓(푡) = 	 푡 , here the exponent 훼 is equal to 1 according to the 

equation (8) then	푓	(푡) 	= 	푡, and then: 

   			ℒ 			= 		푓(푡 − 푎 )	푢푎 	(푡) = (푡 − 푎 )	푢푎 	(푡)																				(9)         

From equations (7) and (9), we obtain the accumulation of supply as follows: 

푅 	(푡) = 	 (푄 − 푄 )(푡 − 푎 )	푢푎 	(푡)															푤푖푡ℎ		푄 = 0									(10)	
∞

 

The expression (10) is the model of accumulation of pumped water supply over time. 
Gravity water supply 
The function 푟 	(푡)	reflects the flow rate of gravity water supply at time t, defines as: 

푟 	(푡) = 	 푄 =
푄
24

� 																								푖푓	푡휖	[0; 24] 
We have: 푛	 = 	1 (n being the number of intervals) 

푅 	(푡) = 	∑ (푄 	 − 0) (푡 − 푎 )	푢푎 (푡),		   푎 = 0	;	푎 = 24 ; 

푢푎 (푡) = 0																			푖푓	푡 < 0	
1																		푖푓	푡 ⩾ 0		

�,   푅 	(푡) = 	 (푡 − 0). 1, 

   푅 	(t) = 	 t		.																																																	(11)			 
The expression (11) shows that the accumulation of water supply is linear with respect to time. 

2 Modelling consumption 
 

 Modelling the consumption pattern is based on the hourly distribution of the maximum daily 
consumption according to the hourly peak coefficient Kp ranging from 1.2 to 2.5 [2] (Fig. 1). 

The consumption curves (Figure 2) were used to calculate the cumulative consumption 
based on the hourly peak coefficients Kp. It is observed that the cumulative consumption var-
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ies linearly for Kp between 1.2 and 1.4, and varies in the form of polynomial curve of degree 3 
for Kp ranging from 1.45 to 2.5.  

 

Figure 1: Consumption Curves over 24 hours (in % of the maximum daily consumption) 
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Figure 2: Evolution of the cumulative consumption for different hourly peak coefficients 

according to the time 
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The expression of the accumulated consumption becomes then: 
- for 1,2 ≤ Kp ≤ 1,4,    푅 	(푡) = (퐴푡 + 퐵). 	.																																														(12)  

where 푅 	(푡) - Cumulative consumption at time t, m3; 
푄  - maximum daily consumption, m3 / day; 

A and B - linear adjustment coefficients recorded in Table 1, 
For 1.45 ≤ Kp ≤ 2.5, 푅 	(푡) = (퐴′푡 + 퐵′푡 + 퐶′푡). ,																								(13) 

where A ', B', C '- polynomial fit coefficients of degree 3, recorded in Table 2. 

3 Determining the controlling reserves 
Based on equations (10) and (11), it is observed that the cumulative water supply almost 

follow a straight trend line for a given time period. The cumulative consumption varies greatly 
during the day and depends on the variation of the hourly peak coefficient as indicated by 
equations (12) and (13). The controlling reserves which is a buffer between the cumulative 
supply during the day and the daily distribution, by the accumulation of excess water during 
periods of low consumption and its restitution during hours of high consumption. Its 
expression is therefore as follows: 

푋(푡) 	= 푅 	(푡) −	푅 	(푡).																																																																		(14) 
 Expression of X (t) in the case of a gravity water supply 
From equations (11), (12) and (14), we have: 

푋(푡) 		=
푄
24 	푡 −	(퐴푡 + 퐵)	.

푄
100  

																																												= 	
푄
24 − 0,01.푄 . 퐴 푡 − 0,01.퐵. 푄 		.																		(15)	 

From equations (11), (13) and (14), we have: 

푿(풕) =
푸풋풎풂풙

ퟐퟒ 	풕 −	(푨′풕ퟑ +푩′풕ퟐ + 푪′풕).
푸풋풎풂풙

ퟏퟎퟎ  

																																														= 퐐퐣퐦퐚퐱 	−ퟎ, ퟎퟏ퐀′퐭ퟑ − ퟎ, ퟎퟏ퐁′퐭ퟐ +
ퟏ
ퟐퟒ − ퟎ,ퟎퟏ퐂′ 퐭 								(ퟏퟔ) 

 Expression of X (t) in the case of pumped water supply 
Form equations (10), (12) and (14), we have: 

푋(푡) = (푄 − 푄 )(푡 − 푎 )	푢푎 	(푡)	
∞

−	(퐴푡 + 퐵)	.
푄
100 	.																														(17) 

Form equations (10), (13) and (14), we have: 

푋(푡) = (푄 − 푄 )(푡 − 푎 )	푢푎 	(푡)	
∞

−		(퐴′푡 + 퐵′푡 + 퐶 ′푡).
푄
100 	.													(18) 

The controlling reserves are obtained from the superposition of the curves of flow rates 
of cumulative water supply and the ones of the distribution. A parallel translation of the sup-
ply curve for covering the distribution curve allows the visualization of both maximum fluctu-
ations. The sum of these two fluctuations indicates the minimum volume of the controlling 
reserves.  

Table 1: Values of adjustment coefficients A and B  
based on the hourly peak coefficient 

hourly peak 
coefficient 

Values of adjustment coefficients 
A B 

1,2 4,35 - 3,7 

1,25 4,39 - 4,58 
1,3 4,38 - 4,91 
1,35 4,39 - 5,06 
1,4                                                                                      4,4                                                                            - 5,39                            

 

Table 2: Values of adjustment coefficients A ', 
B' and this based on the hourly peak coefficient 
hourly peak 
coefficient 

Values of adjustment 
coefficients 
A’ B’ C’ 

1,45 - 0,00863 0,3425 0,931 

1,5 - 0,0127 0,491 - 0,265 

1,8 - 0,0135 0,533 - 0,816 
1,9 - 0,0133 0,524 - 0,722 
2 - 0,0128 0,512 - 0,671 
2,5 - 0,0144 0,536 - 0,337 
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4 RESULTS AND DISCUSSIONS 
The minimum volume of the controlling reserves, on the basis of equations (14) and (15), 

is the sum, in absolute values, of the largest value and smallest (negative) value of X (t). 
4.1 Gravity water supply 
From equation (15) and table 1, we have: 
 푋(푡) < 0   ⇒  − 0,01.푄 . 퐴 푡 < 0,01. 퐵.푄 	, 

whereas				 − 0,01.푄 . 퐴 < 0, for all values of A,  
 

hence                                      푡 >
, . .

, . .
=	 푡 . 

 
        With 푡 	- the limit time between filling up and the supplying of water to the network 
linked to the reservoir. 푋(푡) < 0 for 	푡 > 	 푡 	(푡 ≤ 푡 ≤ 24)	,then 푅 	(푡)	is greater 푅 	(푡) and it 
occurs the double supply of water to the network by the reservoir and source. By framing 
푋	(푡)	on this interval, we obtain its smallest negative value which is as follows: 

푉 = 24 − 0,01.푄 . 퐴 − 0,01퐵.푄 ,																																		(19)  
푋(푡) > 0 for	0 < 푡 < 	 푡 	, at that time of the day occurs the filling up of the reservoir. Simi-
larly, framing 푋	(푡) on this interval enables the finding of its maximum positive value which 
is as follows: 

푉 = −0,01. 퐵. 푄 	.																																																										(20) 
The minimum volume of controlling reserves becomes: 

푉 =	V + |V | + µ	.																																																												(21) 
Equations (19) and (20) give: 

푉  =	푄 (	0,24. 퐴 − 1) + µ,																																												(22)		 
 

with																																																													µ = .훽	,																																																																				(23) 
where 휇 - the volume correction factor which corrects the adjustment differences, 훽 - the cor-
rection coefficient obtained by simulation with a MATLAB programme which adjusts the 
volume of the controlling reserves. It is based on the hourly peak coefficient in Figure 3. 

In the conditions related to (16), 푋	(푡) being a third degree polynomial, its maximum and 
minimum values are determined from the properties of its first and second derivatives. So: 

푋′(푡) 		= 푄 	−0,03퐴′푡 − 0,02퐵′푡 + − 0,01퐶 ′   ,                      (24) 
푋′(푡) = 0 ⇒  Δ = 	0,0004퐵′ + 0,005퐴′− 0,0012퐴′퐶′. 

Based on table 2, Δ > 0 so there are two distinct solutions  푡 	 and 푡 	of	푋′(푡) = 0: 

						푡 	 		= , ′ √Δ
, ′         and             푡 = , ′ √Δ

	 , ′ . 

Seeking the maximum and minimum of 푋	(푡), let us integrate 	푡 	  and 푡  in the second 
derivative of 푋	(푡), we have: 

푋′′(푡 	) 			= 	푄 √Δ > 0, 
then 푋	(푡) has a minimum	푉  at point	푡 	which represents the smallest negative value, 

푋 ′′(푡 	) 		= −	푄 √Δ < 0, 
then 푋(푡) has a maximum 푉  at point	푡 	, which represents the largest positive value. 

From equation (21), the volume of the controlling reserves becomes: 
푉 = 	푋(푡 ) + |	푋(푡 	)| + µ, then 

 푉 = 푄 0,01퐴′(푡 	 − 푡 ) + 0,01퐵′(푡 	 − 푡 )− − 0,01퐶′ (푡 	 − 푡 	) + µ.		(25) 
        Figure 3.a shows that the coefficient 훽	is equal to 0 for Kp = 1.2 and reaches its maxi-
mum value equal to 1.8 at Kp = 1.32 and then decreases to 1 for Kp = 1.4. However, the vol-
ume of controlling reserves calculated with equation (21) is suitable for water supply condi-
tions in cities with medium standing for µ  equal to 0,018푄 . 
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Figure 3.b shows that the  coefficient increases from 1 for Kp = 1.45 to 2.4 for Kp = 1.9 
by following a gradually varied progression where it reaches its maximum value at 2.4. It 
tends to infinity for Kp between 2.3 and 2.4, and vanishes at Kp = 2.16 ( ) then decreas-
es down to -0.9. However, the sum of the differences expressed above decreases for cities with 
low population whose urbanization is spontaneous and for which Kp varies from 2.16 to 2.3. 
In fact, the expression (25) of the volume of controlling reserves is suitable for Kp between 
1.45 to 2.3 with a maximum volume correction  equal   0,024 .  

4.1 Pumped water supply  
In this case, two aspects are considered: the supplied flow rate is spread over 24 hours of 

the day and so it is constant and equal to  or the supplied flow rate is variable and in fact 
enables to reduce the required volume of reservoir (which is important especially in the case 
of an elevated reservoir). The maximum hourly flow rate provided by the pump station thus 
depends on the selected operating mode; it is generally between  (for uniform pumping) 
and . Therefore, the correction volume  is set equal to 0.  

The development of equation (10) by iterative method provides its simplified form: 

 
where - difference between the upper bound and the lower bound of the ith interval. 

By incorporating equation (26) into equation (10), we proceed to the framing of  (t) 
for t ,  and we have: 

 
Here, the fact that the pumping rate is variable from one interval to another, equation 

(17) becomes then: 

 
From equation (28), we proceed to the framing of  (t) for t , and we have: 

 
From equations (14) (27) (29) and 1,2≤ Kp ≤ 1.4, we proceed to the framing of on 

. This yields to:  

 

Figure3.a: Variation curve of  according to 
the hourly peak coefficient Kp = 1,2-1,4 

Figure3.b: Variation curve of  according to 
the hourly peak coefficient Kp = 1,45-2,5 
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So :          		퐼 = ∑ 푄 . 퐿 + 0,01.푄 . 퐴. 푎 −			 0,01.푄 (퐴. 푎 + 퐵)	,										(31) 

																	퐽 = 푄 . 퐿 + 0,01.푄 . 퐴. 푎 − 0,01.푄 (퐴. 푎 + 퐵),														(32) 

The values of I and J are respectively the maxima on each time interval considered. 
Similarly to the considerations leading to the expression (28), equation (18) is for 

푡	휖	[푎 , 푎 [ and 1,45≤ Kp ≤2,5: 

	푅 	(푡) = [퐴′(푡 − 푎 ) + 퐵′(푡 − 푎 ) + 퐶′(푡 − 푎 )].
푄
100 		,																																(33) 

푋(푡) = −0,01. 퐴′. 푄 (푡 − 푎 ) − 0,01.퐵′. 푄 (푡 − 푎 ) +(푄 − 0,01. 퐶′. 푄 )푡 +
0,01. 퐶′. 푄 . 푎 − 푄 푎 + ∑ 푄 . 퐿 	 .																																									(34), 

So :  퐼 = 	푋(푎 )	,   and   	퐽	 = 	푋(푎 ). 
        By setting:  푢 = 푎 − 푎 		푎푛푑		푣 = 푎 − 푎 , we have : 

퐼 = −0,01. 퐴′. 푄 푢 − 0,01.퐵′. 푄 푢 +(푄 − 0,01. 퐶′. 푄 )(푢  

+푎 ) + 0,01. 퐶′. 푄 . 푎 − 푄 푎 + 푄 . 퐿 	, 																																																	(35) 

퐽 = −0,01. 퐴′. 푄 푣 − 0,01.퐵′. 푄 푣 +(푄 − 0,01. 퐶′. 푄 )(푣 + 푎 )

+ 0,01. 퐶′. 푄 . 푎 − 푄 푎 + 푄 . 퐿 	. 																															(36) 

        If 퐼 > 	0 and 퐽 > 	0 then	푋	(푡) admits only a positive maximum on [푎 , 푎 [, 
푉 = 푀푎푥(퐼, 퐽)  and    푉 = 0 ,                                        (37) 

where 푉  - the largest positive difference between the totals of supply and consumption on 
the nth interval, 푉 - the smallest gap on the nth interval. 

In this case, there is filling of the reservoir during this time slot. 
If 퐼	 < 0 and 퐽	 < 0 then X (t) admits a negative maximum on [푎 , 푎 [, 

푉 = 0      and      푉 = |푀푎푥(퐼, 퐽)|,                                         (38) 
        If 퐼	 < 0 and 퐽 > 	0 then 푋	(푡) has a positive maximum and a negative maximum 
on	[푎 , 푎 [, 

푉 = 퐽, and  푉 = |퐼|.                                             (39) 
       If 퐼 > 	0 and 퐽	 < 0 then 푋	(푡) has a positive maximum and a negative maximum on 
[푎 , 푎 [. 

푉 = 퐼  and 푉 = |퐽| .                                           (40) 
The minimum volume of the controlling reserves in the reservoir becomes the sum of the 

maxima of differences 푉  and 푉  related to the conditions (37) (40) on the intervals [푎 ,
푎 [	spread over 24 hours of the day, and then the expression of 푉 becomes: 

V = Max(V ) + Max(V )  .                                    (41) 
This approach shows that the capacity of the controlling reserves is defined using the in-

tegral curves whose ordinates give the quantity of the cumulative water consumed since the 
beginning of the day until the end of each specified time. 

Applying this calculation model on drinking water systems in cities with spontaneous ur-
banization and medium standing in Benin (Figure 5) shows that the capacity of the controlling 
reserves in the reservoirs is 2.5 to 6 % of the daily peak consumption for a pumping system in 
steps and 15 to 30% when the pumping system is uniform throughout the day, which is close 
to the rate proposed by other researchers [2, 6, 9]. 

5 CONCLUSION 
The general expressions of curves of the cumulative gravity water supply and pumped 

water supply as well as the distribution over time formulated using the Laplace transform, 
have enabled the determination of the volume of the controlling reserves from the daily peak 
consumption, the pumping system and the hourly peak coefficient. The cumulative consump-
tion scales linearly for a peak coefficient Kp between 1.2 and 1.4, and follows a polynomial 
curve of degree 3 for Kp ranging from 1.45 to 2.5. It is established the relationship between 
the totals respectively gravity supply systems and delivery and the cumulative consumption, 
which superimposed have enabled the finding of the mathematical model for determining the 
control volume ranging from 3 to 30% of the daily peak consumption. 
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a) 

 
b) 

Figure 4: Hourly consumption of the peak day for hourly peak coefficients 
a) 퐾 	= 	1.35 and  b) 퐾 	= 	1.25 
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