НЕЛИНЕЙНОЕ ДЕФОРМИРОВАНИЕ КРУГЛОЙ ПЛАСТИНЫ, ШАРНИРНО ОПЁРТОЙ НА КОЛЬЦЕВОЙ ОПОРЕ И НАГРУЖЕННОЙ РАСПРЕДЕЛЕННОЙ СИЛОЙ ПО КРАЮ

Н.К. ГАЛИМОВ, к.ф.-м.н., вед. науч. сотрудник ИММ КазНЦ РАН, 420111, Казань, ул. Лобачевского, 2/31

Рассмотрено решение задачи о нелинейном деформировании круглой пластины, шарнирно опёртой на кольцевой опоре и нагруженной распределенной силой по краю. Задача возникла в связи с необходимостью оценки уровня напряжений на поверхности образца при исследовании нагруженных образцов в коррозионно-активной среде.

КЛЮЧЕВЫЕ СЛОВА: круглая пластина, кольцевая опора, метод Бубнова-Галеркина, прогиб, совместность деформаций

Введение. В работах [1-3] рассмотрено влияние физических полей на процесс коррозионного износа. Влияние характера деформирования на коррозионный износ отмечено в [4-5]. В публикациях [6-7] изложен способ и устройство для диагностики механических характеристик нагруженных тонкостенных элементов. В статье рассмотрено решение задачи о нелинейном деформировании круглой пластины, шарнирно опёртой на кольцевой опоре и нагруженной распределенной силой по краю. Задача возникла в связи с необходимостью более точной оценки уровня напряжений на поверхностях образцов на разработанном испытательном узле по [6-7] при исследовании нагруженных образцов в коррозионно-активной среде. Приведены исходные соотношения, а также описан на базе метода Бубнова - Галеркина алгоритм вывода основной зависимости относительно прогиба пластины.

Решение задачи. Рассмотрим решение задачи о нелинейном деформировании круглой пластины, шарнирно опёртой на кольцевой опоре и нагруженной распределенной силой по краю (рис.1).

Уравнения равновесия для круглой пластины имеют вид [8]:

(1)

где r – радиальная координата, T_1 и T_2 – радиальное и кольцевое усилия, Q – перерезывающая сила, χ_1 и χ_2 – изменения кривизн в радиальном и кольцевом направлениях.

Усилия T_1 , T_2 и перерезывающая сила Q через радиальное перемещение u и прогиб w выражаются следующим образом:

$$T_{1} = B(\varepsilon_{1} + v\varepsilon_{2}), \quad T_{2} = B(\varepsilon_{2} + v\varepsilon_{1}), \quad (2)$$

$$\varepsilon_{1} = \frac{du}{dr} + \frac{1}{2}\omega^{2}, \quad \varepsilon_{2} = \frac{u}{r}, \quad \chi_{1} = -\frac{d^{2}w}{dr^{2}}, \quad \chi_{2} = -\frac{1}{r} \cdot \frac{dw}{dr},$$

Строительная механика инженерных конструкций и сооружений, 2015, № 2

$$Q = -D \frac{d\Delta w}{dr}, \qquad \Delta w = \frac{1}{r} \frac{d}{dr} (d\omega), \qquad \omega = \frac{dw}{dr}, \qquad (3)$$

где ε_1 и ε_2 – радиальная и окружная деформации, а *B* и *D* – жесткости пластинки на растяжение и изгиб,

$$B = \frac{Eh}{1 - v^{2}} , \quad D = \frac{Eh^{3}}{12(1 - v^{2})} . \quad (4)$$

Здесь *Е* – модуль упругости, *v* – коэффициент Пуассона материала пластинки, *h* – её толщина.

Радиальную ε_1 и окружную ε_2 деформации выразим из (2):

$$\varepsilon_{1} = \frac{T_{1} - \nu T_{2}}{B(1 - \nu^{2})}, \qquad \varepsilon_{2} = \frac{T_{2} - \nu T_{1}}{B(1 - \nu^{2})}.$$
(5)

Внося ε_1 и ε_2 из (5) в формулу совместности деформаций, используя при этом первое из уравнений (1), получим соотношение

$$\xi \frac{d}{d\xi} \left[\frac{1}{\xi} \frac{d}{d\xi} \left(\xi^2 \overline{T_1} \right) \right] + 0.5 \omega^2 = 0 , \quad \xi = \frac{r}{a}, \quad \overline{T_1} = \frac{T_1}{Eh}, \quad \omega = \frac{dw}{dr} = \frac{1}{a} \frac{dw}{d\xi}, \quad (6)$$

где ξ – безразмерная радиальная координата, T_1 – безразмерное усилие, a – радиус пластинки (рис.1).

Обозначим через a_0 – радиус опорного круга пластинки, а через $\xi_0 = a_0/a$ – его безразмерное значение. В нашем конкретном случае $\xi_0 = 0,181818$ [6-7]. Выражения прогибов w^I для области I ($\xi \leq \xi_0$) и w^{II} для области II ($\xi_0 \leq \xi \leq 1$) возьмем в виде:

$$w^{I} = 0.5 f \left[(\xi_{0}^{2} - 1) \frac{1 - \nu}{1 + \nu} + 2 \ln \xi_{0} \right] (\xi^{2} - \xi_{0}^{2}), \quad \xi \leq \xi_{0}, \quad (7)$$

$$w^{II} = f \left[0.5(\xi^{2} - \xi_{0}^{2}) \frac{\xi_{0}^{2}(1 - \nu) - (3 + \nu)}{1 + \nu} + \xi_{0}^{2}(\ln \xi - \ln \xi_{0}) + (\xi^{2} \ln \xi - \xi_{0}^{2} \ln \xi_{0}) \right]_{\xi \geq \xi_{0},}$$

f – параметр прогиба, подлежащий определению.

ω

При $\xi_0 = 0,181818$, $\nu = 0,3$ постоянные, входящие в (7), равны

$$0.5 \left[(\xi_0^2 - 1) \frac{1 - \nu}{1 + \nu} + 2 \ln \xi_0 \right] = -1.965078670 , \qquad (8)$$
$$0.5 \frac{\xi_0^2 (1 - \nu) - (3 + \nu)}{1 + \nu} = -1.260330578$$

Тогда, для рассматриваемых областей I и II, величины ω из (6) соответственно равны:

$$\omega^{I} = (-3.930157346\xi)A, \qquad (9)$$

$${}^{II} = A(-1.520661157\xi + \frac{\xi_{0}^{2}}{\xi} + 2\xi\ln\xi), \quad A = \frac{f}{a}.$$

Внеся ω^{I} в уравнение (6) и проинтегрировав по ξ , получим

$$T_1^I = -0.9653834456A^2\xi^2 + C_1, \qquad (10)$$

где C_1 – постоянная интегрирования. Вторая постоянная C_2 положена равной нулю ввиду ограниченности решения в центре пластины.

Внося выражение ω^{II} в уравнение (6), получим для области II

Строительная механика инженерных конструкций и сооружений, 2015, № 2

$$\overline{T_1}^{II} = -0.5 A^2 F(\xi) + C_3 + \frac{C_2}{\xi^2}, \qquad (11)$$

$$F(\xi) = \left[-\frac{1}{2} \left(\frac{\xi_0}{\xi} \right)^2 - \frac{\xi^2}{4} - 0.0833276415 - 1.260330578 \xi^2 \right] \ln \xi + (\ln \xi)^2 \left(0.5\xi^2 + \xi_0^2 \right) + 1.29679922 \xi^2 + 0.04166382 , \qquad (12)$$

где C_2 и C_3 – постоянные интегрирования.

Удовлетворяя условию $\overline{T}_{1}^{II}(1) = 0$, получим:

$$C_{2} = -C_{3} + 0.5 A^{2} F(1), \quad F(1) = 1.338463049 , \quad F(\xi_{0}) = 1.308182454, \quad (13)$$
$$\overline{T_{1}}^{II} = 0.5 A^{2} \left[\frac{F(1)}{\xi^{2}} - F(\xi) \right] + C_{3} \left(1 - \frac{1}{\xi^{2}} \right).$$

Выполняя условие сопряжения усилий на границе областей I и II, $\overline{T}_{1}^{I}(\xi_{0}) = \overline{T}_{1}^{II}(\xi_{0})$, найдем постоянную C_{1} :

$$C_{1} = 0.5 A^{2} \left[1.93076709 \quad \xi_{0}^{2} + \frac{F(1)}{\xi_{0}^{2}} - F(\xi_{0}) \right] + C_{3} \left(1 - \frac{1}{\xi_{0}^{2}} \right).$$
(14)

Тогда имеем

$$\overline{T_1}^{I} = 0.5 A^2 \left[1.93076709 \left(\xi_0^2 - \xi^2 \right) + 39.180324827 \right] - 29.25 C_3.$$
(15)

Осталось невыполненным условие равенства радиальных перемещений u^{I} и u^{II} областей I и II на их границе. Для этого по второй из формул (5) выразим кольцевые деформации ε_2 через усилия областей I и II при $\xi = \xi_0$

$$\varepsilon_{2}^{I} = \frac{u^{I}}{a\xi_{0}} = \frac{1}{Eh} \left[\frac{d(\xi T_{1})}{d\xi} - v T_{1}^{I} \right] = \frac{u^{II}}{a\xi_{0}} = \frac{1}{Eh} \left[\frac{d(\xi T_{1}^{II})}{d\xi} - v T_{1}^{II} \right] = \varepsilon_{2}^{II}$$
(16)

Внося в (16) усилия $\overline{T_1}^I$, $\overline{T_2}^{II}$, получим уравнение для определения C_3 $C_3 = 0.6503663695 A^2$. (17)

Тогда окончательно запишем:

$$\overline{T_1}^I = 0.5A^2 \left[1.9307670912 \ (\xi_0^2 - \xi^2) + 1.133892164 \right],$$
(18)

$$\overline{T_1}^{II} = 0.5A^2 \left[1.3384630489 \xi^{-2} - F(\xi) + 1.300732739 (1 - \xi^{-2}) \right].$$

Запишем 2-ое уравнение (1) в виде:

$$\frac{1}{\xi} \frac{d}{d\xi} \left[\left(Q + T_1 \omega \right) \xi \right] = 0.$$
(19)

Запишем вариационную формулу в виде

$$\xi (Q + T_1 \omega) \delta w \Big|_{\xi=1} - \int_0^1 \xi (Q + T_1 \omega) \frac{d \delta w}{d\xi} d\xi = 0$$
(20)

Учитывая, что на краю при $\xi = 1$:

$$Q^{(II)} = -p, T_1^{II}(1) = 0$$

(р – заданное усилие), имеем вариационную формулу

1.105956
$$p - \int_{0}^{\xi_{0}} T_{1}^{I} (\omega^{I})^{2} \xi d\xi - \int_{\xi_{0}}^{1} \left[-\frac{4D}{a^{2}} \frac{\omega^{II}}{\xi} + T_{1}^{II} (\omega^{II})^{2} \right] \xi d\xi = 0$$
 (21)

Вычисления дают

$$\int_{0}^{\xi_{0}} T(\omega^{I})^{2} \xi d\xi = 0.0024374 , 4 \int_{\xi_{0}}^{1} \omega^{II} d\xi = -4.42382509 , \int_{\xi_{0}}^{1} T_{1}^{II} (\omega^{II})^{2} \xi d\xi = 0.173483$$

В результате имеем следующее уравнение относительно величины A = f/a

$$0.17592036 \quad EhA^{3} + 4.423825085 \quad \frac{D}{a^{2}}A - 1.10596 \quad p = 0 \quad . \tag{22}$$

По уравнению (22) были выполнены числовые расчеты при следующих данных:

$$a = 5.5$$
 см, $h = 0.05$ см, $\xi_0 = 0.181818, E = 200000$ МПа, $v = 0.3$,
 $D = 22.893$ кг/см, $B = 109890$ кг см.

В начале решена линейная задача при p = 0.01 кг/см. Прогиб края $\xi = 1$ оказался равным 0.02 см, что составляет 0.4*h*. Затем с шагом $\Delta p = 0.01$ кг/см решалось уравнение (22).

Результаты решения приведены в табл. 1.

0.0705

-w(см)

Таблица 1. Прогибы при $\xi = 1$

0.0916

0.0871

<i>р</i> (кг/см)	0.01		0.02	0.03	0.04	0.05
-w(см)	0.0191		0.0344	0.0462	0.0537	0.0637
<i>p</i> (кг/см)		0.06	0.07	0.08	0.09	0.10

0.0821

<i>p</i> (кг/см)	0.12	0.15	0.17	0.20	0.22
-w(см)	0.0998	0.1104	0.1165	0.125	0.1305

0.0766

На рис. 2 представлена зависимость «давление – прогиб» для линейного (сплошная линия) и нелинейного (обозначены точками) случаев.

Из рис.2 видно существенное отличие нелинейного решения от линейного решения. Т.е. при определении напряжений необходимо использовать нелинейное решение задачи.

Литература

1. Yakupov N.M., Giniyatullin R.R., Yakupov S.N. Effect of a Magnetic Field on Corrosive Wear // ISSN 1028_3358, Doklady Physics, 2012, Vol.57, No.3, pp.104-106. Строительная механика инженерных конструкций и сооружений, 2015, № 2

2. Yakupov N.M., Giniyatullin R.R., Yakupov S.N. Influence of the magnetic field on corrosive wear // 19th European Conference on Fracture: Fracture Mechanics for Durability, Reliability and Safety. Kazan, Russia, 26-31 August, 2012. 203_proceeding.pdf.

3. Yakupov N.M., Giniyatullin R.R., Yakupov S.N. Effect of Ultraviolet Radiation on the Corrosive Wear of Steel Samples // ISSN 1028_3358, Doklady Physics, 2012, Vol.57, No.10, pp.393-395.

4. Yakupov N.M., Giniyatullin R.R., Yakupov S.N. The Influence of the Character of Deformation of Structural Element Surfaces on the Corrosive Wear // Strength of materials, 2012, pp.1-7.

5. Yakupov N.M., Giniyatullin R.R., Yakupov S.N. Corrosion on the deformed surfaces // 19th European Conference on Fracture: Fracture Mechanics for Durability, Reliability and Safety. Kazan, Russia, 26-31 August, 2012. 347_proceeding.pdf.

6. Yakupov N.M., Giniyatullin R.R, Yakupov S.N. Expedient and the device for diagnostics of mechanical characteristics of the loaded thin-walled elements in the conditions of a flow // XVI International Conference on the Methods of Aerophysical Research – ICMAR-2012. Abstracts. Part 1. Kazan, August 19-25, 2012. Pp.256-257.

7. Якупов Н.М., Велиюлин И.И., Антонов В.Г., Нуруллин Р.Г., Гиниятуллин Р.Р., Якупов С.Н. Способ испытания тонкостенных образцов под напряжением и устройство «Летающая тарелка» для его осуществления. Патент на изобретение РФ №243707.

8. Муштари Х.М., Галимов К.З. Нелинейная теория упругих оболочек. Таткнигоиздат. Казань, 1957. С.431.

NONLINEAR DEFORMATION OF CIRCULAR PLATES, PIVOTALLY SUPPORTED ON THE SUPPORT RING AND LOADED BY A DISTRIBUTED FORCE ALONG THE EDGE

N.K. GALIMOV

Institute of Mechanics and Engineering, Kazan Science Center, Russian Academy of Sciences

The solution to the problem of nonlinear deformation of a circular plate pivotally supported on the support ring and loaded by a distributed force along the edge. The problem has arisen with the need for a more accurate assessment of the stress level on the surface of the sample in the study of the loaded samples in corrosive environment.

KEYWORDS: round plate, annular bearing, the Bubnov - Galerkin method, the deflection compatibility of deformations