## Численные методы расчета конструкций

## ИСПОЛЬЗОВАНИЕ МНОЖИТЕЛЕЙ ЛАГРАНЖА ПРИ ФОРМИРОВАНИИ МАТРИЦЫ ЖЕСТКОСТИ ТРЕУГОЛЬНОГО КОНЕЧНОГО ЭЛЕМЕНТА

Ю.В. КЛОЧКОВ, д-р техн. наук, профессор,

А.П. НИКОЛАЕВ, д-р техн. наук, профессор,

О.В. ВАХНИНА, ст.пр.

Волгоградская государственная сельскохозяйственная академия

В настоящее время треугольные конечные элементы (КЭ) повсеместно используются в конечно-элементном анализе оболочек и других конструкций. Однако, как показывают исследования [1], треугольный КЭ обладает рядом особенностей, а именно при сосредоточенном характере нагрузок сходимость конечно-элементных решений оказывается не всегда удовлетворительной. Поэтому актуальной является задача по совершенствованию треугольного КЭ в расчетах оболочек.

Рассмотрим треугольный КЭ с катетами единичной длины в локальной системе координат  $0 \le \xi, \eta \le 1$  (Рис.1) с узлами i, j, k, на который отображается

произвольный треугольный элемент оболочки вращения.

Столбец узловых варьируемых параметров данного КЭ выбирается в виде [2]

$$\left\{ U_{y}^{n} \right\}^{T} = \left\{ \left\{ u_{y}^{n} \right\}^{T} \left\{ v_{y}^{n} \right\}^{T} \left\{ w_{y}^{n} \right\}^{T} \right\},$$
 (1)

где u и v — тангенциальные, а w— нормальная компоненты вектора перемещения. Верхний индекс «л» указывает, что столбец узловых неизвестных определен в локальной системе координат.



Входящие в правую часть равенства (1) подматрицы-строки имеют следующую структуру

$$\{q_{y}^{x}\}^{T} = \{q^{i}q^{j}q^{k}q_{,\xi}^{i}q_{,\xi}^{j}q_{,\xi}^{k}q_{,\eta}^{i}q_{,\eta}^{j}q_{,\eta}^{k}\},$$
 (2)

где под q понимается компонента вектора перемещения u, v или w.

Введем в середину каждой из сторон треугольного КЭ дополнительные узлы, которые обозначим цифрами 1,2,3 и укажем в них направления внешних

нормалей 
$$\overrightarrow{S_n^m}$$
 (  $m = 1,2,3$  ) (рис.2).

Рассмотрим в качестве варьируемых параметров во вновь введенных узлах 1,2,3 производные нормальной компоненты вектора перемещения по направлениям внешних нормалей  $\partial w/\partial S_n^m$  (m=1,2,3) к сторонам треугольного КЭ.

Дополнительные узлы 1, 2, 3 треугольного КЭ (например, имеющего номер I) в то



же время являются узлами для соседних элементов сетки дискретизации (рис.3).

Таким образом, например, для дополнительного узла 2 будет справедливо равенство  $\frac{\partial w}{\partial S_n^2}^{(l)} + \frac{\partial w}{\partial S_n^2}^{(ll)} = 0.$  (3)



Для отдельного треугольного КЭ на основании (3) можно записать равенство, которое можно рассматривать как дополнительное условие, необходимое для построения функционала Лагранжа

$$\lambda_{1} \cdot \frac{\partial w}{\partial S_{n}^{1}} + \lambda_{2} \cdot \frac{\partial w}{\partial S_{n}^{2}} + \lambda_{3} \cdot \frac{\partial w}{\partial S_{n}^{3}} = 0, \qquad (4)$$

При формировании матриц жесткостей соседних по сетке дискретизации треугольных КЭ с учетом направлений

нормалей  $S_n^m$  будут реализованы соотношения для всех сторон отдельного КЭ (4). Производные нормальной компоненты вектора перемещения в направлении нормалей к сторонам треугольного КЭ могут быть выражены через обычный столбец узловых варьируемых параметров (1)

$$\frac{\partial \mathbf{w}}{\partial \mathbf{S}_{\mathbf{n}}^{\mathbf{m}}} = \left\{ \mathbf{t}_{\mathbf{y}}^{\mathbf{m}} \right\}^{\mathsf{T}} \left\{ \mathbf{U}_{\mathbf{y}}^{\mathsf{T}} \right\} = \left\{ \mathbf{\Gamma}_{\mathbf{y}}^{\mathbf{m}} \right\}^{\mathsf{T}} \left\{ \mathbf{U}_{\mathbf{y}}^{\mathsf{T}} \right\},\tag{5}$$

 $\frac{\partial \, \mathbf{w}}{\partial \, \mathbf{S}_{n}^{\, m}} = \left\{\!\!\! t_{\mathsf{k}27}^{\, m} \right\}\!\!\! \left\{\!\!\! t_$ 

ме координат, в качестве которых, например, при расчете оболочки вращения можно выбрать S – длину дуги меридиана и  $\theta$  – угол, отсчитываемый от вертикального диаметра против хода часовой стрелки.

Правую часть равенства (4) можно представить в матричном виде

$$\begin{cases} \left\{ \lambda \right\}^{T} \begin{cases} \frac{\partial \mathbf{w}}{\partial \mathbf{S}_{n}^{1}} \\ \frac{\partial \mathbf{w}}{\partial \mathbf{S}_{n}^{2}} \end{cases} = \left\{ \lambda \right\}^{T} \begin{cases} \left\{ \mathbf{T}^{1} \right\}_{1 \times 27} \\ \left\{ \mathbf{T}^{2} \right\}_{1 \times 27} \end{cases} \begin{cases} \left\{ \mathbf{U}_{y}^{\Gamma} \right\} = \left\{ \lambda \right\}^{T} \left[ \mathbf{G} \right] \left\{ \mathbf{U}_{y}^{\Gamma} \right\}. \\ \left\{ \mathbf{T}^{3} \right\}_{1 \times 27} \end{cases} \end{cases} \tag{6}$$

Функционал, выражающий равенство потенциальной энергии деформации на возможных перемещениях для треугольного КЭ, с использованием множителей Лагранжа можно записать в следующем виде

$$\Pi = \int_{V} \left\{ \epsilon_{\alpha\beta}^{\zeta} \right\}^{T} \left\{ \sigma_{\alpha\beta} \right\} dV + \left\{ U_{y}^{\Gamma} \right\}^{T} \left[ G \right]^{T} \left\{ \lambda \right\} - \int_{F} \left\{ U \right\}^{T} \left\{ P \right\} dF = 0, \tag{7}$$

где  $\left\{ \varepsilon_{\alpha\beta}^{\zeta} \right\}^T = \left\{ \varepsilon_{11}^{\zeta} \varepsilon_{22}^{\zeta} 2\varepsilon_{12}^{\zeta} \right\}$  — матрица-строка деформаций в произвольном слое оболочки, отстоящем от срединной поверхности на расстоянии  $\zeta$ ;  $\{\sigma_{\alpha\beta}\}=\{\sigma_{11}\sigma_{22}\sigma_{12}\}$ столбец напряжений в произвольном слое оболочки;  $\{U\}^T = \{u \ v \ w\}$  – матрицастрока, содержащая компоненты вектора перемещения внутренней точки треугольного КЭ;  $\{P\} = \{p_1p_2p_3\}$  – столбец внешней поверхностной нагрузки треугольного КЭ.

Минимизируя функционал (7) по узловым неизвестным  $\{U_v^{\Gamma}\}^T$  и множителям Лагранжа  $\{\lambda\}^T$ , получим следующие равенства

$$\frac{\partial \Pi}{\partial \left\{U_{y}^{\Gamma}\right\}^{T}} = \left[K\right] \left\{U_{y}^{\Gamma}\right\} + \left[G\right]^{T} \left\{\lambda\right\} - \left\{f\right\} = 0; \quad \frac{\partial \Pi}{\partial \left\{\lambda\right\}^{T}} = \left[G\right] \left\{U_{y}^{\Gamma}\right\} = 0. \quad (8)$$

Входящие в (8) матрица [K] и столбец {f} определяются стандартным для конечно-элементной процедуры образом [3]

$$\begin{bmatrix} K \\ {27\times27} \end{bmatrix} = \begin{bmatrix} P_R \\ {27\times27} \end{bmatrix}^T \int \begin{bmatrix} B \\ {27\times6} \end{bmatrix}^T \begin{bmatrix} \Gamma \\ {6\times3} \end{bmatrix}^T \begin{bmatrix} C \\ {3\times3} \end{bmatrix} \begin{bmatrix} B \\ {3\times6} \end{bmatrix} dV \begin{bmatrix} P_R \\ {27\times27} \end{bmatrix}; \quad \begin{cases} f \\ {27\times27} \end{bmatrix} = \begin{bmatrix} P_R \\ {27\times27} \end{bmatrix}^T \int \begin{bmatrix} A \\ {10\times27\times27} \end{bmatrix}^T \begin{bmatrix} A \\ {10$$

где  $[P_R]$  – матрица преобразований при переходе от локальной системы координат  $\xi, \eta$  к глобальной, например,  $S, \theta$ .

Принимая во внимание (8), можно сформировать необходимое для конечно-элементной процедуры матричное равенство

$$\begin{bmatrix} \begin{bmatrix} \mathbf{K} \\ \mathbf{Z}^{7} \times 27 & \begin{bmatrix} \mathbf{G} \\ \mathbf{J}^{T} \\ \mathbf{G} \end{bmatrix} & \begin{bmatrix} \mathbf{U}_{y}^{\Gamma} \\ \mathbf{Z}^{7} \times 1 \\ \mathbf{X} \\ \mathbf{X} \end{bmatrix} = \begin{cases} \mathbf{f} \\ \mathbf{Z}^{7} \times 1 \\ \mathbf{0} \\ \mathbf{S} \times 1 \end{cases} \quad \mathbf{или} \quad \begin{bmatrix} \mathbf{K} \\ \mathbf{p} \\ \mathbf{0} \\ \mathbf{S} \times 1 \end{bmatrix} = \mathbf{f} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{S} \times 1 \end{bmatrix} \quad \mathbf{unu} \quad \begin{bmatrix} \mathbf{K} \\ \mathbf{p} \\ \mathbf{0} \\ \mathbf{S} \times 1 \end{bmatrix} = \mathbf{f} \\ \mathbf{0} \end{bmatrix}$$

где  $[K]_p$ ,  $\{U_y^\Gamma\}_p^-$  расширенные матрица жесткости и столбец узловых неизвестных треугольного КЭ.

Процедуру определения входящих в (5) матриц-строк {t<sup>m</sup>} можно продемонстрировать на примере оболочки вращения, срединная поверхность которой в исходном состоянии описывается радиус-вектором

$$\overrightarrow{R^0} = x\overrightarrow{i} + r\sin\theta \overrightarrow{j} + r\cos\theta \overrightarrow{k}, \tag{10}$$

где х – осевая координата, г – радиус вращения.

Формула, устанавливающая связь между глобальными координатами S, θ и локальными координатами є и η треугольного КЭ может быть записана в  $S = (1 - \xi - \eta)S^{i} + \xi S^{j} + \eta S^{k}; \quad \theta = (1 - \xi - \eta)\theta^{i} + \xi \theta^{j} + \eta \theta^{k}.$ 

виде [2] 
$$S = (1 - \xi - \eta)S^1 + \xi S^J + \eta S^k$$
;  $\theta = (1 - \xi - \eta)\theta^1 + \xi \theta^J + \eta \theta^k$ . (11)

Уравнение гипотенузы треугольного КЭ в локальной системе координат имеет вид

$$\eta = 1 - \xi \,. \tag{12}$$

В результате подстановки (12) в (11) можно получить равенства 
$$S = \xi \left( S^{j} - S^{k} \right) + S^{k}; \quad \theta = \xi \left( \theta^{j} - \theta^{k} \right) + \theta^{k}. \tag{13}$$

Выразим из 1-го уравнения (13) локальную переменную  $\xi$  и подставим ее во второе уравнение (13). В результате получим следующую зависимость глобальной координаты  $\theta$  от дуги меридиана S на границе j-k треугольного КЭ

$$\theta = \frac{\left(S - S^k\right)\left(\theta^j - \theta^k\right) + \theta^k\left(S^j - S^k\right)}{S^j - S^k}.$$
(14)

Орт касательной к стороне ј-к треугольного КЭ можно получить дифференцированием (10) по формуле полной производной, т.к. на этой линии  $\theta = f(S)$ 

$$\vec{t} = \overrightarrow{R}_{,s} = \frac{\partial F}{\partial S} + \frac{\partial F}{\partial \theta} \frac{\partial \theta}{\partial S} = x_{,s} \vec{i} + r_{,s} \sin \theta \vec{j} + r_{,s} \cos \theta \vec{k} + \left( r \cos \theta \vec{j} - r \sin \theta \vec{k} \right) \cdot \theta_{,s} , \quad (15)$$

где 
$$\theta_{,s} = \frac{\theta^{j} - \theta^{k}}{S^{j} - S^{k}}$$
.

Орт нормали к стороне j-k треугольного КЭ определим в результате векторного произведения

$$\overrightarrow{S_n^2} = \overrightarrow{a^0} \times \overrightarrow{t} , \qquad (16)$$

где  $\vec{a}^0$  – орт нормали к срединной поверхности оболочки вращения

$$\overrightarrow{a^0} = -r_{,s} \overrightarrow{i} + x_{,s} \sin \theta \overrightarrow{j} + x_{,s} \cos \theta \overrightarrow{k}.$$

Определенный по формуле (16) вектор  $\overrightarrow{S_n^2}$  находится в плоскости векторов локального базиса  $\overrightarrow{a_1^0}$ ,  $\overrightarrow{a_2^0}$ , касательных к срединной поверхности оболочки (рис.4).

Косинусы углов  $\alpha$  и  $\beta$  (рис.4) могут быть вычислены при использовании формулы скалярного произведения

совα = 
$$\frac{\overrightarrow{a_1^0} \cdot \overrightarrow{S_n^2}}{|\overrightarrow{a_1^0}| \cdot |\overrightarrow{S_n^2}|}$$
;  $\cos \beta = \frac{\overrightarrow{a_2^0} \cdot \overrightarrow{S_n^2}}{|\overrightarrow{a_2^0}| \cdot |\overrightarrow{S_n^2}|}$ . (17)

Рис.4

Рассмотрим сетку дискретизации оболочки вращения в виде (рис.5)



Рис. 5

Можно убедиться, что для треугольного КЭ под номером I будут справедливы следующие соотношения

$$\frac{\partial w}{\partial S_n^1} = -\frac{\partial w}{r\partial \theta}; \qquad \frac{\partial w}{\partial S_n^3} = -\frac{\partial w}{\partial S}; \qquad \frac{\partial w}{\partial S_n^2} = \frac{\partial w}{\partial S} \cdot \cos \alpha + \frac{\partial w}{r\partial \theta} \cdot \cos \beta. \quad (18)$$

Для треугольного КЭ, ориентированного подобно элементу под номером II, соотношения (18) принимаются с противоположным знаком.

Таким образом, матрицы-строки  $\left\{t^{m}\right\}$  для треугольного КЭ под номером I будут иметь вид

$$\begin{cases}
t^{1} \\
t^{1}
\end{cases}^{T} = \begin{cases}
\{0\}^{T} \{0\}^{T} \{0\}^{T} \{-\phi_{,\theta}\}^{T} \}; & \{t^{3}\}^{T} = \{\{0\}^{T} \{0\}^{T} \{-\phi_{,s}\}^{T} \}; \\
t^{2} \\
t^{2}
\end{cases}^{T} = \{\{0\}^{T} \{0\}^{T} \{-\phi_{,s}\}^{T} \}; & \{t^{3}\}^{T} = \{t^{3}\}^{T} \{-\phi_{,s}\}^{T} \{-\phi_{,s}\}^{T} \};$$

$$\begin{cases}
t^{2} \\
t^{2}
\end{cases}^{T} = \{\{0\}^{T} \{0\}^{T} \{0\}^{T} \{\phi_{,s}\}^{T} \cos \alpha + \{\phi_{,\theta}\}^{T} \cos \beta\}, \\
t^{2} \\
t^{2}
\end{cases}^{T} = \{t^{3}\}^{T} \{0\}^{T} \{\phi_{,s}\}^{T} \{\phi_{,s}\}^{T} \cos \alpha + \{\phi_{,\theta}\}^{T} \cos \beta\},$$
(19)

где  $\left\{ \phi \right\}^{T} = \left\{ \phi_{_{1}} \; \phi_{_{2}} \; ... \; \phi_{_{9}} \right\} -$  матрица-строка функций формы, определенных в соот-

ветствии [2]. Входящие в (19) производные полиномиальных функций определяются по формулам

В качестве примера была решена задача определения напряженнодеформированного состояния (НДС) жестко защемленного цилиндра, нагруженного внутренним давлением интенсивности q (рис.6). Были приняты следующие исходные данные:

$$L = 1.0$$
 м;  $R = 1.0$  м;  $E = 2 \cdot 10^5$  МПа;  $v = 0.3$ ;  $t = 0.02$  м;  $q = 5$  МПа.

Вследствие наличия осевой симметрии рассчитывалась 1/4 часть оболочки.



Расчеты были выполнены в двух вариантах: в первом варианте в качестве элементов дискретизации использовались треугольные КЭ, матрицы жесткости которых формировались стандартным образом [1,2]; во втором варианте был реализован описанный выше алгоритм, основанный на использовании множителей Лагранжа (3)...(19).

Рис. 6 Результаты повариантного расчета представлены в табл. № 1 и № 2, в которых приведены численные значения меридионального напряжения в жесткой заделке (точка 1) и в середине пролета (точка 2) на внутренней  $\sigma_{\rm B}$ , наружной  $\sigma_{\rm H}$  и срединной  $\sigma_{\rm C}$  поверхностях оболочки в зависимости от густоты сетки дискретизации рассматриваемой части оболочки.

Число узлов сетки дискретизации вдоль кольца было принято равным 4, а вдоль образующей варьировалось от 5 до 57.

Анализ полученных результатов показывает, что в первом варианте наблюдается неудовлетворительная сходимость вычислительного процесса, особенно в жесткой заделке (точка 1). Кроме того, в наружной и внутренней поверхностях оболочки в жесткой заделке с измельчением сетки дискретизации напряжения имеют одинаковый знак, что противоречит физическому смыслу решаемой задачи, т.к. в жесткой заделке под действием внутреннего давления возникает деформация изгиба, т.е. внутренняя поверхность растягивается, а наружная сжимается, что и наблюдается во втором варианте расчета. Анализируя численные значения напряжений, представленные в таблице  $\mathbb{N}_2$ , можно отметить быструю сходимость конечно-элементных решений уже при достаточно редкой сетке дискретизации. Так при размере сетки  $4 \times 17$  погрешность вычислений находится в пределах 1%. Полученные значения напряжений во втором варианте хорошо согласуются с физическим смыслом решаемой задачи.

Таблица 1

| Номера | Численные                      | Число узлов сетки дискретизации |        |        |       |       |
|--------|--------------------------------|---------------------------------|--------|--------|-------|-------|
| точек  | значения<br>напряжений,<br>МПа | 4×5                             | 4×17   | 4×33   | 4×49  | 4×57  |
|        | $\sigma_{_{\rm B}}$            | 333.71                          | 149.91 | 108.06 | 93.14 | 88.80 |
| 1      | $\sigma_{_{\rm H}}$            | -210.33                         | -24.94 | 17.22  | 31.99 | 36.26 |
|        | $\sigma_{ m cp}$               | 61.69                           | 62.48  | 62.64  | 62.56 | 62.53 |
|        | $\sigma_{_{\rm B}}$            | 47.24                           | 57.33  | 58.64  | 62.14 | 62.19 |
| 2      | $\sigma_{_{\rm H}}$            | 69.08                           | 68.81  | 67.87  | 61.34 | 61.53 |
|        | $\sigma_{ m cp}$               | 58.16                           | 63.07  | 63.26  | 61.74 | 61.86 |

Вследствие наличия осевой симметрии рассматриваемую оболочку можно рассчитать с помощью одномерного конечного элемента со столбцом узловых

Здесь под q понимается меридиональная или нормальная компонента вектора перемещения, а локальная координата x изменяется в пределах  $-1 \le x \le 1$ .

Результаты конечно-элементного решения рассматриваемой оболочки с использованием в качестве элемента дискретизации одномерного КЭ с размером матрицы жесткости  $8\times 8$  представлены в табл. № 3, структура которой аналогична предыдущим табл. 1 и 2.

Таблица 2

|                 | Численные                      | Число узлов сетки дискретизации |         |         |         |         |
|-----------------|--------------------------------|---------------------------------|---------|---------|---------|---------|
| Номера<br>точек | значения<br>напряжений,<br>МПа | 4×5                             | 4×17    | 4×33    | 4×49    | 4×57    |
|                 | $\sigma_{_{\mathrm{B}}}$       | 408.16                          | 475.49  | 479.62  | 480.40  | 480.57  |
| 1               | $\sigma_{_{\rm H}}$            | -286.17                         | -356.06 | -360.26 | -361.05 | -361.21 |
|                 | $\sigma_{cp}$                  | 61.00                           | 59.72   | 59.68   | 59.68   | 59.68   |
|                 | $\sigma_{_{\rm B}}$            | 69.62                           | 67.15   | 67.05   | 67.03   | 67.02   |
| 2               | $\sigma_{_{\rm H}}$            | 49.65                           | 52.20   | 52.31   | 52.33   | 52.33   |
|                 | $\sigma_{cp}$                  | 59.63                           | 59.68   | 59.68   | 59.68   | 59.68   |

Таблица 3

|                 | Численные                        | Число узлов сетки дискретизации |         |         |         |         |
|-----------------|----------------------------------|---------------------------------|---------|---------|---------|---------|
| Номера<br>точек | значения<br>напряже-<br>ний, МПа | 1×5                             | 1×17    | 1×33    | 1×49    | 1×57    |
| 1               | $\sigma_{_{\rm B}}$              | 368.38                          | 475.52  | 479.62  | 480.39  | 480.56  |
|                 | $\sigma_{_{\rm H}}$              | -241.19                         | -356.01 | -360.22 | -361.01 | -361.17 |
|                 | $\sigma_{cp}$                    | 63.24                           | 59.76   | 59.70   | 59.69   | 59.69   |
| 2               | $\sigma_{_{\rm B}}$              | 73.04                           | 68.01   | 67.90   | 67.89   | 67.88   |
|                 | $\sigma_{_{\rm H}}$              | 46.18                           | 51.38   | 51.49   | 51.50   | 51.51   |
|                 | $\sigma_{cp}$                    | 59.60                           | 59.69   | 59.69   | 59.69   | 59.69   |

Как видно из табл. № 3, численные значения контролируемых параметров НДС практически совпадают с данными таблицы № 2, начиная с сетки узлов  $1 \times 17$ , что позволяет сделать вывод о достоверности полученных результатов.

Основываясь на анализе табличного материала, представленного в таблицах 1,2,3 можно сделать окончательный вывод о высокой эффективности разработанного алгоритма формирования матрицы жесткости треугольного КЭ с использованием множителей Лагранжа.

## Литература

- 1. Клочков Ю.В. Сравнительный анализ эффективности использования конечных элементов треугольной и четырехугольной форм в расчетах оболочек вращения// Ю.В. Клочков, А.П. Николаев, Н.А. Гуреева// Изв. вузов. Строительство. -2004. -№ 3. -C.103–109.
- 2. *Клочков Ю.В.* О функциях формы в алгоритмах формирования матрицы жесткости треугольных конечных элементов// Ю.В.Клочков, А.П.Николаев, А.П.Киселев// Изв.вузов. Строительство. -1999. № 10. С.23-27.
- 3. *Постнов В.А.* Метод конечных элементов в расчетах судовых конструкций/ В.А. Постнов, И.Я. Хархурим. Л.:Судостроение, 1974. 344 с.

## LAGRANGIAN COEFFICIENTS USING IN CASING CALCULATION WITH TRIANGULAR FINITE ELEMENT

Y.V.Klochkov, A.P.Nikolaev, O.V.Vakhnina

In this article, the calculation of hard pinched cylinder casing mode of deformation with one-dimensional and triangular finite element using was presented. Comparative analysis of gotten results was done/ Calculations improvement while using triangular finite element as discretization element method with Lagrangian coefficient using was offered.