<u>Расчет строительных конструкций</u>

ПОСЫЛКИ ЭНЕРГЕТИЧЕСКОЙ ОПТИМИЗАЦИИ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ, ВОСПРИНИМАЮЩИХ ЗНАКОПЕРЕМЕННЫЕ НАГРУЗКИ

В.М. БОНДАРЕНКО, д-р тех. наук, профессор НИИСФ РААСН, 127238, Москва, Локомотивный пр-д, д.21

Сформулирована и решена задача оценки потерь энергии при знакопеременном силовом деформировании железобетона и изложены начала метода энергетической оптимизации железобетонных конструкций.

КЛЮЧЕВЫЕ СЛОВА: железобетонные конструкции, энергетическая оптимизация,

Известно, что при знакопеременном (динамическом) силовом деформированиии железобетона после разгружения часть полученных деформаций не восстанавливается. Это значит, что энергия отпорности меньше работы затраченной на деформирование - при силовом деформировании железобетона происходит потеря (диссипация) энергии [1,2,4.]. На промышленных предприятиях эти потери являются частью общих энергетических расходов производства. Величина таких потерь может быть существенной составляющей частью общего энергопотребления и, следовательно, влиять на себестоимость продукции предприятий¹.

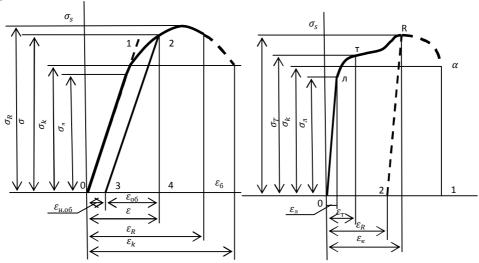


Рис. 1. Схема диаграммы напряжения - полные относительные деформации бетона к моменту времени t_i

Рис. 2. Схема диаграммы напряжения - полные относительные деформации арматурной стали.

Эксперименты, проведенные автором в Харьковском государственном архитектурно-строительном университете (1965-1967 гг), в Московской государственной академии коммунального хозяйства и строительства (1978-1979 гг), в Научно-исследовательском институте строительной физики РААСН (1994-1995 гг), а также другая имеющаяся информация позволяет считать, что доля потерь

¹Аналогичные потери энергии сопровождают работу автомобильного, железнодорожного и трубопроводного транспорта.

энергии, обусловленных неупругими свойствами материалов составляет от 1/5 до 2/3 общих энергопотерь, зависящих от конструктивных особенностей зданий и сооружений. Описанное актуализирует задачу управления энергопотерями при силовом деформировании строительных конструкций и энергетической оптимизации [4].

Указанная задача может быть решена на основе следующих посылок:

- принимаются традиционные диаграммы напряжения-полные относительные деформации бетона и арматуры (рис. 1, 2)

На рис. 1 и рис. 2 для схем диаграмм $\sigma - \varepsilon$ сомасштабность не соблюдается; для обеих диаграмм характерно, что модульные линии разгружения параллельны начальной модульной линии нагружения (для бетона 01//23 для арматуры 01//(2); точка R - точка невозврата; σ_{π} - предел напряжения для линейного (пропорционального) деформирования;

- констатируется, что в эксплуатируемых железобетонных конструкциях напряжения в рабочей стальной арматуре находятся в упруголинейной стадии деформирования и не превышают предела пропорциональности, ее деформации при разгрузке полностью обратимы, а уравнение силового сопротивления для арматуры принимается в виде закона Гука;
- устанавливается, что напряжения в бетоне не могут превышать предел длительной прочности;
- фиксируется, что фигура 023(рис. 1) является петлей гистерезиса, а ее площадь равна удельной (в единице объема образца) потере энергии силового сопротивления при однократном цикле нагружения разгружения [1,8];
- в качестве уравнения силового сопротивления бетона для восходящей ветви диаграммы OR (рис. 1) принимается квазилинейное уравнение [5] и используются предложения П.И. Васильева и Графа для функции нелинейности [6,7] по П.И. Васильеву.

$$\mathcal{E}(t,t_0) = \sigma(t) \left\langle (1+\bar{V}) \left[\frac{\sigma(t)}{R(t)} \right]^{\bar{m}} \right\rangle \frac{1}{E_{\text{Bp},\pi}(t,t_0)}, \tag{1}$$

$$\frac{1}{E_{\text{Bp},\pi}(t,t_0)} = \left[\frac{1}{E_{\text{MITH}}(t)} + C(t,t_0) \right],$$

$$\varepsilon(t,t_0) = \bar{a}(t,t_0)\sigma^{\bar{b}}, \tag{2}$$

где

по Графу

для параметра \overline{V} , \overline{m} , \overline{a} , \overline{b} , вычисляются по данным традиционных нелинейных уравнений силового сопротивления [8,2]:

$$\varepsilon(t,t_{0}) = \frac{\sigma(t) \langle 1 + V_{\text{MFH}} \left[\frac{\sigma(t)}{R(t)} \right] \rangle^{m_{\text{MFH}}}}{E_{\text{MFH}}} + \langle (1 + V_{\text{ПОЛ}}) \left[\frac{\sigma(t)}{R(t)} \right]^{m_{\text{ПОЛ}}} \rangle C(t,t) - \frac{\int_{t_{0}}^{t} \sigma(\tau) \langle 1 + V_{\text{ПОЛ}} \left[\frac{\sigma(\tau)}{R(\tau)} \right]^{m_{\text{ПОЛ}}} \right] \rangle \frac{dC(\tau,t_{0})}{d\tau} d\tau, \tag{3}$$

где согласно $[9]^2$ для сжатия:

$$V_{\text{MPH}} = \frac{37.5}{R} : V_{\text{пол}} = \frac{45.0}{R} : m_{\text{MPH}} = 5.0 - 0.05R; m_{\text{пол}} = 5.0 - 0.07R,$$
 (4)

для растяжения

 $V_{t,\text{мгн}} = 0.3 + 0.37R$, $V_{t,\text{пол}} = 1.5$; $m_{t,\text{мгн}} = 0.8 + 0.23R$, $m_{\text{пол}} = 1$, (5) и используя (4) и (5) вычисляются искомые значения параметров квазилинейного уравнения [8]:

$$\overline{V} = \frac{(1 + V_{\text{M}\Gamma \text{H}}) \frac{1}{E_{\text{M}\Gamma \text{H}}} + (1 + V_{\text{\Pi}0,\text{I}})C(t, t_0)}{\frac{1}{E_{\text{M}\Gamma \text{H}}} + C(t, t_0)} - 1, \tag{6}$$

² Для назначения исходных параметров $V_{\text{мгн}}, V_{\text{пол}}, m_{\text{мгн}}, m_{\text{пол}}$, кроме (4) можно пользоваться таблицами [10].

$$\bar{m} = \frac{1}{\ln \gamma} \ln \left\langle \frac{1}{\gamma} \left[\frac{(1 + V_{\text{MFH}} \gamma^{m_{\text{MFH}}}) \frac{1}{E_{\text{MFH}}(t)} + (1 + V_{\text{пол}} \gamma^{\text{пол}}) C(t, t_0)}{\frac{1}{E_{\text{MFH}}(t)} + C(t, t_0)} - 1 \right] \right\rangle, \tag{7}$$

$$\bar{a} = \frac{(1 + \bar{V}) R^{1-b}}{E_{\text{Bp,n}}(t, t_0)}, \quad \bar{b} = 1 + \frac{1}{\ln \gamma} \ln \frac{1 + \bar{V} \gamma^{\overline{m}}}{1 + \bar{V}}; \tag{8}$$

$$\bar{a} = \frac{(1+\bar{V})R^{1-b}}{E_{\text{BD},I}(t,t_0)}, \quad \bar{b} = 1 + \frac{1}{\ln\gamma}\ln\frac{1+\bar{V}\gamma^{\overline{m}}}{1+\bar{V}};$$
 (8)

здесь γ - отсчет точки равенства сопоставляемых функций (1), (2), (3) ($\gamma \cong 0.7$) ε - полные относительные деформации, σ - напряжения, R - предел прочности, $E_{\rm вр.л}$ - временный линейный модуль деформации [9], $E_{\rm мгн}$ - модуль мгновенных деформаций, $C(t, t_0)$ - мера ползучести, мгн - символ мгновенных деформаций, пол - символ деформаций ползучести.

Отметим, применительно к бетону формулы (1) - (8) по структуре одинаковы как для сжатия, так и для растяжения (в случае растяжения к символам формул (1) - (8) вводится индекс t, например R_t). Из (2) следует

$$\sigma = \left(\frac{1}{a}\right)^{1/b} \varepsilon^{1/b}$$
 или $\sigma = \left[\frac{E_{\rm Bp,n}}{(1+\overline{V})R^{1-b}}\right]^{1/b} \varepsilon^{1/b};$ отсюда при нагружении работа (энергия), затрачиваемая на силовое деформи-

рование единичного объема образца:

$$\overrightarrow{W} = \int_0^{\varepsilon} \overrightarrow{\sigma} \, d\varepsilon = \int_0^{\varepsilon} \left[\frac{E_{\text{Bp},\pi}}{(1+\overline{V})} R^{b-1} \right]^{1/b} \, d\varepsilon = \left[\frac{E_{\text{Bp},\pi} R^{b-1}}{(1+\overline{V})} \right]^{1/b} \frac{\varepsilon^{1+1/b}}{(1+1/b)} \,; \tag{10}$$

при разгружении (восстановление размеров и формы образца) согласно Энгессеру - Ясинскому принимается линейная связь между напряжениями и полными относительными деформациями [12], а также b=1. Следовательно, работа разгружения (энергетический потенциал отпорности) равен $\overline{W} = \int_0^\varepsilon \overline{\sigma} \ d\varepsilon = \int_0^\varepsilon \frac{E_{\rm Bp,n}}{(1+\overline{V})} \varepsilon d\varepsilon = \frac{E_{\rm Bp,n}}{2(1+\overline{V})} \varepsilon_{06}^2$

$$\overline{W} = \int_0^{\varepsilon} \overline{\sigma} \, d\varepsilon = \int_0^{\varepsilon} \frac{E_{\text{Bp},n}}{(1+\overline{\nu})} \varepsilon d\varepsilon = \frac{\widehat{E}_{\text{Bp},n}}{2(1+\overline{\nu})} \varepsilon_{06}^2$$
 (11)

(в формулах (10) и (11) и ниже значки → и ← означают «нагружение» и «разгружение», при разгружении $\bar{V} = 0$).

Таким образом, потеря энергии в цикле нагружения – разгружения в единице \overrightarrow{W} объема образца (площадь петли гистерезиса рис. 1, фиг. 023)

$$\Delta W = \overrightarrow{W} - \overleftarrow{W}. \tag{12}$$

а относительная потеря энергии за один цикл нагружения – разгружения, т.н. коэффициент потери энергии может быть рассчитан в двух вариантах

по [1]:
$$\psi = \frac{\Delta W}{\overline{W}}$$
, (13)
по [13]: $\psi_c = \frac{\Delta W}{\overline{W}}$, (14)

$$\text{по [13]:} \quad \psi_c = \frac{\Delta W}{\overline{W}},\tag{14}$$

между которыми существует связь:

$$\psi = \frac{\psi_c}{1+\psi_c}; \qquad \psi_c = \frac{\psi}{1-\psi} \,.$$
 (15)
Изложенное относится к бетону. Что же касается арматурной стали, то по-

скольку в эксплуатируемых железобетонных конструкциях напряжения в арматуре всегда находятся в линейно - упругой области силового сопротивления (рис. 2)

$$\varepsilon_S = \frac{\sigma_S}{E_S} \,, \tag{16}$$

постольку потери энергии в ней не учитываются.

Переходя к расчету потерь энергии при знакопеременном режиме нагрузок (нагружение - разгружение) железобетонных конструкций в качестве объекта исследований принимается железобетонная балка прямоугольного сечения $(b_0 \times h)$. Эту балку в интересах упрощения расчетного алгоритма целесообразно разделить на несколько участков, соблюдая принцип сохранения неизменного знака изгибающего момента в пределах каждого участка и (при необходимости) дополнительно разделяя их по границам трещинообразования. Это допускает в пределах каждого участка устанавливать некоторую среднюю расчетную величину изгибающего момента. Это последнее позволяет назначить в пределах каждого участка все характеристики силового сопротивления неизменными. Общие потери энергии балки определяются суммированием частных потерь на всех участках.

Далее, учитывая, что, кривизна деформирования балки внешними нагрузками имеет запись

$$\frac{1}{\rho} = \frac{d^2 U}{dV^2} = \frac{M(V)}{D(V)} = \frac{\varepsilon}{Z}; \qquad \varepsilon = \frac{M(V)}{D(V)} Z, \tag{17}$$

получим

$$\varepsilon_{\Phi} = \frac{M(N)}{D(V)} X,\tag{18}$$

где ρ - радиус кривизны, U - функция прогибов, V - абсцисса сечений, M - среднерасчетный изгибающий момент, D - жесткость сечения балки [8], Z - ордината, отсчитываемая от нулевой оси эпюры нормальных напряжений, X - высота сжатой зоны сечения, ε - полные относительные деформации, ε_{φ} - то же для фибрового слоя.

Используя (8) и (9), построим зависимость для нормальных напряжений фибровых слоев сжатия (растяжения) балки:

$$\sigma_{\phi}(V) = \left(\frac{1}{a}\right)^{1/b} \varepsilon_{\phi}^{1/b} = \left[\frac{E_{\text{Bp},n}M(V)R^{1-b}}{R^{1-b}(1+\overline{V})D(V)}X(V)\right]^{1/b} , \qquad (19)$$

или умножив и разделив выражение в квадратных скобках (19) на $M_{\rm np}(V)$ и X(V), где $M_{\rm np}$ - предельный изгибающий момент в сечении V, запишем

$$\varepsilon_{\Phi}(V) = \left[\frac{E_{\text{Bp},n}}{(1+\overline{V})R} \frac{M_{\text{np}}(V)}{D(V)} X(V)\right]^{1/b} \left[\frac{M_{\text{np}}(V)}{M_{\text{np}}(V)}\right]^{1/b}, \tag{20}$$

а, поскольку

$$\frac{E_{\text{вр.л}}}{(1+\overline{V})R} = \frac{1}{\varepsilon_{\phi}}$$
 и $\frac{M_{\text{пр}}(V)X(V)}{D(V)} = \varepsilon_{\phi}$, (21)

получим

$$\sigma_{\Phi}(V) = \left[\frac{M(V)}{M_{\text{np}}(V)}\right]^{1/b} R. \tag{22}$$

На этой основе, следует [8,9], выписываем функцию нормальных напряжений по высоте сечения:

$$\sigma(V,Z) = \sigma_{\phi}(V) \left(\frac{Z}{X}\right)^{\eta}$$
, где $\eta = 1 - \frac{M(V)}{M_{\text{nn}}(V)}$. (23)

Параметр η отражает изменения формы эпюры нормальных напряжений в сечении балки при изменении величины изгибающего момента: от треугольной от M=0 и $\eta=1$, т.е. в линейной постановке, до прямоугольной при $M=M_{\rm пp}$ и $\eta=0$, т.е. в пластической постановке. При этом, напряжения в сжатой и в растянутой арматурах вычисляются по формуле

$$\sigma_{\rm S} = E_{\rm S} \varepsilon_{\rm S} \,, \tag{24}$$

где E_{S} – модуль деформации арматуры, ε_{S} - относительные деформации.

Высота сжатой зоны сечения балки X определяется из условий равновесия всех сил на горизонтальную ось

$$\sum F_i = 0; \tag{25}$$

при этом заметим, что алгоритмы расчета для участков «без трещин» и участков «с трещинами» отличаются друг от друга.

А. Участки без трещин ($M < M_{\rm TD}$)

- для бетона сжатой зоны:

$$F_{\delta} = b_0 \int_0^X \sigma_{\phi} \left(\frac{Z}{X}\right)^{\eta} dZ = \frac{b_0}{(1+\eta)} \left(\frac{M}{M_{np}}\right)^{1/b} RX, \tag{26}$$

-для бетона растянутой зоны:

$$F_{\delta t} = \frac{b_0}{\left(1 + \eta_t\right)} \left(\frac{M}{M_{mp}}\right)^{1/b_t} R_t (h - X), \tag{27}$$

где

$$\eta_{\scriptscriptstyle t} = 1 - \frac{M}{M_{\scriptscriptstyle mp}}, \; M_{\scriptscriptstyle \Pi p} \;\;$$
и $M_{\scriptscriptstyle T p} \;$ берутся по СНиП,

- для растянутой арматуры по (17) и (24):

$$F_s = \frac{M}{D} E_s A_s (h - X - a_s), \tag{28}$$

- для сжатой арматуры:

$$F_{s}' = \frac{M}{D} E_{s} A_{s}' (X - a_{s}'), \tag{29}$$

где A_s и A_s' - площади сечения растянутой арматуры и сжатой арматуры, a_s и a_s' - толщина защитного слоя растянутой и сжатой арматуры,

$$X = \frac{\frac{b_0 \sigma_{\phi} h}{1 + \eta_t} + \frac{E_s M}{D} (A_s' a_s' + A_s h - A_s a_s)}{b_0 \left[\frac{\sigma_{\phi}}{(1 + \eta)} + \frac{\sigma_{\phi t}}{(1 + \eta_t)} \right] + \frac{E_s}{D} M (A_s' - A_s)}$$
(30)

Б. Участки с трещинами ($M>M_{\rm Tp}$); растянутая зона бетона непосредственно не учитывается, и учет осуществляется приведением с помощью множителя $^{1}/_{\psi_{\rm c}}$ [9], т.е. вместо (27),(28) принимается

$$F_{s} = \frac{M}{D} \frac{E_{s}}{\psi_{s}} A_{s} [(h - X) - a_{s}]; \tag{31}$$

Теперь

$$X = \frac{\frac{M}{D} E_{s} \left[A'_{s} a'_{s} + \frac{1}{\psi_{s}} A_{s} (h - a_{s}) \right]}{\frac{M}{D} E_{s} \left(A'_{s} + \frac{A_{s}}{\psi_{s}} \right) + \frac{b_{0} \sigma_{\phi}}{(1 + \eta)}}.$$
(32)

К этому заметим, что в интересах методического однообразия для решения обеих рассмотренных выше задач можно использовать вместо (31), вычисляя ψ_s по [9], сопряженно учитывающих как случай $M > M_{\rm Tp}$, так и случай $M < M_{\rm Tp}$ Тогда ψ_s на участках $M < M_{\rm Tp}$ для вычисления ψ_s применяется соотношение

$$\psi_s = \psi_0 + b_{o.m.} \left(\frac{M}{M_{np}}\right)^{C_{om}}, \tag{33}$$

для которой значения ψ_0 , $b_{_{\partial,m}}$, $C_{_{\partial m}}$ устанавливаются по формулам:

$$\psi_{0} = \frac{1}{1 + \frac{E_{\text{Bp},n}J_{bt}}{E_{S}J_{S}}} ,$$

$$b_{o.m.} = \frac{\psi_{T} - \psi_{0}}{\left(\frac{M_{mp}}{M_{np}}\right)^{C_{om}}} ,$$
(34)

где $E_{s,}E_{\rm вр.л}$ - модули деформаций арматурной стали и бетона; J_{6t} , J_{5} , J_{st} - моменты инерции растянутой зоны бетона, сжатой зоны бетона, сжатой и растянутой арматуры отсчитываемых относительно центра тяжести приведенного сечения.

Для каждого участка потери энергии определяются раздельно для сжатой и для растянутой зон с последующим суммированием. Общие потери энергии для балки равны сумме потерь на всех i - тых участках. Далее, используя (10), (11), (18), (23) вычисляем работу для деформирования i – того участка балки

при нагружении:
$$\vec{W}_i = \vec{W}_{i6} + \vec{W}_{it}$$
, (35)

где \overrightarrow{W}_{i6} работа по деформированию сжатой зоны бетона

$$\vec{W}_{i6} = b_0 l_i \int_0^X R \left(\frac{M_i}{M_{np}} \right)^{1/b} \frac{M_i}{D_i} \left(\frac{Z}{X_i} \right) dZ = \frac{b_0 l_i R}{(2+\eta)} \left(\frac{M_i}{M_{np}} \right)^{1/b} X^2, \tag{36}$$

 \overrightarrow{W}_{it} — работа по деформированию растянутой зоны бетона

$$\overrightarrow{W}_{it} = \frac{b_0 l_i R_t}{(2 + \eta_t)} \left(\frac{M_i}{M_{\text{np}}}\right)^{1/b_t} (h - X)^2;$$

$$\overleftarrow{W}_t = \overleftarrow{W}_{i6} + \overleftarrow{W}_{it},$$
(37)

при разгружении:

$$\dot{W}_i = \dot{W}_{i6} + \dot{W}_{it} \,, \tag{38}$$

где \overleftarrow{W}_{i6} — работа на восстановлению деформаций сжатой зоны бетона

$$\overline{W}_{i6} = \frac{b_0 l_i M_i R}{3D_i} \left(\frac{M_i}{M_{\rm np}}\right)^{1/b} X^2, \tag{39}$$

$$\dot{\overline{W}}_{i6} = \frac{b_0 l_i M_i R}{3D_i} \left(\frac{M_i}{M_{\text{np}}}\right)^{1/b} X^2,$$

$$\dot{\overline{W}}_{i6t} = \frac{b_0 l_i M_i}{3D_i} R_t \left(\frac{M_i}{M_{\text{np}}}\right)^{1/b_t} (h - X)^2.$$
(40)

Отметим, что при $M_i > M_{\rm TP}$ везде принимается $\left(\frac{M_i}{M_{\rm TP}}\right) = 1$. Отсюда общие потери энергии в цикле нагружение-разгружение:

$$\Delta W_i = \overrightarrow{W}_i - \overleftarrow{W}_i \tag{41}$$

а коэффициент поглощения энергии (13)

$$\psi_{i} = \frac{\Delta W_{i}}{\vec{W}} = 1 - \frac{\vec{W}}{\vec{W}} = 1 - \frac{\frac{R}{3} \left(\frac{M_{i}}{M_{\text{np}}}\right)^{1/b} X^{2} + \frac{R_{t}}{3} \left(\frac{M_{i}}{M_{\text{Tp}}}\right)^{1/b} t (h-X)^{2}}{\frac{R}{(2+\eta)} \left(\frac{M_{i}}{M_{\text{np}}}\right)^{1/b} X^{2} + \frac{R_{t}}{(2+\eta_{t})} \left(\frac{M_{i}}{M_{\text{Tp}}}\right)^{1/b} t (h-X)^{2}},$$
(42)

в том числе, в частном случае $\eta = \eta_t$ при $\eta = 1 - \frac{M_i}{M_{...}}$ (23)

$$\varphi_{i} = 1 - \frac{\frac{1}{3} \left[R \left(\frac{M_{i}}{M_{\text{np}}} \right)^{1/b} X^{2} + R_{t} \left(\frac{M}{M_{\text{Tp}}} \right)^{1/b_{t}} (h - X)^{2}}{\frac{1}{(2+\eta)} \left[R \left(\frac{M_{i}}{M_{\text{np}}} \right)^{1/b} X^{2} + R_{t} \left(\frac{M_{i}}{M_{\text{Tp}}} \right)^{1/b_{t}} (h - X)^{2} \right]}$$

$$\psi_{i} = 1 - \frac{2+\eta}{3} = \frac{M_{i}}{3M_{\text{np}}}$$
(43)

или

$$\psi_i = 1 - \frac{2+\eta}{3} = \frac{M_i}{3M_{\rm np}} \tag{44}$$

при $M_i=0$ будет $\psi=0$; при $M_i=\frac{1}{2}$ $M_{\rm пp}$ - $\psi=\frac{1}{6}$ или 17%; при $M_i=\frac{3}{4}$ $M_{\rm пp}$ - $\psi=\frac{1}{4}$ или 25%; при $M_i=M_{\rm np}$ - $\psi=\frac{1}{3}$ или 33%. Полученные результаты открывают возможность управления энергопотет.е.

рями, обусловленных особенностями деформироания материалов конструкций зданий и сооружений с помощью выбора строительных (в т.ч. композиционных) решений, обеспечивающих снижение уровня изгибающих моментов в элементах, испытывающих знакопеременные нагружения.

Для иллюстрации сказанного приведем простейший пример. Сравниваются две одинаковые балки пролетом l, нагруженные на середине пролета сосредоточенная сила P. Балка A шарнирно оперта на опорах; балка E – жестко защемлена на опорах. Необходимо сравнить расчетные моменты и расчетные потери энергии при силовом деформировании.

Сравнение вариантов упрощается делением пролета l на три участка: два приопорных участках длиною l/4 и средний участок длиною (рис.2.) Для варианта A расчетный момент в приопорных четверхтях пролета равен $M_1 = \frac{Pl}{16}$, в среднем участке $M_2 = 3\frac{Pl}{16}$; для варианта Б во всех участках $M_3 = \frac{Pl}{16}$.

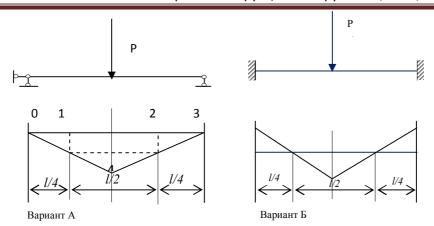


Рис. 2. Варианты крепления на опорах балки, несущей повторные нагружения силой Р. Вариант A - шарнирное опирание на опорах, Вариант Б – защемление на опорах

Таким образом, замена шарнирно опертой с помощью защемленой балки уменьшает коэффициент поглощения энергии в 1,5 раза $(44)^3$. Суммарная потеря энергии $\sum_{i=1}^m W$;, обусловленная сильным деформированием материалов конструкции при знакопеременном нагружении составляет

$$\Delta W = \sum_{i+1}^{m} \Delta W , \qquad (45)$$

где ΔW вычисляется по (35)-(41), m - число участков балки, на которых принимаются расчетно неизменные изгибающие моменты и характеристики силового сопротивления. Эти потери энергии составляют до 2/3 общих потерь энергии, возникающих вследствие несовершенств конструкций зданий и сооружений.

Как показано выше на примере изменения статической схемы можно уменьшить указанные потери в 1,5 раза.

Между тем, на многих промышленных предприятиях такие конструкции воспринимают технологические нагрузки с регулярной сменой нагружения—разгружения (например, от действия машин или генераторов при недостаточно сбалансированных технологических устройствах).

Целевые конструктивные решения, управляя энергетическими потерями при силовом многоцикловом нагружении, могут существенно уменьшить производственные расходы и в течение относительно короткого периода эксплуатации зданий окупить исходные затраты, в т.ч. и при реконструкции зданий и сооружений.

Литература

1. Бондаренко В.М. О назначении оптимальных поперечных сечений стержневых конструкций при колебаниях// Вестник академии строительства и архитектуры Украины. – Инстрой Издат. Киев. – 1959. – № 4. – С. 33-40.

2. Давиденков Н.Н. О рассеивании энергии при вибрациях // Журнал технической физики. — 1938. Т. 8. — Вып. 6. — С. 483-499.

3. *Бондаренко В.М.* Управление энергопотерями несущих стропильных конструкций// Промышленное и гражданское строительство. -1995. -№1.

4. *Карпенко Н.И.*, *Ерышев В.Н.*, *Латышева Е.В.*, К построению диаграмм деформирования бетона повторными нагрузками сжатия при постоянных уровнях напряжений//Строительные материалы. -2013. - №6.

-

³ В приведенном расчете, использующем (42) оценивается порядок изменений коэффициента поглощения энергии; учитываются абсолютные величины изгибающих моментов.

- 5. Бондаренко В.М., Рамшин В.И. Квазилинейные уравнения силового сопротивления бетона и диаграмма σ Е бетона//Строительная механика инженерных конструкций сооружений. М. 2014. № 6. С. 40–44.
- 6. *Васильев П.И.* Связь между напряжениями и деформациями в бетоне при сжатии с учетом влияния времени. Известия ВНИИГ, т 45 Ленинград, 1953
- 7. Grato Brenner E. Versuch zuz Ermit flung du Winderstanefonig neit vor Beton gegen of fmale wider belastung. –Dattcher Anschysfeir Eisbiton. –Heft 76. –Teil 2. 1934.
- 8. Бондаренко В.М. Элементы диссипативной теории силового сопротивления железобетона// Строительная механика инженерных конструкций и сооружений. -2014. -№ 2. C. 47-57.
- 9. *Бондаренко В.М.* Некоторые вопросы нелинейной теории железобетона. Харьков: Изд-во Харьковского Университета, 1968. 323 с.
- 10. Рекомендации по учету ползучести и усадки бетона при расчете бетонных и железобетонных конструкций. М.: НИИЖБ, Стройиздат, 1988. 129 с.
- 11. *Царева А.Д., Байдин О.В., Бондаренко В.М.* Некоторые вопросы диссипации силового сопротивления деформироваию железобетона// Строительная механика и расчет сооружений. $-2012.- N \!\!\!\! \underline{0} 6.- C. 31-38.$
 - 12. Вольмир Л.А. Устойчивость упругих систем. М.: Физматгиз, 1963. 880 с.
- 13. Сорокин Е.С. Динамические характеристики строительных материалов и конструкций. М.: Строиздат, 1972.

References

- 1. Bondarenko, V.M. (1959). O naznachenii optimal'nyh poperechnyh sechenij sterzhnevyh konstrukcij pri kolebanijah. Vestnik akademii stroitel'stva i arhitektury Ukrainy. Instroj Izdat. Kiev, № 4, p. 33-40.
- 2. Davidenkov, N.N. (1938). O rasseivanii jenergii pri vibracijah, Zhurnal tehnicheskoj fiziki, Vol. 8, Iss. 6, p. 483-499.
- 3. Bodnarenko, V.M. (1995). Upravlenie jenergopoterjami nesushhih stropil'nyh konstrukcij, Promyshlennoe i grazhdanskoe stroitel'stvo, № 1.
- 4. *Karpenko, N.I., Eryshev, V.N., Latysheva, E.V.* (2013). K postroeniju diagramm deformirovanija betona povtornymi nagruzkami szhatija pri postojannyh urovnjah naprjazhenij, *Stroitel'nye materialy,* N 6.
- 5. Bondarenko, V.M., Ramshin, V.I. (2014). Kvazilinejnye uravnenija silovogo soprotivlenija betona i diagramma σ E betona, Structural Mechanics of Engineering Constructions and Buildings, № 6. p. 40–44.
- 6. Vasil'ev, P.I. (1953). Svjaz' mezhdu naprjazhenijami i deformicijami v betone pri szhatii s uchetom vlijanija vremeni, *Izvestija VNIIG*, Vol. 45, Leningrad.
- 7. Grato Brenner E. (1934). Versuch zuz Ermit flung du Winderstanefonig neit vor Beton gegen of finale wider belastung, Dattcher Anschysfeir Eisbiton, Heft 76. Teil 2.
- 8. *Bondarenko, V.M.* (2014). Jelementy dissipativnoj teorii silovogo soprotivlenija zhelezobetona, *Structural Mechanics of Engineering Constructions and Buildings*, № 2, p. 47-57.
- 9. Bondarenko, V.M. (1968). Nekotorye Voprosy Nelinejnoj Teorii Zhelezobetona, Har'kov: Izd. Har'kovskogo Universiteta, 323 p.
- 10. Rekomendacii po uchetu polzuchesti i usadki betona pri raschete betonnyh i zhelezobetonnyh konstrukcij (1988), Moscow: NIIZhB, Strojizdat, 129 p.
- 11. Careva, A.D., Bajdin, O.V., Bondarenko, V.M. (2012). Nekotorye voprosy dissipacii silovogo soprotivlenija deformirovaiju zhelezobetona, *Stroitel'naja mehanika i raschet sooruzhenij, №* 6, p. 31-38
 - 12. Vol'mir, L.A.(1963). Ustojchivost' Uprugih Sistem, Moscow: Fizmatgiz, 880 p.
- 13. Sorokin, E.S. (1972). Dinamicheskie Harakteristiki Stroitel'nyh Materialov i Konstruktzij, Moscow: Stroizdat.

PROBLEMS OF ENERGY OPTIMIZATION OF REINFORCED CONCRETE STRUCTURES, PERCEIVING ALTERNATING LOADS

V.M. Bondarenko NIISF RAASN

The problem of estimating of the energy loss under the alternating force deforming of reinforced concrete is formulated and solved and the beginnings of a method of energy optimization of reinforced concrete structures are described.

KEY WORDS: reinforced concrete structures, energy optimization, alternating loads.