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The purpose of this paper is to present the design and implementation of a recon-
figurable remote control for performing plasma experiments with Hard-Real-Time
(HRT) synchronization under jitter less than 1 microsecond. An additional require-
ment for a multichannel synchronization system is the use of high-speed optical
converters to provide galvanic isolation between powerful modules of the setup
and remote control in order to exclude any possibility of disruption of the physical
experiment control system.
Modeling and development of the software part of the maser remote control panel

was performed in the LabVIEW application development environment with Real
Time and FPGA modules.
The hardware part of the control panel is implemented on a real-time controller

working in conjunction with the Xilinx FPGA module. To ensure the optical isolation
of synchronization signals, boards of electron-optical converters based on LED lasers
with fiber-optic terminals were developed and manufactured.
The control program is implemented in a two-module architecture with a HOST

application and an FPGA application that exchange data over a 1000BASE-T
Ethernet network.

Key words and phrases: remote control, synchronization, hard real-time system,
FPGA, reconfigurable input-output (RIO)

1. Introduction

Control of a complex multi-parameter physics experiment places high de-
mands on the synchronization of the operation of various systems, nodes and
modules of the experimental setup [1]–[3]. In such case, controllability is de-
fined as the ability of the remote control system to achieve a define state
when several processes work together or in a certain experiment scenario in
a time sequence [4]. Real-time systems must accomplish executive and appli-
cation tasks within specified timing constraints [5], [6]. The time resolution —
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the minimum distinguishable step along the time axis-is in this case the most
important characteristic of the synchronization system. So simultaneity of
processes or phenomena is reduced to the fact that these processes on the
time axis are separated from each other by intervals that do not exceed the
time resolution of the system.
The use in physics experiment high-voltage AC and DC or UHF power

systems generates a high level of electromagnetic noise and in this case the
concept of Power-over-Fiber technology is applied to ensure controllability [7],
[8]. Thus, the safety regulations for equipment operating at high power levels,
along with the serious requirements for the reliability of the electronics in
harsh environments, require galvanic isolation [9], [10].
Our work on synchronization in HRT systems has been performed as part of

an ongoing autoresonance plasma experiments in Plasma physics laboratory
of RUDN [11], [12]. To organize the operation of the synchronization system,
a single time reference point is selected, and the characteristic stages of each
of the processes are separated from this beginning by an adjustable amount of
delay. The device that provides a countdown of the required delay was called
a delay generator. The developed concept can easily be scaled practically on
any type of complicated plasma experiments.

2. Experimental setup

As an example of a complex physical installation that requires control with
real time synchronization, consider the problem of controlling a plasma maser.
A plasma maser (plasma relativistic microwave generator) is a source of
powerful microwave radiation in which the Cherenkov effect of the interaction
of a high-current relativistic electron beam (REB) with a slow wave of a plasma
waveguide is realized [13]–[15]. The configurations of plasma masers differ
in the relative position of the REB and plasma and are described in detail
in [16], [17].
In the maser scheme implemented in this project, the REB propagates in

a strong longitudinal magnetic field in a metal cylindrical waveguide, in which
a plasma with controlled parameters is pre-created.
A simplified block diagram of the created plasma maser is shown in the fig-

ure 1 and includes an main experimental setup and a system for ensuring its
operation.
The main experimental setup includes 4 modules:

— A generator of periodic high-voltage pulses of nanosecond duration as
a source of a high-current REB in a direct-acting accelerator based on
an explosive-emission cathode.

— A plasma source with controlled parameters.
— The space of formation of REB and plasma in a strong magnetic field.
— Remote control of all nodes and diagnostic systems.

The support system consists of:

— A vacuum pumping system.
— Gas inlet system for creating plasma.
— A system for converting a plasma wave into an electromagnetic wave,

releasing radiation into the atmosphere, focusing it, and transporting it.
— Radiation detection and diagnostics system.
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Figure 1. Block diagram of a plasma maser

The operation of all the main operating systems of the plasma maser is
provided by a synchronization system with a strict reference to real time.
This system is integrated into the control panel, where the operator sets
the required operation scenario, provides a physical start of the maser and
receives a report in the form of tabular and graphical data on the state of the
maser subsystems at synchronous times of the working cycle. Schematically,
the maser operation scenario is shown in the figure 2.

Figure 2. Plasma maser working scenario

If the warm solenoid is ready, after 30 seconds after all the limit switches
(locks) are triggered, a ready signal is generated — the “Start” button in the
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remote control interface is activated. Pressing the “Start” button generates
a “glow” pulse, which is applied to the power supply of the plasma source.
After the set time “Glow duration” (set by the operator in the range of

0–5 s), the signal “solenoid current” is generated. After the battery charge
current of the solenoid reaches the set values, the remote control generates
a burst of pulses with the set frequency during 1 s.
The developed remote control allows the operator to implement two options

for starting the maser. In case 1 (see the figure 2) a beam of relativistic
electrons interacts with a “quiet” plasma in the absence of current in the
cathode circuit of the plasma generator. The plasma decay time is of the order
of tens to hundreds of microseconds, so synchronization with a jitter of the
order of 1 microsecond is enough. In the development of the launch scenario
according to the case 2 option, the REB interacts with the plasma under
conditions of increasing concentration. One of the tasks of the experiment is
to compare the two described scenarios and identify the preferred conditions
for the occurrence and development of a plasma-beam discharge in terms of
obtaining a powerful broadband EMR pulse.
After a time of about 1 ms after the last pulse of the bundle, the remote

control generates the endings (trailing edges) of the current pulses of both
warm solenoids and the glow pulse of the thermocathode.
The developed remote provides control of the signals of the security system,

as well as the generation of appropriate enabling, warning, or prohibiting
signals and commands.
The NI cRIO-9053 chassis (see the figure 3(a)) with a real-time controller

and an integrated field-programmable gate array (FPGA) chip was chosen as
the hardware platform of the synchronization system. The FPGA architecture
is a set of programatically configurable logic blocks, the connections between
them, and the I/O blocks. This structure is best suited to the tasks of parallel
multi-channel data processing to multi-channel signal generation.

(a) (b)

Figure 3. NI cRIO-9053 chassis (a); I/O modules NI 9401 and NI 9402 (b)

The reconfigurable I/O modules NI 9401 and NI 9402 were used for matching
with the generator loads — input channels of synchronized devices (see
the figure 3(b)). They have a similar circuit architecture but differ in the
maximum switching speed and the form factor of the output connectors. This
solution is chosen to conditionally divide the input and output signals into
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two groups: “fast” signals with strict jitter requirements (starting the plasma
generation and starting the REB source) and “slow” signals with a relatively
less rigid reference to real time (starting the heating of the thermal cathode,
starting the solenoid current generator and emergency lock signals).
Main characteristics of the controller and modules:

— 4-slot CompactRIO controller, 1.30 GHz Dual-core CPU, 4 GB DRAM,
4 GB Storage, −20∘C to 55∘C, Artix-7 50T FPGA. The cRIO-9053 con-
troller is a secure, high-performance, customizable embedded controller
that contains a dual-core Intel Atom processor, an Artix-7 FPGA, and
four slots for C-series modules. It runs on the NI Linux Real-Time op-
erating system with I/O access via the NI-DAQmx drivers or via the
LabVIEW FPGA module.

— The NI 9401 module provides a reconfigurable I/O interface for digital
lines in 4-bit increments and operates in three configurations: 8 digital
inputs, 8 digital outputs, or 4 digital inputs and outputs each. The pulse
font is not worse than 100 ns. The signal level is 5 V TTL. Output
connector 25 PIN D-SUB.

— The NI 9402 module provides a reconfigurable I/O interface for 4 digital
lines, operating in two configurations: 4 digital inputs, or 4 digital
outputs. The pulse font is not worse than 50 ns. The signal strength is
3.3 V LVTTL. 4X BNC (50 Ohm) output connector.

A digital 4-channel RIGOL MSO1074 oscilloscope with a bandwidth of
70 MHz and a minimum detectable pulse duration of 10 ns was used to
monitor the system and perform test measurements.

3. Results and conclusion

A program of control of the prototype generator was created in the Lab-
VIEW graphical programming environment [18]–[20]. LabVIEW is one of
the most popular development environments for modeling, simulation and
equipment control applications.
The developed program consists of two parts: the top-level host program

in the figure 4 is responsible for the user interface and transmits the synchro-
nization system settings and setpoints to the FPGA program once per second.
The current values of the settings are transmitted over the communication
channel between the HOST and the FPGA applications.
In the FPGA program in the figure 5 after checking the health of all

connected devices and assigning program identifiers to the physical synchro-
nization channels, an infinite loop begins, working out the commands of the
HOST application. After receiving the “START” command, the synchroniza-
tion signals are switched on and off sequentially with the specified durations
and delays for each of the active channels. After the plasma maser cycle is
completed, the FPGA application signals this to the HOST application and
goes back to standby mode.
The waveforms with the results of testing the program of the remote

control are shown in the figure 6. Beam 1 — the starting pulse, beam 2 —
the output pulse of one of the synchronization channels (starting the plasma
generation). Tests have shown that the programmable delay of the generated
signal corresponds to the setpoint with high accuracy.
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The jitter observed at the signal edges is less than 100 ns (it is not noticeable
on the waveforms). The step of changing the programmable delay in the
synchronization system channel is 1 microsecond. The delay can vary from
1 microsecond to 232 microseconds (more than 1 hour).

(a) Scan 500 ms/division

(b) Scan 50 ms/division

Figure 6. Waveforms of the operation of the plasma generation start channel

in single-channel mode with a delay time setting of 450 microseconds
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The next stage of our tests was to check the software control of the delays
in the generation of the REB relative to the front of the plasma pulse under
the conditions of the generation of a pulse train. To configure program delays,
the control program interface provides a function block, shown in the figure 7.

Figure 7. The control program interface block, with channel delay settings

After specifying the number of pulses in the packet, the values of the plasma
pulse durations and lead times (by how many microseconds the front of the
plasma pulse is ahead of the RAP pulse) should be entered in the program
delay table for each pulse of the packet. The settings made in the first row
can be applied to the entire table. It is possible to read the corresponding
table from a text file in a similar format to the table. The separator is a Tab
character, the line separators are the End Of Line character.
A series of waveforms showing the possibilities of software tuning of the

advance is shown in figures 8, 9, 10. The beam 2 is a synchropulse for plasma
generation, the beam 1 is a program repeater of the REB pulse with a duration
of 10 microseconds (for easy display on oscillograms).
It can be seen that the leading edge of the plasma pulse of the REB pulse

strictly follows the setpoints of the control program interface (see the figure 7).
The created software and hardware complex allows you to scale the num-

ber of synchronization channels and, with the available equipment, get a total
of 8 delay channels with edges no worse than 50 ns and 16 channels with
edges no worse than 100 ns. The control panel based on the implemented syn-
chronization system has shown the ability for long-term stable uninterrupted
operation and is currently successfully used in experiments to select the opti-
mal operating modes of a plasma maser. Additionally, if it is necessary to
switch to a submicrosecond delay control step, the system can be reconfig-
ured to work with synchronization directly from the FPGA clock generator.
The existing FPGA platform with a clock frequency of 40 MHz allows you to
reduce the minimum step of regulating pulse durations and delays to 25 ns.
It should, however, be taken into account that the control range in this case
will decrease by a multiple to a value of about 15 minutes.
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(a) the first five pulses of the pulse train with a controlled advance of the REB pulse (beam 1) by the pulse

front of the plasma generator (beam 2)

(b) the 1-st pulse of the pulse train with advances of 50 microseconds

Figure 8. The possibilities of tuning the advance between channels in the pulse train

generation mode
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(a) the 2-nd pulse of the pulse train with advances of 150 microseconds

(b) the 3-rd pulse of the pulse train with advances of 250 microseconds

Figure 9. The possibilities of tuning the advance between channels in the pulse train

generation mode
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(a) the 4-th pulse of the pulse train with advances of 350 microseconds

(b) the 5-th pulse of the pulse train with advances of 450 microseconds

Figure 10. The possibilities of tuning the advance between channels in the pulse train

generation mode
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The developed multi-channel synchronization system with fiber-optic gal-
vanic isolation of the controller and secondary circuits of the equipment can
be easily adapted to any tasks of controlling a physical experiment. This, in
particular, is in demand when conducting experiments with cold plasma in
the IFIT RUDN. These experiments require synchronization of the operation
of a high-power microwave generator and a pulse current generator, as well
as synchronized measurements of radiation parameters from the region of the
plasma clot localization in the microwave, optical and X-ray ranges, probe
measurements in the low-frequency and microwave ranges, etc. With the help
of the created system, it is possible to provide such synchronization with
a time resolution of at least 1 microsecond.
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Моделирование и разработка реконфигурируемого
пульта управления для плазменных экспериментов
с жёсткой синхронизацией в реальном времени

В. В. Андреев, Д. В. Чупров

Российский университет дружбы народов
ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

Цель данной статьи — представить дизайн и реализацию реконфигурируемого
пульта дистанционного управления для проведения плазменных эксперимен-
тов с синхронизацией в режиме жёсткого реального времени при джиттере
менее 1 микросекунды. Дополнительным требованием к системе многоканальной
синхронизации является использование высокоскоростных оптических преобра-
зователей для обеспечения гальванической развязки между мощными модулями
установки и дистанционного управления, чтобы исключить любую возможность
нарушения работы системы управления физическим экспериментом.
Моделирование и разработка программной части пульта дистанционного

управления мазером проводились в среде разработки приложений LabVIEW
с модулями Real Time и FPGA.
Аппаратная часть панели управления реализована на контроллере реально-

го времени, работающем совместно с модулем Xilinx FPGA. Для обеспечения
оптической развязки сигналов синхронизации разработаны и изготовлены пла-
ты электронно-оптических преобразователей на основе светодиодных лазеров
с оптоволоконными выводами.
Программа управления реализована в двухмодульной архитектуре с прило-

жением HOST и приложением FPGA, которые обмениваются данными по сети
1000BASE-T Ethernet.

Ключевые слова: пульт управления, синхронизация, система жёсткого реаль-
ного времени, настраиваемый ввод-вывод
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Firewalls is one of the major components to provide network security. By using
firewalls, you can solve such problems as preventing unauthorized access, and delet-
ing, modifying and/or distributing information under protection. The process of
information flows filtration by a firewall introduces additional time delays, thus pos-
sibly leading to disruption of stable operation of the protected automated system or
to inaccessibility of the services provided by the system. Multimedia services are par-
ticularly sensitive to service time delays. The main purpose of the work presented
in this paper is to evaluate the influence of the firewall on the time delays in data
transmission process in the automated system with multimedia data transmission
protocols. The evaluation is provided by the queuing theory methods while a session
is initiated between two users by the Session Initiation Protocol (SIP) with firewall
message filtration. A firewall is a local or functional distributing tool that provides
control over the incoming and/or outgoing information in the automated system
(AS), and ensures the protection of the AS by filtering the information, i.e., pro-
viding analysis of the information by the criteria set and making a decision on its
distribution.

Key words and phrases: SIP, firewall, session initiation, queuing system, filtering
time, automated system

1. Introduction

Currently, one of the necessary conditions to provide information security of
automated systems is to use software and hardware systems that filter incom-
ing and outgoing traffic. Firewalls increase the time delays for information
flows while they are checked in the AS. For multimedia protocols, significant
time delays can adversely affect QoE and QoS quality indicators [1] and lead
to inability of using the multimedia services provided. Therefore, the eval-
uation of the firewall influence on the time delays in the data transmission
process in the AS with multimedia data transmission protocols is an urgent
and demanded task.
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To evaluate the firewall influence on the data transmission delay in the AS,
the most delay-sensitive service has been selected, i.e., the session initiation by
the Session Initiation Protocol (SIP). The script is the initiation of a session
between two users with proxy servers and firewall packet filtration.
This paper has the following structure. The process of the session initiation

by the SIP protocol is described in Section 2. A method for evaluation of
temporal characteristics of the session initiation by the SIP protocol is given
in Section 3. The results of the evaluation of the firewall influence on the
session initiation time and the session request delay are presented in Section 4.
The Conclusion contains the main aspects of the study.

2. Session initiation by the SIP protocol in the presence
of firewall

The SIP protocol, developed by the MMUSIC group of the IETF committee,
provides for three main types of scripts for initiating a connection: by proxy
servers, by a redirecting server, and directly between user [2]–[4]. The main
difference in these scenarios is the way of searching and inviting the user.
These operations are assigned either to the proxy server, or to the redirecting
server, or directly to the user if he knows the address of the called subscriber.
To evaluate the firewall influence on the connection initiation by the SIP

protocol, without limiting the generality of the approach, the script for
initiating a connection between two users with two proxy servers and one
firewall located in the middle of the chain has been considered. The network
segment with the client’s equipment of the 1st user (User 1) is considered to
be the AS under protection — this segment is protected by the firewall. The
firewall introduces an additional time delay while checking the compliance of
the network packet parameters with the filtration rules specified in the AS
under protection.

Figure 1. Arrangement of the elements when the SIP session is initiated

The figure 1 shows the elements participating in the connection establish-
ment: user’s equipment — User 1, User 2; proxy servers — Proxy-1, Proxy-2;
firewall and IP/MPLS main transmission network.
Let’s describe the session initiation algorithm, i.e., the sequence of requests

and responses of the session initiation process for the script under consideration
in accordance with the figure 1.
Session initiation on the equipment of User 1 is Invite message containing

the information about the address of the called user — User 2. The message
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passes through the elements of the firewall and the proxy server, and the
element simulating the IP/MPLS network, and the User 2 element. After
successful message processing (message retransmission isn’t considered), the
equipment of User 2 responds with the message 100 Trying. This means
that the request is being processed. Then, the equipment of User 2 sends
a 180 Ringing message to the User 1. That means that the incoming call
signal has been received and the location of the called user has been detected.
After processing the Invite request, User 2 generates a 200 Ok response. This
response to the Invite request contains the information indicating that the
user has agreed to participate in the communication session. The session
initiation algorithm is completed by sending the Ack message indicating that
the response to the Invite request has been accepted.
Consideration of this session initiation algorithm allows to evaluate the

following temporal characteristics of the SIP session initiation service: average
session initiation time 𝑇𝑆 and average session request delay (SRD) 𝑇𝑆𝑅𝐷 [5].
𝑇𝑆 is considered from sending the Invite message to the start of the data
transmission process. 𝑇𝑆𝑅𝐷 is considered from the moment the session has
been initiated until the first subscriber receives a 180 Ringing response.
The sequence of transmitted signaling messages in the described algorithm

of session initiation by SIP protocol is presented in the figure 2 [6].

3. Evaluation of the temporal characteristics
of the service of session initiation by SIP protocol

in the presence of firewall

To evaluate the firewall influence on the 𝑇𝑆 and 𝑇𝑆𝑅𝐷 times, a mathemat-
ical model in the form of an open exponential queuing network (EQN) is
proposed [7]. The residence time in the EQN will be equal to the session
initiation time [8].
EQN consists of six nodes, each of them modeling a corresponding functional

element in the session initiation process. The blocks — User 1, User 2,
IP/MPLS — are modeled by the queuing system (QS) 𝑀|𝑀|∞, and the
rest of the blocks — by the QS 𝑀|𝑀|1|∞. Let’s introduce the following
designation: 𝜆0 is the intensity of the SIP message flow in the EQN, and 𝜇𝑖
is the service intensity in the 𝑖-th node.
So, the condition for the existence of a stationary mode is [9], [10]:

𝜆0 < min(𝜇2
5

; 𝜇3
5

; 𝜇5
4

) . (1)

Taking into account that the 𝑇𝑆 and 𝑇𝑆𝑅𝐷 times consist of the time
of message processing by the functional elements and the waiting time in
the queue, and considering the approach given in [5], [8], [9], [11]–[14], we
determine the 𝑇𝑆𝑅𝐷 and 𝑇𝑆 times as follows:

𝑇𝑆𝑅𝐷 = 2𝜇−1
1 + 2

𝜇2 − 5𝜆0
+ 2

𝜇3 − 5𝜆0
+ 2𝜇−1

4 + 2
𝜇5 − 4𝜆0

+ 𝜇−1
6 ; (2)

𝑇𝑆 = 2𝜇−1
1 + 3

𝜇2 − 5𝜆0
+ 3

𝜇3 − 5𝜆0
+ 3𝜇−1

4 + 3
𝜇5 − 4𝜆0

+ 2𝜇−1
6 . (3)
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Figure 2. Message sequence when the SIP session is initiated

The residence time in the 2nd block will be equal to the time of the signal
message filtration by the firewall:

𝑇𝐹 = 1
𝜇2 − 5𝜆0

. (4)

Using formulas (2)–(4), we determine the indicators of the firewall influence
on the session initiation time and the session request delay:

𝑁𝑇𝐹_𝑇𝑆𝑅𝐷
=

2
𝜇2 − 5𝜆0

× 100%

2𝜇−1
1 + 2

𝜇2 − 5𝜆0
+ 2

𝜇3 − 5𝜆0
+ 2𝜇−1

4 + 2
𝜇5 − 4𝜆0

+ 𝜇−1
6

; (5)
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𝑁𝑇𝐹_𝑇𝑆
=

3
𝜇2 − 5𝜆0

× 100%

2𝜇−1
1 + 3

𝜇2 − 5𝜆0
+ 3

𝜇3 − 5𝜆0
+ 3𝜇−1

4 + 3
𝜇5 − 4𝜆0

+ 2𝜇−1
6

. (6)

4. Evaluation of the firewall influence on the session
initiation time and the session request delay

To evaluate the firewall influence on the session initiation time and the
session request delay, the following Cisco equipment has been selected: the
Cisco ASA 5500-X firewall with the SSP-10 module, and the Cisco Sun Fire
V120 proxy server. The initial data and their designations are given in Table 1.

Table 1

Initial data

Functional User 1 Firewall Proxy-1 IP/MPLS Proxy-2 User 2

element

Designation 𝜇−1
1 𝜇−1

2 𝜇−1
3 𝜇−1

4 𝜇−1
5 𝜇−1

6

Service time, 0.1 0.5 0.4 50 0.4 0.1

msec.

The results of the evaluation are presented in the form of graphs showing
the dependence of the 𝑇𝑆 and 𝑇𝑆𝑅𝐷 times on the intensity of incoming requests
(see the figure 3).
The figure 3 shows that the condition for the existence of the stationary

mode (1) makes it possible to provide evaluation at the 𝜆0 intensity values
up to 400 requests per second. The 𝑇𝑆 and 𝑇𝑆𝑅𝐷 values obtained in the
presence of the firewall meet the requirements of the international standards
for the perception quality indicators. The value of the session initiation
time 𝑇𝑆 is less than 2 seconds [5], [15]–[18]. At the intensity level 𝜆0 = 380
requests per second, the average session initiation time is 𝑇𝑆 = 0.2 [s], and
𝑇𝑆𝑅𝐷 = 0.15.
The evaluation of the indicators of the firewall influence on the session

initiation time and the session request delay is presented in the figure 4.
The firewall residence time for signal messages is less than 10% at the in-

tensity level 𝜆0 = 370 [requests/sec].

5. Conclusion

A mathematical model for the SIP session initiation with message filtration
by the firewall is presented in this paper. The evaluation of the average
session initiation time and the average session request delay indicates the
advisability of reducing the residence time that requests spent in the firewall,
which can lead to the reduction of the values of QoE and QoS indicators.
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Figure 3. Temporal characteristics when initiating the session with one firewall

Figure 4. Evaluation of the percentage of the firewall filtering time when initiating

the session
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Оценка влияния межсетевого экрана
на инициирование сеанса по мультимедийному

протоколу SIP

A. Ю. Ботвинко1, К. Е. Самуйлов1, 2

1 Российский университет дружбы народов
ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

2Федеральный исследовательский центр «Информатика и управление» РАН
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Межсетевые экраны — один из основных компонентов обеспечения сетевой
безопасности. Используя межсетевые экраны, можно решить такие проблемы,
как предотвращение несанкционированного доступа, а также удаление, измене-
ние и/или распространение информации, находящейся под защитой. Процесс
фильтрации информационных потоков межсетевым экраном вносит дополни-
тельные задержки по времени, что может привести к нарушению стабильной
работы защищаемой автоматизированной системы или недоступности сервисов,
предоставляемых системой. Мультимедийные услуги особенно чувствительны
к задержкам обслуживания. Основная цель исследования, представленного в ста-
тье, — оценить влияние межсетевого экрана на временные задержки в процессе
передачи данных в автоматизированной системе с протоколами передачи муль-
тимедийных данных. Оценка обеспечивается методами теории очередей, в то
время как сеанс между двумя пользователями инициируется протоколом иници-
ации сеанса (SIP) с фильтрацией сообщений межсетевого экрана. Межсетевой
экран — это локальный или функциональный инструмент распределения, ко-
торый обеспечивает контроль над входящей и/или исходящей информацией
в автоматизированной системе (AS) и защиту системы путем фильтрации ин-
формации, т.e. гарантирует возможность анализа информации по заданным
критериям и принятие решения о её распространении.

Ключевые слова: SIP, межсетевой экран, инициирование сеанса, система оче-
редей, время фильтрации, автоматизированная система
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This article is a continuation of a number of works devoted to evaluation of
probabilistic-temporal characteristics of firewalls when ranging a filtration rule set.
This work considers a problem of the decrease in the information flow filtering
efficiency. The problem emerged due to the use of a sequential scheme for checking
the compliance of packets with the rules, as well as due to heterogeneity and variability
of network traffic. The order of rules is non-optimal, and this, in the high-dimensional
list, significantly influences the firewall performance and also may cause a considerable
time delay and variation in values of packet service time, which is essentially important
for the stable functioning of multimedia protocols. One of the ways to prevent
decrease in the performance is to range a rule set according to the characteristics of the
incoming information flows. In this work, the problems to be solved are: determination
and analysis of an average filtering time for the traffic of main transmitting networks;
and assessing the effectiveness of ranging the rules. A method for ranging a filtration
rule set is proposed, and a queuing system with a complex request service discipline
is built. A certain order is used to describe how requests are processed in the
system. This order includes the execution of operations with incoming packets and
the logical structure of filtration rule set. These are the elements of information flow
processing in the firewall. Such level of detailing is not complete, but it is sufficient
for creating a model. The QS characteristics are obtained with the help of simulation
modelling methods in the Simulink environment of the matrix computing system
MATLAB. Based on the analysis of the results obtained, we made conclusions about
the possibility of increasing the firewall performance by ranging the filtration rules
for those traffic scripts that are close to real ones.

Key words and phrases: firewall, ranging the filtration rules, network traffic, phase
service, simulation model, queuing system

1. Introduction

In order to ensure information security of automated systems (AS) that
have connections to external untrusted resources, we have to pay attention

© Botvinko A.Y., Samouylov K.E., 2021
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to the possibility of threats such as violation of confidentiality, integrity and
availability of information. A required condition to prevent the threats aimed
on violating AS’s normal operation is using the firewall technologies [1]–[3].

The main firewall technology is network traffic filtration according to
a certain rule set. It is executed at the points of the connection of the AS
under protection to external uncontrolled systems and is implemented by using
special hardware or software complexes, i.e., firewalls. The firewall filtration
rule set is a list of conditions according to which the further transmission
of network traffic packets is allowed or denied. The parameters, attributes
and characteristics of network traffic flows are usually used to set filtering
conditions [4].

The important fact is that the network traffic filtration brings additional
time delays during data transmission. High values of the delays during packet
filtration can cause packet losses, denials for session initiation and failures in
AS’s normal work [5], [6].

In works [7]–[13], a great influence of the rule set size and the order of
filtration rules in the set on the firewall performance is noted. The influence
can be explained by the sequential scheme used to check the packet compliance
with the set rules. The maximum decrease in the performance happens while
checking the compliance of attributes of packets under filtration with the
conditions at the end of the high-dimensional rule set. Defining a rule set that
correctly realizes the security policy, but is ineffective in terms of performance,
can be considered an error in firewall configuring.
We should also consider that real network traffic has heterogeneity caused

by various non-parameterizable factors. This can lead to a decrease in the
effectiveness of the static filtration rule set configured initially. One of the
ways to prevent the decrease in the performance caused by traffic heterogeneity
is to range the rule set according to the incoming traffic characteristics.
Therefore, the task of ranging a rule set in accordance with the charac-

teristics of information flows is not only actual and in demand. This is
especially important for the firewalls that ensure information security for the
AS with a complex network architecture and large volumes of network traffic.
The main goal of this work is to develop a model for evaluating the firewall
performance when ranging the filtration rule set.
This paper has the following structure. A method for ranging the filtration

rule set is proposed in section 2. In section 3, a model for ranging the rules
in the form of a queuing system (QS) with a phase-type service discipline is
developed [14]. The results of simulation modelling and firewall performance
evaluation for the network traffic script that is close to real are presented in
section 4. The Conclusion contains the main aspects of our study.

2. Ranging a filtration rule set for a firewall

By ranging the filtration rule set we mean putting the rules in descending
order by their weights in accordance with the evaluation of the characteristics
of information flows. We consider that traffic filtration is executed at the
network and transmission levels of the standard model for the open system
interaction (OSI). According to the generally accepted classification [1]–[3],
such firewalls relate to the type of packet filters.
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Ranging is executed at discrete moments of time 𝑡−
𝑘 = 𝑡𝑘 − 0 (see the fig-

ure 1).

Figure 1. Ranging the filtration rule set

The packets received during the time Δ𝑘 = 𝑡𝑘 − 𝑡𝑘−1, 𝑘 ⩾ 1 are combined
into a package, and a group of 𝑞 packages generates a redundancy errors in
the rule set under data segment. It is assumed that there are no inconsistency
and consideration [7]–[10]. We also consider that there is a certain minimum
number of rules 𝑀 under which ranging can provide a significant effect. The
logical structure of the filtration rules is a linear list of conditions.
Let us introduce the following designations: 𝑀 is the number of filtration

rules in the set 𝑟𝑘
𝑖 — the rule in 𝑖-th position in the 𝑘-th set of filtration rules

on the interval [𝑡𝑘−1, 𝑡𝑘), r𝑘 = (𝑟𝑘
1 , … , 𝑟𝑘

𝑀) 𝑘-th set of filtration rules on the

interval [𝑡𝑘−1, 𝑡𝑘), 𝑝𝑘
𝑖 — the weight of 𝑟𝑘

𝑖 rule, p𝑘 = (𝑝𝑘
1 , … , 𝑝𝑘

𝑀) — the rule
weight vector on the interval [𝑡𝑘−1, 𝑡𝑘).
In this work, a value of the average number of packets, the attributes

of which match the conditions of the 𝑟𝑘
𝑖 rule on the interval Δ𝑘 is used as

a weight 𝑝𝑘+1
𝑖 .

The nonparametric method of local approximation (MLA) is used to evalu-
ate the average number of requests [15]–[18]. The same method is used for
the analysis of other characteristics investigated in this work.
A method for ranging the rules is proposed in the next section of this paper.

3. The model for ranging the filtration rule set

The complexity and variety of the firewall functioning do not allow to create
a model reflecting all the regularities and features that are characteristic
for various manufacturers, such as Cisco Systems, Juniper Networks, etc.
Therefore, the model describes only the main regularities and factors of the
firewall functioning that are of interest for our tasks.
For all firewall types in the process of network traffic filtration, the following

stages can be distinguished [10]:

— initial packet processing, i.e., operations with a packet when it enters the
receiving path;

— checking the filtration rule set;
— completion of packet processing, i.e., operations with a packet when it is

transmitted to the output path and then to the physical medium.

During the initial processing of the packet received the firewall network
interface controller (NIC) decodes the sequence of electrical or optical signals,
checks the correctness of information delivered and writes the packet into
the NIC input buffer memory. Then the packet is transmitted to a program
buffer located in RAM for operations executed by the central process.
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As a next step, if computing resources are available, the filtration of
the incoming packet is executed in accordance with the filtration rule set.
The compliance of the received packet parameters with the filtration rules is
checked in sequence. Only one packet can be checked at a time. The other
packets received are kept in the buffer. Their service is executed according to
the order of their entrance to the buffer (FCFS, First-Come, First-Served).
If the packet parameters match the filtration rules, the firewall transmits

the packet to the NIC output buffer. If the packet parameters do not match
the permissive rules, the firewall rejects the packet. The packet processing
is considered complete when it is encoded and transmitted to the physical
medium.
Let us present the firewall model as a queuing system (QS) with a 𝐵𝑘(𝑡)

distribution function (DF) for the request service duration, which depends
on the order of the filtration rules on time interval [𝑡𝑘−1, 𝑡𝑘). A request flow
Λ(𝑡), corresponding to the packet flow incoming the firewall, enters the QS.
We consider the incoming packets as the service requests for the QS.

Figure 2. The scheme of the firewall QS with a complex request service discipline

The 𝐵𝑘(𝑡) = 𝐵(r𝑘, 𝜇0, 𝜇, 𝑡) distribution function (DF) is a function of phase
type, its parameters are shown in the figure 3, from which it is clear that the
𝐵𝑘(𝑡) DF corresponds to the Cox distribution [19].
The request service time at zero phase corresponds to the total time of

packet initial processing and the time of transmission along the output path.
The request service time at the 𝑚-th phase 𝑚 > 1 corresponds to the time of
packet filtration the by the 𝑚 rule. It is assumed that the filtration time for
each rule is the same and equal to 𝜏.
The scheme of the request service process in the firewall model is presented

in the figure 3.

Figure 3. The request service process

The 1 − 𝛾𝑘
𝑖 value corresponds to the probability of completing the request

service at the 𝑖-th phase. That is the case when the packet attributes do not
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correspond to the 𝑟𝑘
𝑖 rule. Therefore, the DF of the request service time in

the QS on the interval [𝑡𝑘−1, 𝑡𝑘) is as follows:

𝐵𝑘(𝑡) = 𝛾𝑘
1 𝐸(1, 𝜇0) +

𝑀
∑
𝑖=1

𝛾𝑘
1 𝐸(𝑖, 𝜇), (1)

where 𝐸(1, 𝜇0) is the Erlang distribution of the 𝑖-th order.
The task of analyzing the QS (shown in Fig. 2) characteristics can be

solved with the help of the simulation modelling method, the results of
which are presented in the next section. It should be noted that in case
of a Poisson incoming flow and exponential filtering time, the QS has an
analytical solution [14].

4. Evaluation of the firewall performance when ranging
the rules

Firewall is a network node processing large volume of incoming and outgoing
traffic. Therefore, the average packet filtering time is usually used as the
major performance indicator [3], [7]. In this work, to evaluate the firewall
performance, we use Δ𝑈𝑆, i.e., a value equal to the difference between 𝑈1 —
the average filtering time in the first data segment (without rule ranging)
and 𝑈𝑆 — the average filtering time in the 𝑆-th data segment (after the rules
ranged).
The initial data used for the implementing the simulation model of the

process of network traffic filtration are shown in the table 1.

Table 1

Initial data

[rules] 𝜇−1
0 [ms] 𝜇−1 [ms] Δ𝑘, 𝑘 = 1, ..., 25 [ms] 𝑞 [packages] 𝑠 [segments]

100 2.7 ⋅ 10−3 5 ⋅ 10−5 1000 5 5

The number of packet types is 𝑀. The values of request service intensities —
𝜇0 and 𝜇 — have been taken from the work [10], which is about the analysis
of the firewall performance under the Poisson incoming flow of requests.
To provide the numerical analysis of the QS (see the figure 1), a simulation

model (SM) is built in the Simulink simulation environment of the MATLAB
matrix computing system with the use of SimEvents discrete state library.
The scheme of the model is presented in the figure 4.
The request flow in the SM is determined in the Traffic Generation sub-

system. A request collector is realized by the FIFO Queue block, and the
request service process is executed by the Single Server blocks (the QS ser-
vice device) and the function_f subsystem (the calculation of the request
service time in accordance with the rule set and request type).
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The statistical data accumulation for evaluating the performance indi-
cators is executed with the help of the statistics collection options of the
SimEvents blocks and data recording structures such as PacketServiceTime,
QueueAvgWaitTime, PackeStayTime, QueueAvgLen. The following times are
fixed at this stage: the packet service time, the waiting time for the packet in
the queue, the average time of the packet residence in the system, and the
average length of the packet queue.

To define the incoming flow of requests, data from the WIDE academic
core network in Japan have been used. Traffic records are contained in the
MAWI Group Traffic Archive traffic repository by 01/10/2019. For each
packet type, using the Wireshark tool for network traffic capture and analysis,
the values of the time intervals between packets for the TCP, UDP and ICMP
protocols have been extracted. The data massive obtained has been exported
to MATLAB to set the intervals between the moments of request generation in
the Traffic Generation subsystem using Time-Based Entity Generator blocks.
The request types corresponding to the traffic packet types are determined in
the Traffic Generation subsystem by the SetPacketAtt blocks. An example
of the request flow obtained for packets of 𝑟1

81 and 𝑟1
29 types is presented in

figures 5–6.

Figure 5. The packet flow of 81st type Figure 6. The packet flow of 29th type

The following actions are implemented in M-files of the MATLAB system:
determination of the initial data for simulation modelling (see the table 1)
and the initial rule set, calculation of the performance indicators, execution
of functions for calculating weight, rule set ranging and other algorithms and
SM variables.

The process of ranging the 𝑟1
81 and 𝑟1

29 filtration rules in accordance with the
evaluation of the information flow characteristics is illustrated by figures 7–8.
The figures show that:

— the 𝑟1
81 rule, when ranging, takes the 7th place in the set (average). This

can be explained by the short time interval between the packet income
(4 ms) and the small value of the time dispersion between the income of
the packets;
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— the 𝑟1
29 rule is characterized by moving to the middle of the set. It

happens due to the increase in the time interval between the income of
the packets.

Figure 7. Ranging the 𝑟1
81 rule Figure 8. Ranging the 𝑟1

29 rule

Simulation modelling has demonstrated that the average packet filtration
time for all time intervals [𝑡𝑘−1, 𝑡𝑘) ∈ 𝑇, 𝑘 > 5 on which ranging has been
executed, has a decrease compared to the average time on the intervals
[𝑡𝑘−1, 𝑡𝑘) ∈ 𝑇, 𝑘 = 1, … , 5.
For the first interval [𝑡0, 𝑡1), where there is no set ranging, and for the last

interval [𝑡24, 𝑡25), where the set is ranged, we can present the graph of the
average packet filtration time (see the figure 9).

Figure 9. Average packet filtration time for first and the last intervals
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As can be seen from the figure, the value of the average packet filtration
time on the interval [𝑡0, 𝑡1) is larger than the average time on the interval
[𝑡24, 𝑡25) by about 2.5 [s]. The results of the firewall performance evaluation
for all segments obtained during the simulation modelling are presented in
the table 2.

Table 2

The firewall performance

s 𝑈𝑆 [s] Δ𝑈𝑆 [s] Δ𝑈𝑆 [%]

1 6.233 - -

2 4.937 1.296 20.785

3 4.660 1.573 25.229

4 4.989 1.244 19.960

5 4.406 1.827 29.304

5. Conclusion

The created QS with a complex request service discipline and the simulation
methods allowed us to obtain the firewall performance estimates when ranging
a rule set. These estimates demonstrate that, for the traffic of the main
transmission networks, ranging has increased the firewall performance by
20–29% compared to traffic filtering without ranging. So, the results obtained
indicate the possibility of increasing the firewall performance for traffic scripts
that are close to real ones. These results also confirm the assumptions made
in work [20] about the advisability of ranging.
The authors plan to study the influence of the ranging interval and MLA

parameters on the firewall performance in further works. They also plan to
develop criteria for the need of re-ranging the set depending on changes in
the firewall performance indicators, as well as recommendations for ranging
the filtration rule sets.
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Оценка производительности межсетевого экрана
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Данная статья является продолжением ряда работ, посвящённых оценке
вероятностно-временных характеристик межсетевых экранов при ранжировании
набора правил фильтрации. В публикации рассматривается проблема сниже-
ния эффективности фильтрации информационных потоков. Проблема возникла
из-за использования последовательной схемы проверки соответствия пакетов
правилам, а также из-за неоднородности и изменчивости сетевого трафика. По-
рядок правил неоптимален, и это в многомерном списке существенно влияет
на производительность межсетевого экрана, а также может вызывать значи-
тельную временную задержку и вариации в значениях времени обслуживания
пакетов, что существенно важно для стабильной работы мультимедийных про-
токолов. Один из способов предотвратить снижение производительности — это
ранжировать набор правил в соответствии с характеристиками входящих инфор-
мационных потоков. В исследовании решаются следующие задачи: определение
и анализ среднего времени фильтрации трафика основных передающих сетей;
оценка эффективности ранжирования правил. Предложен метод ранжирова-
ния набора правил фильтрации и построена система массового обслуживания со
сложной дисциплиной обслуживания запросов. Определённый порядок исполь-
зуется для описания того, как запросы обрабатываются в системе, и включает
в себя выполнение операций с входящими пакетами и логическую структуру
набора правил фильтрации. Таковы элементы обработки информационного по-
тока в межсетевом экране. Подобный уровень детализации не полный, но его
достаточно для создания модели. Характеристики СМО получены с помощью
методов имитационного моделирования в среде Simulink матричной вычисли-
тельной системы MATLAB. На основании анализа полученных результатов были
сделаны выводы о возможности повышения производительности межсетевого
экрана за счёт ранжирования правил фильтрации для тех скриптов трафика,
которые близки к реальным.

Ключевые слова: межсетевой экран, ранжирование правил фильтрации, сете-
вой трафик, фазовое обслуживание, имитационная модель, система массового
обслуживания
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Due to a multistage nature of transmission processes in heterogeneous 4G, 5G
mobile networks, multiphase queuing systems become one of the most suitable ways
for the resource allocation algorithms analysis and network investigation. In this
paper, a few scientific papers that approached heterogeneous networks modelling by
means of multiphase queuing systems are reviewed, mentioning the difficulties that
arise with this type of analytical analysis. Moreover, several previously investigated
models are introduced briefly as an example of two-phase systems of finite capacity
and a special structure in discrete time that can be used for analysing resource
allocation schemes based on the main performance measures obtained for wireless
heterogeneous networks. One of the model presents a two-phase tandem queue with
a group arrival flow of requests and a second phase of the complex structure that
consists of parallel finite queues. The second model is a two-phase tandem queue
with Markov modulated geometric arrival and service processes at the first phase and
exhaustive service process at the second phase, which solves a cross-layer adaption
problem in a heterogeneous network.

Key words and phrases: two-phase model, queuing system, Markov chain, resource
allocation, heterogeneous networks

1. Introduction

The Fifth Generation (5G) mobile networks are characterized by advanced
algorithms for time-frequency resource allocation schemes in a heterogeneous
cell between Base Station (BS) and User Equipment (UE) [1], [2]. Due to
a multistage nature of transmission processes in the heterogeneous environ-
ment, multiphase queuing systems become one of the most suitable ways for
the resource allocation algorithms analysis and network investigation. In [3],
researchers have proposed to use single-phase queuing systems for modelling
local networks, by giving the necessary physical meaning to the stages of ser-
vice process using a phase-type service distribution. However, in the case

© Rykova T.V., 2021

This work is licensed under a Creative Commons Attribution 4.0 International License

http://creativecommons.org/licenses/by/4.0/



T.V.Rykova, Towards the analysis of the performance measures… 243

of the Next Generation Mobile Networks (NGMN) the given assumptions
are not able to take into account the complex structure of a network with
intermediate storage of transmitted information. A large number of publica-
tions [4]–[6] are devoted to the analysis of multiphase queuing systems that
consider various variants of structural parameters: capacitance of the buffers
at the phases, the number of servers at phases, an ordinary or non-ordinary
arrival flow, blocking of service at a phase or loss of a request given that the
buffer of the next phase is fully occupied, the possibility of the retransmis-
sion at the phase or in the system in general, and various arrival and service
distributions of requests. In the given publications, the number of phases is
usually limited to two, and they are considered mainly in continuous time.
Only a few works approached to investigate heterogeneous networks by

means of multiphase (two-phase) queuing systems in discrete time, see, for
example, [7], [8]. However, the models in [7], [8] cannot be used because
they do not take into account the complex phase structure when modelling
transmission processes in a cell and, therefore, do not fully correspond to
solving a resource allocation problem in a context of a NGMN cell. It should
be noted that most of the foreign publications when using “discrete” and
“tandem queue” terms in their papers cover, in fact, mean cyclical service
systems in discrete time, but not multiphase systems.
In most of the cases, the number of phases in a multiphase queuing sys-

tem that is taken as a mathematical model for analysis of the performance
measures in a NGMN cell should be taken equal to two. This is due to the
fact that each phase itself is a structurally complex queuing system with
complex rules of functioning, and a further increase of phases severely compli-
cates formalization of the entire system, leads to multidimensional processes
that describe its behaviour and a difficult practical use. The analysis in this
case becomes extremely bulky with high risks of obtaining inaccurate results.
The decomposition of such a system with the analysis of individual phases or
groups of phases is most often not applicable due to the significant mutual in-
fluence of phases, in contrast to almost completely decomposable systems [9],
[10], and can lead in most cases to significant modelling errors. Cases of
independence of the functioning of a phase from the previous phase and, ac-
cordingly, an admissible decomposition are rare and arise when conditions [11],
are met, for example, when using exponential distributions and buffers of
unlimited capacity [12], or under assumptions about specific conditions for
the functioning of phases [13]. Summarizing all of that mentioned above, in
this paper we briefly overview several two-phase systems of finite capacity in
discrete time of a special structure that can be used for analysing resource
allocation schemes based on the main performance measures obtained for
wireless heterogeneous networks.

2. Two-phase model in discrete time for resource
allocation analysis in heterogeneous networks

Heterogeneous networks with the utilization of lower power levels Relay
Nodes (RN) improve the capacity of the system, coverage due to the avail-
ability of the alternative paths to users, located in shadow areas, and lower
deployments costs. Moreover, relay nodes are characterized by wireless back-
bone access. However, to achieve its potential, the heterogeneous networks
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are to utilize an efficient cooperative resource allocation procedure on various
paths, e.g. from the base station (gNB, gNodeB) to the RN, and from the RN
to the User Equipment (UE), in order to avoid data shortage or overflow of the
data at relay nodes. An analytical model of heterogeneous network in terms
of a two-phase model in discrete time is further introduced, that presents an
efficient tool to study resource allocation procedures by means of the found
stationary probability distribution and derived performance measures.

2.1. Model’s description

Let us consider downlink transmission in a heterogeneous network with 𝐾
RNs and a single gNB with a subframe that is divided into 𝑆 channels, which
are distributed between the heterogeneous nodes in a centralized manner.
The figure 1 demonstrates the structure of the given model, and the main
parameters are shown in the table 1. As can be seen from the table, the
arrival rate follows a (𝐾 + 1)-dimensional group geometrical distribution. In
its turn, the service time in both phases is selected to follow deterministic law
equal to one time slot, which corresponds to the transmission of one packet.
After the request is being serviced it occupies one space in the buffer.

Figure 1. Structural representation of the two-phase model with 𝑆 channels

The functioning of the given model is described by the homogeneous Markov
chain 𝜉𝑛 at time moments 𝑛ℎ + 0, 𝑛 ⩾ 0, with the following state space:

𝑋 = { ⃗𝑥 = (𝑥0, 𝑥1, … , 𝑥𝐾)𝑇 ∶ 𝑥𝑘 = 0, … , 𝑟𝑘, 𝑘 = 0, … , 𝐾} ,

|𝑋| =
𝐾

∏
𝑘=0

(𝑟𝑘 + 1) ,
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Table 1

Definition of the main parameters used in the model.

Parameter Description

0-request 0-type request to be send to the UE in the coverage area

of gNB

𝑘-request 𝑘-type request to be send to the UE in the coverage area

of 𝑘-RN, 𝑘 = 1, 2, … , 𝐾
𝑟0 buffer capacity of the gNB, 𝑟0 < ∞
𝑟𝑘 buffer capacity of the 𝑘-RN, 𝑟𝑘 < ∞, 𝑘 = 1, 2, … , 𝐾

ℎ = 1 constant length of a time slot, in which the system func-

tioning is measured and is equal to LTE downlink data

subframe

𝑎 arrival rate that follows a group geometric distribution

Geom
𝐺

𝑐𝑘 probability of a request from the arrival group belonging

to type 𝑘, 𝑘-request, 𝑘 = 0, 1 … , 𝐾
𝑐⋅ full sum of the variable 𝑐𝑘, 𝑘 = 0, 1 … , 𝐾

In the table 1, 𝑥𝑘 is a number of 𝑘-requests stored in the buffer of corre-
sponding heterogeneous node: gNB or 𝑘-RN. Please refer to [14] for more
details on derivation of stationary probability distribution and the main per-
formance measures. One of the advantages of the given analytical model is
the ability to study various resource allocation procedures by utilizing the
following vector in the balance equations:

𝑠𝑛 = (𝑠𝑛
0 , 𝑠𝑛

1 , … , 𝑠𝑛
𝐾)𝑇 = (𝑓𝑛

0 ( ⃗𝑥), 𝑓𝑛
1 ( ⃗𝑥), … , 𝑓𝑛

𝐾( ⃗𝑥)) ,

where 𝑓𝑛( ⃗𝑥) is a function that introduces the resource allocation strategy.
The definition of the different resource allocation procedures and experi-
mental analysis can be found in [14]. All in all, the given model allows
analysing various resource assignment schemes, including dynamic schemes,
e.g. proportional fair [15] and with fixed allocation.

3. Two-phase model in discrete time for cross-layer
optimization in heterogeneous networks

Video transmission comes along with huge demands on resources and low
delay, which can be provided by means of Cross-Layer Adaptation (CLA)
principle. The given principle is responsible for optimizing the selected metric
by adapting the parameters of different layers of open systems interconnection
model. The common assumption is to locate CLA mechanism at the gNB,
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which brings certain shortcomings in terms of the achieved performance. In
this paper, we introduce a two-phase analytical model in discrete time that
evaluates the behaviour of a downlink video transmission system using CLA
principle. We assume Dynamic Adaptive Streaming over HTTP (DASH) in
our modelling, the details of which can be found in [16]. The model introduced
below covers both the video delivery from gNB to UE at the first phase and
video processing at UE at the second phase. Moreover, the CLA is achieved
by varying the arrival rate based on the received DASH message, and service
probability based on the Channel Quality Indicator (CQI) sent from the UE.

3.1. Model’s description

We assume a DASH-based video transmission from the gNB to a single
UE in a heterogeneous network. The figure 2 demonstrates the structure of
the given model, and the main parameters are shown in the table 2. The
functioning of the given model is described by the homogeneous Markov chain
𝜉𝑛 at time moments 𝑛ℎ + 0, 𝑛 ⩾ 0, with the following state space:

𝑋 = { ⃗𝑥 = (𝑞1, 𝑞2, 𝑠) ∶ 𝑞1 = 0, 1, … , 𝑟1, 𝑞2 = 0, 1, … , 𝑟2 − 1, 𝑠 = 1, 2, … , 𝑆} ,

where 𝑞1 and 𝑞2 are the numbers of requests at the first and second phase,
respectively, and 𝑠 is a value of the CQI in the current state.

Figure 2. Structural representation of the two-phase model

It should be noted that the stationary probability distribution can be
found in a matrix recursive form [13]. However, due to the fact that the
functioning of the first phase along with variation of the CQI are independent
from the second phase, conditions [11] fulfilled, it is possible to decompose
the system to analyse the systems separately, which allows reducing the
computational complexity. The conducted experimental analysis of the main
performance measures derived from the stationary distribution can be found
in [13]. The given two-phase model presents an efficient tool that covers
video transmission process from gNB to UE at the first phase and the video
decoding process at the UE at the second phase. It takes into account CLA
principle, along with the losses due to fading and retransmission.
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Table 2

Definition of the main parameters used in the model

Parameter Description

𝑟1 buffer capacity of the gNB, 𝑟1 < ∞
𝑟2 buffer capacity of the UE, 𝑟2 < ∞
ℎ constant length of a time slot, in which the system func-

tioning is measured and is equal to LTE downlink data

subframe, 1 ms

𝑠 CQI report, which is available both at gNB and UE every

time slot 𝑠 = 1, 2 … , 𝑆, where 𝑆 is an overall number of

its values

𝑠𝑖𝑗 transition probability of 𝑠 from state 𝑖 to state 𝑗
𝑎𝑠 arrival rate that follows geometric distribution

𝑏𝑠
1 service time at the first phase that follows geometric dis-

tribution

𝑡𝑠𝑑 retransmission probability due to wireless channel errors

𝑡𝑠𝑑 probability that the packet lifetime is expired and cannot

be used for the video playback

𝑏𝑞2
2 service time at the second phase that follows geometric

distribution in exhaustive manner

4. Conclusions

This paper reviews a few scientific papers that approached heterogeneous
networks modelling by means of multiphase queuing systems and stressed the
difficulties that arise with this type of analytical modelling. Two efficient two-
phase models were briefly introduced that can be used for analysing resource
allocation schemes based on the main performance measures obtained for
wireless heterogeneous networks. One of the model presents a two-phase
tandem queue with a group arrival flow of requests and a second phase of
the complex structure that consists of parallel finite queues. The second
model is a two-phase tandem queue with Markov modulated geometric arrival
and service processes at the first phase and exhaustive service process at the
second phase, which solves a cross-layer adaption problem in a heterogeneous
network.
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К анализу показателей эффективности гетерогенных
сетей с помощью двухфазных систем массового

обслуживания
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ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

Благодаря многоступенчатому характеру процессов передачи в гетероген-
ных мобильных сетях 4G, 5G, многофазные системы массового обслуживания
становятся одним из наиболее подходящих способов анализа алгоритмов рас-
пределения ресурсов и исследования сетей. В этой статье приводится обзор
нескольких научных работ, посвящённых моделированию гетерогенных сетей
с помощью многофазных систем массового обслуживания, и упоминаются трудно-
сти, возникающие при этом типе аналитического анализа. Более того, несколько
ранее исследованных моделей кратко представлены в качестве примера двухфаз-
ных систем конечной ёмкости и специальной структуры в дискретном времени,
которые можно использовать для анализа схем распределения ресурсов на ба-
зе основных показателей производительности, полученных для беспроводных
гетерогенных сетей. Одна из моделей представлена двухфазной тандемной оче-
редью с групповым потоком поступающих запросов, а вторая — фазой сложной
структуры, состоящей из параллельных конечных очередей. Вторая модель
представляет собой двухфазную тандемную очередь с марковскими модулиро-
ванными геометрическими процессами поступления и обслуживания на первом
этапе и полным процессом обслуживания на втором этапе, что решает проблему
межуровневой адаптации в гетерогенной сети.

Ключевые слова: двухфазная модель, система массового обслуживания, цепь
Маркова, распределение ресурсов, гетерогенная сеть
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In many applied problems, efficient calculation of quadratures with high accuracy
is required. The examples are: calculation of special functions of mathematical
physics, calculation of Fourier coefficients of a given function, Fourier and Laplace
transformations, numerical solution of integral equations, solution of boundary value
problems for partial differential equations in integral form, etc. For grid calculation
of quadratures, the trapezoidal, the mean and the Simpson methods are usually used.
Commonly, the error of these methods depends quadratically on the grid step, and
a large number of steps are required to obtain good accuracy. However, there are
some cases when the error of the trapezoidal method depends on the step value not
quadratically, but exponentially. Such cases are integral of a periodic function over
the full period and the integral over the entire real axis of a function that decreases
rapidly enough at infinity. If the integrand has poles of the first order on the complex
plane, then the Trefethen–Weidemann majorant accuracy estimates are valid for
such quadratures.
In the present paper, new error estimates of exponentially converging quadratures

from periodic functions over the full period are constructed. The integrand function
can have an arbitrary number of poles of an integer order on the complex plane. If the
grid is sufficiently detailed, i.e., it resolves the profile of the integrand function, then
the proposed estimates are not majorant, but asymptotically sharp. Extrapolating,
i.e., excluding this error from the numerical quadrature, it is possible to calculate the
integrals of these classes with the accuracy of rounding errors already on extremely
coarse grids containing only ∼ 10 steps.

Key words and phrases: trapezoidal rule, exponential convergence, error estimate,
asymptotically sharp estimates

1. Introduction

Applied tasks. In many physical problems it is needed to calculate integrals,
that cannot be obtained in terms of elementary functions. Here are some
examples:
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1) Calculation of special functions of mathematical physics: the Fermi–Dirac
functions, which are equal to the moments of the Fermi distribution, the
Gamma function, cylindrical functions and a number of others.

2) Calculation of the Fourier coefficients of a given function, Fourier and
Laplace transform.

3) Numerical solution of integral equations, both well-posed and ill-posed.
4) Solving boundary value problems for partial differential equations (in-

cluding eigenvalue problems) written in integral form, etc.

Calculation of quadratures. Trapezoidal rule, rectangle rule and Simp-
son’s rule are commonly used for grid computation of quadratures. Usually
the error of these methods quadratically depends on the grid step, and a large
number of steps is needed to obtain good accuracy.
However, there are a number of cases when the error of the trapezoidal rule

depends on the grid step exponentially, i.e. when the step is reduced by half,
the number of correct signs of the numerical result is approximately doubled.
This rate of convergence is similar to that of Newton’s method. Two such
cases are known. These are: the integral of the periodic function over the full
period and the improper integral of a function that decreases rapidly enough
at infinity.
If the integrand has first order poles on the complex plane, then for such

quadratures there are majorant error estimates of Trefethen and Weide-
mann [1], see also [2]–[10]. In [11], [12] the generalization of Trefethen and
Weidemann estimates is built for the case when the nearest pole of an inte-
grand function is multiple.
In this paper, new error estimates of exponentially convergent quadratures

of periodic functions over the full period are described. Integrand function can
have an arbitrary number of poles of an integer order on the complex plane.
If the mesh is detailed enough and the profile of the integrand resolved well,
then the proposed estimates are not majorant, but asymptotically accurate.
It is possible to calculate the integrals of the indicated classes with the

accuracy of round-off errors even on extremely coarse grids containing only
∼ 10 steps by extrapolation (i.e., subtraction) of this error from the numerical
value of the quadrature.

2. Exponentially convergent quadratures

One of the classes of exponentially convergent quadratures are integrals of
periodic functions over the full period. By replacing 𝑧 = exp (2𝜋𝑖𝑥/𝑋) we
move from the integral over the period [0, 𝑋] to the integral over the unit
circle |𝑧| = 1 on the complex plane. We choose the bypass direction of this
circle counter clockwise. In [1], the following statement is formulated and
proved:

Theorem 1. Let 𝑢 (𝑧) be analytic in the ring 𝑅−1 < |𝑧| < 𝑅, where
𝑅 > 1, and |𝑢 (𝑧)| < 𝑀0. We introduce a uniform grid on the unit circle

𝑧𝑛 = exp (2𝜋𝑖𝑛/𝑁) , 𝑛 = 0, 𝑁. Consider the integral and the trapezoidal rule
quadrature
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𝐼 = ∮
|𝑧|=1

𝑢 (𝑧) 𝑑𝑧
𝑖𝑧

, 𝐼𝑁 = 2𝜋
𝑁

𝑁
∑
𝑛=1

𝑢 (𝑧𝑛) .

Then the estimate for the quadrature error holds

𝛿 = |𝐼 − 𝐼𝑁| ⩽ 4𝜋𝑀0
𝑅𝑁 − 1

. (1)

It is obvious that, by replacing 𝑧 = exp (𝑖𝑥), theorem 1 holds for integral
over full period of the function 𝑢 (exp (𝑖𝑥)) on the real axis.

In the works [11], [12], it was shown that the dependence of the estimate (1)
from 𝑁 can be not majorant, but asymptotically accurate. This holds, if 𝑢 (𝑧)
has only first order pole type singularities, and 𝑅 is taken such that the closest
singularity to the unit circle lies on the boundary of the ring 𝑅−1 < |𝑧| < 𝑅.
In this case, the integrand function increases significantly if one approaches
the singularity from inside the ring. Thereby, the constant 𝑀0 loses its usual
meaning from theorem 1. We carefully studied proof of the theorem 1 given
in [1] and we found the possibility of significant strengthening the results of
this theorem, under some additional conditions on the integrand function.

3. Calculating the error

Let us consider in detail the contour integral over the unit circle of a function
that has one simple pole inside it and another simple one pole outside it. This
case corresponds to the integral considered in [1]. Suppose the point 𝑎1 is
inside, and the point 𝑎2 is outside |𝑧| = 1 and, the function 𝑢 (𝑧) is analytic
in the ring 𝑅−1 < |𝑧| < 𝑅, where 𝑅 = min {1/ |𝑎1| , |𝑎2|}. Then the integral
has the form

𝐺 = ∮
|𝑧|=1

𝑔 (𝑧) 𝑑𝑧 = ∮
|𝑧|=1

𝑢 (𝑧)
(𝑧 − 𝑎1) (𝑧 − 𝑎2)

𝑑𝑧 = 2𝜋𝑖 𝑢 (𝑎1)
(𝑎1 − 𝑎2)

.

We make one assumption for the sake of simplifying the calculations. Its
effect on the result is weak. Let 𝑢 (𝑧) = 1, then we rewrite the integrand
function in this form

𝑔 (𝑧) = 1
(𝑧 − 𝑎1) (𝑧 − 𝑎2)

= 1
(𝑎1 − 𝑎2) (𝑧 − 𝑎1)

+ 1
(𝑎2 − 𝑎1) (𝑧 − 𝑎2)

.

Now we decompose each fraction in the Laurent series as the sum of the
geometric progression

𝑔 (𝑧) = 1
(𝑎1 − 𝑎2)

∞
∑
𝑘1=0

𝑎𝑘1
1

𝑧𝑘1+1 − 1
(𝑎2 − 𝑎1)

∞
∑
𝑘2=0

𝑧𝑘2

𝑎𝑘2+1
2

.
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We use the grid 𝑧𝑛, 𝑛 = 0, 𝑁, which is introduced in theorem 1. Our goal
is to obtain an explicit expression for the grid step Δ𝑧𝑛 = 𝑧𝑛+1 − 𝑧𝑛

Δ𝑧𝑛 = exp(2𝜋𝑖 (𝑛 + 1)
𝑁

) − exp(2𝜋𝑖𝑛
𝑁

) =
𝑁→∞

𝑧𝑛 (2𝜋𝑖
𝑁

+ 𝒪 ( 1
𝑁2 )) . (2)

Discarding the 𝒪 (𝑁−2) term in the expression for the grid step, we write
the trapezoidal rule quadrature in the following form

𝐺𝑁 =
𝑁−1
∑
𝑛=0

𝑔 (𝑧𝑛) Δ𝑧𝑛 = 2𝜋𝑖
𝑁

𝑁−1
∑
𝑛=0

𝑔 (𝑧𝑛) 𝑧𝑛.

We substitute the representation of 𝑔 (𝑧𝑛) by the sum of the series in
the quadrature and then swap the series and the finite sum. Last step is
allowed due to absolute convergence of the resulting double number series (each
member of the double series of modules can be estimated by the corresponding
member of an infinitely decreasing geometric progression, which has finite
sum). The following expression for the quadrature formula is obtained

𝐺𝑁 = 2𝜋𝑖
𝑁 (𝑎1 − 𝑎2)

[
∞

∑
𝑠1=0

𝑁−1
∑
𝑛=0

𝑎𝑠1
1

𝑧𝑠1𝑛
+

∞
∑
𝑠2=0

𝑁−1
∑
𝑛=0

𝑧𝑠2+1
𝑛

𝑎𝑠2+1
2

] . (3)

To perform these transformations, we need the following well known result

𝑁−1
∑
𝑛=0

exp(±2𝜋𝑖𝑛𝑘
𝑁

) =
⎧{
⎨{⎩

𝑁, 𝑘 is a multiple of 𝑁,
0, otherwise.

We convert the second sum in square brackets in the formula (3)

∞
∑
𝑠2=0

𝑁−1
∑
𝑛=0

𝑧𝑠2+1
𝑛

𝑎𝑠2+1
2

=
⎧{
⎨{⎩

(𝑠2 + 1) is a multiple of 𝑁,
(𝑠2 + 1) = 𝑁𝑝2,
𝑝2 = 1, ∞

⎫}
⎬}⎭

=

= 𝑁
∞

∑
𝑝2=1

1
𝑎𝑁𝑝2

2
= 𝑁 1/𝑎𝑁

2
1 − 1/𝑎𝑁

2
.

We convert the first sum in (3)

∞
∑
𝑠1=0

𝑁−1
∑
𝑛=0

𝑎𝑠1
1

𝑧𝑠1𝑛
= {

𝑠1 is a multiple of 𝑁,
𝑠1 = 𝑁𝑝1, 𝑝1 = 0, ∞

} = 𝑁
∞

∑
𝑝1=0

𝑎𝑁𝑝1
1 = 𝑁 1

1 − 𝑎𝑁
1

.

We get

𝐺𝑁 = 2𝜋𝑖
(𝑎1 − 𝑎2)

[ 1
1 − 𝑎𝑁

1
+ 1

𝑎𝑁
2 − 1

] .
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Finally, we calculate the quadrature error

Δ𝑁 = 𝐺 − 𝐺𝑁 = 2𝜋𝑖 ( 1
(𝑎1 − 𝑎2)

[1 − 1
1 − 𝑎𝑁

1
] + 1

(𝑎2 − 𝑎1)
[ 1

𝑎𝑁
2 − 1

]) .

The obtained result can be easily generalized to the case when the function
𝑢 (𝑧) does not equal identically to one. The derivation is similar but far too
cumbersome. Let us formulate the final result.

Theorem 2. Let the point 𝑧 = 𝑎1 be inside the unit circle, and let the point
𝑧 = 𝑎2 be outside of it. Let the function 𝑢 (𝑧) be analytic on the entire complex
plane, with the possible exception of an infinitely distant point, and 𝑢 ≠ 0 at the
points 𝑧 = 𝑎1,2. Then the trapezoidal rule for the integral 𝐺 has the following

error estimation

Δ𝑁 = 𝐺 − 𝐺𝑁 =

= 2𝜋𝑖 ( 𝑢 (𝑎1)
(𝑎1 − 𝑎2)

[1 − 1
1 − 𝑎𝑁

1
] + 𝑢 (𝑎2)

(𝑎2 − 𝑎1)
[ 1

𝑎𝑁
2 − 1

]) . (4)

Estimate (4) is not majorant, but asymptotically accurate. The only one
approximation that was made is contained in the approximate expression for
the grid step (2).

4. Validation

Calculations were carried out with the test integral having a known value

𝐽 = ∮
|𝑧|=1

sin (𝑧)
(𝑧 − 𝑎1) (𝑧 − 𝑎2)

𝑑𝑧 = 2𝜋𝑖 sin (𝑎1)
(𝑎1 − 𝑎2)

, (5)

where 𝑎1 = 0.6+0.6𝑖 and 𝑎2 = 2−𝑖. In this case, 1/ |𝑎1| ≈ 1.2 and |𝑎2| ≈ 2.2,
so the value 𝑅 from theorem 1 equals 1/ |𝑎1|. During the calculations, the
following information was obtained: actual error, the Trefethen–Weidemann
estimate (1), our estimate (4) and the error after extrapolation.
The figure 1 shows quadrature error versus number of grid steps in the

semi-logarithmic scale. Here, the black dots represent the actual error, the
white circles represent our estimate, and the black squares represent the
Trefethen–Weidemann estimate with the constant 𝑀0 = 1. Recall that this
constant loses its meaning from theorem 1, if the singularity lies on the
boundary of the ring.
The plot shows that our estimate coincides with the actual error already

at 𝑁 > 4. The Trefethen–Weidemann estimate does not represent the initial
part of the curve. It describes the curve starting from 𝑁 ≅ 15. This estimate
is asymptotically accurate in 𝑁, but the true value of the constant 𝑀0 is
unknown. Therefore, the Trefethen–Weidemann estimate cannot be used for
extrapolation. Thereby, the error estimate constructed in this paper is much
stronger than the Trefethen–Weidemann estimate.
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These conclusions are also confirmed by the figure 2. Here, we plot the
ratio of error estimates to actual accuracy versus number of grid steps. The
number 1 corresponds to the Trefethen–Weidemann estimate and the number
2 is for our estimate. It can be seen that when 𝑁 > 4 our estimate is almost
indistinguishable from the actual error. Therefore, it can be excluded from
the quadrature (i.e. extrapolated). This dramatically increases the accuracy
of the calculation. One can also see that the Trefethen–Weidemann estimate
significantly less accurate in assessing the dependence of the error on the
number of nodes: the corresponding relation goes out to a constant on the
much more detailed grids than the estimate (4).

Figure 1. Graph of convergence of the

trapezoidal formula. Symbols are described

in the text

Figure 2. Ratio of theoretical estimates (1)

and (4) for the integral (5) to actual

accuracy versus number of grid steps.

Symbols see in the text

5. Extrapolation of the error

Let us exclude the error (4) from the calculated quadrature by the formula

𝐺𝑁 = 𝐺𝑁 + Δ𝑁. (6)

This is equivalent to introducing some new quadrature formula. The error
is shown in the figure 1 by white triangles. One can see that the speed of
convergence of the quadrature (6) radically exceeds even the exponential one.
The accuracy of round-off errors is achieved already at 𝑁 ∼ 15, which is ∼ 10
times less than for the trapezoidal rule. Labor intensity of such computation is
comparable to the complexity of explicit formulas. This approach is essentially
new and exceeds the world level.

6. Conclusion

The described method is a powerful tool for solving physical problems. If
one can find transformation of variables that reduce integral to one of the
considered types, then the calculations are accelerated thousands of times.
In this paper 1) a fundamentally new estimate of the error of quadrature
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is constructed, it is asymptotically accurate. 2) Extrapolation procedure is
proposed, which provides calculation of the quadrature with the accuracy of
unit errors rounding, and it is already performed on very rough grids with
the number of steps from 5–15.
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Асимптотически точные оценки экспоненциальной
сходимости для формулы трапеций
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Во многих прикладных задачах требуется экономичное вычисление квадратур
с высокой точностью. Примерами являются: вычисление специальных функ-
ций математической физики, расчёт коэффициентов Фурье заданной функции,
преобразования Фурье и Лапласа, численное решение интегральных уравнений,
решение краевых задач для уравнений в частных производных в интегральной
форме и т.д. Для сеточного вычисления квадратур обычно используют методы
трапеций, средних и Симпсона. Обычно погрешность этих методов зависит от
шага степенным образом, и для получения хорошей точности требуется большое
число шагов. Однако существует ряд случаев, когда погрешность метода тра-
пеций зависит от величины шага не квадратично, а экспоненциально. Такими
случаями являются интеграл от периодической функции по полному периоду
и интеграл по всей числовой прямой от функции, достаточно быстро убывающей
на бесконечности. Если подынтегральная функция имеет полюса первого поряд-
ка в комплексной плоскости, то для таких квадратур справедливы мажорантные
оценки точности Трефетена и Вайдемана.
В работе построены новые оценки погрешности экспоненциально сходящихся

квадратур от периодических функций по полному периоду. Подынтегральная
функция может иметь произвольное число полюсов целого порядка на ком-
плексной плоскости. Если сетка достаточно подробная (разрешает профиль
подынтегральной функции), то предлагаемые оценки являются не мажорант-
ными, а асимптотически точными. Экстраполируя, то есть исключая эту
погрешность из численной квадратуры, можно вычислять интегралы указанных
классов с точностью ошибок округления уже на чрезвычайно грубых сетках,
содержащих всего ∼ 10 шагов.

Ключевые слова: формула трапеций, экспоненциальная сходимость, оценки
точности, асимптотически точные оценки
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Multidimensional integrals arise in many problems of physics. For example, mo-
ments of the distribution function in the problems of transport of various particles
(photons, neutrons, etc.) are 6-dimensional integrals. When calculating the coeffi-
cients of electrical conductivity and thermal conductivity, scattering integrals arise,
the dimension of which is equal to 12. There are also problems with a significantly
large number of variables. The Monte Carlo method is the most effective method
for calculating integrals of such a high multiplicity. However, the efficiency of this
method strongly depends on the choice of a sequence that simulates a set of ran-
dom numbers. A large number of pseudo-random number generators are described
in the literature. Their quality is checked using a battery of formal tests. How-
ever, the simplest visual analysis shows that passing such tests does not guarantee
good uniformity of these sequences. The magic Sobol points are the most effective
for calculating multidimensional integrals. In this paper, an improvement of these
sequences is proposed: the shifted magic Sobol points that provide better unifor-
mity of points distribution in a multidimensional cube. This significantly increases
the cubature accuracy. A significant difficulty of the Monte Carlo method is a pos-
teriori confirmation of the actual accuracy. In this paper, we propose a multigrid
algorithm that allows one to find the grid value of the integral simultaneously with
a statistically reliable accuracy estimate. Previously, such estimates were unknown.
Calculations of representative test integrals with a high actual dimension up to 16
are carried out. The multidimensional Weierstrass function, which has no derivative
at any point, is chosen as the integrand function. These calculations convincingly
show the advantages of the proposed methods.

Key words and phrases: multidimensional integral, Monte Carlo method, Sobol
points, multigrid calculation, a posteriori error estimates

1. Introduction

Integrals of multivariate functions occur in many areas of physics. Here
are some examples. The transfer of neutrons, photons and other particles in
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the medium is described by the equation for the distribution function; this
function depends on three coordinates of the medium and three components
of the particle velocity vector, that is, the number of variables is six. To
determine the coefficients of thermal conductivity or electrical conductivity
of a medium, it is necessary to calculate the collision integrals; they include
components of the velocity vectors before the moment of collision and after
the moment of collision. The total number of variables in such an integral is
twelve. Problems also arise with a significantly larger number of variables.
In the simplest formulation, the calculation of the integral in the unit 𝑝-

dimensional cube 𝑉 is considered. x = (𝑥1, 𝑥2, … , 𝑥𝑝) is 𝑝-dimensional vector.
Our aim is to calculate the following integral:

𝐼 ≡ ∫
𝑉

𝑓(𝑥)𝑑𝑥 =
1

∫
0

…
1

∫
0

𝑓(𝑥1, 𝑥2, … , 𝑥𝑝)𝑑𝑥1𝑑𝑥2 … 𝑑𝑥𝑝.

The accuracy of numerical grid methods drops rapidly with the increase of
dimension 𝑝. In order to obtain acceptable accuracy, more and more points
have to be taken, which makes the calculations exorbitantly laborious and
very time consuming. Due to this fact, the local Monte Carlo method is used
for high dimensions (𝑝 > 3). It involves the use of random numbers, which are
mathematical abstraction. In practice, however, one has to use sequences that
only imitate random numbers. Performance of the method strongly depends
on the choice of such a sequence.
Calculations of the representative test integrals show that to obtain good

accuracy the most important is the uniformity of the points’ distribution and
not its randomness. The most effective are Sobol sequences with the so-called
“magic” numbers of points 𝑁 = 2𝑛 , 𝑛 = 0, 1, ….
In this work, the following results are obtained. Firstly, shifted Sobol

points are proposed. It is a modification that improves uniformity of the
point distribution and increases the accuracy of cubatures. Secondly, a multi-
grid strategy that gives a posteriori estimate of the accuracy is constructed.
The advantages of the proposed algorithms are illustrated with representative
test examples.

2. Pseudorandom points

For the local Monte Carlo method, 𝑁 random points 𝑥𝑗 are selected in the

cube 𝑉; in this case, the number 𝑁 can be arbitrary, in contrast to cubature
formulae on regular grids. The cubature formula

𝐼𝑁 ≡ 1
𝑁

𝑁
∑
𝑗=1

𝑓(𝑥𝑗) (1)

is similar to the formula for mean Riemann sum. However, the estimate of
its error Δ𝑁 turns out to be radically different

Δ𝑁 ≡ 𝐼 − 𝐼𝑁 ∼ √𝐷𝑓𝑁−1/2, 𝐷𝑓 = ∫
𝑉

𝑓2(𝑥)𝑑𝑥 − ⎡⎢
⎣

∫
𝑉

𝑓(𝑥)𝑑𝑥⎤⎥
⎦

2

. (2)



262 DCM&ACS. 2021, 29 (3) 260–270

Here 𝐷𝑓 is variance. The estimate of the error is not majorant, but
probabilistic: magnitude of the error is distributed according to the Gaussian
law with the standard specified in the formula. The error does not exceed
the standard deviation with a probability of 0.68.
The error estimate (2) does not depend on the dimension 𝑝. Random points

are inferior in accuracy to regular grids at 𝑝 = 1 or 𝑝 = 2. Already at 𝑝 = 4,
the dependence of the error on 𝑁 for random points and regular grids is the
same. With further increase in dimension, random points turns out to be
more advantageous; advantage increases rapidly as dimension 𝑝 grows.
Formulae (2) assume that random points 𝑥𝑗 have uniform distribution

density in the cube 𝑉 and are not correlated. However, no rigorous mathe-
matical methods for constructing such points have been found. A number of
mathematical algorithms have been proposed; the resulting points are called
pseudorandom. An extensive literature is devoted to the construction of pseu-
dorandom points, for example, [1]–[13]. The following generators are most
common in the literature:

— Mersenne twister and SIMD-oriented fast Mersenne twister;
— Multiplicative congruential generator;
— 64-bit multiplicative lagged Fibonacci generator;
— combined multiple recursive generator;
— generator Philo4x32;
— generator Threefry4x64;
— Marsaglia’s SHR3 shift-register generator;
— modified Subtract-with-Borrow generator;
— modified Lehmer sequence.

These generators are implemented in many commercial packages (for ex-
ample, Matlab).
The quality of each sequence of pseudorandom numbers is checked using

some sets of tests based on the theory of probability [14]–[17]. But no set of
tests can be complete and comprehensive. Therefore, such checks are limited.
Even the simplest visual tests show that widespread sequences do not provide
a sufficiently good uniformity of filling the unit square [18], [19]. The question
of the influence of such unevenness on the actual error of cubatures remains
insufficiently clear.

3. Sobol points

To construct the Sobol sequence, a set of the so-called direction numbers
should be selected. There is some ambiguity in the selection of initial direction
numbers. In early works [1], direction number tables were constructed for

dimensions 𝑝 ⩽ 13 and numbers 𝑛 ⩽ 20 (total number of points 𝑁 ⩽ 220).
Later, direction numbers for higher 𝑝 and 𝑁 were constructed [20]. However,
the direction numbers were also changed. The program is currently available
at 21. The open access option contains 𝑝 ⩽ 50 and 𝑛 ⩽ 31 (𝑁 ≈ 2 ⋅ 109).
The commercial version of the program has 𝑝 ⩽ 216 − 1.
It is important to note that the Sobol sequences are constructed separately

for each 𝑝. It is impossible to obtain a sequence of fewer dimensions from
𝑝-dimensional Sobol sequence. This also applies to magic segments of the
Sobol sequences.
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The Sobol cubature formula has the same form as (2). But the estimate
of its error is not entirely clear. The distribution of points only for magic
𝑁 approaches uniform in properties. For intermediate 𝑁, it is obtained by
discarding some of the points and loses the property of uniformity. Therefore,
only magic 𝑁 should be used for cubatures.
Various attempts have been made to generalize the Sobol sequences. How-

ever, the search for optimal variants of such generalizations invariably led
again to the Sobol sequences. Therefore, such generalizations need to be
treated with caution.

4. Shifted Sobol points

The arrangement of the Sobol points is somewhat asymmetrical. For
example, if number of points 𝑁 = 2𝑛 is taken, then the arithmetic mean of all
points projections on any axis will not be 0.5, but 0.5 (1 − 1/𝑁). Obviously,
this asymmetry is not favourable for obtaining good cubature accuracy.
In the figure 1, black circles show two-dimensional Sobol points for the

first magic numbers. For 𝑛 = 0, the only point lies in the corner of the unit
square. Calculation of the cubature over this point gives a formula of the first
order accuracy. However, if this point is shifted by 0.5 along each coordinate,
then the cubature over the shifted point (light circle) has the second order of
accuracy. For the case 𝑛 = 1, two points are located one in the corner of the
square and one in the center, which will also give the first order of accuracy.
But if these two points are shifted by 0.25 along each coordinate, then the
cubature error obviously decreases. Therefore, a general shift principle for
any number of dimensions can be proposed:

If N = 2n, then add to all coordinates of all points (2N )−1
.

It is advisable to apply this shift only for magic Sobol numbers. In this
case, the shifts are different for different 𝑁.

5. Multigrid calculation

Test calculations show that the actual error decreases as 𝑂 (𝑁−1). This
suggests that it is possible to approximate the integral (and hence its error)
as a function of 𝑁. However, this approximation cannot be smooth, such as
Richardson’s interpolation approximation for grid methods. In this case, the
points are obtained by statistical methods, therefore, their processing must
be carried out using the root-mean-square approximation. To do this, the
type of approximation must be chosen and some weights to the points need
to be assigned.
As a working hypothesis, the law of decreasing error Δ𝑁 ∼ 𝑁−1 was as-

sumed. But since the nature of the error becomes clearly statistical with
increasing 𝑝, the standard deviation of these errors was assumed to be pro-
portional to 𝑁−1/2. This is the weight used for approximation.
The following multigrid procedure is proposed. The calculation with magic

𝑁 = 2𝑛, 𝑛 = 10, 11, … is performed. As a result, a sequence of values of the
integral {𝐼𝑁} is obtained. Now this sequence can be approximated by the
method of least squares

𝐼𝑁 ≈ 𝑎 + 𝑏𝑁−1. (3)
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Figure 1. Sobol magic points for 𝑝 = 2: points – unbiased, circles – shifted;
the 𝑛 values are indicated near the squares

Here 𝑎 is the refined value of the integral. At the same time, the stan-
dard deviation 𝜎𝑎 for the value 𝑎 is calculated. This standard deviation is
a statistical estimate of the accuracy for the found value of the integral.
Note that the beginning of the sequence {𝐼𝑁} corresponding to 𝑛 = 0, 1, … , 9

is not taken into account in approximation (3), since these grids are not
detailed enough, and the rate of decrease of the error does not yet correspond
to 𝑂 (𝑁−1).

6. Test integral

It is expedient to carry out numerical experiments on multidimensional
integrals over the unit cube, the exact values of which are known. Then
the error of the numerical calculation can be directly determined and its
behaviour can be studied. Further, requirements that are appropriate for the
integrand are discussed.
In multidimensional problems, the concept of the effective dimension of

a function is used. For example, consider two functions:

𝑓(x) =
𝑝

∏
𝑗=1

𝑓𝑗 (𝑥𝑗) (4)

and

𝑓(x) = 𝑓1 (
𝑝

∑
𝑗=1

𝛼𝑗𝑥𝑗) ,
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where all 𝑓𝑗(𝑥𝑗) are essentially different from constants. In the first function,

all variables are equally important, and the effective dimension of the function
is 𝑝. The second function depends on only one combination of variables, so
its effective dimension is 1. The higher the effective dimension of the function,
the more difficult the problem. Therefore, the most difficult functions are of
the first type.

Suppose that for a product function each 𝑓𝑗 differs substantially from

zero only on a segment of length 𝛽 of its unit edge. Then the product of
one-dimensional functions will differ significantly from zero in the volume
𝛽𝑝. If 𝛽 is small, then as 𝑝 increases, the volume 𝛽𝑝 decreases rapidly; for
example, for 𝛽 = 0.1 and 𝑝 = 10 the value 𝛽𝑝 = 10−10. In this case, to obtain
acceptable accuracy, any Monte Carlo method will require the number of
nodes 𝑁 ≫ 𝛽−𝑝. It can be seen that in order for the number of points to be
reasonable, 𝛽 should be taken close to one.

Taking these considerations into account, a test of the form (4) have been
chosen. It is not easy, despite its seeming simplicity. All 𝑓𝑗 are assumed to
be the same and equal to the Weierstrass functions

𝑓𝑗 (𝑥𝑗) =
∞

∑
𝑛=0

𝑏𝑛 cos (𝑎𝑛𝜋𝑥𝑗) , (5)

where 𝑎 is an arbitrary odd number that is not equal to one, and 𝑏 is a positive
number less than one. It is known that under the conditions 𝑎𝑏 ⩾ 1, 𝑎 > 1,
the Weierstrass function is continuous, but has no derivative at any point.
This test is extremely difficult. The Weierstrass function is shown in the
figure 2.

Figure 2. Weierstrass function with 𝑎 = 3, 𝑏 = 0.5
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Taking into account the symmetry of the Weierstrass function, the integra-
tion is carried out over a cube with sides 𝑥𝑗 ∈ [0, 0.5]. For convenience, the
Weierstrass function is normalized, the normalization condition is

∫
𝑉

𝑓(x)𝑑x = 1. (6)

7. Calculation results

The integral of the multidimensional Weierstrass function (4), (5) was
calculated using three qualitatively different approaches: regular cubature on
trapezoidal formulae, the classical Monte Carlo method using the Mersenne
twister and shifted Sobol magic points.
These three approaches are compared in terms of the error magnitude with

a fairly modest number of points 𝑁 = 220. The logarithms of the errors
depending on the dimension are shown in the figure 3. Let us analyze the
curves.

Figure 3. Logarithm of the relative error in calculating the integral of the Weierstrass

function for 𝑁 = 220: light triangle is Δ𝑁, circle is 𝜎𝑎 for the shifted Sobol points, black

inverted triangle corresponds to Mersenne twister, black square is for trapezoidal method

Mersenne twister. Beginning with dimension 𝑝 = 11, the curve corre-
sponding to the Mersenne twister lies below all. Despite the good accuracy,
there are no means to confirm it. An attempt to apply the root-mean-square
approximation (3) to the Mersenne twister was unsuccessful: the values of 𝜎𝑎
turn out to be either larger or smaller than the actual error depending on the
dimension 𝑝, and the difference can be significant.
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The standard deviation (𝐷𝑓/𝑁)1/2
can serve as an error estimate of the

Mersenne twister, but the calculation of the variance for some integrals can
be problematic. In addition, the performance of the Monte Carlo method is
highly dependent on the choice of a sequence that simulates random numbers,
so the standard and actual error can vary greatly.
In general, the value of lg |Δ𝑀𝐾| lies in the range from −3.5 to 0 and slowly

increases with increasing dimension 𝑝.
Trapezoidal formula. Its error is determined by the formula

|Δ𝑁| ⩽ 1
12𝑘2 max ∣

𝑑2𝑓𝑗

𝑑𝑥2 ∣ , (7)

where 𝑘 = 𝑁1/𝑝 is the number of nodes along each coordinate. Thus, its

error is 𝑂 (𝑁−2/𝑝); accuracy should decrease rapidly with increasing . The
corresponding curve (black square marker in Fig. 3) illustrates good accuracy
lg |Δ𝑀𝑇| ≈ −5.2 at 𝑝 = 2; this is much more accurate than the classical
Monte Carlo method. However, with increasing 𝑝, the error rapidly increases,
and already at 𝑝 ⩾ 4 it exceeds the error of the Monte Carlo method. At even
higher dimensions, the trapezoidal method quickly becomes uncompetitive.
Sobol sequence. Despite the fact that for high dimensions 𝑝 the Mersenne

twister shows the best result, the shifted Sobol points have a reasonable
estimate of the accuracy. It is the standard deviation 𝜎𝑎. Thus, even in
complex problems, the actual accuracy can be estimated a posteriori using 𝜎𝑎,
the number of points can be increased and the calculation can be repeated.
This is especially important for multidimensional integrals with an unknown
exact answer.

8. Conclusion

The magic Sobol points are the most effective for calculating multidimen-
sional integrals. In this paper, an improvement of these sequences is proposed.
They are called the shifted Sobol magic points, which provide a more uniform
distribution of points in a multidimensional cube. This significantly increases
the accuracy of cubatures.
A significant difficulty with Monte Carlo methods is the a posteriori con-

firmation of the actual accuracy. In this paper, a multigrid algorithm is
proposed that allows to find the grid value of the integral simultaneously with
a statistically reliable estimate of its accuracy. Previously, such estimates
were unknown.
Calculations of representative test integrals with high actual dimension 𝑝

(up to 𝑝 = 16) are carried out. Smooth integrands were considered, as well
as the multidimensional Weierstrass function having no derivative at any
point. These calculations convincingly show the advantages of the proposed
methods.
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Сдвинутые точки Соболя и многосеточный расчёт
методом Монте-Карло

А. А. Белов1, 2, М. А. Тинтул1

1Московский государственный университет им. М.В. Ломоносова
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2 Российский университет дружбы народов
ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

Многомерные интегралы возникают во многих задачах физики. Например, мо-
менты функции распределения в задачах переноса различных частиц (фотонов,
нейтронов и др.) являются 6-мерными интегралами. При расчёте коэффициен-
тов электропроводности и теплопроводности возникают интегралы рассеяния,
размерность которых равна 12. Возникают задачи и с существенно большим
числом переменных. Для вычисления интегралов столь высокой кратности наи-
более эффективен метод Монте-Карло. Однако работоспособность этого метода
сильно зависит от выбора последовательности, имитирующей набор случайных
чисел. В литературе описано большое количество генераторов псевдослучайных
чисел. Их качество проверяется с помощью батарей формальных тестов. Однако
простейший визуальный анализ показывает, что прохождение таких тестов не
гарантирует хорошей равномерности этих последовательностей. Для вычисле-
ния многомерных интегралов наиболее эффективны магические точки Соболя.
В данной работе предложено усовершенствование этих последовательностей —
смещённые магические точки Соболя, обеспечивающие большую равномерность
распределения точек в многомерном кубе. Это ощутимо повышает точность ку-
батур. Существенной трудностью методов Монте-Карло является апостериорное
подтверждение фактической точности. В данной работе предложен многосеточ-
ный алгоритм, позволяющий найти сеточное значение интеграла одновременно
со статистически достоверной оценкой его точности. Ранее такие оценки были
неизвестны. Проведены расчёты представительных тестовых интегралов с высо-
кой фактической размерностью до 16. В качестве подынтегральной функции
выбрана многомерная функция Вейерштрасса, не имеющая производной ни в од-
ной точке. Эти расчёты убедительно показывают преимущества предложенных
методов.

Ключевые слова: многомерный интеграл, метод Монте-Карло, точки Соболя,
многосеточный расчет, апостериорные оценки точности
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An abstract description of the Richardson–Kalitkin method is given for obtaining
a posteriori estimates for the proximity of the exact and found approximate solution
of initial problems for ordinary differential equations (ODE). The problem 𝒫 is
considered, the solution of which results in a real number 𝑢. To solve this problem,
a numerical method is used, that is, the set 𝐻 ⊂ ℝ and the mapping 𝑢ℎ ∶ 𝐻 → ℝ are
given, the values of which can be calculated constructively. It is assumed that 0 is
a limit point of the set 𝐻 and 𝑢ℎ can be expanded in a convergent series in powers

of ℎ: 𝑢ℎ = 𝑢 + 𝑐1ℎ𝑘 + …. In this very general situation, the Richardson–Kalitkin
method is formulated for obtaining estimates for 𝑢 and 𝑐 from two values of 𝑢ℎ. The
question of using a larger number of 𝑢ℎ values to obtain such estimates is considered.
Examples are given to illustrate the theory. It is shown that the Richardson–Kalitkin
approach can be successfully applied to problems that are solved not only by the
finite difference method.

Key words and phrases: finite difference method, ordinary differential equations,
a posteriori errors

1. Introduction

A priori estimates for finding solutions to dynamical systems using the finite
difference method predict an exponential growth of the error with increasing
time [1]. Therefore, long-term computation requires such a small sampling
step that cannot be accepted in practice. Nevertheless, calculations for long
times are carried out and it is generally accepted that they reproduce not the
coordinates themselves, but some average characteristics of the trajectories.
In this case, a posteriori error estimates are used instead of huge a priori ones.
As early as in the works of Richardson [2], for estimating the errors arising in
the calculation of definite integrals by the method of finite differences, it was
proposed to refine the grid, and in the works of Runge a similar technique
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was applied to the study of ordinary differential equations. This approach
was systematically developed in the works of N.N. Kalitkin and his disciples
[3]–[7] as the Richardson method, although, given the role of Kalitkin in its
development, it would be more correct to call it the Richardson–Kalitkin
method.
The method itself is very general and universal, so we set out to present it

in general form, divorcing it from the concrete implementation of the finite
difference method. However, it soon became clear that this method could be
extended to methods that are not finite difference methods, for example, the
method of successive approximations, and even problems that are not related
to differential equations.
In our opinion, this method is especially simply described for a class of

problems in mechanics and mathematical physics, when it is necessary to
calculate a significant number of auxiliary quantities, although only one value
of some combination of them is interesting.

Example 1. On the segment [0, 𝑇 ], we consider the initial problem

𝑑𝑥
𝑑𝑡

= 𝑓(𝑥, 𝑡), 𝑥(0) = 𝑥0,

it is required to find the value of 𝑥 at the end of this segment, i.e., 𝑥(𝑇 ). To
find this value numerically, we will have to calculate 𝑥 approximately over
the entire segment.

Example 2. On the segment [0, 𝑇 ], we consider the dynamical system

𝑑𝑥
𝑑𝑡

= 𝑓(𝑥, 𝑦, 𝑡), 𝑑𝑦
𝑑𝑡

= 𝑔(𝑥, 𝑦, 𝑡),

with initial conditions 𝑥(0) = 𝑥0, 𝑦(0) = 𝑦0. It is required to find the value
of the expression 𝑥 + 𝑦 at the point 𝑡 = 𝑇. To find this value numerically, we
also have to calculate approximately 𝑥 and 𝑦 over the entire segment, then
add the final values.

Example 3. The problem of many bodies is considered, say, the solar
system, and it is required to find out whether the bodies scatter in 10
thousand years, or not. To solve it, it is enough to calculate the sum of the
squares of the distances between the bodies and the center of mass of the
system in 10 thousand years. At the same time, the coordinates and velocities
of the bodies themselves are of no interest to anyone exactly 10 thousand
years later.

Example 4. Let 𝐾 be a unit circle on the plane. Find the first eigenvalue
of the problem

Δ𝑣 + 𝜆𝑣 = 0, 𝑣∣
𝜕𝐾

= 0.

Here, the eigenvalue 𝜆1 is to be found. We cannot find it numerically without
finding the eigenfunction or roots of the determinant, i.e., other eigenvalues.

All these problems have one property in common: the result of the solution
is a real number 𝑢. Various numerical methods are used to solve such
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problems. To substantiate these methods, the errors that occur in intermediate
calculations when calculating auxiliary parameters are estimated, and then
they are summed up. The a priori error estimates obtained in this way turn
out to be enormous. However, in many cases the real situation is much better
than the forecasts obtained in this way. Using example 2, this can be explained
as follows: errors usually made in the calculation of 𝑥 and 𝑦 have different
signs and therefore their contributions to the expression 𝑥 + 𝑦 are canceled.
Having estimated the error in calculating 𝑥 + 𝑦 as the sum of the modules of
errors in determining 𝑥 and 𝑦, we inevitably and significantly overestimate
the error. It will not be superfluous to note that problems whose solution is
just a real number are considered in the topology ℝ. This means that the
numerical solution must be a number that is close to the exact solution in that
topology. However, the topology of the space in which the auxiliary variables
take values is not specified. Usually, numerical methods are constructed so
that these auxiliary variables are found with greater accuracy with respect to
some Euclidean norm. For example, to find 𝑥 + 𝑦 at time 𝑇, you need to find
an approximation to the pair of functions 𝑥(𝑡), 𝑦(𝑡) with respect to the norm

sup
0⩽𝑡⩽𝑇

√|𝑥(𝑡)|2 + |𝑦(𝑡)|2.

In the situation under consideration, such requirements are unnecessarily
stringent.
In this paper, we describe a method for obtaining estimates of errors made

in solving problems of this class in general form based on the Richardson–
Kalitkin method [3], [4], abstracting from the particular choice of numerical
method. In our opinion, this approach makes it possible to clearly see the main
ideas of the Kalitkin method, which usually turn out to be hidden behind the
details of the numerical methods used. Half a century of using the Richardson–
Kalitkin method in practice has shown that its correct application requires
the calculation of not two, but a significantly larger number of approximate
solutions to test the hypothesis of the dominance of the principal term in
the error (see section 4 below). We will discuss one possible modification of
the method for the simultaneous use of all of these solutions for evaluating
solutions and errors.

2. Basic definitions

Let the problem 𝒫 be given, the solution of which is a real number 𝑢. We
will not concretize this problem, let it only be known that this problem has
a solution and, moreover, a unique one.
We are not going to concretize the numerical method for solving this

problem. The use of any numerical method for solving it means replacing
the problem 𝒫 with another problem 𝒫ℎ, the result of which is the mapping
𝑢ℎ ∶ 𝐻 → ℝ. The interpretation of the set 𝐻 essentially depends on the
numerical method used. In some cases this set is a segment (0, ∞), and in
other cases it consists of positive rational numbers. For example, for the finite
difference method, this set is formed by the admissible step lengths. Below
this does not matter, but it is important that the set 𝐻 is a subset of the real
axis and that 0 is a limit point for the set 𝐻.
By analogy with the usual conventions, let us accept the following
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Definition 1. Let 𝑢ℎ ∶ 𝐻 → ℝ be a solution to the problem 𝒫ℎ. If
lim
ℎ→0

𝑢ℎ = 𝑢, then we say that the problem 𝒫ℎ approximates the problem 𝒫.
If 𝑢ℎ = 𝑢 + 𝒪(ℎ𝑘), then we say that the order of approximation of problem 𝒫
by problem 𝒫ℎ is 𝑘.

In the overwhelming majority of cases, the value ℎ has the meaning of the
discretization step of the original problem, and the order of 𝑘 is known. Here
are some examples.

Example 5. Let the problem 𝒫 consist in finding the value of the integral

𝑢 =
1

∫
𝑥=0

𝑑𝑥
1 + 𝑥2 .

Its solution is the number 𝑢 = 𝜋/4, which we do not know exactly. To
calculate it, we cut the segment [0, 1] into 𝑁 ∈ ℕ parts. Let us assume that
𝐻 is formed by all possible inverse natural numbers. Let 𝑢ℎ map this set to

ℝ, putting in correspondence to ℎ = 1
𝑁 the number

𝑁
∑
𝑛=0

ℎ
1 + (𝑛ℎ)2 .

Then 𝑢ℎ = 𝜋/4 + 𝒪(ℎ), i.e., the order of approximation obtained by the
rectangle rule is 1.

Remark 1. It should be noted that the methods of the numerical calcula-
tion of some classes integrals are known when the error depends on the step
value not linearly or quadratically, but exponentially [8], [9].

Example 6. Let us consider the problem from example 1. An explicit
Euler scheme can be used to solve it. We cut the segment [0, 𝑇 ] into 𝑁 ∈ ℕ
parts and take ℎ = 𝑇

𝑁 . Let us put this number in correspondence with the

number 𝑢ℎ = 𝑥𝑁, which is calculated by the recurrent formulas

𝑥𝑛+1 = 𝑥𝑛 + 𝑓(𝑥𝑛, 𝑛ℎ)ℎ, 𝑛 = 0, … , 𝑁 − 1.

Moreover, it is possible to prove an a priori estimate for the error [1]:

|𝑢 + 𝑢 − 𝑢ℎ| = |𝑥(𝑇 ) − 𝑥𝑁| ⩽ 𝐶𝑒𝑎𝑇ℎ,

where 𝐶, 𝑎 are some constants depending only on 𝑓 and the initial data 𝑥0,
but not on ℎ and 𝑇. This immediately implies that 𝑢ℎ = 𝑥(𝑇 ) + 𝒪(ℎ), i.e.,
the order of approximation by the problem obtained using the Euler scheme
is 1.

Basically, the finite difference method will be applied further, but this is
not at all necessary.
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Example 7. To calculate 𝑢 = 𝑥(𝑇 ) from example 1, one can use the
sequential iteration method (Picard’s method). Let 𝑁 ∈ ℕ be the number
of iterations, let us take ℎ = 1/𝑁 and assign this number to the number 𝑢ℎ,
which is calculated as follows. First, 𝑁 functions are calculated by recurrent
formulas

𝑥𝑛+1(𝑡) =
𝑡

∫
𝜏=0

𝑓(𝑥𝑛(𝜏), 𝜏)𝑑𝜏, 𝑛 = 0, … , 𝑁 − 1,

and then 𝑢ℎ = 𝑥𝑁(𝑇 ). In this case 𝑢ℎ → 𝑢 at ℎ → 0, i.e. the problem 𝒫ℎ
approximates the initial problem.

The problem 𝒫ℎ should be simpler than the original one in the sense that
it is possible to calculate the values of the mapping 𝑢ℎ ∶ 𝐻 → ℝ at all
points of 𝐻. In practice, this possibility is limited both by an increase in the
computational complexity when approaching ℎ = 0, and by an increase in the
role of the round-off error.

Definition 2. The value of the function 𝑢ℎ at any point of the set 𝐻 will
be called the approximate solution to the problem 𝒫, and the modulus of the
difference between this value and the solution to the problem 𝒫 is the error
made when solving problems 𝒫 by method 𝒫ℎ.

3. A posteriori error estimates

The Richardson–Kalitkin method can be separated from the finite difference
method by adopting the following definition.

Definition 3. Let 𝑢ℎ ∶ 𝐻 → ℝ be a solution to the problem 𝒫ℎ. If there
exists a constant 𝑐 ≠ 0 such that 𝑢ℎ = 𝑢 + 𝑐ℎ𝑘 + 𝒪 (ℎ𝑘+1) , then we will say
that 𝑐ℎ𝑘 is the leading term of the approximation error for problem 𝒫 by
problem 𝒫ℎ.

Remark 2. In practice, it is usually assumed that the estimate 𝑢ℎ =
𝑢+𝒪(ℎ𝑘) implies the existence of a constant 𝑐 such that 𝑢ℎ = 𝑢+𝑐ℎ𝑘+𝒪(ℎ𝑘+1).
Usually, this can be justified. But the definition 3 specifically states that
𝑐 ≠ 0. If 𝑐 = 0, then one speaks of superconvergence of the method, because
the order of approximation turns out to be greater than that predicted in
theory. For difficulties in applying the Richardson–Kalitkin method in the
case of superconvergence, see [10].

The essence of the Richardson–Kalitkin method is as follows. If we discard
𝒪(ℎ𝑘+1), then 𝑢ℎ = 𝑢 + 𝑐ℎ𝑘. We do not know the values of 𝑢 and 𝑐, but we
can calculate 𝑢ℎ for any value of ℎ. Taking two such values, say ℎ1 and ℎ2,
we have a system of two linear equations

𝑢ℎ(ℎ1) = 𝑢 + 𝑐ℎ𝑘
1, 𝑢ℎ(ℎ2) = 𝑢 + 𝑐ℎ𝑘

2,

resolving which for 𝑢 and 𝑐, we will find some estimates for these quantities. We
are talking about estimates, not values, since they are obtained by discarding

𝒪(ℎ𝑘+1).
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Definition 4. Let 𝑢ℎ ∶ 𝐻 → ℝ be a solution to the problem 𝒫ℎ and there

exists a constant 𝑐 ≠ 0 such that 𝑢ℎ = 𝑢 + 𝑐ℎ𝑘 + 𝒪(ℎ𝑘+1). For any two
ℎ1, ℎ2 ∈ 𝐻 the solution to the system

𝑢ℎ(ℎ1) = 𝑢 + 𝑐ℎ𝑘
1, 𝑢ℎ(ℎ2) = 𝑢 + 𝑐ℎ𝑘

2

with respect to 𝑢 and 𝑐 will be called the Richardson–Kalitkin estimate for
the solution 𝑢 to the problem 𝒫 and the coefficient 𝑐 at the leading term of
the approximation error. We will denote these estimates as �̃�(ℎ1, ℎ2) and

̃𝑐(ℎ1, ℎ2), below we will often omit the indication of their dependence on ℎ1,
ℎ2, if this will not introduce ambiguity into presentation.

Example 8. Consider the initial problem

̇𝑥 = −𝑦, ̇𝑦 = 𝑥, 𝑥(0) = 1, 𝑦(0) = 0,

and let it be required to find 𝑢 = 𝑥(1). We approximate it according to the
explicit Euler scheme and calculate the approximate solution for ℎ1 = 0.1
and ℎ2 = 0.01 in Sage [11]:

𝑢ℎ(ℎ1) = 0.5707904499, 𝑢ℎ(ℎ2) = 0.543038634332351.

The solution of the system

𝑢ℎ(ℎ1) = 𝑢 + 𝑐ℎ1, 𝑢ℎ(ℎ2) = 𝑢 + 𝑐ℎ2

yields an estimate �̃� = 0.539955099269280 for 𝑢 = cos 1 = 0.540302305868140,
and for the coefficient of the leading term of the error ̃𝑐 = 0.308353506307201.
The result looks very reasonable. With ℎ = 0.1, we have an estimate for

the error ̃𝑐ℎ = 0.0308, while the error itself is 0.0304. With ℎ = 0.01, we have
an estimate for the error ̃𝑐ℎ = 0.00308, while the error itself is 0.0027. The
estimate for the solution differs from the solution by only 3.5 ⋅ 10−4, which is
an order of magnitude better than the result with the smallest step.

Richardson–Kalitkin estimates can also be performed in problems for the
solution of which other numerical methods are used, while for specific methods
such estimates themselves are well known, but under different names. For
example, in this way the error is estimated when determining the eigenvalues
by means of the finite element method (FEM) [12].

Example 9. Let it be required to find the smallest eigenvalue of the prob-
lem

Δ𝑣 + 𝜆𝑣 = 0, 𝑣|𝜕𝐾 = 0
in the unit circle 𝐾. Then the answer is the number 𝑢 = 𝜆1. Let us apply the
FEM implementation in the system FreeFem++ [13]. The parameter ℎ will
be the value of 1/𝑁, where 𝑁 is the number of points into which the circle is
divided during triangulation. Then, when using linear elements, the smallest
eigenvalue of the approximate problem is 𝑢ℎ = 𝑢 + 𝑐ℎ2 + 𝒪(ℎ3).
Two-sided estimates for the error were obtained in the PhD thesis by

Panin [14]. Let us take ℎ1 = 1/20 at random, and ℎ2 = 1/100, then

𝑢ℎ(ℎ1) = 6.0173, 𝑢ℎ(ℎ2) = 5.79292.
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The solution of the system

𝑢ℎ(ℎ1) = 𝑢 + 𝑐ℎ2
1, 𝑢ℎ(ℎ2) = 𝑢 + 𝑐ℎ2

2

yields �̃� = 5.78357083333333 against the exact value 𝑢 = 𝑗2
1 =

5.783185962946785, and for the coefficient of the leading term of the er-
ror we get ̃𝑐 = 93.4916666666667.
The result looks very reasonable. For ℎ = 0.01, we have an estimate for

the error ̃𝑐ℎ2 = 9.34 ⋅ 10−3, while the error itself is 9.73 ⋅ 10−3. The estimate
for the solution differs from the solution by only 3.84 ⋅ 10−4, which is an order
of magnitude better than the result for the least ℎ.

4. Justification of the Richardson–Kalitkin method

Justification of the Richardson–Kalitkin method consists of two parts:
first, it is necessary to prove that the used numerical method satisfies the
asymptotic formula

𝑢ℎ = 𝑢 + 𝑐ℎ𝑘 + 𝒪(ℎ𝑘+1).
Second, it is necessary to justify the possibility of omitting 𝒪(ℎ𝑘+1). The

first step essentially depends on the numerical method used and its discussion
is beyond the scope of this article. The second step, on the contrary, has
nothing to do with the choice of a numerical method. Let us consider it in

more detail. To discard the remainder 𝒪(ℎ𝑘+1), it must be substantially less
than the principal term 𝑐ℎ𝑘. For this purpose, first of all, 𝑐 must be nonzero,
which is indicated in definition 4. Further, the considered values of ℎ should
be sufficiently small. We have no a priori data to know in advance how small
the chosen ℎ should be. Finally, in practice, we cannot take ℎ too small as
well, when the round-off error becomes essential in the calculation of 𝑢ℎ.
In order to find a practically suitable interval of ℎ values, N.N. Kalitkin

and his disciples [5]–[7] have recommended to carry out calculations at least
at 10 points rather than only two ones. Richardson’s method can be applied
only for those ℎ, for which the error versus the step plotted in the log-log
scale using these points, lies on a straight line with the slope 𝑘 known from
the theory. If the steps are too large, this plot differs from the straight line

due to the fact that the discarded 𝒪(ℎ𝑘+1) is still large, and if the steps are
too small, the rounding error becomes essential. If the slope of the straight
line differs from 𝑘, then the phenomenon of superconvergence takes place (see
remark 2).

Example 10. Let us return to example 8 and find an approximate solution
by the fourth-order Runge–Kutta method with 15 steps, starting from the step
𝑑𝑡 = 0.1, each time decreasing the step by two times. Taking the approximate
value for 𝑥(1) = cos 1, obtained at the smallest step, as exact, we can plot
the dependence of the error Δ𝑥 = 𝑥𝑛 − 𝑥15 on the step 𝑑𝑡, see the figure 1.
The plot clearly shows an inclined section with a slope of approximately 4,
followed by a horizontal section, interpreted as a region where a round-off
error prevents further refinement of the solution.

With this approach, several natural questions arise. First, the points never
exactly fall on a straight line. Therefore, we need quantitative characteristics
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for the site, which we will consider straight. How can we find them? Second,
since approximate solutions were found not for two, but for many values of
ℎ, how can they be used to refine the solution? Third, the terms in power
series do not have to form a monotonic sequence, therefore, for large ℎ, the
leading term can be significantly less than the next term. Can this possibility
be taken into account explicitly?

3 4 5 6 7 8 9 10
ln t

-30
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-26

-24
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ln x

Figure 1. Dependence of error on step for example 10

5. Usage of several terms in the expansion of 𝑢ℎ
in powers of ℎ

The simplest answers to these questions can be found if we take into account
the following terms in the expansion of 𝑢ℎ in powers of ℎ. Suppose that 𝑢ℎ
expands into a power series

𝑢ℎ = 𝑢 + 𝑐1ℎ𝑘 + 𝑐2ℎ𝑘+1 + … (1)

If we have performed calculations for 𝑁 different values for ℎ, say, for
ℎ = ℎ1, … , ℎ𝑁, then we can estimate the value of 𝑢 and 𝑁 − 1 coefficients,

discarding all terms, starting with 𝑐𝑁ℎ𝑁.

Definition 5. Let the solution 𝑢ℎ ∶ 𝐻 → ℝ to the problem 𝒫ℎ be expanded
in a power series (1), and let there be nonzero coefficients among 𝑐1, … 𝑐𝑁−1.
For any 𝑁 values ℎ1, … ℎ𝑁 ∈ 𝐻 the solution to the system

𝑢ℎ(ℎ𝑛) = 𝑢 + 𝑐1ℎ𝑘
𝑛 + … + 𝑐𝑁−1ℎ𝑁+𝑘−1

𝑛 , 𝑛 = 1, 2, … , 𝑁 (2)

with respect to 𝑢 and 𝑐1, … , 𝑐𝑁−1 will be called an estimate for the solution
𝑢 to the problem 𝒫 and the first coefficients 𝑐 over 𝑁 approximate solutions.
We will denote these estimates as �̃� and ̃𝑐1, … , ̃𝑐𝑁−1.
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As a result of solving system (2) we have: i) the estimate �̃� for the value of

the exact solution, ii) the estimate ̃𝑐1ℎ𝑘 for the error, suitable for sufficiently
small ℎ, and additional information about how small are those terms that are
not taken into account in the Richardson–Kalitkin method.
Of course, as in the previous section, discarding terms, the order of which

is equal to or greater than 𝑁 + 𝑘 requires certain conditions to be met. How-
ever, these conditions are noticeably less restrictive. First, the simultaneous
vanishing of several expansion coefficients seems incredible. Second, we can
consider sufficiently large values of ℎ for which the subsequent terms of the
expansion are still noticeable.

6. Computer experiments

In our tests, we took 𝑁 = 4 and ℎ1 ∈ ℚ ∩ 𝐻 at random, and the remaining
ℎ2, ℎ3, ℎ4 were obtained by dividing ℎ1 by 2, 3 and 4. To avoid introducing
additional rounding errors, system (2) is solved exactly over the field ℚ.
Let us start with the simplest linear example.

Example 11. We will solve the problem from example 8 by the fourth-
order Runge–Kutta method with a uniform step ℎ. With step ℎ1 = 0.1,
we get

𝑢ℎ(0.1) = 0.540302967116884
against

cos 1 = 0.540302305868140 … ,
i.e., 6 correct decimal places. Calculating three more approximate solutions,
we get the estimate for 𝑢 = cos 1 coinciding with the exact value up to 13
digits (the penultimate one). The estimate for the expansion coefficients (1)
allows us to evaluate the error at ℎ = 0.1 as

𝑢ℎ − 𝑢 = 0.007 ⋅ 10−4 − 0.011 ⋅ 10−5 + … = 6 ⋅ 10−7,

as it should be. It is interesting to compare the interpolation polynomials
obtained at the initial step 𝑑𝑡 = 0.1 and 𝑑𝑡 = 0.01: the estimate for 𝑢 = cos 1
coincides with the one obtained earlier up to the last digit, 𝑐1 differs in the
fifth digit, 𝑐2 differs by an order of magnitude, and 𝑐3 — by two orders of
magnitude. We increased the number of bits allocated to a real number, and
made sure that the noted effects are not related to round-off errors.

In the course of our experiments, we came across situations where the
coefficients are monstrously overestimated.

Example 12. Consider the same system

̇𝑥 = −𝑦, ̇𝑦 = 𝑥, 𝑥(0) = 1, 𝑦(0) = 0,

but let it be required to find 𝑢 = 𝑥(0.3). At the first step, ℎ1 = 10−4, we
got a huge estimate ̃𝑐 = 5 ⋅ 1013, while the scatter of estimates is very high.
However, the estimate for cos 0.3 itself coincides with the exact value with
a very high accuracy, and one can easily find such values for the initial step,
at which the estimates for the coefficients look quite reasonable.
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Application of the standard Richardson–Kalitkin method (𝑁 = 2) leads to
even less pleasant results in this example. Take ℎ1 = 0.1 and ℎ2 = 0.05 and
estimate 𝑢 and 𝑐1 using the Richardson–Kalitkin method. Then the estimate

for the error 𝑢ℎ − 𝑢 will be ̃𝑐10.14 = 10−10, which is much less than the actual
error 𝑢ℎ(0.1) − cos(0.1), equal to 2 ⋅ 10−2.
The simplest explanation for these effects is that in the series

𝑢ℎ = cos 0.3 + 𝑐1ℎ4 + 𝑐2ℎ5 + …

the coefficient 𝑐1 is very small, but the coefficient for some large power of
ℎ, on the contrary, is very large. Because of this, firstly, for small steps of
the order of ℎ = 0.01, we already have a value that coincides with the exact
one, and, secondly, our estimates, which are based on the assumption of the
possibility of discarding senior terms, do not work.

Now we proceed to a simplest nonlinear example.

Example 13. Let it be required to find 𝑢 = 𝑥(1) for solving the initial
Volterra–Lotka problem

̇𝑥 = (1 − 𝑦)𝑥, ̇𝑦 = −(1 − 𝑥)𝑦, 𝑥(0) = 0.5, 𝑦(0) = 2

on the segment 0 < 𝑡 < 1. We will solve this problem according to the explicit
Runge-Kutta scheme of the 4th order and estimate the solution with four
steps, starting with ℎ1 = 0.1. For 𝑢, we obtain the estimate

𝑢 = 0.302408337777406,

and for the error

𝑢ℎ(ℎ) − 𝑢 = −0.002 ⋅ 𝑑𝑡4 + 0.00001 ⋅ 𝑑𝑡5 + … .

At the smallest step, we have an error of 10−9, that is, we can rely on more
than 9 decimal places. Starting with ℎ1 = 0.01 we get another estimate, in
which �̃� differs from the previously found value in the last two digits, and ̃𝑐1
differs in the fourth digit.

7. Discussion of experimental results

The experiments performed, first of all, indicate that the proposed general-
ization of the Richardson–Kalitkin method allows, with a very modest number
of steps, to obtain an estimate for the exact solution that coincides with it
up to a round-off error. In this case, instead of 1 calculation, we perform 4
independent ones, which does not waste time at all, since the calculations are
performed in parallel.
The larger the power, the greater the discrepancy in determining the

coefficients for powers of ℎ. It is not hard to explain this fact. All formulas
are derived under an assumption typical of various kinds of mean-value
theorems: for any 𝑠 > 𝑛 there is a constant 𝑀𝑠 such that

∥𝑥 − 𝑐0 −
𝑠

∑
𝑖=1

𝑐𝑖ℎ𝑛+𝑖−1∥ ⩽ 𝑀𝑠ℎ𝑛+𝑠+1.



A.Baddour, M.D.Malykh, Richardson–Kalitkin method in abstract… 281

When solving the interpolation problem, we solve the problem

𝑐0 +
𝑠

∑
𝑖=1

𝑐𝑖ℎ𝑛+𝑖−1
𝑗 = 𝑏𝑗 + 𝜉𝑗ℎ𝑛+𝑠+1

𝑗 ,

where 𝑏𝑗 are the values of 𝑥 for ℎ = ℎ𝑗, and 𝜉𝑗 are unknown quantities, about

which we know that |𝜉𝑗| ⩽ 𝑀𝑠.

Consider, for simplicity, 𝑠 = 2

𝑐0 + 𝑐1ℎ𝑛
1 = 𝑏1 + 𝜉1ℎ𝑛+1

1 , 𝑐0 + 𝑐1ℎ𝑛
2 = 𝑏2 + 𝜉1ℎ𝑛+1

2 .

According to Cramer’s formulas

𝑐0 = 𝑏2ℎ𝑛
1 − 𝑏1ℎ𝑛

2
ℎ𝑛

1 − ℎ𝑛
2

− (ℎ1ℎ2)𝑛 ℎ1𝜉1 − ℎ2𝜉2
ℎ𝑛

1 − ℎ𝑛
2

,

and

𝑐1 = 𝑏1 − 𝑏2
ℎ𝑛

1 − ℎ𝑛
2

+ ℎ𝑛+1
1 𝜉1 − ℎ𝑛+1

2 𝜉2
ℎ𝑛

1 − ℎ𝑛
2

.

For ℎ1 = ℎ, ℎ2 = ℎ/2, the error in 𝑐0 will be of the order of 𝑂(ℎ𝑛+1), and
in 𝑐1 — only of the order of 𝑂(ℎ). As 𝑠 grows, the divergence of orders will
become more and more noticeable.
Of course, the main problem is that we do not know neither 𝑠 nor 𝑀𝑠.

The example, in which superconvergence manifested itself, makes one think
that there are cases when 𝑠 cannot be taken as wanted. But in this case, the
problem of applicability of the described method is reduced to the classical
problem of the theory of power series: how many terms should be taken in the
series in order to have a given accuracy? It is not difficult to answer it if the
recurrent formulas for the coefficients are known, rather than the estimates
for the coefficients of the power series, which become the worse the greater
the power.
In theory, this circumstance is obviously a serious problem. However, in

fact, all problematic cases immediately manifested themselves in the form of
inadequately large coefficients. Thus, as a practical recipe, the generalization
described seems to be quite useful.

8. Conclusion

We described the Richardson–Kalitkin method as a means for evaluating
numerical methods for solving any problem 𝒫, the result of which is a real
number 𝑢. To specify a numerical method for solving the problem 𝒫 means
to specify the set 𝐻 ⊂ ℝ, for which 0 is a limit point, and the mapping
𝑢ℎ ∶ 𝐻 → ℝ, the values of which can be calculated constructively. This
method gives a solution to the problem 𝒫, if lim

ℎ→0
𝑢ℎ = 𝑢.

If there exist 𝑘 ∈ ℕ and numbers 𝑐1, … , 𝑐𝑁, among which there are nonzero
numbers such that

𝑢ℎ = 𝑢 + 𝑐ℎ𝑘 + … 𝑐𝑁ℎ𝑘+𝑁 + 𝒪(ℎ𝑘+𝑁+1),
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then from 𝑁 values of the mapping 𝑢ℎ it is possible to estimate the exact
solution of the original problem and the coefficients 𝑐1, … , 𝑐𝑁, characterizing
the error of the numerical method. The examples show that the higher the
coefficient number, the worse these estimates are, but on the whole they
characterize the numerical method quite accurately. The values of 𝑢ℎ are
calculated independently, so the calculation of such problems can be naturally
parallelized.
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Метод Ричардсона–Калиткина в абстрактном
изложении

Али Баддур1, М. Д. Малых1, 2
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ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

2Лаборатория информационных технологий им. М.Г. Мещерякова
Объединённый институт ядерных исследований

ул. Жолио-Кюри, д. 6, Дубна, Московская область, 141980, Россия

Дано абстрактное описание метода Ричардсона-Калиткина для получения
апостериорных оценок близости точного и найденного приближённого решения
начальных задач для обыкновенных дифференциальных уравнений (ОДУ).
Рассматривается задача 𝒫, результатом решения которой является вещественное
число 𝑢. Для решения этой задачи используется численный метод, то есть
заданы множество 𝐻 ⊂ ℝ и отображение 𝑢ℎ ∶ 𝐻 → ℝ, значения которого имеется
возможность вычислять конструктивно. При этом предполагается, что 0 является
предельной точкой множества 𝐻, 𝑢ℎ можно разложить в сходящийся ряд по

степеням ℎ: 𝑢ℎ = 𝑢 + 𝑐1ℎ𝑘 + …. В этой весьма общей ситуации сформулирован
метод Ричардсона–Калиткина получения оценок для 𝑢 и 𝑐 по двум значениям 𝑢ℎ.
Рассмотрен вопрос об использовании большего числа значений 𝑢ℎ для получения
такого рода оценок. Приведены примеры, иллюстрирующие теорию. Показано,
что подход Ричардсона–Калиткина с успехом может быть применён к задачам,
которые решаются не только методом конечных разностей.

Ключевые слова: метод конечных разностей, обыкновенные дифференциаль-
ные уравнения, апостериорные ошибки


