ИСПОЛЬЗОВАНИЕ МНОЖИТЕЛЕЙ ЛАГРАНЖА ПРИ ФОРМИРОВАНИИ МАТРИЦЫ ЖЕСТКОСТИ ТРЕУГОЛЬНОГО КОНЕЧНОГО ЭЛЕМЕНТА

Ю.В. КЛОЧКОВ, д-р техн. наук, профессор, А.П. НИКОЛАЕВ, д-р техн. наук, профессор, О.В. ВАХНИНА, ст.пр. Волгоградская государственная сельскохозяйственная академия

В настоящее время треугольные конечные элементы (КЭ) повсеместно используются в конечно-элементном анализе оболочек и других конструкций. Однако, как показывают исследования [1], треугольный КЭ обладает рядом особенностей, а именно при сосредоточенном характере нагрузок сходимость конечно-элементных решений оказывается не всегда удовлетворительной. Поэтому актуальной является задача по совершенствованию треугольного КЭ в расчетах оболочек.

Рассмотрим треугольный КЭ с катетами единичной длины в локальной системе координат $0 \le \xi, \eta \le 1$ (Рис.1) с узлами i, j, k, на который отображается

произвольный треугольный элемент оболочки вращения.

Столбец узловых варьируемых параметров данного КЭ выбирается в виде [2]

$$\left\{ U_{y}^{n} \right\}_{\substack{1 \ge 27}}^{T} = \left\{ \left\{ u_{y}^{n} \right\}_{\substack{1 \le 9\\1 \le 9}}^{T} \left\{ v_{y}^{n} \right\}_{\substack{1 \le 9\\1 \le 9}}^{T} \left\{ w_{y}^{n} \right\}_{\substack{1 \le 9\\1 \le 9}}^{T} \left\{ w_{y}^{n} \right\}_{\substack{1 \le 9\\1 \le 9}}^{T} \right\},$$
(1)

где *и* и *v* – тангенциальные, а *w*– нормальная компоненты вектора перемещения. Верхний индекс «л» указывает, что столбец узловых неизвестных определен в локальной системе координат.

Входящие в правую часть равенства (1) подматрицы-строки имеют следующую структуру

$$\begin{cases} q_{y}^{n} \\ r_{xy}^{T} = \{ q^{i} q^{j} q^{k} q_{,\xi}^{i} q_{,\xi}^{j} q_{,\xi}^{k} q_{,\eta}^{i} q_{,\eta}^{j} q_{,\eta}^{k} \}, \\ r_{xy}^{n} \end{cases}$$
(2)

где под q понимается компонента вектора перемещения u, v или w.

Введем в середину каждой из сторон треугольного КЭ дополнительные узлы, которые обозначим цифрами 1,2,3 и укажем в них направления внешних нормалей $\vec{S_n^m}$ (*m* = 1,2,3) (рис.2). $Z \bigwedge$

Рассмотрим в качестве варьируемых параметров во вновь введенных узлах 1,2,3 производные нормальной компоненты вектора перемещения по направлениям внешних нормалей $\partial_W / \partial S_n^m$ (m = 1,2,3) к сторонам треугольного КЭ.

Дополнительные узлы 1, 2, 3 треугольного КЭ (например, имеющего номер I) в то

же время являются узлами для соседних элементов сетки дискретизации (рис.3). Таким образом, например, для дополнительного узла 2 будет справедливо

$$\frac{\partial \mathbf{w}}{\partial \mathbf{S}_{n}^{2}}^{(0)} + \frac{\partial \mathbf{w}}{\partial \mathbf{S}_{n}^{2'}}^{(0)} = 0.$$
⁽³⁾

38

равенство

Для отдельного треугольного КЭ на основании (3) можно записать равенство, которое можно рассматривать как дополнительное условие, необходимое для построения функционала Лагранжа

$$\lambda_1 \cdot \frac{\partial w}{\partial S_n^1} + \lambda_2 \cdot \frac{\partial w}{\partial S_n^2} + \lambda_3 \cdot \frac{\partial w}{\partial S_n^3} = 0, \qquad (4)$$

где $\lambda_1, \lambda_2, \lambda_3$ – множители Лагранжа.

При формировании матриц жесткостей соседних по сетке дискретизации треугольных КЭ с учетом направлений

нормалей $\overline{S_n^m}$ будут реализованы соотношения для всех сторон отдельного КЭ (4). Производные нормальной компоненты вектора перемещения в направлении нормалей к сторонам треугольного КЭ могут быть выражены через обычный столбец узловых варьируемых параметров (1)

$$\frac{\partial \mathbf{w}}{\partial S_{n}^{m}} = \left\{ \mathbf{t}_{1\times27}^{m} \right\}^{T} \left\{ \mathbf{U}_{y}^{\Pi} \right\} = \left\{ \mathbf{T}_{1\times27}^{m} \right\}^{T} \left\{ \mathbf{U}_{y}^{\Gamma} \right\}, \tag{5}$$

ГДе $\left\{ \bigcup_{\substack{y \\ l \neq 27}}^{\Gamma} \right\}^{T} = \left\{ \left\{ u_{y}^{\Gamma} \right\}^{T} \left\{ v_{y}^{\Gamma} \right\}^{T} \left\{ w_{y}^{\Gamma} \right\}^{T} \right\} -$ столбец узловых неизвестных в глобальной систе-

ме координат, в качестве которых, например, при расчете оболочки вращения можно выбрать S – длину дуги меридиана и θ – угол, отсчитываемый от вертикального диаметра против хода часовой стрелки.

Правую часть равенства (4) можно представить в матричном виде

$$\{\lambda\}^{\mathrm{T}} \left\{ \begin{array}{c} \frac{\partial \mathbf{w}}{\partial \mathbf{S}_{n}^{\mathrm{l}}} \\ \frac{\partial \mathbf{w}}{\partial \mathbf{S}_{n}^{\mathrm{s}}} \\ \frac{\partial \mathbf{w}}{\partial \mathbf{S}_{n}^{\mathrm{s}}} \end{array} \right\} = \{\lambda\}^{\mathrm{T}} \left\{ \begin{array}{c} \{\Gamma^{1}\} \\ I \times 27 \\ \Gamma^{2} \\ I \times 27 \\ \{\Gamma^{2}\} \\ I \times 27 \\ \{\Gamma^{3}\} \\ I \times 27 \end{array} \right\} \left\{ U_{y}^{\mathrm{T}} \right\} = \{\lambda\}^{\mathrm{T}} \left[\begin{array}{c} G \\ U_{y}^{\mathrm{T}} \\ S \times 27 \\ 27 \times I \end{array} \right] \left\{ U_{y}^{\mathrm{T}} \right\}.$$
(6)

Функционал, выражающий равенство потенциальной энергии деформации на возможных перемещениях для треугольного КЭ, с использованием множителей Лагранжа можно записать в следующем виде

$$\Pi = \int_{V} \left\{ \varepsilon_{\alpha\beta}^{\zeta} \right\}^{T} \left\{ \sigma_{\alpha\beta} \right\} dV + \left\{ U_{y}^{\Gamma} \right\}^{T} \left[G \right]^{T} \left\{ \lambda \right\} - \int_{F} \left\{ U \right\}^{T} \left\{ P \right\} dF = 0,$$
(7)

где $\{\epsilon_{\alpha\beta}^{\zeta}\}^{T} = \{\epsilon_{11}^{\zeta} \epsilon_{22}^{\zeta} 2\epsilon_{12}^{\zeta}\}$ – матрица-строка деформаций в произвольном слое оболочки, отстоящем от срединной поверхности на расстоянии ζ ; $\{\sigma_{\alpha\beta}\} = \{\sigma_{11}\sigma_{22}\sigma_{12}\}$ – столбец напряжений в произвольном слое оболочки; $\{U\}^{T} = \{u \ v \ w\}$ – матрицастрока, содержащая компоненты вектора перемещения внутренней точки треугольного KЭ; $\{P\} = \{p_1p_2p_3\}$ – столбец внешней поверхностной нагрузки треугольного KЭ.

Минимизируя функционал (7) по узловым неизвестным $\{U_y^{\Gamma}\}^T$ и множителям Лагранжа $\{\lambda\}^T$, получим следующие равенства

$$\frac{\partial \Pi}{\partial \left\{ U_{y}^{\Gamma} \right\}^{\mathrm{T}}} = [\mathbf{K}] \left\{ U_{y}^{\Gamma} \right\} + [\mathbf{G}]^{\mathrm{T}} \left\{ \lambda \right\} - \left\{ \mathbf{f} \right\} = 0; \quad \frac{\partial \Pi}{\partial \left\{ \lambda \right\}^{\mathrm{T}}} = [\mathbf{G}] \left\{ U_{y}^{\Gamma} \right\} = 0.$$
(8)

Входящие в (8) матрица [К] и столбец {f} определяются стандартным для конечно-элементной процедуры образом [3]

 $\begin{bmatrix} \mathbf{K} \\ 27 \times 27 \end{bmatrix} = \begin{bmatrix} \mathbf{P}_{\mathbf{R}} \end{bmatrix}^{\mathrm{T}} \int \begin{bmatrix} \mathbf{B} \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} \boldsymbol{\Gamma} \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} \mathbf{C} \end{bmatrix} \begin{bmatrix} \boldsymbol{\Gamma} \end{bmatrix} \begin{bmatrix} \mathbf{R} \end{bmatrix} \begin{bmatrix} \mathbf{B} \end{bmatrix} d\mathbf{V} \begin{bmatrix} \mathbf{P}_{\mathbf{R}} \end{bmatrix}; \quad \{\mathbf{f}\} = \begin{bmatrix} \mathbf{P}_{\mathbf{R}} \end{bmatrix}^{\mathrm{T}} \int \begin{bmatrix} \mathbf{A} \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} \mathbf{P} \end{bmatrix} d\mathbf{F},$

где $[P_R]$ – матрица преобразований при переходе от локальной системы коор- $\frac{27 \times 27}{27}$

динат $\xi,\eta\,$ к глобальной, например, S,θ .

Принимая во внимание (8), можно сформировать необходимое для конечно-элементной процедуры матричное равенство

$$\begin{bmatrix} \mathbf{K} \\ \mathbf{27\times27} \\ \mathbf{G} \\ \mathbf{3\times27} \\ \mathbf{3\times3} \end{bmatrix} \begin{bmatrix} \mathbf{G} \\ \mathbf{1} \\ \mathbf{3\times1} \\ \mathbf{3\times1} \end{bmatrix}^T = \begin{cases} \{\mathbf{f} \\ \mathbf{27\times1} \\ \{\mathbf{0} \\ \mathbf{3\times1} \\ \mathbf{3\times1} \end{bmatrix} = \begin{cases} \{\mathbf{f} \\ \mathbf{27\times1} \\ \{\mathbf{0} \\ \mathbf{3\times1} \\ \mathbf{3\times1} \end{bmatrix} \text{ или } \begin{bmatrix} \mathbf{K} \\ \mathbf{p} \\ \mathbf{1} \\ \mathbf{0} \\ \mathbf{30\times30} \\ \mathbf{30\times1} \end{bmatrix} = \{\mathbf{f} \}_p,$$
(9)

где $[K]_p$, $\{U_y^{\Gamma}\}_p$ – расширенные матрица жесткости и столбец узловых неизвестных треугольного КЭ.

Процедуру определения входящих в (5) матриц-строк {t^m} можно продемонстрировать на примере оболочки вращения, срединная поверхность которой в исходном состоянии описывается радиус-вектором

$$R^{0} = x \, \vec{i} + r \sin \theta \, \vec{j} + r \cos \theta \, \vec{k}, \tag{10}$$

где x-осевая координата, r-радиус вращения.

Формула, устанавливающая связь между глобальными координатами S, θ и локальными координатами ξ и η треугольного KЭ может быть записана в виде [2] $S = (1 - \xi - \eta)S^i + \xi S^j + \eta S^k; \quad \theta = (1 - \xi - \eta)\theta^i + \xi \theta^j + \eta \theta^k.$ (11)

Уравнение гипотенузы треугольного КЭ в локальной системе координат имеет вид

$$\eta = 1 - \xi \,. \tag{12}$$

В результате подстановки (12) в (11) можно получить равенства

$$\mathbf{S} = \xi \left(\mathbf{S}^{j} - \mathbf{S}^{k} \right) + \mathbf{S}^{k}; \quad \boldsymbol{\theta} = \xi \left(\boldsymbol{\theta}^{j} - \boldsymbol{\theta}^{k} \right) + \boldsymbol{\theta}^{k}.$$
(13)

Выразим из 1-го уравнения (13) локальную переменную ξ и подставим ее во второе уравнение (13). В результате получим следующую зависимость глобальной координаты θ от дуги меридиана S на границе j-k треугольного КЭ

$$\theta = \frac{\left(S - S^k\right)\left(\theta^j - \theta^k\right) + \theta^k\left(S^j - S^k\right)}{S^j - S^k}.$$
(14)

Орт касательной к стороне j-k треугольного КЭ можно получить дифференцированием (10) по формуле полной производной, т.к. на этой линии $\theta = f(S)$

$$\vec{t} = \overrightarrow{R_{,s}} = \frac{\partial F}{\partial S} + \frac{\partial F}{\partial \theta} \frac{\partial \theta}{\partial S} = x_{,s} \vec{i} + r_{,s} \sin \theta \vec{j} + r_{,s} \cos \theta \vec{k} + \left(r \cos \theta \vec{j} - r \sin \theta \vec{k}\right) \cdot \theta_{,s}, \quad (15)$$

где $\theta_{,s} = \frac{\theta^{j} - \theta^{k}}{S^{j} - S^{k}}$.

Орт нормали к стороне j-k треугольного КЭ определим в результате векторного произведения

$$\vec{S}_n^2 = \vec{a^0} \times \vec{t} , \qquad (16)$$

где $\vec{a^0}$ – орт нормали к срединной поверхности оболочки вращения

$$\vec{\theta} = -\mathbf{r}_{,s}\vec{\mathbf{i}} + \mathbf{x}_{,s}\sin\theta\vec{\mathbf{j}} + \mathbf{x}_{,s}\cos\theta\vec{\mathbf{k}}.$$

Определенный по формуле (16) вектор \vec{S}_n^2 находится в плоскости векторов локального базиса \vec{a}_1^0, \vec{a}_2^0 , касательных к срединной поверхности оболочки (рис.4).

Косинусы углов α и β (рис.4) могут быть вычислены при использовании формулы скалярного произведения

Рассмотрим сетку дискретизации оболочки вращения в виде (рис.5)

Рис. 5

Можно убедиться, что для треугольного КЭ под номером I будут справедливы следующие соотношения

$$\frac{\partial w}{\partial S_n^1} = -\frac{\partial w}{r\partial \theta}; \qquad \frac{\partial w}{\partial S_n^3} = -\frac{\partial w}{\partial S}; \qquad \frac{\partial w}{\partial S_n^2} = \frac{\partial w}{\partial S} \cdot \cos \alpha + \frac{\partial w}{r\partial \theta} \cdot \cos \beta.$$
(18)

Для треугольного КЭ, ориентированного подобно элементу под номером II, соотношения (18) принимаются с противоположным знаком.

Таким образом, матрицы-строки $\{t^m\}$ для треугольного КЭ под номером I будут иметь вид

$$\begin{cases} t^{1} \\ t^{2} \\ t^$$

где $\{\phi_{1\times9}\}^{T} = \{\phi_{1} \phi_{2} \dots \phi_{9}\}$ – матрица-строка функций формы, определенных в соответствии [2]. Входящие в (19) производные полиномиальных функций определяются по формулам

$$\begin{cases} \varphi_{,_{\theta}} \}^{\mathrm{T}} = \left\{ \varphi_{,_{\xi}} \right\}^{\mathrm{T}} \frac{\partial \xi}{\partial \theta} + \left\{ \varphi_{,_{\eta}} \right\}^{\mathrm{T}} \frac{\partial \eta}{\partial \theta}; \\ \{ \varphi_{,_{S}} \}^{\mathrm{T}} = \left\{ \varphi_{,_{\xi}} \right\}^{\mathrm{T}} \frac{\partial \xi}{\partial S} + \left\{ \varphi_{,_{\eta}} \right\}^{\mathrm{T}} \frac{\partial \eta}{\partial S}. \end{cases}$$
 (20)

В качестве примера была решена задача определения напряженнодеформированного состояния (НДС) жестко защемленного цилиндра, нагруженного внутренним давлением интенсивности q (рис.6). Были приняты следующие исходные данные:

L = 1.0 м; R = 1.0 м; $E = 2 \cdot 10^5$ МПа; v = 0.3; t = 0.02 м; q = 5 МПа.

Вследствие наличия осевой симметрии рассчитывалась 1/4 часть оболочки.

Расчеты были выполнены в двух вариантах: в первом варианте в качестве элементов дискретизации использовались треугольные КЭ, матрицы жесткости которых формировались стандартным образом [1,2]; во втором варианте был реализован описанный выше алгоритм, основанный на использовании множителей Лагранжа (3)...(19).

Рис. 6 Результаты повариантного расчета представлены в табл. № 1 и № 2, в которых приведены численные значения меридионального напряжения в жесткой заделке (точка 1) и в середине пролета (точка 2) на внутренней $\sigma_{\rm B}$, наружной $\sigma_{\rm H}$ и срединной $\sigma_{\rm c}$ поверхностях оболочки в зависимости от густоты сетки дискретизации рассматриваемой части оболочки.

Число узлов сетки дискретизации вдоль кольца было принято равным 4, а вдоль образующей варьировалось от 5 до 57.

Анализ полученных результатов показывает, что в первом варианте наблюдается неудовлетворительная сходимость вычислительного процесса, особенно в жесткой заделке (точка 1). Кроме того, в наружной и внутренней поверхностях оболочки в жесткой заделке с измельчением сетки дискретизации напряжения имеют одинаковый знак, что противоречит физическому смыслу решаемой задачи, т.к. в жесткой заделке под действием внутреннего давления возникает деформация изгиба, т.е. внутренняя поверхность растягивается, а наружная сжимается, что и наблюдается во втором варианте расчета. Анализируя численные значения напряжений, представленные в таблице № 2, можно отметить быструю сходимость конечно-элементных решений уже при достаточно редкой сетке дискретизации. Так при размере сетки 4×17 погрешность вычислений находится в пределах 1%. Полученные значения напряжений во втором варианте хорошо согласуются с физическим смыслом решаемой задачи.

Номера	Численные	Число узлов сетки дискретизации					
точек	значения напряжений, МПа	4×5	4×17	4×33	4×49	4×57	
	$\sigma_{_B}$	333.71	149.91	108.06	93.14	88.80	
1	$\sigma_{_{\rm H}}$	-210.33	-24.94	17.22	31.99	36.26	
-	σ_{cp}	61.69	62.48	62.64	62.56	62.53	
	$\sigma_{_B}$	47.24	57.33	58.64	62.14	62.19	
2	$\sigma_{_{\rm H}}$	69.08	68.81	67.87	61.34	61.53	
	σ_{cp}	58.16	63.07	63.26	61.74	61.86	

Таблица 1

Здесь под q понимается меридиональная или нормальная компонента вектора перемещения, а локальная координата x изменяется в пределах $-1 \le x \le 1$.

Результаты конечно-элементного решения рассматриваемой оболочки с использованием в качестве элемента дискретизации одномерного КЭ с размером матрицы жесткости 8×8 представлены в табл. № 3, структура которой аналогична предыдущим табл. 1 и 2.

Таблица 2

	Численные	Число узлов сетки дискретизации				
Номера точек	значения напряжений, МПа	4×5	4×17	4×33	4×49	4×57
	$\sigma_{_{B}}$	408.16	475.49	479.62	480.40	480.57
1	$\sigma_{_{\rm H}}$	-286.17	-356.06	-360.26	-361.05	-361.21
	σ_{cp}	61.00	59.72	59.68	59.68	59.68
2	$\sigma_{_{B}}$	69.62	67.15	67.05	67.03	67.02
	$\sigma_{_{\rm H}}$	49.65	52.20	52.31	52.33	52.33
	σ_{cp}	59.63	59.68	59.68	59.68	59.68

Таблица 3

	Численные	Число узлов сетки дискретизации				
Номера точек	значения напряже- ний, МПа	1×5	1×17	1×33	1×49	1×57
1	$\sigma_{_{B}}$	368.38	475.52	479.62	480.39	480.56
	$\sigma_{_{\rm H}}$	-241.19	-356.01	-360.22	-361.01	-361.17
	σ_{cp}	63.24	59.76	59.70	59.69	59.69
2	$\sigma_{_{B}}$	73.04	68.01	67.90	67.89	67.88
	$\sigma_{_{\rm H}}$	46.18	51.38	51.49	51.50	51.51
	σ_{cp}	59.60	59.69	59.69	59.69	59.69

Как видно из табл. № 3, численные значения контролируемых параметров НДС практически совпадают с данными таблицы № 2, начиная с сетки узлов 1×17 , что позволяет сделать вывод о достоверности полученных результатов.

Основываясь на анализе табличного материала, представленного в таблицах 1,2,3 можно сделать окончательный вывод о высокой эффективности разработанного алгоритма формирования матрицы жесткости треугольного КЭ с использованием множителей Лагранжа.

Литература

1. Клочков Ю.В. Сравнительный анализ эффективности использования конечных элементов треугольной и четырехугольной форм в расчетах оболочек вращения// Ю.В. Клочков, А.П. Николаев, Н.А. Гуреева// Изв. вузов. Строительство. – 2004. – № 3. – С.103–109.

2. *Клочков Ю.В.* О функциях формы в алгоритмах формирования матрицы жесткости треугольных конечных элементов// Ю.В.Клочков, А.П.Николаев, А.П.Киселев// Изв.вузов. Строительство. –1999. – № 10. – С.23–27.

3. Постнов В.А. Метод конечных элементов в расчетах судовых конструкций/ В.А. Постнов, И.Я. Хархурим. – Л.:Судостроение, 1974. – 344 с.

LAGRANGIAN COEFFICIENTS USING IN CASING CALCULATION WITH TRIANGULAR FINITE ELEMENT

Y.V.Klochkov, A.P.Nikolaev, O.V.Vakhnina

In this article, the calculation of hard pinched cylinder casing mode of deformation with one-dimensional and triangular finite element using was presented. Comparative analysis of gotten results was done/ Calculations improvement while using triangular finite element as discretization element method with Lagrangian coefficient using was offered.