ИССЛЕДОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПРОСТРАНСТВЕННОГО ДВИЖЕНИЯ ВЯЗКО НЕЛИНЕЙНО-УПРУГОЙ ГИБКОЙ СВЯЗИ И ВОЛН, ВОЗНИКАЮЩИХ ПРИ ДИНАМИЧЕСКОМ ВОЗДЕЙСТВИИ

А. БАРАЕВ, канд. техн. наук, доцент

Российский государственный технологический университет им. К.Э. Циолковского, Москва

Исследуются дифференциальные уравнения пространственного движения вязко нелинейно-упругой гибкой связи и свойства волн, возникающих при динамическом воздействии в вязко нелинейно-упругой гибкой связи (ВГС). Доказано, что в вязкой ГС при динамическом воздействия возникают одна продольная волна и две поперечной волны. Основное внимание уделяется исследованию свойств возникающих волн. Определены скорости распространения этих волн.

Введение

В зависимости от материала вязкой гибкой связи (ВГС) ее движения описываются дифференциальными уравнениями в частных производных второго и более высших порядков. Учет сложных законов динамического деформирования реальных материалов и наличие геометрических связей приводят к повышению трансцендентности и нелинейности дифференциальных уравнений, описывающих движение ВГС. В связи с этим в каждом конкретном случае требуются исследовать дифференциальные уравнения движения ВГС и находить методы их решения.

1. Преобразование дифференциальных уравнений

Дифференциальные уравнения движения ВГС можно представит в виде [1]:

$$\rho_0 \ddot{x} = \left[\sigma^* \varsigma \left(1 + x'\right)\right]' + P_1^*(s, t), \quad \rho_0 \ddot{y} = \left[\sigma^* \varsigma y'\right]' + P_2^*(s, t), \tag{1.1}$$

$$\rho_0 \ddot{z} = \left[\sigma^* \varsigma \ z' \right]' + P_3^*(s, t), \tag{1.2}$$

$$\cos \alpha = (1 + x')\varsigma$$
, $\cos \beta = y'\varsigma$, $(1 + \varepsilon)\cos \gamma = z'\varsigma$. (1.3)

Пусть, закон деформирования материала имеет вид:

$$\sigma^* = \sigma^* \left(\varepsilon, \dot{\varepsilon} \right) , \qquad (1.4)$$

где *t* – время; *s* – лагранжева координата; x(s,t), y(s,t), z(s,t) – координаты рассматриваемой точки нити в декартовой системе (x, y, z); $\sigma^* = \sigma^*(s,t)$ – натяжение; $\varepsilon(s,t)$ – относительная деформация; $P_1^*(s,t)$, $P_2^*(s,t)$, $P_3^*(s,t)$ – составляющие массовой силы $\vec{P} = \vec{P}(s,t)$ на оси x, y, z соответственно; $\alpha(s,t)$, $\beta(s,t)$, $\gamma(s,t)$ – углы, образованные между касательной к ВГС в данной точке и осями координат x, y, z; ρ_0 – плотность недеформированной ВГС.

Введем обозначения: $\sigma(s,t) = \sigma^*(s,t) / \rho_0; P_i(s,t) = P_i^*(s,t) / \rho_0.$

Дифференциальные уравнения движения (1.1) и (1.2) с учетом (1.3), (1.4) и $\sigma' = \sigma_E \varepsilon' + c^2 \dot{\varepsilon}'$ приведем к виду:

$$\begin{split} \ddot{x} &= \varsigma \left\{ (1+x')\varepsilon' \sigma_E + (1+x')\dot{\varepsilon}' c^2 + \sigma x'' \right\} - \sigma \varsigma^2 (1+x')\varepsilon' + P_1(s,t), \\ \ddot{y} &= \varsigma \left\{ y'\varepsilon'\sigma_E + y'\dot{\varepsilon}' c^2 + \sigma y'' \right\} - \sigma \varsigma^2 y'\varepsilon' + P_2(s,t), \\ \ddot{z} &= \varsigma \left\{ z'\varepsilon'\sigma_E + z'\dot{\varepsilon}' c^2 + \sigma z'' \right\} - \sigma \varsigma^2 z'\varepsilon' + P_3(s,t), \\ \sigma_E &= \partial \sigma/\partial \varepsilon, \quad c^2 &= \partial \sigma/\partial \varepsilon_t \cdot \varsigma = 1/(1+\varepsilon). \end{split}$$
(1.5)

где

56

Учитывая, что $(1 + \varepsilon)(1 + \varepsilon)' = (1 + x')x'' + y'y'' + z'z''$, исключим производную ε' и произведем группировку подобных слагаемых в уравнении (1.5):

$$\begin{aligned} \ddot{x} &= \xi_{11}x'' + \xi_{12}y'' + \xi_{13}z'' + c^{2}(1+x')\dot{\varepsilon}' \quad \varsigma + P_{1}(s,t), \\ \ddot{y} &= \xi_{21}x'' + \xi_{22}y'' + \xi_{23}z'' + c^{2}y'\dot{\varepsilon}' \quad \varsigma + P_{2}(s,t), \\ \ddot{z} &= \xi_{31}x'' + \xi_{32}y'' + \xi_{33}z'' + c^{2}z'\dot{\varepsilon}' \quad \varsigma + P_{3}(s,t), \end{aligned}$$
(1.6)
Fig.
$$\begin{aligned} \xi_{11} &= \xi_{151}(1+x')^{2} + \chi_{151}, \quad \xi_{12} &= \xi_{21} = \xi_{151}(1+x')y', \quad \xi_{22} &= \xi_{151}(y')^{2} + \chi_{151}, \\ \xi_{13} &= \varepsilon_{31} &= \xi_{151}(1+x')z', \quad \xi_{23} &= \xi_{32} &= \xi_{151}y'z', \qquad \xi_{33} &= \xi_{151}(z')^{2} + \chi_{151}, \\ \xi_{151} &= \{(1+\varepsilon)\sigma_{E} - \sigma\}\varsigma^{3}, \qquad \chi_{151} &= \sigma \varsigma. \end{aligned}$$

Система уравнении (1.6) нелинейная, ее решаем методом характеристик[2]. Пусть, кривая w(s,t) = 0 является характеристической кривой. Для этой характеристики система уравнений имеет вид:

$$\ddot{x} = k^{2}x'' + c^{2}\zeta (1 + x')\dot{\varepsilon}' + f_{1}(s,t) + P_{1}(s,t), \quad \ddot{y} = k^{2}y'' + c^{2}\zeta y'\dot{\varepsilon}' + f_{2}(s,t) + P_{2}(s,t),$$

$$\ddot{z} = k^{2}z'' + c^{2}\zeta z'\dot{\varepsilon}' + f_{3}(s,t) + P_{3}(s,t), \quad (1.7)$$

где $f_i(s,t)$ – неизвестные пока функции, $j = 1, 2, 3; k = d_T s$ – угловой коэффициент касательной к характеристической кривой w(s,t) = 0.

Подставляя соотношения (1.7) в (1.6) можно получить

$$(\xi_{11} - k^2) x'' + \xi_{12} y'' + \xi_{13} z'' = f_1(s,t), \qquad \xi_{21} x'' + (\xi_{22} - k^2) y'' + \xi_{23} z'' = f_2(s,t), \xi_{31} x'' + \xi_{32} y'' + (\xi_{33} - k^2) z'' = f_3(s,t).$$

$$(1.8)$$

Характеристическими корнями этой системы являются [2]:

$$k_{1,2} = (d_T s)_{1,2} = \pm \sqrt{\sigma_E} , \qquad k_{3,4} = (d_T s)_{3,4} = \pm \sqrt{\sigma_{\varsigma}} . \qquad (1.9)$$

Характеристические корни $k_{3,4} = (d_T s)_{3,4} = \pm \sqrt{\sigma \varsigma}$ оказывается кратными корнями, т. е существуют еще корни $k_{5,6} = (d_T s)_{5,6} = \pm \sqrt{\sigma \varsigma}$.

Таким образом, динамическая нагрузка в ВГС распространяется в виде трех волн: одна волна, распространяется вдоль продольной оси ВГС со скоростью $k_{1,2} = (d_T s)_{1,2} = \pm \sqrt{\sigma_E}$, которая называется продольной волной и две волны распространяются по двум другим направлениям с одинаковой скоростью $k_{3,4} = (d_T s)_{3,4} = \pm \sqrt{\sigma_{\varsigma}}$, $k_{5,6} = (d_T s)_{5,6} = \pm \sqrt{\sigma_{\varsigma}}$, которые называются поперечными волнами. Двойные индексы означает, что данная волна распространяется по положительному и обратному направлениям.

2. Примеры для конкретных случаев

Пусть, закон деформирования имеет вид

$$\sigma^* = A^* \varepsilon + \eta^* \dot{\varepsilon} \quad , \tag{2.1}$$

т. е. деформирование идет по линейно-вязко-упругой модели Томпсона. Если в линейной модели Томпсона (2.1) постоянный коэффициент A^* равняется E, то получается вязко-упругий материал с «запаздывающей упругостью» («модель Фойгта»)

$$\sigma^* = E^* \varepsilon + \eta^* \dot{\varepsilon} \quad . \tag{2.2}$$

В этом случае характеристические корни имеет вид:

$$k_{1,2} = (d_T s)_{1,2} = \pm \sqrt{A} , \quad k_{3,4} = (d_T s)_{3,4} = \pm \sqrt{\chi_{162}} , \quad k_{5,6} = (d_T s)_{5,6} = \pm \sqrt{\chi_{162}} , \quad (2.3)$$

we $A = A^* \rho_0^{-1}, \quad \eta = \eta^* \rho_0^{-1}, \quad \chi_{162} = (A \varepsilon + \eta \dot{\varepsilon}) \varsigma . \quad \varsigma = 1/(1+\varepsilon) .$

где

Рассмотрим некоторые свойства волн и схемы движения ВГС, описываемой моделью (2.2). Пусть при монотонном нагружении до некоторого напряжения $\sigma \leq \sigma_n$ ВГС деформируется по закону

$$\sigma = E\varepsilon, \qquad (2.4)$$

а при
$$\sigma > \sigma_n -$$
по закону $\sigma = E\varepsilon + \eta \dot{\varepsilon}$, (2.5)

т.е. предполагается, что при малых деформациях вязкость отсутствует, материал деформируется по закону Гука и только при $\varepsilon > \varepsilon_{\eta}$ вязкость начинает оказывать влияние на диаграмму растяжения.

При нагружении по первому закону в пределах $\varepsilon \leq \varepsilon_{\eta}$ в ВГС, возникают одна упругая продольная волна, распространяющаяся со скоростью

$$\widetilde{k}_{1,2} = \pm \sqrt{E} \tag{2.6}$$

и поперечные волны, распространяющиеся с одинаковой скоростью

$$\widetilde{k}_{3,4} = \pm \sqrt{E \varepsilon \varsigma}, \qquad \widetilde{k}_{5,6} = \pm \sqrt{E \varepsilon \varsigma}, \qquad \varsigma = 1/(1+\varepsilon).$$
(2.7)

Эти волны возникают одновременно, но поперечные волны двигаются с меньшей скоростью, чем продольная волна. В дальнейшем рассмотрим только одну поперечную волну, так как они имеет одинаковые свойства.

Пусть теперь $\varepsilon > \varepsilon_{\eta}$ и ВГС нагружается по закону (2.5) В этом случае в ВГС распространяется упругая продольная волна со скоростью $\tilde{k}_{1,2} = \pm \sqrt{E}$, а поперечная волна распространяется со скоростью

$$k_{PP} = \pm \sqrt{\left(E\varepsilon + \eta \dot{\varepsilon}\right)\varsigma} , \quad \varsigma = 1/(1+\varepsilon) .$$
(2.8)

Можно найти время, когда вязкость начинает оказывать влияние на закон деформирования ВГС. Из условия $\tilde{k_1} = k_{pp}$ найдем

$$E = \left(E \varepsilon + \eta \dot{\varepsilon} \right) \zeta, \quad \varepsilon > \varepsilon_{\eta}, \qquad (2.9)$$

отсюда

$$\dot{\varepsilon} = E \eta^{-1}. \tag{2.10}$$

Проинтегрировав последнее соотношение, будем иметь

$$\varepsilon_{\eta} = E \eta^{-1} \left(t - t_{\eta} \right). \tag{2.11}$$

Данное выражение служит для определения деформаций ε_{η} , соответствующей моменту времени t_{η} появления деформации ε_{η} . Как следует из формулы (2.11), вязкость в ВГС появляется мгновенно и соответствует скорости деформации, определяемой по формуле (2.10).

Пусть, закон деформирования имеет вид

$$\sigma^* = \sigma_s^* + E_1^* (\varepsilon - \varepsilon_s) + \eta^* \dot{\varepsilon} \quad , \tag{2.12}$$

т.е. с линейным упрочнением; где σ_s^* и ε_s – натяжение и относительная деформация, соответствующие пределу упругости материала.

В этом случае скорости распространяющихся волн будут:

$$k_{1,2} = \pm \sqrt{E_1} , \quad k_{3,4} = \pm \sqrt{\chi_{171}} , \quad \chi_{171} = \{ \sigma_S + E_1(\varepsilon - \varepsilon_S) + \eta \dot{\varepsilon} \} \zeta , \quad (2.13)$$

где $\sigma_s = \sigma_s^* / \rho_0$, $E_1 = E_1^* / \rho_0$, $\eta = \eta^* / \rho_0$, $\zeta = 1/(1+\varepsilon)$.

Если материал ВГС вязко-упругопластический и действующая нагрузка монотонно возрастает, то рассмотренную выше модель можно представить в виде:

$$\sigma = E \varepsilon_s + E_1 (\varepsilon - \varepsilon_s) + \eta \dot{\varepsilon} \quad . \tag{2.14}$$

58

Данная модель предполагает, что ВГС деформируется при малых относительных деформациях по закону Гука

$$\varepsilon = E \varepsilon, \quad \varepsilon \le \varepsilon_S.$$
 (2.15)

Далее, в зависимости от заданных свойств материала, возможно следующие варианты:

1) материал в пределах упругой деформации $\varepsilon_s \ge \varepsilon \ge \varepsilon_\mu$ подчиняется закону

$$\sigma = E \varepsilon_s + \eta \dot{\varepsilon} \quad , \tag{2.16}$$

и при $\varepsilon > \varepsilon_s$ – по закону (2.14), где ε_{μ} – упругая деформация, соответствующая начальному моменту действия закона (2.16).

2) материал до некоторой деформации $\varepsilon_s < \varepsilon \leq \varepsilon_\eta$ подчиняется упругопластическому закону

$$\sigma = E \varepsilon_s + E_1 (\varepsilon - \varepsilon_s), \qquad (2.17)$$

и при $\varepsilon > \varepsilon_{\eta}$ – по закону (2.15), где ε_{η} – пластическая деформация, соответствующая начальному моменту действия закона (2.17).

Рассмотрим первый случай при деформациях $\varepsilon \ge \varepsilon_s$. При этом в нити последовательно возникают одна вязко продольно-поперечная волна, распространяющаяся со скоростью

$$k_{3} = \pm \sqrt{\varsigma_{171}} \left(E \varepsilon_{S} + \eta \dot{\varepsilon} \right), \quad \text{при } \varepsilon \leq \varepsilon_{S}, \quad (2.18)$$

и две вязко-упругопластические волны, распространяющиеся со скоростями

 $k_{5} = \pm \sqrt{E_{1}}$ и $k_{7} = \pm \sqrt{\chi_{171}}$ при $\varepsilon > \varepsilon_{S}$, $\chi_{171} = \{\sigma_{S} + E_{1}(\varepsilon - \varepsilon_{S}) + \eta \dot{\varepsilon}\} \zeta$. (2.19) Схема волнового движения, соответствующая деформации $\varepsilon_{s} < \varepsilon \leq \varepsilon_{\eta}$, приведена на рис.1. Характеристики 0*m* и 0*n* соответствуют упругой продольной $\tilde{k_{1}}$ и поперечной $\tilde{k_{3}}$ волнам. Области *I* и *II* являются областями упругих деформаций. Характеристика $t_{\eta}p$ возникает в момент времени $t_{\eta} > 0$, соответствует продольно-поперечной волне k_{3} области *III* и является областью вязко упругих деформаций.

Рис.1. Расположения фронтов волны

Рис.2. Расположения фронтов волны

Характеристики t_sq и t_sl соответствуют вязко упругопластическим волнам k_5 и k_7 . Прямые 0m, $t_\eta g$ параллельны и зона запаздывания упругости [3] находится между характеристиками $t_\eta g$ и $t_\eta p$, соответствующими упругой продольной волне \tilde{k}_1 и продольно-поперечной волне вязко-упругой k_3 . Линия 59 $t_{\eta}g$ является последней характеристикой, соответствующей упругой продольной волне, распространяющейся со скоростью \tilde{k}_1 , а линия $t_{\eta}p$ – первой характеристикой, соответствующей вязко-упругой продольно-поперечной волне, распространяющейся со скоростью k_3 .

Рассмотрим теперь второй случай при деформациях $\varepsilon > \varepsilon_{\eta}$. Последовательность возникновения волн при монотонной нагрузке следующая:

- две упругие волны, распространяющиеся со скоростями (рис.2)

$$\vec{k}_1 = \pm \sqrt{E}$$
 и $\vec{k}_3 = \pm \sqrt{E \varepsilon \varsigma}$ при $\varepsilon \le \varepsilon_s$; (2.20)

- две упругопластические волны, идущие вдоль нити со скоростями

$$k_5 = \pm \sqrt{E_1}$$
 и $k_7 = \pm \sqrt{\{E \varepsilon_s + E_1(\varepsilon - \varepsilon_s)\}} \zeta$ при $\varepsilon > \varepsilon_s$; (2.21)

 одна вязко упругопластическая продольно-поперечная волна, распространяющаяся со скоростью

$$k_{3} = \pm \sqrt{\left\{ E \varepsilon_{s} + E_{1} \left(\varepsilon - \varepsilon_{s} \right) + \eta \dot{\varepsilon} \right\} \varsigma} , \quad \text{при } \varepsilon > \varepsilon_{\eta} .$$
(2.22)

В данном случае очередность расположения областей *III* и *IV*, *V* поменяется. На схеме, изображенной на рис. 1, область *III* является областью вязкоупругой деформации, а на рис. 2 – вязко-упругопластической деформации. Области *IV*, *V* на рис. 1 имеют вязко упругопластическую, а на рис. 2 – упругопластическую деформацию. Штриховая линия t_sg является последней характеристикой, соответствующей упругой продольной волне, а линия t_sp – первой характеристикой упругопластической волны. Область, расположенная между этими характеристиками, является зоной запаздывания текучести [3], а область запаздывания упругости на схеме рис. 2 не возникает.

Пусть материал ВГС деформируется по следующему закону:

$$T^* = \chi^* \varepsilon^q + \eta^* \dot{\varepsilon} , \quad \sigma' = \chi q \varepsilon^{q-1} \varepsilon' + \eta \dot{\varepsilon}' , \quad (2.23)$$

тогда при $\varepsilon > \varepsilon_{s}$ поперечные и продольно-поперечные волны будут распространяться со скоростями $\widetilde{k}_{3} = \pm \sqrt{E \varepsilon_{s} \varsigma}$, $k_{3} = \pm \sqrt{\left(E \varepsilon_{s} + \eta \dot{\varepsilon}\right)} \varsigma$, $k_{1} = \pm \sqrt{\chi q \varepsilon^{q-1}}$, $k_{3} = \pm \sqrt{\chi_{172}}$, $\chi_{172} = \left(\chi \varepsilon^{q} + \eta \dot{\varepsilon}\right) \varsigma_{172}$. (2.24)

Выводы

Свойства продольно-поперечной волны, возникающей в вязкой нити, существенно отличается от свойства поперечной волны, возникающей в упругой нити. На фронте поперечной волны, возникающей в упругой нити, деформация и натяжение остаются непрерывными, а на фронте продольно- поперечной волны, возникающей в вязкой нити – являются разрывными.

Литература

1. *Рахматулин Х. А., Демьянов Ю. А.* Прочность при интенсивных кратковременных нагрузках. – Изд.2-е, дополненное. – М.: «Университетская книга; Логос», 2009. – 512с.

2. *Кристеску Н*. Распространение волн в гибких нитях (влияние скоростей деформации)// ПММ. – Т. 21. – 1957. – Вып. 4. – С. 486-490.

3. *Бараев А*. Влияние запаздывания текучести на распространение упруго- пластических волн при поперечном ударе// ДАН РУз. – 1977. – № 12. – С. 9-10.

THE INVESTIGATION OF DIFFERENTIAL EQUATIONS OF SPATIAL MOTION OF VISCOUS NON-LINEAR BRACE AND THE WAVES CAUSED BY DYNAMIC ACTION

Baraev A.