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On the possibility of averaging the equations
of an electron motion in the intense laser radiation
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The problem of averaging of the relativistic motion equations of electron in the
intense laser radiation, caused by the decreasing of the rate of wave phase change
due to the Doppler’s effect, is considered. As a result the phase can go from the “fast”
to “slow” variables of the motion, so averaging over the phase becomes impossible.
An analysis is presented of the conditions which are necessary for averaging of the
relativistic equations of motion over the “fast” phase of the intense laser radiation
on the base of the general principles of the averaging method. Laser radiation is
considered in the paraxial approximation, where the ratio of the laser beam waist
to the Rayleigh length is accepted as a small parameter. It is supposed that the
laser pulse duration is of the order if the laser beam waist. In this case first-order
corrections to the vectors of the laser pulse field should be taken into account. The
general criterion for the possibility of the averaging of the relativistic motion equations
of electron in the intense laser radiation is obtained. It is shown that an averaged
description of the relativistic motion of an electron is possible in the case of a fairly
moderate (relativistic) intensity and relatively wide laser beams. The known in the
literature analogical criterion has been obtained earlier on the base of the numerical
results.

Key words and phrases: intense laser pulse, relativistic electron, equations of
motion, averaging of equations, criterion for averaged description of motion

1. Introduction

The nature of the motion of electrons in the field of electromagnetic waves
substantially depends on the wave intensity, which is characterized by the di-
mensionless parameter 𝑔 = 𝑒𝐸/𝜔𝑚𝑒𝑐. Here 𝐸 is the electric field amplitude
of the wave, 𝜔 is its angular frequency, 𝑒 and 𝑚𝑒 are the electron charge and
mass, respectively, 𝑐 is the velocity of light in vacuum. The first papers [1], [2]
were devoted to the nonrelativistic motion of an electron in a high-frequency
electromagnetic field of low intensity (parameter 𝑔 ≪ 1). It was shown by av-
eraging over fast field oscillations, and expansions in terms of the parameter 𝑔,
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that the particle was subjected to the action of an averaged (ponderomo-
tive) force. Later, the relativistic generalization of the ponderomotive force
was considered under the condition that the parameter 𝑔 was small [3], [4].
It was also noted that relativistic effects lead to various features of the av-
eraged force [4]. In the field of high-power laser radiation, the parameter
𝑔 is large (𝑔 ⩾ 1). So expansions in terms of the parameter 𝑔 become im-
possible. In the case of electrons, the parameter 𝑔 = 1, when the electric
field strength 𝐸𝑟 (V/cm) = 𝑚𝑒𝑐𝜔/𝑒 = 3.21 ⋅ 1010/𝜆 (𝜇𝑚), where 𝜆 (𝜇𝑚) is
the wavelength. Radiation with electric field strength 𝐸 ⩾ 𝐸𝑟 is called rel-
ativistically strong [5]. The parameter 𝑔 is commonly represented in the
form:

𝑔 = 0.855 ⋅ 10−9𝜆
√

𝐼, (1)

where 𝐼 = (𝑐𝐸2/8𝜋) [W/cm2] is the intensity of the laser pulse. The parameter
𝑔 is small in the case of a relatively weak field, when 𝐼 ≪ 𝐼𝑟. Here 𝐼𝑟 ≡
𝑚2

𝑒𝑐3𝜔2/8𝜋𝑒2 is the relativistic intensity determined by the electric field

strength 𝐸𝑟. Intensity of modern lasers can reach 𝐼 ⩾ 1018 W/cm2 [6]–[8].

In the study of particle motion, an adequate description of the laser radiation
field plays an important role. When describing laser radiation, the paraxial
approximation and its modifications is often used [9]–[13] which are based on
the expansion of field vectors in terms of a small parameter

𝜇 = 𝑎/𝑍𝑅 ≡ 2/𝑘𝑎 ≪ 1. (2)

Here 𝑎 is the size of the laser beam in focus (beam waist), 𝑍𝑅 = 𝑘𝑎2/2 is
the Rayleigh length, 𝑘 = 2𝜋/𝜆 = 𝜔/𝑐 is the wave number. We assume that
the laser field propagates in the 𝑧-direction. From the Maxwell equations,
one can find the expressions for the transverse components of the radiation
field vectors E0

⟂𝑚, B0
⟂𝑚 of the zero approximation in the form of Gaussian

beams of various modes 𝑚 [9]–[13]. Longitudinal components 𝐸1
𝑧𝑚, 𝐵1

𝑧𝑚 also
arise, which are of the first-order quantities. The parameter (2) establishes
the relation between the wavelength of radiation and the size of the focal
spot. Powerful laser radiation also has a characteristic scale — the length (or
duration Δ𝑡) of the pulse. In the case of extended pulses, the corrections to
the transverse components of the radiation field are second-order quantities [9].
If the pulse length 𝑐Δ𝑡 and the size of the focal spot 𝑎 are of the same order
𝑐Δ𝑡 ∼ 𝑎, then the first-order corrections to the transverse components of the
field vectors E1

⟂𝑚, B1
⟂𝑚 appear [10]–[13]. In this case, the pulsed character of

the radiation is specified by a fairly smooth pulse function 𝑓(𝜎), where the
parameter 𝜎 = (𝑡 − 𝑧/𝑐)/Δ𝑡.

In the case of tightly focused laser radiation with the intensity 𝐼 ⩾
1022 W/cm2, the size of the focal spot can be equal to or smaller than
the wavelength. In this case, the parameter (2) is not small, so that the
paraxial approximation is not applicable and an exact solution of the Maxwell
equations is necessary [14].

The presence of a small parameter (2) in the equations of the electron
motion allows us to use the perturbation theory and perform averaging over
fast oscillations of radiation. When they derive the ponderomotive force of
a laser pulse, it is usually assumed that the wave amplitude varies slowly
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with respect to the wave phase (for example [15], [16]). However, the specific
conditions for the relative change of these parameters are not considered.
Meanwhile, the absence of such an analysis can lead to the misuse of averaging
of the equations of motion. The fact is that during relativistic motion, the
frequency of the radiation that the particle “sees” decreases due to the Doppler
shift: 𝜔′ = 𝜔(1 − 𝑣𝑧/𝑐). Here 𝑣𝑧 is the component of the particle velocity
in the direction of the laser pulse propagation. Doppler frequency shift
slows down the rate of wave phase change. Therefore, at a sufficiently high
longitudinal velocity of the particle, the rate of phase change may turn out
to be comparable with the change in the wave amplitude. This problem was
partially touched upon in the paper [4]. However, the conditions under which
the averaging of the equations of motion is permissible were not discussed
in detail. It was verified in the work [10] by numerical calculations that
the domain of validity of the averaged description of the electron motion in
the ultraintense laser pulse was given by the condition 1 − 𝑣𝑧/𝑐 ≫ 𝜀, where
𝜀 ≡ 𝜇/2. However, the meaning of this condition and its validity was not
discussed.

This paper is devoted to the detailed analysis of the conditions for averaging
the relativistic equations of the electron motion in the field of high-power
laser radiation with a sufficiently long pulse duration such that 𝜆 ≪ 𝑐Δ𝑡 ∼ 𝑎.
In this case, the existence of a small parameter (2) is assumed as in the
work [10].

2. Basic relations

The motion of an electron is described by the following equations:

𝑑𝑝𝑥
𝑑𝑡

= −(1 − 𝑣𝑧/𝑐)𝑒𝐸𝑥𝑚 − 𝑒𝐵1
𝑧𝑚𝑝𝑦/𝑚𝑒𝑐𝛾,

𝑑𝑝𝑦

𝑑𝑡
= −(1 − 𝑣𝑧/𝑐)𝑒𝐸𝑦𝑚 + 𝑒𝐵1

𝑧𝑚𝑝𝑥/𝑚𝑒𝑐𝛾,

𝑑𝑝𝑧
𝑑𝑡

= −𝑒𝐸1
𝑧𝑚 − 𝑒(𝑝𝑥𝐸𝑥𝑚 + 𝑝𝑦𝐸𝑦𝑚)/𝑚𝑒𝑐𝛾,

(3)

𝑑r
𝑑𝑡

= p

𝑚𝑒𝛾
, (4)

𝑑𝛾
𝑑𝑡

= − 𝑒
(𝑚𝑒𝑐)2𝛾

pE. (5)

Here p = (𝑝𝑥, 𝑝𝑦, 𝑝𝑧) is the electron momentum vector, 𝛾 is the relativistic

factor (dimensionless energy). The vectors of the laser field E𝑚, B𝑚 of an
arbitrary mode 𝑚 taking into account first-order terms are determined by the
formulas [13] (or [10]). So E𝑚 = E0

𝑚 +E1
𝑚 and B𝑚 = B0

𝑚 +B1
𝑚. Along with

the equations (3), it is necessary to use the equation for the wave phase 𝜃:

𝑑𝜃
𝑑𝑡

= −𝜔(1 − 𝑣𝑧/𝑐) ≡ −𝜔𝐺/𝛾. (6)
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Here
𝐺 ≡ 𝛾 − 𝑝𝑧/𝑚𝑒𝑐. (7)

Let’s note that the phase that the particle “senses” in the laser field differs from
the phase 𝜃 by additional small terms [9]–[13]. However, in the case under
consideration, these terms are not significant. The equations of motion (3) in
the field of high-power laser radiation are very complicated for an analytical
solution. Therefore, numerical methods of solution are often used that allow
one to study some features of an electron motion in a laser field [10], [17]–[19].
In this case, most often, laser radiation is specified in the form of a Gaussian
beam of the fundamental mode, even at 𝑔 ≫ 1, which, in general, is incorrect
due to the following reasons: Solution of the Maxwell equations in the form
of Gaussian (or Hermite–Gaussian) laser beams is the result of expansion of
the field strength over the parameter (1). In the case of the ultra-intense and
ultra-short laser pulses the size of the focal spot can be comparable with the
wavelength [14]. So, the relation (1) is violated and description of the laser
radiation in the form of the Gaussian beams becomes invalid. In this case
exact solution of the Maxwell equations should be found [14].

3. Conditions for relativistic equations of motion
averaging

A simplified description of electron interaction with a laser is achieved by
averaging the equations of motion over the wave phase. Various versions of
the averaged equations of motion have been considered in many works [20]–
[24].

To average equations (3) over the phase 𝜃, it must be a “rapidly” changing
quantity [25]. It follows from the equation (6) that this depends on the
difference 1 − 𝑣𝑧/𝑐 ≡ Δ, where 0 < Δ ⩽ 1 (if the particle moves in the
direction of wave propagation). At Δ ∼ 1 the phase changes “quickly” and
averaging over the phase is possible. The last is a general condition for
averaging the equations of motion. In the ultrarelativistic limit (Δ ≪ 1)
the phase 𝜃 becomes a “slow” (or “semi-fast”) variable as well as the wave
amplitude. In this case, the electron motion changes significantly and becomes
more complicated [10]. In the presence of a unique small parameter (2), it is
quite natural to present the above general averaging criterion in the modified
form [10]:

Δ ∼ 1 ≫ 𝜇. (8)

It follows from (6), that the difference Δ = 𝐺/𝛾, where the quantity 𝐺,
according to equations (3), satisfies the equation:

𝑑𝐺
𝑑𝑡

= 𝑒(1 − 𝑣𝑧/𝑐)𝐸1
𝑥𝑚/𝑚𝑒𝑐 + … . (9)

One can see that the quantity 𝐺 is an integral of motion only in the case of
a plane electromagnetic wave in vacuum (𝐸1

𝑧𝑚 = 0). In this case, the value
𝐺 is determined by the initial conditions: 𝐺 = 𝛾(0) − 𝑝𝑧(0)/𝑚𝑒𝑐. If one
considers the particles at rest at the initial instant of time, then 𝐺 = 1. In
the case of laser radiation, the longitudinal field 𝐸1

𝑧𝑚 always exists and plays
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an essential role in the motion of electrons. So, in general, the quantity 𝐺
contains a slowly changing part as well as quickly oscillating corrections with
small amplitudes. However, it is sometimes believed that 𝐺 = 1 also in the
case of laser radiation [11].

Let us further consider the averaging condition (8). In this case, the value
𝐺 can be represented as the expansion in terms of the parameter 𝜇:

𝐺 = 𝐺0 + 𝐺1 + … , (10)

where 𝐺0 (the averaged value of the quantity 𝐺) does not depend on the
wave phase 𝜃, while 𝐺𝑖 are periodic functions. According to equation (9), the
quantity 𝐺0 remains constant up to the first-order terms. It follows from
the condition (8) that averaging of the equations of motion is possible if the
following inequality is fulfilled:

𝛾𝜇 ≪ 𝐺0 ∼ 1 (11)

or
𝛾 ≪ 1/𝜇 = 𝜋𝑎/𝜆. (12)

This condition must be satisfied both during the injection of particles in
the radiation field, and during their further movement. It follows from (11),
(12) that an averaged description of motion is allowed when the energy of an

accelerating particle is limited. Typically [10] the parameter 𝜇 < 6.4 ⋅ 10−2.
So the energy of the particle is restricted by the condition 𝛾 ≪ 17.

Let us consider the relativistic factor 𝛾 = √1 + 𝑝2/(𝑚𝑐)2. With the

definition (7), it is easy to obtain the following equation:

𝛾 = [1 + 𝐺2 + 𝑝2
⟂/(𝑚𝑒𝑐)2]/2𝐺. (13)

Here 𝑝2
⟂ = 𝑝2

𝑥 + 𝑝2
𝑦. It follows from the system of equations (3) that

𝑝⟂ ∼ 𝑔𝑚𝑒𝑐. Then from (13), we obtain the following estimate: 𝛾 ∼ 1 + 𝑔2/2.
Given the inequality (12), we conclude that the averaging of electron motion
equations in the field of relativistically intense laser radiation is possible if
a rather stringent condition is satisfied:

1 + 𝑔2/2 ≪ 𝜋𝑎/𝜆. (14)

Thus, the averaging of the equations of motion is possible in the case of
fairly moderate intensity of laser radiation and a relatively wide laser beam
(𝑎/𝜆 ≫ 1). In the case of ultra-intense radiation (𝑔 ≫ 1), as it was already
noted, the wavelength of the laser beam may be comparable with its size in
the focus. Then the parameter in (2) turns out to be large, and expansion
in the terms of this parameter becomes impossible. Moreover, at 𝑔 ≫ 1 the
difference 1 − 𝑣𝑧/𝑐 ≅ [1 + 𝑝2

⟂/(𝑚𝑒𝑐)2]/2𝛾2 ∼ 𝑔−2 ≪ 1, and motion of an
electron becomes very complicated as it was noted in the paper [10]. That
means that the concept of the relativistic ponderomotive force has rather
restricted domain of validity.



110 DCM&ACS. 2021, 29 (2) 105–113

4. Conclusion

It is shown that the condition 1 − 𝑣𝑧/𝑐 ≫ 𝜇/2, obtained by computer
calculations in the paper [10], really corresponds to the general criterion (8)
for averaging of the classical relativistic equations of electron motion in the
intense laser beam. It leads to the conclusion that averaged description of the
relativistic electron motion is possible at limited electron energy and limited
intensity of the laser radiation, as it is established by the inequalities (12),
(14). So averaging the equations of an electron motion over the wave phase
seems to be possible in the case of a fairly moderate intensity and a relatively
wide laser beam. Therefore, in general, it is impossible to consider the problem
of the ponderomotive acceleration of electrons at very high intensity of the
laser radiation. It should be particularly emphasized that for the averaging
procedure it is necessary to take into account not only intensity but also other
characteristics of the laser pulse.
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О возможности усреднения релятивистских уравнений
движения электрона в поле мощного лазерного

излучения

В. П. Милантьев

Российский университет дружбы народов
ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

Рассмотрена проблема усреднения релятивистских уравнений движения элек-
трона в поле мощного лазерного излучения, вызванная уменьшением скорости
изменения фазы волны из-за эффекта Доплера. Вследствие этого фаза может
перейти из числа «быстрых» в число «медленных» переменных движения, так
что усреднение по фазе становится невозможным. На основе общих принципов
метода усреднения проведён анализ условий, при которых допустимо усреднение
уравнений движения по «быстрой» фазе излучения. Лазерное излучение рассмат-
ривается в параксиальном приближении, в котором малым параметром является
отношение сужения лазерного пучка к рэлеевской длине. Предполагается, что
протяжённость импульса сопоставима с порядком сужения лазерного пучка.
В этом случае необходимо учитывать поправки первого порядка к векторам по-
ля лазерного импульса. Получен общий критерий, определяющий возможность
усреднения релятивистских уравнений движения частицы в поле мощного лазер-
ного излучения. Показано, что усреднённое описание релятивистского движения
электрона возможно в случае достаточно умеренной (релятивистской) интен-
сивности и относительно широких лазерных пучков. Известный в литературе
аналогичный критерий был получен ранее на основе численных расчётов.

Ключевые слова: мощный лазерный импульс, релятивистский электрон, урав-
нения движения, усреднение уравнений, критерий для усреднённого описания
движения
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Investigation of the existence domain for Dyakonov
surface waves in the Sage computer algebra system
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Surface electromagnetic waves (Dyakonov waves) propagating along a plane in-
terface between an isotropic substance with a constant dielectric constant and an
anisotropic crystal, whose dielectric tensor has a symmetry axis directed along the
interface, are considered. It is well known that the question of the existence of such
surface waves is reduced to the question of the existence of a solution to a certain
system of algebraic equations and inequalities. In the present work, this system is
investigated in the Sage computer algebra system.

The built-in technique of exceptional ideals in Sage made it possible to describe the
solution of a system of algebraic equations parametrically using a single parameter,
with all the original quantities expressed in terms of this parameter using radicals. The
remaining inequalities were only partially investigated analytically. For a complete
study of the solvability of the system of equations and inequalities, a symbolic-
numerical algorithm is proposed and implemented in Sage, and the results of computer
experiments are presented. Based on these results, conclusions were drawn that
require further theoretical substantiation.

Key words and phrases: surface waves, Dyakonov waves, electromagnetic waves,
computer algebra, Sage

1. Introduction

In the 1980s, a special class of solutions to Maxwell’s equations was theoret-
ically discovered, namely, electromagnetic waves traveling along the interface
between two dielectrics, the intensity of which rapidly decreases with distance
from the interface [1]–[6]. These waves are called Dyakonov surface waves.
Experimental observation of surface waves was carried out quite recently [7],
[8]. In theoretical works, as in the work of Dyakonov itself [2], the question of
the existence of surface waves was reduced to the question of the existence
of a solution to a certain system of algebraic equations and inequalities that
cannot be solved analytically, which hinders further research. In this paper,
it will be shown what computer algebra systems can give for these systems.
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2. Surface waves

We investigate the classical problem of waves propagating along the interface
of an anisotropic medium with permittivity

𝜖 = diag(𝜖𝑜, 𝜖𝑜, 𝜖𝑒)

and isotropic medium with constant permittivity 𝜖. For definiteness, let the
plane 𝑥 = 0 serve as an interface. The field in the anisotropic medium (𝑥 < 0)
is sought in the form

⃗𝐸 = (𝑎𝑜 ⃗𝐸𝑜𝑒𝑝𝑜𝑥 + 𝑎𝑒 ⃗𝐸𝑒𝑒𝑝𝑒𝑥) 𝑒𝑖𝑘𝑦𝑦+𝑖𝑘𝑧𝑧−𝑖𝜔𝑡,

�⃗� = (𝑎𝑜�⃗�𝑜𝑒𝑝𝑜𝑥 + 𝑎𝑒�⃗�𝑒𝑒𝑝𝑒𝑥) 𝑒𝑖𝑘𝑦𝑦+𝑖𝑘𝑧𝑧−𝑖𝜔𝑡.

Here 𝜔 is the circular frequency of the wave, 𝑘0 = 𝜔/𝑐 is the wave number,

�⃗�⟂ = (0, 𝑘𝑦, 𝑘𝑧) is its wave vector, 𝑎𝑜, 𝑎𝑒 are the amplitudes of two partial

waves, and positive numbers 𝑝𝑜, 𝑝𝑒 characterize the rate of wave decay in the
anisotropic medium. Maxwell’s equations give

𝑝2
𝑜 = 𝑘2

𝑦 + 𝑘2
𝑧 − 𝜖𝑜𝑘2

0,

𝑝2
𝑒 = 𝑘2

𝑦 + 𝜖𝑒
𝜖𝑜

𝑘2
𝑧 − 𝜖𝑒𝑘2

0
(1)

and for the vectors ⃗𝐸𝑜, … , �⃗�𝑒, explicit expressions are obtained, which we
will not present here.

For the isotropic medium (𝑥 > 0) the field is described by similar formulas

⃗𝐸 = (𝑏𝑜 ⃗𝐸′
𝑜 + 𝑏𝑒 ⃗𝐸′

𝑒) 𝑒−𝑝𝑥𝑒𝑖𝑘𝑦𝑦+𝑖𝑘𝑧𝑧−𝑖𝜔𝑡,

�⃗� = (𝑏𝑜�⃗�′
𝑜 + 𝑏𝑒�⃗�′

𝑒) 𝑒−𝑝𝑥𝑒𝑖𝑘𝑦𝑦+𝑖𝑘𝑧𝑧−𝑖𝜔𝑡,

but now the constant 𝑝, which characterizes the field decrease in the isotropic
medium, turns out to be the same:

𝑝2 = 𝑘2
𝑦 + 𝑘2

𝑧 − 𝜖𝑘2
0. (2)

The conditions for matching electromagnetic fields at the interface lead
to a system of homogeneous linear equations for the amplitudes 𝑎𝑜, 𝑎𝑒, 𝑏𝑜, 𝑏𝑒.
The condition of zero determinant of this system gives the equation

((𝑘2
𝑧 − 𝜖𝑘2

0)𝑝𝑜 + (𝑘2
𝑧 − 𝜖𝑜𝑘2

0)𝑝)((𝑘2
𝑧 − 𝜖𝑘2

0)𝜖𝑜𝑝𝑒 + (𝑘2
𝑧 − 𝜖𝑜𝑘2

0)𝜖𝑝) =
= (𝜖𝑜 − 𝜖)2𝑘2

𝑦𝑘2
𝑧𝑘2

0. (3)

If real parameters 𝑘𝑦, 𝑘𝑧, 𝑝𝑜, 𝑝𝑒 and 𝑝 satisfy four algebraic equations (1),

(2) and (3), then we get a solution to Maxwell’s equations in the integral
form defined in the entire space. These solutions exponentially decrease at
|𝑥| → ∞, if the solution is in the domain



116 DCM&ACS. 2021, 29 (2) 114–125

𝑝𝑜 > 0, 𝑝𝑒 > 0, 𝑝 > 0 (4)

of five-dimensional space 𝑘𝑦𝑘𝑧𝑝𝑜𝑝𝑒𝑝.

The existence of solution to this system does not ensure that the resulting
field is not identically zero, an example will be given below. This issue requires
additional check.

3. Investigation of the system of algebraic equations

Consider in more detail the above system of four algebraic equations (1),
(2), and (3).

It is possible to eliminate 𝑘0 from this system by assuming

𝑝 = 𝑘0𝑞, 𝑝𝑜 = 𝑘0𝑞𝑜, 𝑝𝑒 = 𝑘0𝑞𝑒

and 𝑘𝑦 = 𝑘0𝛽, 𝑘𝑧 = 𝑘0𝛾.

Then the system of equations is written in the form

⎧{{{{
⎨{{{{⎩

𝑞2
𝑜 = 𝛽2 + 𝛾2 − 𝜖𝑜,

𝑞2
𝑒 = 𝛽2 + 𝜖𝑒

𝜖𝑜
𝛾2 − 𝜖𝑒,

𝑞2 = 𝛽2 + 𝛾2 − 𝜖,
((𝛾2 − 𝜖)𝑞𝑜 + (𝛾2 − 𝜖𝑜)𝑞)((𝛾2 − 𝜖)𝜖𝑜𝑞𝑒 + (𝛾2 − 𝜖𝑜)𝜖𝑞) =
= (𝜖𝑜 − 𝜖)2𝛽2𝛾2.

(5)

This is a system of 4 equations for 5 unknowns, so you can exclude 3
unknowns from it and find a connection between the remaining two. Since

for applications the direction of the vector �⃗�⟂, that is, the ratio of 𝛽 and 𝛾,
is most interesting, it is quite natural to try to exclude the quantities 𝑞, 𝑞𝑜,
𝑞𝑒, which characterize the rate of decay of the solution with distance from
surface 𝑥 = 0. However, in this way, a very complex equation is obtained,
which then has to be investigated numerically.

However, it is easy to see that the unknowns 𝛽 and 𝛾 enter the system
only as squares, so it is convenient to exclude them. We did not do it by
hand, but used the technique of exceptional ideals [9], implemented in the
Sage computer algebra system Sage. We have eliminated the unknowns 𝛽,
𝛾, 𝑞, and obtained an equation of the form 𝐹(𝑞𝑜, 𝑞𝑒) = 0, whose coefficients
depend only on permittivities. The right-hand side of this equation can be
represented as a product of three factors. Consider each of them separately.

First, system (5) has a solution with 𝑞𝑒 = 𝑞𝑜. Then the difference of the
first two equations of system (5) yields

𝜖𝑒 − 𝜖𝑜
𝜖𝑜

𝛾2 − (𝜖𝑒 − 𝜖𝑜) = 0

or 𝛾2 = 𝜖𝑜.
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Such a solution really exists, but on it 𝑘2
𝑧 − 𝜖𝑜𝑘2

0 = 0, so that 𝑏𝑜 = 𝑏𝑒 = 0
(the field in the isotropic medium is zero) and ⃗𝐸𝑜 and ⃗𝐸𝑒 become linearly
dependent. Therefore, even at nonzero 𝑎𝑜, 𝑎𝑒 the field in the anisotropic
medium can be zero. From general considerations it is obvious that it is just
so in the case considered: the field cannot flow from the anisotropic medium.

The second factor yields

(𝑞2
𝑒 − 𝑞2

𝑜)𝜖𝑜 = (𝜖 − 𝜖𝑜)(𝜖𝑒 − 𝜖𝑜).

The difference of first two equations of system (5) yields

(𝑞2
𝑒 − 𝑞2

𝑜)𝜖𝑜 = (𝜖𝑒 − 𝜖𝑜)(𝛾2 − 𝜖𝑜).

Therefore, 𝛾2 = 𝜖. This is the second trivial case: now 𝑎𝑜 = 𝑎𝑒 = 0 and the
field is absent in the anisotropic medium.

Ignoring trivial fields, we see that system (5) has a solution if and only if
the third factor turns into zero:

− 𝑞4
𝑜𝜖2 − 2𝑞3

𝑜𝑞𝑒𝜖2 − 𝑞2
𝑜𝑞2

𝑒𝜖2 − 2𝑞2
𝑜𝑞2

𝑒𝜖𝜖𝑜 − 2𝑞𝑜𝑞3
𝑒𝜖𝜖𝑜 + 𝑞2

𝑜𝑞2
𝑒𝜖2

𝑜 − 𝑞4
𝑒𝜖2

𝑜+
+ 2𝑞4

𝑜𝜖𝜖𝑒 + 2𝑞3
𝑜𝑞𝑒𝜖𝜖𝑒 + 2𝑞3

𝑜𝑞𝑒𝜖𝑜𝜖𝑒 + 2𝑞2
𝑜𝑞2

𝑒𝜖𝑜𝜖𝑒−
− 𝑞2

𝑒𝜖𝜖2
𝑜 + 𝑞2

𝑒𝜖3
𝑜 − 2𝑞𝑜𝑞𝑒𝜖𝜖𝑜𝜖𝑒 + 2𝑞𝑜𝑞𝑒𝜖2

𝑜𝜖𝑒 − 𝑞2
𝑜𝜖𝜖2

𝑒 + 𝑞2
𝑜𝜖𝑜𝜖2

𝑒 = 0. (6)

This expression is somewhat cumbersome, however, its structure is easily
seen

𝐹4(𝑞𝑜, 𝑞𝑒) + 𝐹2(𝑞𝑜, 𝑞𝑒) = 0,
where 𝐹4, 𝐹2 are homogeneous functions of the 4-th and 2-nd order 𝑞𝑒 = 𝑡𝑞𝑜,
so that we rewrite this equation as

𝑞2
𝑜𝐹4(1, 𝑡) + 𝐹2(1, 𝑡) = 0.

Hence

𝑞𝑜 = √−𝐹2(1, 𝑡)
𝐹4(1, 𝑡)

,

where 𝑡 can take any values.

The theory of exclusive ideals applied above yields an equation

𝐹(𝑞𝑜, 𝑞𝑒) = 0

as a necessary and sufficient condition for the existence of a solution to system
(5), but this solution can be complex and infinitely large [9]. In this case
one can express the solution in terms of parameter 𝑡 in radicals. Thus, the
investigation of solvability of the system of algebraic equations reduced to an
investigation of one equation solved in radicals.

Quantities 𝑞𝑒 and 𝑞 are rather simply expressed via 𝑡 and 𝑞𝑜: by definition

𝑞𝑒 = 𝑡𝑞𝑜,
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and due to the first and the third equation of system (5)

𝑞2 = 𝑞2
𝑜 + 𝜖𝑜 − 𝜖. (7)

The quantities 𝛽2, 𝛾2 can be reconstructed by solving the system of equa-

tions linear with respect to 𝛽2, 𝛾2

{
𝛽2 + 𝛾2 = 𝑞2

𝑜 + 𝜖𝑜,
𝜖𝑜𝛽2 + 𝜖𝑒𝛾2 = 𝜖𝑜𝑞2

𝑒 + 𝜖𝑜𝜖𝑒

formed by the first and the second equation of system (5). Solving it we get

𝛽2 = (𝜖𝑒 − 𝜖𝑜𝑡2)𝑞2
𝑜

𝜖𝑒 − 𝜖𝑜
(8)

and

𝛾2 =
𝜖𝑜(𝜖𝑒 − 𝜖𝑜 + (𝑡2 − 1)𝑞2

𝑜)
𝜖𝑒 − 𝜖𝑜

. (9)

The issue of extracting radicals is not trivial here. From the general theory,
we know that at least one choice of the root branch should result in a solution.
Since only squares of 𝛽, 𝛾 enter system (5), the solution will be obtained for
any choice of signs before the radicals. However, 𝑞 enters the system in the
first power, so that the solution of system (5) can and as we will see below
will be obtained for the only choice of the branch choice for the root when
calculating the value of 𝑞 from (7).

4. Investigation of the system of algebraic equations
and inequalities

As was noted in [2], for the existence of surface waves the fulfillment of
condition

0 < 𝜖𝑜 < 𝜖 < 𝜖𝑒 (10)

is necessary. To avoid special consideration of the cases when there are
deliberately no surface waves, we present here an analysis of the issue of
fulfilment of inequalities

𝑞𝑜 > 0, 𝑞𝑒 > 0, 𝑞 > 0 (11)

only for the Dyakonov case (10). If the first two inequalities are satisfied, then
𝑡 = 𝑞𝑒/𝑞𝑜 is positive. Therefore, below we restrict ourselves by considering
only positive values of parameter 𝑡.

So, let 𝑡 have a positive value, and a solution of system (5) has been
constructed using the formulas of the previous section. In order 𝑞𝑜 be positive,
the fulfillment of the following inequality is necessary and sufficient:

−𝐹2(1, 𝑡)
𝐹4(1, 𝑡)

> 0. (12)
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This value itself can be found from

𝑞𝑜 = √−𝐹2(1, 𝑡)
𝐹4(1, 𝑡)

.

In this case, 𝑞𝑒 = 𝑡𝑞𝑜 also has a positive value.
Since 𝐹2(𝑞𝑜, 𝑞𝑒) and 𝐹4(𝑞𝑜, 𝑞𝑒) are terms of the second and fourth order in

expression (6), we can write the radicand explicitly:

𝐹2(1, 𝑡) = −(𝜖𝑜𝑡 + 𝜖𝑒)2(𝜖 − 𝜖𝑜),

and
𝐹4(1, 𝑡) = −(𝜖𝑜𝑡2 + (𝜖 − 𝜖𝑜)𝑡 + 𝜖 − 2𝜖𝑒)(𝜖𝑜𝑡 + 𝜖)(𝑡 + 1).

This means that in the Dyakonov case −𝐹2 > 0 and the sign of ratio 𝐹2/𝐹4
is determined by the sign of factor

𝜖𝑜𝑡2 + (𝜖 − 𝜖𝑜)𝑡 + 𝜖 − 2𝜖𝑒.

The discriminant of this quadratic trinomial equals

𝐷 = 𝜖2 + 𝜖2
𝑜 + 2𝜖𝑜(4𝜖𝑒 − 3𝜖) > 0,

therefore, its roots are real. Since 𝜖 − 2𝜖𝑒 < 0, these roots have different signs.
Let us denote the positive root as

𝑡1 = 𝜖𝑜 − 𝜖 +
√

𝐷
2𝜖𝑜

.

The expression −𝐹2/𝐹4 will be positive if and only if

0 < 𝑡 < 𝑡1. (13)

For the square of quantity 𝛽, calculated from (8) to be positive, it is
necessary and sufficient that

𝑡 < √
𝜖𝑒
𝜖𝑜

was valid. For the square of quantity 𝑞, calculated from (7) to be positive, it
is necessary and sufficient that the condition

𝑞2
𝑜 > 𝜖 − 𝜖𝑜

or
−𝐹2(1, 𝑡)
𝐹4(1, 𝑡)

> 𝜖 − 𝜖𝑜 (14)

was satisfied.
In the Dyakonov case −𝐹2 > 0 and provided that the inequality (13) is

fulfilled, the expression 𝐹4 > 0, therefore inequality (14) can be rewritten as

−𝐹2(1, 𝑡) > (𝜖 − 𝜖𝑜)𝐹4(1, 𝑡)
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or
(𝜖𝑜𝑡 + 𝜖𝑒)2 > −(𝜖𝑜𝑡2 + (𝜖 − 𝜖𝑜)𝑡 + 𝜖 − 2𝜖𝑒)(𝜖𝑜𝑡 + 𝜖)(𝑡 + 1). (15)

For the square of the value 𝛾 calculated by the formulas (9) to be positive,
it is necessary and sufficient that

(1 − 𝑡2)𝑞2
𝑜 > 𝜖𝑒 − 𝜖𝑜

or

(1 − 𝑡2)(𝜖𝑜𝑡 + 𝜖𝑒)2 > −(𝜖𝑜𝑡2 + (𝜖 − 𝜖𝑜)𝑡 + 𝜖 − 2𝜖𝑒)(𝜖𝑜𝑡 + 𝜖)(𝑡 + 1). (16)

To summarize what has been said: the solution of system (5) obtained by
the parametric formulas written out falls into the region (11) if and only if

1) the parameter 𝑡 belongs to the interval

0 < 𝑡 < min (𝑡1, √
𝜖𝑒
𝜖𝑜

) ; (17)

2) two inequalities (15) and (16) are satisfied, and

3) the last equation of system (5) is valid for the choice of the radical
principal value.

The fulfillment of these conditions can be checked in the Sage system.
Example. Let 𝜖𝑜 = 2, 𝜖 = 3, 𝜖𝑒 = 5. Figure 1 presents a plot of 𝑞𝑜

(black line) at the values of parameter 𝑡, taken from the interval (17), dash
lines indicate the boundaries of the domain of 𝑡, 𝑞𝑜 variation, determined by
inequalities (15) and (16). The restrictions of 𝑡 are seen to automatically
provide the fulfillment of conditions for 𝑞𝑜. There is the only point 𝑡 = 1/2,
where the plot touches the lower boundary. Just at this point the expression
for 𝑞 changes its sign. Figure 2 presents the plot of the right-hand side of the
last equation for the chosen sign ’+’: up to the point 𝑡 = 1/2 we get a solution,
and after this point not. Therefore, the solution satisfies the condition 𝑞 > 0
only at 0 < 𝑡 < 1/2.

For these values 𝛽 and 𝛾 were calculated which appeared to be real-valued.
For clarity, figure 3 presents a plot of dependence of 𝑡 on the angle 𝑢, ex-
pressed as

𝛾
𝛽

= 𝑘𝑧
𝑘𝑦

= tan 𝑢.

It turns out that the surface wave arises only in the directions

�⃗�⟂ = (0, 𝑘𝑦, 𝑘𝑧)𝑇,

within a narrow range of angles 38–45∘.
This example shows that 1) inequalities (15) and (16) are fulfilled in the

entire considered interval of parameter 𝑡 variation, and 2) upon the choice of
principal value for the radical our explicit formulae yield a solution to system
(5) only up to the point where the plot of 𝑞𝑜 touches the lower boundary of its
corridor. We believe that these assertions can be proved in a purely algebraic
way.
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Figure 1. Plot of 𝑞𝑜 (black line), dash lines indicate the boundaries of the domain

of 𝑡, 𝑞𝑜 variation

Figure 2. Plot of the left-hand side of the last of equations (5)

5. Results of computer experiments

We conducted a series of computer experiments, the results of which are
given in the table 1. Based on them, we can draw the following conclusions:

1) the greater the difference between 𝜖 and 𝜖𝑒, and the smaller it is between
the values 𝜖𝑜 and 𝜖, the greater the half-width of the interval for changing
the angle 𝑢 (see the table 1 cases numbered 12 and 13);

2) the smaller the difference between 𝜖 and 𝜖𝑒, and the larger it is between
the values 𝜖𝑜 and 𝜖𝑒, the smaller the half-interval of the angle 𝑢 (see the
table 1 cases numbered 14 and 15);



122 DCM&ACS. 2021, 29 (2) 114–125

Figure 3. Plot of 𝑢, the angle is in degrees

3) if the difference between the values 𝜖𝑜, 𝜖, 𝜖𝑒 remains constant, and the
values themselves increase, then the half-interval of the angle 𝑢 variation,
in which surface waves exist, decreases (see the table 1, cases numbered 4,
16, 17, 18);

4) if the difference between the values of 𝜖𝑜, 𝜖, 𝜖𝑒 is increased by the same
amount, the half-interval of 𝑢 variation is practically unchanged (see the
table 1, cases 19–21).

These conclusions are awaiting theoretical substantiation.
We failed to find a simple relationship between the position of the mean

angle 𝑢 and the values of 𝜖𝑜, 𝜖, 𝜖𝑒, while the position of the mean angle 𝑢
itself changes quite noticeably.

To test our approach, we looked at several non-Dyakonov cases where one
of the (10) inequalities is violated. As expected, no solutions were found in
these cases.

6. Conclusion

Investigation of the region of existence of the Dyakonov surface wave at the
isotropic-anisotropic interface is reduced to a system of algebraic equations
and inequalities. We managed to solve this system of equations in radicals in
the Sage computer algebra system. At the same time, the inequalities were
only partially investigated analytically. On this basis, it was possible to carry
out a series of computer experiments clarifying further directions of research.
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Table 1

Results of computer experiments

No. 𝜖𝑜 𝜖 𝜖𝑒 Mean angle 𝑢, deg. Half-interval of

angle 𝑢 varia-

tion, deg.

1 1 2 3 27 – 34 3.5

2 2 3 5 38 – 45 3.5

3 2.5 3.5 5.5 40.5 – 47 3.25

4 3 4 6 42.4 – 48.5 3.05

5 3 4 10 45.6 – 53.8 4.1

6 3.0001 3.001 3.01 72.426 – 72.455 0.0145

7 3 3.01 3.02 44.911 – 45 0.0445

8 3 4 4.001 1.57 – 1.76 0.095

9 3.9 4 4.1 44.299 – 44.96 0.3305

10 3.9 4 4.001 5.649 – 5.71 0.0305

11 3.99 4 4.001 17.522 – 17.548 0.013

12 2 7 55 13.2 – 19.2 3

13 2 2.1 80 45.47 – 56 5.265

14 2 54 55 1.5 – 2.22 0.36

15 2 79.9 80 0.3275 – 0.4825 0.155

16 13 14 16 51.5 – 53.58 1.04

17 33 34 36 53.59 – 54.46 0.435

18 133 134 136 54.446 – 54.78 0.167

19 20 40 60 27 – 34 3.5

20 20 50 80 23 – 30 3.5

21 20 60 100 20.2 – 27.2 3.5

References

[1] F. N. Marchevskii, V. L. Strizhevskii, and S. V. Strizhevskii, “Singular
electromagnetic waves in bounded anisotropic media,” Sov. Phys. Solid
State, vol. 26, p. 857, 1984.

[2] M. I. Dyakonov, “New type of electromagnetic wave propagating at an
interface,” Sov. Phys. JETP, vol. 67, p. 714, 1988.



124 DCM&ACS. 2021, 29 (2) 114–125

[3] O. Takayama, L.-C. Crasovan, S. Johansen, D. Mihalache, D. Artigas,
and L. Torner, “Dyakonov surface waves: a review,” Electromagnetics,
vol. 28, pp. 126–145, 2008. DOI: 10.1080/02726340801921403.

[4] J. A. Polo Jr. and A. Lakhtakia, “A Surface Electromagnetic Waves:
a Review,” Laser & Photonics Reviews, vol. 5, pp. 234–246, 2011. DOI:
10.1002/lpor.200900050.

[5] O. N. Bikeev and L. A. Sevastianov, “Surface electromagnetic waves at
the interface of two anisotropic media,” RUDN Journal of Mathematics,
Information Sciences and Physics, vol. 25, no. 2, pp. 141–148, 2017, in
Russian. DOI: 10.22363/2312-9735-2017-25-2-141-148.

[6] O. N. Bikeev, K. P. Lovetskiy, N. E. Nikolaev, L. A. Sevastianov, and
A. A. Tiutiunnik, “Electromagnetic surface waves guided by a twist
discontinuity in a uniaxial dielectric with optic axis lying in the disconti-
nuity plane,” Journal of Electromagnetic Waves and Applications, vol. 33,
no. 15, pp. 2009–2021, 2017. DOI: 10.1080/09205071.2019.1655486.

[7] O. Takayama, L.-C. Crasovan, D. Artigas, and L. Torner, “Observation
of Dyakonov surface waves,” Physical Review Letters, vol. 102, p. 043 903,
2009. DOI: 10.1103/PhysRevLett.102.043903.

[8] O. Takayama, D. Artigas, and L. Torner, “Lossless directional guiding
of light in dielectric nanosheets using Dyakonov surface waves,” Nature
Nanotech, vol. 9, pp. 419–424, 2014. DOI: 10.1038/nnano.2014.90.

[9] D. Cox, J. Little, and D. O’Shea, Ideals, varieties, and algorithms, 2nd ed.
Springer, 1997.

For citation:

O.K.Kroytor, Investigation of the existence domain for Dyakonov sur-
face waves in the Sage computer algebra system, Discrete and Continuous
Models and Applied Computational Science 29 (2) (2021) 114–125. DOI:
10.22363/2658-4670-2021-29-2-114-125.

Information about the authors:

Kroytor, Oleg K. — Postgraduate of Department of Applied Prob-
ability and Informatics of Peoples’ Friendship University of Russia
(RUDN University); (e-mail: kroytor_ok@pfur.ru, phone: +7(495)9550927,
ORCID: https://orcid.org/0000-0002-5691-7331)



O.K.Kroytor, Investigation of the existence domain for Dyakonov … 125

УДК 519.872:519.217

PACS 07.05.Tp, 02.60.Pn, 02.70.Bf

DOI: 10.22363/2658-4670-2021-29-2-114-125

Исследование области существования поверхностных
волн Дьяконова в системе компьютерной алгебры Sage

О. К. Кройтор

Российский университет дружбы народов
ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

Рассмотрены поверхностные электромагнитные волны (волны Дьяконова),
распространяющиеся вдоль плоской границы раздела изотропного вещества с по-
стоянной диэлектрической проницаемостью, и анизотропного кристалла, тензор
диэлектрической проницаемости которого имеет ось симметрии, направленную
вдоль границы раздела. Хорошо известно, что вопрос о существовании таких
поверхностных волн сводится к вопросу о существовании решения некоторой си-
стемы алгебраических уравнений и неравенств. В настоящей работе эта система
исследована в системе компьютерной алгебры Sage.

Техника исключительных идеалов, встроенная в Sage, позволила описать ре-
шение системы алгебраических уравнений параметрически при помощи одного
параметра, причём все исходные величины выражаются через этот параметр при
помощи радикалов. Оставшиеся неравенства удалось исследовать аналитически
лишь частично. Для полного исследования разрешимости системы уравнений
и неравенств предложен и реализован в Sage символьно-численный алгоритм,
представлены результаты компьютерных экспериментов. На основе результатов
экспериментов были сделаны выводы, которые требуют дальнейшего теоретиче-
ского обоснования.

Ключевые слова: поверхностные волны, волны Дьяконова, электромагнитные
волны, компьютерная алгебра, Sage
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The asymptotic method is a very attractive area of applied mathematics. There
are many modern research directions which use a small parameter such as statistical
mechanics, chemical reaction theory and so on. The application of the Fokker–Planck
equation (FPE) with a small parameter is the most popular because this equation
is the parabolic partial differential equations and the solutions of FPE give the
probability density function.

In this paper we investigate the singularly perturbed Cauchy problem for symmet-
ric linear system of parabolic partial differential equations with a small parameter.
We assume that this system is the Tikhonov non-homogeneous system with constant
coefficients. The paper aims to consider this Cauchy problem, apply the asymptotic
method and construct expansions of the solutions in the form of two-type decom-
position. This decomposition has regular and border-layer parts. The main result
of this paper is a justification of an asymptotic expansion for the solutions of this
Cauchy problem. Our method can be applied in a wide variety of cases for singularly
perturbed Cauchy problems of Fokker–Planck equations.

Key words and phrases: asymptotic analysis, singularly perturbed differential
equation, Cauchy problem, Fokker–Planck equation

1. Introduction

It is well known that the differential operator, which is applied in the theory
of measure, has such form:

𝐿 = 𝑎𝑖𝑗𝜕𝑥𝑖
𝜕𝑥𝑗

+ 𝑏𝑖𝜕𝑥𝑖
, 1 ⩽ 𝑖, 𝑗 ⩽ 𝑑, 𝑑 ∈ 𝑁.

The solution of the equation 𝐿∗𝜇 = 0 is Borel measures on an open set

Ω ∈ R𝑑 and there is the relation

∫
Ω

𝐿𝑓𝑑𝜇 = 0, ∀𝑓 ∈ 𝐶∞
0 (Ω).
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If the measure 𝜇 has a density 𝜌, then 𝜌 is conjugate solution of the equation

𝜕𝑥𝑖
𝜕𝑥𝑗

𝑎𝑖𝑗𝜌(𝑥) − 𝜕𝑥𝑖
𝑏𝑖𝜌(𝑥) = 0, 𝑥 ∈ Ω.

Similarly, we can consider parabolic operators in the form

𝑃 = 𝜕𝑡 − 𝜕𝑥𝑖
𝜕𝑥𝑗

𝑎𝑖𝑗 + 𝜕𝑥𝑖
𝑏𝑖,

and there are appropriate parabolic equations 𝑃 ∗𝜇 = 0 for finding measures
𝜇 on R𝑛 × [0, 𝑇]. The equations for the study of density have the form of
Fokker–Planck equation (FPE)

𝜕𝑡𝜌(𝑥, 𝑡) − 𝜕𝑥𝑖
𝜕𝑥𝑗

𝑎𝑖𝑗(𝑥, 𝑡)𝜌(𝑥, 𝑡) + 𝜕𝑥𝑖
𝑏𝑖(𝑥, 𝑡)𝜌(𝑥, 𝑡) = 0.

FPE equation uses for analysis a macroscopic process but for a small subsys-
tem.

We can formulate the singularly perturbed Cauchy problem for FPE in the
form:

𝜀𝜕𝑡𝜌(𝑥, 𝑡, 𝜀) − 𝜕𝑥𝑖
𝜕𝑥𝑗

𝑎𝑖𝑗(𝑥, 𝑡)𝜌(𝑥, 𝑡, 𝜀) + 𝜕𝑥𝑖
𝑏𝑖(𝑥, 𝑡)𝜌(𝑥, 𝑡, 𝜀) = 0,

𝜌(𝑥, 0, 𝜀) = 𝜌0(𝑥), 𝑥 ∈ Ω, ∀𝜌0(𝑥) ∈ 𝐶∞
0 (Ω),

where 𝜀 > 0 is a small parameter.

If we assume 𝜀 = 0, we can get a degenerate Cauchy problem in the following
form:

𝜕𝑥𝑖
𝜕𝑥𝑗

𝑎𝑖𝑗(𝑥, 𝑡) ̄𝜌(𝑥, 𝑡) − 𝜕𝑥𝑖
𝑏𝑖(𝑥, 𝑡) ̄𝜌(𝑥, 𝑡) = 0,

̄𝜌(𝑥, 0) = 𝜌0(𝑥), 𝑥 ∈ Ω, ∀𝜌0(𝑥) ∈ 𝐶∞
0 (Ω),

where solutions ̄𝜌(𝑥, 𝑡) are solutions of the degenerate problem and ̄𝜌 may
differ from solutions 𝜌(𝑥, 𝑡) significantly.

A large number of methods have been developed for the analytical
and numerical study of FPE solutions [1]–[8]. Hyung Ju Hwang and
Jinoh Kim [9], [10] study the initial–boundary value problem for the
Vlasov–Poisson–Fokker–Planck equations in an interval with absorbing
boundary conditions. They introduce the Deep Neural Network (DNN)
approximated solutions to the kinetic Fokker–Planck equation in a bounded
interval and study the large-time asymptotic behavior of the solutions and
other physically relevant macroscopic quantities. Shu-Nan Li and Bing-Yang
Cao [11] obtained solutions based on the fractional Fokker–Planck equation
(FFPE) with a generic time- and length-dependence of an ”effective thermal
conductivity” (𝜅eff), namely, 𝜅eff𝐿𝛼 with 𝐿 being the system length. They
formulate the effective thermal conductivity in terms of entropy generation,
which does not rely on the local-equilibrium hypothesis. Hrishikesh Patel
and Bernie D. Shizgal [12] compare the Kappa distribution of space plas-
mas modelled with a particular Fokker–Planck equation for a two component
system with the linear Fokker–Planck equation that has been used to study
the Student 𝑡-distribution. Lucas Philip and Bernie D. Shizgal [13] consider
the one-dimensional bistable Fokker–Planck equation with specific drift and
diffusion coefficients so as to model protein folding. Yunfei Su and Lei Yao



128 DCM&ACS. 2021, 29 (2) 126–145

[14] study the hydrodynamic limit for the inhomogeneous incompressible
Fokker–Planck equations.

The development of the asymptotic analysis of singularly perturbed
differential equations and systems of differential equations was made by
A. N. Tikhonov [15], M. I. Vishik and L. A. Lyusternik [16], A. B. Vasil’eva [17],
S.A. Lomov [18], V.A. Trenogin [19], J. L. Lions [20] and other researchers
during the second half of the 20th century. There is a large number of recent
works. O. Hawamdeh and A. Perjan [21] study an asymptotic expansions
for linear symmetric hyperbolic systems with small parameter. Using the
boundary layer functions method of Lyusternik–Vishik, A. Perjan [22] ob-
tains the asymptotic expansions of the solutions to the Cauchy problem
for the linear symmetric hyperbolic system as the small parameter 𝜀 → 0.
A.N. Gorban [23] investigates a model reduction in chemical dynamics with
slow invariant manifolds and singular perturbations. Bor-Yann Chen, Liy-
ing Wu and Junming Hong [24] consider singular limits of reaction diffusion
equations and geometric flows with discontinuous velocity.

In this paper we apply the results of the paper [21] and investigate the
Cauchy problem for the singularly perturbed Tikhonov-type symmetric system
of non-homogeneous constant coefficients linear parabolic partial differential
equations (LPPDE system) with a small parameter. We use the asymptotic
method for this Cauchy problem and construct expansions of solutions in
the form of decomposition, which has regular and border-layer parts. The
main result of this paper is a proof of a justification theorem of an asymptotic
expansion for this Cauchy problem. Our method can be applied in a wide
variety of cases for singularly perturbed Cauchy problems of Fokker–Planck
equations.

2. Singularly perturbed Cauchy problem for LPPDE
system

We consider the following singularly perturbed Cauchy problem (𝑃𝜖),

𝑃𝜖𝑢(𝑥, 𝑡, 𝜀) = 𝑓(𝑥, 𝑡), 𝑥 ∈ R𝑑, 𝑡 ⩾ 0, (1)

𝑢(𝑥, 0, 𝜀) = 𝑢0(𝑥), 𝑥 ∈ R𝑑, (2)

where 𝜀 > 0 is a small parameter.

Thus, 𝑃𝜖 = 𝑃0 +𝜀𝑃1 is a parabolic operator, where 𝑃𝑖 = 𝐴𝑖𝜕𝑡 +𝐵𝑖(𝜕𝑥)+𝐷𝑖,
𝑖 = 0, 1,

𝐵𝑖(𝜕𝑥) =
𝑑

∑
𝑝=1

𝐵𝑖𝑝𝜕𝑥𝑝
−

𝑑
∑

𝑝,𝑞=1
𝐶𝑖𝑝𝑞𝜕𝑥𝑝

𝜕𝑥𝑞
,

𝐵𝑖𝑝 = (𝑏𝑖𝑝
𝑠𝑡)𝑛

𝑠,𝑡=1, 𝐶𝑖𝑝𝑞 = (𝑐𝑖𝑝𝑞
𝑠𝑡 )𝑛

𝑠,𝑡=1, 𝐷𝑖 = (𝑑𝑖
𝑠𝑡)𝑛

𝑠,𝑡=1 are real constants of

symmetric 𝑛 × 𝑛 matrices and 𝑏𝑖𝑝
𝑠𝑡 ⩾ 0, 𝑐𝑖𝑝𝑞

𝑠𝑡 ⩾ 0, 𝑑𝑖
𝑠𝑡 ⩾ 0 (∀𝑠, 𝑡 = 1, … , 𝑛),

𝑑 ⩾ 1, 𝑢(𝑥, 0, 𝜀) ∶ R𝑑 × [0, ∞) × (0, ∞) → R𝑛, 𝑓(𝑥, 𝑡) ∶ R𝑑 × [0, ∞) → R𝑛,

𝑓(𝑥, 𝑡) ∈ 𝐶1,
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𝐴0 = (𝐼𝑚 0
0 0

) , 𝐴1 = (0 0
0 𝐼𝑛−𝑚

) , 0 ⩽ 𝑚 ⩽ 𝑛,

where 𝐼𝑘 is an identity matrix and

𝐴 = 𝐴0 + 𝜀𝐴1, 𝐵(𝜕𝑥) = 𝐵0(𝜕𝑥) + 𝜀𝐵1(𝜕𝑥), 𝐷 = 𝐷0 + 𝜀𝐷1,

𝐿𝑖(𝜕𝑥) = 𝐵𝑖(𝜕𝑥) + 𝐷𝑖, 𝑖 = 0, 1, 𝜕𝑥 = (𝜕/𝜕𝑥1
, … , 𝜕/𝜕𝑥𝑑

).

The special forms of matrices 𝐴0 and 𝐴1 determine the natural representa-
tions of matrices 𝐵𝑖, 𝐷𝑖 by blocks in the forms:

𝐵𝑖(𝜕𝑥) = (𝐵𝑖1(𝜕𝑥) 𝐵𝑖2(𝜕𝑥)
𝐵∗

𝑖2(𝜕𝑥) 𝐵𝑖3(𝜕𝑥)
) , 𝐷𝑖 = (𝐷𝑖1 𝐷𝑖2

𝐷∗
𝑖2 𝐷𝑖3

) , 𝑖 = 0, 1,

where 𝐵𝑖1(𝜕𝑥), 𝐷𝑖1 ∈ 𝑀𝑚×𝑚(R), 𝐵𝑖2(𝜕𝑥), 𝐷𝑖2 ∈ 𝑀𝑚×(𝑛−𝑚)(R), 𝐵𝑖3(𝜕𝑥),
𝐷𝑖3 ∈ 𝑀 (𝑛−𝑚)×(𝑛−𝑚)(R), and ∗ means transposition, and

𝐵𝑖𝑗(𝜕𝑥) =
𝑑

∑
𝑝=1

𝐵𝑖𝑗
𝑝 𝜕𝑥𝑝

−
𝑑

∑
𝑝,𝑞=1

𝐶𝑖𝑗
𝑝𝑞𝜕𝑥𝑝

𝜕𝑥𝑞
, 𝑖 = 0, 1, 𝑗 = 1, 2, 3,

𝐵01
𝑝 = (𝑏0𝑝

𝑠𝑡 )𝑠,𝑡=1,𝑚, 𝐶01
𝑝𝑞 = (𝑐0𝑝𝑞

𝑠𝑡 )𝑠,𝑡=1,𝑚,

𝐵02
𝑝 = (𝑏0𝑝

𝑠𝑡 )𝑠=1,𝑚,𝑡=𝑚+1,𝑛, 𝐶02
𝑝𝑞 = (𝑐0𝑝𝑞

𝑠𝑡 )𝑠=1,𝑚,𝑡=𝑚+1,𝑛,

𝐵03
𝑝 = (𝑏0𝑝

𝑠𝑡 )𝑠,𝑡=𝑚+1,𝑛, 𝐶02
𝑝𝑞 = (𝑐0𝑝𝑞

𝑠𝑡 )𝑠,𝑡=𝑚+1,𝑛.

The aim of our work is to construct the asymptotic solution 𝑢(𝜀, 𝑥, 𝑡) for
(𝑃𝜀) with a small parameter 𝜀 → 0.

Thus, the investigation of the solution 𝑢(𝜀, 𝑥, 𝑡) depends on the structure
of the operator 𝑃𝜀. The norm, which determines the convergence of the
perturbed system solution, is also very important.

We denote the usual Sobolev spaces by 𝐻𝑠 with the scalar product in the
form:

(𝑢, 𝑣)𝑠 = ∫
R𝑑

(1 + 𝜉2)𝑠�̂�(𝜉) ̄̂𝑣(𝜉) 𝑑𝜉,

where 𝑠 ∈ R, �̂�(𝜉) = 𝐹 [𝑢] (𝜉 ∈ R𝑑) and 𝐹 −1[𝑢] are the direct and the inverse

Fourier transforms of the function 𝑢 in 𝑆′. Let 𝐻𝑠
𝑑 = (𝐻𝑠)𝑑 be a notation of

the Hilbert space, which is associated with the scalar product

(𝑓1, 𝑓2)𝑠,𝑑 =
𝑑

∑
𝑗=1

(𝑓1𝑗, 𝑓2𝑗)𝑠, 𝑓𝑖 = (𝑓𝑖1, … , 𝑓𝑖𝑑), 𝑖 = 1, 2,

and with the norm ‖ ⋅ ‖𝑠,𝑑, which is generated by this scalar product.
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Let 𝐷′((𝑎, 𝑏), 𝑋) be a space of vectorial distributions on (𝑎, 𝑏) with values
in Banach space 𝑋. We can set

𝑊 𝑘,𝑝(𝑎, 𝑏; 𝑋) = {𝑢 ∈ 𝐷′((𝑎, 𝑏); 𝑋); 𝑢(𝑗) ∈ 𝐿𝑝(𝑎, 𝑏; 𝑋), 𝑗 = 0, 1, … , 𝑘},

for 𝑘 ∈ ℕ∗ and 1 ⩽ 𝑝 ⩽ ∞, where 𝑢(𝑗) is the distributional derivative of order
𝑗 and 𝑊 0,𝑝(𝑎, 𝑏; 𝑋) = 𝐿𝑝(𝑎, 𝑏; 𝑋) for 𝑘 = 0.

We denote operator 𝐿𝑖𝑗(𝜕𝑥) in the form:

𝐿𝑖𝑗(𝜕𝑥) = 𝐵𝑖𝑗(𝜕𝑥) + 𝐷𝑖𝑗,

and
𝐹 = col(𝑓, 𝑔), 𝑈0 = col(𝑢0, 𝑢1),

where 𝑓, 𝑢0 ∈ 𝑀𝑚×1(R), 𝑔, 𝑢1 ∈ 𝑀 (𝑛−𝑚)×1(R).
We assume that

H1: 𝐵𝑖𝑝, 𝐶𝑖𝑝𝑞, 𝐷𝑖, 𝑖 = 0, 1, 𝑝, 𝑞 = 1, 𝑑 are real symmetric matrices;

H2: (𝐷𝜁, 𝜁)R𝑛 ⩾ (𝐷03𝜂, 𝜂)R𝑛−𝑚 ⩾ 𝑞0|𝜂|2, with 𝑞0 > 0; for all 𝜁 ∈ R𝑛 and
𝜂 ∈ R𝑛−𝑚.

Thus, the operator (𝑃𝜀) is a symmetric parabolic system (H1) and the
operator (𝑃0) is an elliptic-parabolic system in case: det 𝐵03 ≠ 0 and 𝐵02 = 0.

3. Formal asymptotic expansions of the singularly
perturbed Cauchy problem (𝑃𝜖)

We construct the formal asymptotic expansions of the solutions 𝑢(𝜀, 𝑥, 𝑡)
for the Cauchy problem (𝑃𝜀) on the positive powers of the small parameter 𝜀
in this section.

We can use the following asymptotic expansion of the solution 𝑢(𝜀, 𝑥, 𝑡) for
the problem (𝑃𝜀) according to the method of Lyusternik–Vishik [16]:

𝑢(𝜀, 𝑥, 𝑡) = 𝑉 (𝑥, 𝑡, 𝜀)+𝑍(𝑥, 𝜏) =
𝑁

∑
𝑘=0

𝜀𝑘(𝑉𝑘(𝑥, 𝑡)+𝑍𝑘(𝑥, 𝜏))+𝑅𝑁(𝜀, 𝑥, 𝑡), (3)

where 𝜏 = 𝑡/𝜀, and 𝑍(𝑥, 𝜏) = 𝑍0(𝑥, 𝜏) + ⋯ + 𝜀𝑁𝑍𝑁(𝑥, 𝜏) is the boundary
layer function, which describes the singular behavior of the solution 𝑢(𝜀, 𝑥, 𝑡)
within a neighborhood of the set {(𝑥, 0), 𝑥 ∈ R𝑑}, which is the boundary
layer.

The function 𝑉 (𝑥, 𝑡) = 𝑉0(𝑥, 𝑡) + ⋯ + 𝜀𝑁𝑉𝑁(𝑥, 𝑡) is the regular part of
expansion (3).

We assume that the function 𝑍(𝑥, 𝜏) is small for large 𝜏, i.e. 𝑍 → 0 as
𝜏 → ∞. There is the solutions behavior 𝑢(𝜀, 𝑥, 𝑡)↛𝑢(0, 𝑥, 𝑡) of the singularly
perturbed Cauchy problem (𝑃𝜖), when 𝜀 → 0 within the boundary layer, then
the function 𝑍(𝑥, 𝜏) has to be reduced for the discrepancy elimination of the
solutions 𝑢(𝜀, 𝑥, 0) and 𝑢(0, 𝑥, 0).

We can substitute expansion (3) into (1) formally and identify the coeffi-
cients of the same powers of 𝜀, which contain the same variables.
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Then we can get the following equations:

𝑃0𝑉𝑘 = 𝐹𝑘(𝑥, 𝑡), 𝑥 ∈ R𝑑, 𝑡 > 0, (4)

where
𝐹0 = 𝑓(𝑥, 𝑡), 𝐹𝑘 = −𝑃1𝑉𝑘−1, 𝑘 = 1, … , 𝑁,

𝐴0𝜕𝜏𝑍𝑘 = 𝐹𝑘(𝑥, 𝜏), 𝑘 = 0, 1, … , 𝑁, (5)

𝐴1(𝐿0𝑍𝑁 + 𝐿1𝑍𝑁−1 + 𝜕𝜏𝑍𝑁) = 0, 𝑥 ∈ R𝑑, 𝜏 > 0,
𝐹0 = 0, 𝐹1 = −𝐿0𝑍0 − 𝐴1𝜕𝜏𝑍0,

𝐹𝑘 = −𝐿0𝑍𝑘−1 − 𝐿1𝑍𝑘−2 − 𝐴1𝜕𝜏𝑍𝑘−1, 𝑘 = 2, … , 𝑁,
(𝑃0 + 𝜀𝑃1)𝑅𝑁 = 𝐹(𝑥, 𝑡, 𝜀), 𝑥 ∈ R𝑑, 𝑡 > 0, (6)

𝐹 = −𝜀𝑁+1(𝑃1𝑉𝑁 + 𝐿1𝑍𝑁) − 𝜀𝑁𝐴0(𝐿0𝑍𝑁 + 𝐿1𝑍𝑁−1).

We can substitute (3) into initial condition (2)

𝑅𝑁(𝜀, 𝑥, 0) = 0, 𝑥 ∈ R𝑑, (7)

𝑉0(𝑥, 0) + 𝑍0(𝑥, 0) = 𝑈0(𝑥), 𝑥 ∈ R𝑑, (8)

𝑉𝑘(𝑥, 0) + 𝑍𝑘(𝑥, 0) = 0, 𝑥 ∈ R𝑑, 𝑘 = 1, … , 𝑁. (9)

We can use the following notation for convenience

𝑍𝑘 = (𝑋𝑘
𝑌𝑘

) , 𝑉𝑘 = (𝑣𝑘
𝑤𝑘

) , 𝐹𝑘 = (𝑓𝑘
𝑑𝑘

) , 𝐹𝑘 = (𝐹𝑘1
𝐹𝑘2

) , (10)

where 𝑋𝑘, 𝑣𝑘, 𝑓𝑘, 𝐹𝑘1 ∈ 𝑀𝑚×1(R), 𝑌𝑘, 𝑤𝑘, 𝑔𝑘, 𝐹𝑘2 ∈ 𝑀 (𝑛−𝑚)×1(R).

We can use (5), (8), and (9) for 𝑋𝑘 and 𝑌𝑘 so that

𝜕𝜏𝑋𝑘 = 𝐹𝑘1, 𝑋𝑘 → 0, 𝜏 → +∞, (11)

and
𝜕𝜏𝑌𝑘 + 𝐿03𝑌𝑘 = 𝐹𝑘2(𝑥, 𝜏), 𝑥 ∈ R𝑑, 𝜏 > 0,

𝑌0(𝑥, 0) = 𝑢1(𝑥) − 𝑤0(𝑥, 0), 𝑥 ∈ R𝑑, (12)

𝑌𝑘(𝑥, 0) = −𝑤𝑘(𝑥, 0), 𝑘 = 1, … , 𝑁, 𝑥 ∈ R𝑑,
where

𝐹01 = 0, 𝐹11 = −𝐿01𝑋0 − 𝐿02𝑌0,
𝐹𝑘1 = −𝐿01𝑋𝑘−1 − 𝐿02𝑌𝑘−1 − 𝐿11𝑋𝑘−2 − 𝐿12𝑌𝑘−2, 𝑘 = 2, … , 𝑁,

𝐹02 = −𝐿∗
02𝑋0, 𝐹𝑘2 = −𝐿∗

02𝑋𝑘 − 𝐿13𝑌𝑘−1 − 𝐿∗
12𝑋𝑘−1, 𝑘 = 1, … , 𝑁

𝐿∗
𝑖𝑗(𝜉) = 𝐵∗

𝑖𝑗(𝜉) + 𝐷∗
𝑖𝑗, 𝑖 = 0, 1, 𝑗 = 1, 2, 3.
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Similarly, we can obtain the problems for 𝑣𝑘 and 𝑤𝑘 from (4) and (8), (9).

⎧{{{
⎨{{{⎩

𝜕𝑡𝑣𝑘 + 𝐿01𝑣𝑘 + 𝐿02𝑤𝑘 = 𝑓𝑘(𝑥, 𝑡), 𝑘 = 0, 1, … , 𝑁,
𝐿∗

02𝑣𝑘 + 𝐿03𝑤𝑘 = 𝑔𝑘(𝑥, 𝑡), 𝑥 ∈ R𝑑, 𝑘 = 0, 1, … , 𝑁, 𝑡 > 0,
𝑣0(𝑥, 0) = 𝑢0(𝑥) − 𝑋0(𝑥, 0),
𝑣𝑘(𝑥, 0) = −𝑋𝑘(𝑥, 0), 𝑘 = 1, … , 𝑁, 𝑥 ∈ R𝑑.

(13)

Thus, we have the problems for determining the functions 𝑋𝑘, 𝑌𝑘, 𝑣𝑘, 𝑤𝑘
and 𝑅𝑁.

4. Justifying asymptotic expansions of the singularly
perturbed Cauchy problem (𝑃𝜖)

We investigate the validity of the expansion (3) in the following sections.
We can consider the problem (13) in the next form

⎧{{
⎨{{⎩

𝜕𝑡𝑣 + 𝐿01𝑣 + 𝐿02𝑤 = 𝑓(𝑥, 𝑡),
𝐿∗

02𝑣 + 𝐿03𝑤 = 𝑔(𝑥, 𝑡), 𝑥 ∈ R𝑑, 𝑡 > 0,
𝑣(𝑥, 0) = ℎ(𝑥), 𝑥 ∈ R𝑑,

(14)

𝐿0𝑗 = 𝐵0𝑗(𝜕𝑥) + 𝐷0𝑗 =
𝑑

∑
𝑝=1

𝐵0𝑗
𝑝 𝜕𝑥𝑝

−
𝑑

∑
𝑝,𝑞=1

𝐶0𝑗
𝑝𝑞𝜕𝑥𝑝

𝜕𝑥𝑞
+ 𝐷0𝑗, 𝑗 = 1, 2, 3.

We use the following problem for the solvability and regularity justifications
of the problem (14)

⎧{{
⎨{{⎩

𝜕𝑡 ̂𝑣(𝜉) + (𝐷01 + 𝑖|𝜉|�̂�01(𝜉)) ̂𝑣(𝜉) + (𝐷02 + 𝑖|𝜉|�̂�02(𝜉))�̂�(𝜉) = ̂𝑓(𝜉, 𝑡),
(𝐷∗

02 + 𝑖|𝜉|�̂�∗
02(𝜉)) ̂𝑣(𝜉) + (𝐷03 + 𝑖|𝜉|�̂�03(𝜉))�̂�(𝜉) = ̂𝑔(𝜉, 𝑡),

̂𝑣(𝜉, 0) = ℎ̂(𝜉),
(15)

�̂�𝑖𝑗(𝜉) =
𝑑

∑
𝑝=1

𝐵0𝑗
𝑝 (𝜉𝑝/|𝜉|) − 𝑖|𝜉|

𝑑
∑

𝑝,𝑞=1
𝐶0𝑗

𝑝𝑞(𝜉𝑝𝜉𝑞/|𝜉|2),

where 𝑖 = 0, 1, 𝑗 = 1, 2, 3, 𝜉 ∈ R𝑑.
We prove the following lemmas.

Lemma 1. The matrix 𝐷03 + 𝑖|𝜉|�̂�03(𝜉) is invertible for 𝜉 ∈ R𝑑 under the

assumptions (H1), (H2) and the function 𝜉 → (𝐷03 + 𝑖|𝜉|�̂�03(𝜉))−1 is bounded

on R𝑑.

Proof. We can use the method of the simultaneous reduction of two ma-
trices to the diagonal form for proving this lemma and we assume that



M. A. Bouatta et al., The asymptotic solution of a singularly perturbed … 133

𝐷∗
03 = 𝐷03 and 𝐷03 = (𝑑0

𝑠𝑡)𝑠,𝑡=𝑛−𝑚,𝑛, 𝑑0
𝑠𝑡 ⩾ 0 (𝑠, 𝑡 = 𝑛 − 𝑚, 𝑛). There is an

orthogonal matrix 𝑇1 ∈ 𝑀𝑛−𝑚(R), 𝑇 ∗
1 𝑇1 = 𝐼𝑛−𝑚, which

𝑇 ∗
1 𝐷03𝑇1 = Λ2

0 = diag(𝜆1, … , 𝜆𝑛−𝑚),

where 𝜆𝑘 > 0, 𝑘 = 1, … , 𝑛 − 𝑚 are the eigenvalues of matrix 𝐷03.

We can use the transformation of the matrix �̂�03(𝜉) in the form:

𝐶(𝜉) = Λ−1
0 𝑇 ∗

1 �̂�03(𝜉)𝑇1Λ−1
0 .

As the matrix 𝐶(𝜉) is a real symmetric, then there exists an orthogonal
matrix 𝑇2(𝜉) ∈ 𝑀(R𝑛−𝑚), such that

𝑇 ∗
2 𝐶(𝜉)𝑇2 = Λ(𝜉) = diag(𝜇1(𝜉), … , 𝜇𝑛−𝑚(𝜉)),

where 𝜇1(𝜉), … , 𝜇𝑛−𝑚(𝜉) are real eigenvalues of matrix 𝐶(𝜉). Thus, we have
the transformations of this type:

𝑇 ∗(𝜉)𝐷03𝑇 (𝜉) = 𝐼𝑛−𝑚, 𝑇 ∗(𝜉)�̂�03(𝜉)𝑇 (𝜉) = Λ(𝜉), (16)

where 𝑇 (𝜉) = 𝑇1Λ−1
0 𝑇2(𝜉). We can use (16) so that

𝐷03 + 𝑖|𝜉|�̂�03(𝜉) = 𝑇 ∗−1(𝜉)(𝐼𝑛−𝑚 + 𝑖|𝜉|Λ(𝜉))𝑇 −1(𝜉).

It means that the matrix 𝐷03 + 𝑖|𝜉|�̂�03(𝜉) is invertible and we have

(𝐷03 + 𝑖|𝜉|�̂�03(𝜉))−1 = 𝑇 (𝜉)Λ1(𝜉)(𝐼𝑛−𝑚 − 𝑖|𝜉|Λ(𝜉))𝑇 ∗(𝜉), (17)

where
Λ1(𝜉) = diag((1 + |𝜉|2𝜇2

1)−1, … , (1 + |𝜉|2𝜇2
𝑛−𝑚)−1).

The orthogonality of the matrix 𝑇2(𝜉) implies the boundedness of the

function 𝜉 → 𝑇 (𝜉) on R𝑑.

The boundedness of the matrix (𝐷03 + 𝑖|𝜉|�̂�03(𝜉))−1 follows from (17).
Lemma 1 is proved. �

We can obtain the solution of the problem (15) from Lemma 1

⎧{
⎨{⎩

𝑑
𝑑𝑡

̂𝑣(𝜉, 𝑡) + 𝐾(𝜉) ̂𝑣(𝜉, 𝑡) = 𝐻(𝜉, 𝑡),

̂𝑣(𝜉, 0) = ℎ̂(𝜉),
(18)

where

�̂�(𝜉, 𝑡) = (𝐷03 + 𝑖|𝜉|�̂�03(𝜉))−1( ̂𝑔(𝜉, 𝑡) − (𝐷∗
02 + 𝑖|𝜉|�̂�∗

02(𝜉)) ̂𝑣(𝜉, 𝑡)), (19)

𝐾(𝜉) = 𝐷01 + 𝑖|𝜉|�̂�01(𝜉) − (𝐷02 + 𝑖|𝜉|�̂�02(𝜉))(𝐷03+
+ 𝑖|𝜉|�̂�03(𝜉))−1(𝐷∗

02 + 𝑖|𝜉|�̂�∗
02(𝜉)), (20)



134 DCM&ACS. 2021, 29 (2) 126–145

𝐻(𝜉, 𝑡) = ̂𝑓(𝜉, 𝑡) − (𝐷02 + 𝑖|𝜉|�̂�02(𝜉))(𝐷03 + 𝑖|𝜉|�̂�03(𝜉))−1 ̂𝑔(𝜉, 𝑡).

Lemma 2. The matrix 𝐾(𝜉) can be represented in the form

𝐾(𝜉) = 𝐾0(𝜉) + 𝑖|𝜉|𝐾1(𝜉) + |𝜉|2𝐾2(𝜉), 𝜉 ∈ R𝑑, (21)

under the assumptions (H1), (H2), where the functions 𝜉 → 𝐾𝑗(𝜉), 𝑗 = 0, 1, 2
are bounded on R𝑑 and 𝐾1, 𝐾2 are real symmetric for 𝐾2 ⩾ 0.

Proof. Let us substitute (17) into (20). We can obtain the representation
(21), where

𝐾0(𝜉) = 𝐺01 − 𝐺02𝑇 ∗Λ1𝑇 ∗𝐺∗
02 − |𝜉|2(𝐺02𝑇 Λ1Λ𝑇 ∗𝑏∗

02 + 𝑏02𝑇 Λ1Λ𝑇 ∗𝐺∗
02),

𝐾1(𝜉) = 𝑏01 + 𝐺02𝑇 Λ1Λ𝑇 ∗𝐺∗
02 − 𝐺02𝑇 Λ1𝑇 ∗𝑏∗

02−
− 𝑏02𝑇 Λ1𝑇 ∗𝐺∗

02 − |𝜉|2𝑏02𝑇 Λ1Λ𝑇 ∗𝑏∗
02,

𝐾2(𝜉) = 𝑏02𝑇 Λ1𝑇 ∗𝑏∗
02.

Accordingly, 𝐾𝑗(𝜉), 𝑗 = 0, 1, 2 are bounded on R𝑑 and 𝐾∗
1 = 𝐾1, 𝐾∗

2 = 𝐾2.
It remains to prove that 𝐾2 ⩾ 0. Let us denote the eigenvalues of the real
symmetric matrix 𝐴 as 𝜆𝑗(𝐴), 𝑗 = 1, … , 𝑚, where 𝜆1 ⩽ 𝜆2 ⩽ ⋯ ⩽ 𝜆𝑚.

We can use Ostrowski’s theorem so that

𝜆𝑗(𝐾2(𝜉)) = 𝜆𝑗(𝑏02𝑇 Λ1𝑇 ∗𝑏∗
02) = 𝜃𝑗𝜆𝑗(Λ1) ⩾ 0,

where 0 ⩽ 𝜆1(𝑏02𝑇 𝑇 ∗𝑏∗
02) ⩽ 𝜃𝑗 ⩽ 𝜆𝑚(𝑏02𝑇 𝑇 ∗𝑏∗

02). It means that 𝐾2 ⩾ 0.

Therefore, Lemma 2 is proved. �

We can prove the following proposition.

Proposition 1. Let the assumptions (H1), (H2) be fulfilled and 𝑙 ∈ ℕ∗. If

the conditions ℎ ∈ 𝐻𝑠+2𝑙+1
𝑚 , 𝐹 = col(𝑓, 𝑔) ∈ 𝑊 𝑙,1(0, 𝑇 ; 𝐻𝑠+2

𝑛 ) are true, then

there exists a unique strong solution 𝑉 = col(𝑣, 𝑤) ∈ 𝑊 𝑙,∞(0, 𝑇 ; 𝐻𝑠
𝑛) of the

problem (14) and

‖𝑉 ‖𝑊 𝑙,∞(0,𝑇 ;𝐻𝑠
𝑛) ⩽ 𝐶(𝑇 ) (‖ℎ‖𝑠+2𝑙+1,𝑚 + ‖𝐹‖𝑊 𝑙,1(0,𝑇 ;𝐻𝑠+2

𝑛 )) . (22)

Proof. Consider the Cauchy problem

⎧{
⎨{⎩

𝑑
𝑑𝑡 ̂𝑣(𝑡) + 𝐾(𝜉) ̂𝑣(𝑡) = 0,
̂𝑣(0) = ℎ̂, 0 < 𝑡 < 𝑇 ,

(23)

in the Hilbert space 𝐻 = {𝑓 = (𝑓1, … , 𝑓𝑚); (1 + |𝜉|2) 𝑠
2 𝑓𝑘(𝜉) ∈

𝐿2(R𝑑), 𝑘 = 1, … , 𝑚}, equipped with the scalar product (𝑓, 𝑔)𝐻 = ∫
R𝑑 (1 +
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|𝜉|2)𝑠(𝑓, ̄𝑔)R𝑚 𝑑𝜉. We can use the representation (21) and demonstrate that
the operator −𝐾(𝜉) ∶ 𝐻 → 𝐻 satisfies the conditions

Re(−𝐾𝑓, 𝑓)𝐻 ⩽ 𝜔(𝑓, 𝑓)𝐻, Re(−�̄�∗𝑓, 𝑓)𝐻 ⩽ 𝜔(𝑓, 𝑓)𝐻, 𝑓 ∈ 𝐻,

where 𝜔 = sup𝜉∈R𝑑‖𝐾0(𝜉)‖R𝑚→R𝑚 + 𝛿 with a positive parameter 𝛿 > 0. This

means that the operator −(𝐾 + 𝜔𝐼) is maximal dissipative on 𝐻.

The Cauchy problem (23) generates a 𝐶0 semigroup of operators { ̂𝑇 (𝑡), 𝑡 ⩾
0} on 𝐻 [21]. Thus, we have the next estimation ‖ ̂𝑣(⋅, 𝑡)‖𝐻 ⩽ 𝑒𝜔𝑡‖ℎ‖𝐻 for any

ℎ ∈ 𝐻, i.e. ‖ ̂𝑇 (𝑡)‖ ⩽ 𝑒𝜔𝑡, where

𝑑
𝑑𝑡

‖ ̂𝑣(⋅, 𝑡)‖2
𝐻 ⩽ −(𝐾0 ̂𝑣(⋅, 𝑡), ̂𝑣(⋅, 𝑡))𝐻 − ( ̂𝑣(⋅, 𝑡), 𝐾0 ̂𝑣(⋅, 𝑡))𝐻 ⩽ 2𝜔‖ ̂𝑣(⋅, 𝑡)‖2

𝐻.

Using Parseval’s equality, we can get that the Cauchy problem (𝐹[�̌�𝑣] =
𝐾(𝜉) ̂𝑣)

⎧{
⎨{⎩

𝑑
𝑑𝑡

𝑣(𝑡) + �̌�𝑣(𝑡) = 0,

𝑣(0) = 𝑣0, 0 < 𝑡 < 𝑇 ,
(24)

where the operators {𝑇 (𝑡), 𝑡 ⩾ 0} on 𝐻𝑠
𝑚 generates the semigroup 𝐶0, where

𝑣(⋅, 𝑡) = 𝑇 (𝑡)𝑣0, ‖𝑇 (𝑡)‖ ⩽ 𝑒𝜔𝑡. Thus, we can solve the Cauchy problem

⎧{
⎨{⎩

𝑑
𝑑𝑡

𝑧(𝑡) + (�̌� + 𝜔𝐼)𝑧(𝑡) = 𝑓(𝑡)𝑒𝜔𝑡,

𝑧(0) = 𝑦0, 0 < 𝑡 < 𝑇 ,
(25)

where the semigroup 𝐶0 has the representation in the form 𝑇0(𝑡) = 𝑇 (𝑡)𝑒−𝜔𝑡.

Hence, there exists a unique mild solution of this problem 𝑧 ∈ 𝐶([0, 𝑇 ]; 𝐻𝑠
𝑚)

for every 𝑦0 ∈ 𝐻𝑠
𝑚, 𝑓 ∈ 𝐿1(0, 𝑇 ; 𝐻𝑠

𝑚) [21], and

𝑧(𝑡) = 𝑇0(𝑡)𝑦0 + ∫
𝑡

0
𝑇0(𝑡 − 𝑠)𝑓(𝑠)𝑒𝜔𝑠𝑑𝑠,

‖𝑧‖𝐶([0,𝑇 ];𝐻𝑠
𝑚) ⩽ ‖𝑦0‖𝑠,𝑚 + ‖𝑓‖𝐿1(0,𝑇 ;𝐻𝑠

𝑚)𝑒𝜔𝑇.

Moreover, if the next 𝑦0 ∈ 𝐻𝑠+2𝑙
𝑚 , 𝑓 ∈ 𝑊 𝑙,1(0, 𝑇 ; 𝐻𝑠

𝑚) and 𝑙 ∈ ℕ∗ are true,

then 𝑧 is a strong solution of the problem (25), 𝑧 ∈ 𝑊 𝑙,∞(0, 𝑇 ; 𝐻𝑠
𝑚) and

‖𝑧‖𝑊 𝑙,∞(0,𝑇 ;𝐻𝑠
𝑚) ⩽ 𝐶(𝑇 )(‖𝑦0‖𝑠+2𝑙,𝑚 + ‖𝑓‖𝑊 𝑙,1(0,𝑇 ;𝐻𝑠

𝑚)).

We can note that the solution 𝑦 of the Cauchy problem

⎧{
⎨{⎩

𝑑
𝑑𝑡𝑦(𝑡) + �̌�𝑦(𝑡) = 𝑓,
𝑦(0) = 𝑦0, 0 < 𝑡 < 𝑇 ,

(26)
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and the solution 𝑧 of the problem (25) are connected with the equality

𝑦(𝑡) = 𝑒−𝜔𝑡𝑧(𝑡).
Consequently, we have the same for 𝑦0, 𝑓 and 𝑙 ∈ 𝑁 ∗ so that

‖𝑦‖𝑊 𝑙,∞(0,𝑇 ;𝐻𝑠
𝑚) ⩽ 𝐶(𝑇 )(‖𝑦0‖𝑠+2𝑙,𝑚 + ‖𝑓‖𝑊 𝑙,1(0,𝑇 ;𝐻𝑠

𝑚)).

Using (18), the last estimation and the boundedness of the matrix (𝐺03 +
𝑖|𝜉|𝑏(𝜉))−1, we can obtain the next estimation

‖𝑣‖𝑊 𝑙,∞(0,𝑇 ;𝐻𝑠
𝑚) ⩽

⩽ 𝐶(𝑇 )(‖ℎ‖𝑠+2𝑙,𝑚 + ‖𝑓‖𝑊 𝑙,1(0,𝑇 ;𝐻𝑠
𝑚) + ‖𝑔‖𝑊 𝑙,1(0,𝑇 ;𝐻𝑠+1

𝑛−𝑚)). (27)

We can get the estimation from (19) and (27) in the form:

‖𝑤‖𝑊 𝑙,∞(0,𝑇 ;𝐻𝑠
𝑚) ⩽

⩽ 𝐶(𝑇 ) (‖ℎ‖𝑠+2𝑙+1,𝑚 + ‖𝑓‖𝑊 𝑙,1(0,𝑇 ;𝐻𝑠+1
𝑚 ) + ‖𝑔‖𝑊 𝑙,1(0,𝑇 ;𝐻𝑠+2

𝑛−𝑚)) . (28)

Thus, the estimations (27) and (28) imply the estimation (23). Proposition 1
is proved. �

Let us consider the next Cauchy problem

⎧{
⎨{⎩

𝜕𝜏𝑌 + 𝐿03𝑌 = 𝐹(𝑥, 𝜏), 𝑥 ∈ R𝑑, 𝜏 > 0,
𝑌 (𝑥, 0) = 𝑦0(𝑥), 𝑥 ∈ R𝑑.

(29)

Proposition 2. Let the assumptions (H1), (H2) be fulfilled and 𝑙 ∈ ℕ∗. If

the conditions 𝑦0 ∈ 𝐻𝑠+𝑙
𝑛−𝑚, 𝐹 ∈ 𝑊 𝑙,1

loc (0, ∞; 𝐻𝑠
𝑛−𝑚) are true, then there exists

a unique strong solution 𝑌 ∈ 𝑊 𝑙,∞
loc (0, ∞; 𝐻𝑠

𝑛−𝑚) of the problem (29) and the
inequality is satisfied for this solution

‖𝜕𝑙
𝜏𝑌 (⋅, 𝜏)‖𝑠,𝑛−𝑚 ⩽ 𝐶𝑒−𝑞0𝜏(‖𝑦0‖𝑠+𝑙,𝑛−𝑚+

+
𝑙−1
∑
𝜈=0

‖𝜕𝜈
𝜏 𝐹(⋅, 0)‖𝑠+𝑙−𝜈−1,𝑛−𝑚 + ∫

𝜏

0
𝑒𝑞0𝜃‖𝜕𝑙

𝜏𝐹(⋅, 𝜃)‖𝑠,𝑛−𝑚 𝑑𝜃). (30)

Proof. The operator −𝐿03(𝜕𝑥) is a dissipative under the assumptions (H1),
(H2) and it generates the 𝐶0 semigroup of the contractions 𝑆(𝜏) on 𝐻𝑠

𝑛−𝑚.
Thus, there exists a unique mild solution 𝑌 ∈ 𝐶([0, ∞); 𝐻𝑠

𝑛−𝑚) of the Cauchy
problem (29). Hence, we can obtain the estimation ‖𝑆(𝜏)‖ ⩽ 𝑒−𝑞0𝜏, 𝜏 ⩾ 0,
which with the next equality

𝑌 (⋅, 𝜏) = 𝑆(𝜏)𝑦0 + ∫
𝜏

0
𝑆(𝜃)𝐹(⋅, 𝜏 − 𝜃) 𝑑𝜃

gives the estimation (30) in the case 𝑙 = 0. We can obtain the estimation (30)
by differentiating to 𝜏 the equation (29) in the case 𝑙 ⩾ 1. Proposition 2 is
proved. �



M. A. Bouatta et al., The asymptotic solution of a singularly perturbed … 137

Using these propositions, we can determine the functions 𝑉𝑘 and 𝑍𝑘. Hence,
it follows from (11) for 𝑘 = 0 that 𝑋0 = 0. We can find the main regular term
𝑉0 = col(𝑣0, 𝑤0) of the expansion (3) from (13) and Proposition 1. Instantly,
we have the following:

𝑤0(𝑥, 0) = 𝐹 −1[(𝐺03 + 𝑖|𝜉|𝑏03(𝜉))−1( ̂𝑔(𝜉, 0) − (𝐺∗
02 + 𝑖|𝜉|𝑏∗

02(𝜉))�̂�0(𝜉))].

Lemma 1 and the Parseval equality permit us to obtain the next estimation

‖𝑤0(⋅, 0)‖𝑠,𝑛−𝑚 ⩽ 𝐶(‖𝑔(⋅, 0)‖𝑠,𝑛−𝑚 + ‖𝑢0‖𝑠+1,𝑚) ⩽
⩽ 𝐶(‖𝑈0‖𝑠+1,𝑛 + ‖𝐹(⋅, 0)‖𝑠,𝑛). (31)

Proposition 2 permits us to define the function 𝑌0 as a solution of Cauchy
problem (12). Moreover, we can obtain the next inequality from (30) and (31)

‖𝜕𝑙
𝜏𝑌0(⋅, 𝜏)‖𝑠,𝑛−𝑚 ⩽ 𝐶𝑒−𝑞0𝜏(‖𝑈0‖𝑠+𝑙+1,𝑛 + ‖𝐹(⋅, 0)‖𝑠+𝑙,𝑛). (32)

Thus, we can find the main singular term 𝑍0 = col(0, 𝑌0) of the expan-
sion (3).

Let us obtain the next terms of this expansion. Let us suppose that the
terms 𝑉0, … , 𝑉𝑘−1 and 𝑍0, … , 𝑍𝑘−1 are already found. We can obtain the
terms 𝑉𝑘 and 𝑍𝑘 and show that the next estimations

‖𝑉𝑘‖𝑊 𝑙,∞(0,𝑇 ;𝐻𝑠
𝑛) ⩽ 𝐶(𝑇 )(‖𝑈0‖𝑠+2𝑙+3𝑘+1,𝑛+

+ ‖𝐹(⋅, 0)‖𝑠+2𝑙+3𝑘−2,𝑛 + ‖𝐹‖𝑊 𝑙,1(0,𝑇 ;𝐻𝑠+3𝑘+2
𝑛 )), (33)

and

‖𝜕𝑙
𝜏𝑍𝑘(⋅, 𝜏)‖𝑠,𝑛 ⩽ 𝐶𝑒−𝑞0𝜏(1 + 𝜏𝑘) (‖𝑈0‖𝑠+𝑙+𝑘+1,𝑛 + ‖𝐹(⋅, 0)‖𝑠+𝑙+𝑘,𝑛) (34)

are true, if we suppose that such estimations are true for previous terms. We
can note that the estimations (33), (34) for 𝑉0 and 𝑍0 follow from (22) and
(32).

At first, if we solve the problem (11), we can get

𝑋𝑘(⋅, 𝜏) = − ∫
∞

𝜏
𝐹𝑘1(⋅, 𝜃) 𝑑𝜃,

where the integral exists due to the estimation (34) for 𝑍𝑘−1. Using (34) for
𝑍𝑘−1 and for 𝑍𝑘−2, we obtain the next estimation:

‖𝜕𝑙
𝜏𝑋𝑘(⋅, 𝜏)‖𝑠,𝑚 = ‖𝜕𝑙−1

𝜏 𝐹𝑘1(⋅, 𝜏)‖𝑠,𝑚 ⩽
⩽ 𝐶(‖𝜕𝑙−1

𝜏 𝑍𝑘−1(⋅, 𝜏)‖𝑠+1,𝑛 + ‖𝜕𝑙−1
𝜏 𝑍𝑘−2(⋅, 𝜏)‖𝑠+1,𝑛) ⩽

⩽ 𝐶𝑒−𝑞0𝜏(1 + 𝜏𝑘−1)(‖𝑈0‖𝑠+𝑙+𝑘,𝑛 + ‖𝐹(⋅, 0)‖𝑠+𝑙+𝑘−1,𝑛), (35)

for 𝑙 ⩾ 1. Similarly, we can get the estimation (35) in the case 𝑙 = 0.
Using Proposition 1 and 𝑣𝑘(⋅, 0) = −𝑋𝑘(⋅, 0), we can solve the problem (13)

and find the functions 𝑉𝑘.
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Using the next estimation

‖𝑉𝑘‖𝑊 𝑙,∞(0,𝑇 ;𝐻𝑠
𝑛) ⩽ 𝐶(𝑇 )(‖𝑋𝑘(⋅, 0)‖𝑠+2𝑙+1,𝑚 + ‖𝑉𝑘−1‖𝑊 𝑙,∞(0,𝑇 ;𝐻𝑠+3

𝑛 )),

and also (22), (33) for 𝑉𝑘−1 and (35) for 𝑋𝑘, we can find the estimation (33)
for 𝑉𝑘.

Instantly, we can obtain the next equality

𝑤𝑘(𝑥, 0) = 𝐹 −1[(𝐷03 + 𝑖|𝜉|�̂�03(𝜉))−1( ̂𝑔𝑘(𝜉, 0) − (𝐷∗
02 + 𝑖|𝜉|�̂�∗

02(𝜉))�̂�𝑘(𝜉, 0))]

and establish the estimation

‖𝑤𝑘(⋅, 0)‖𝑠,𝑛−𝑚 ⩽ 𝐶(‖𝑔𝑘(⋅, 0)‖𝑠,𝑛−𝑚 + ‖𝑋𝑘(⋅, 0)‖𝑠+1,𝑚) ⩽
⩽ 𝐶(‖𝑋𝑘−1(⋅, 0)‖𝑠+1,𝑚 + ‖𝑋𝑘(⋅, 0)‖𝑠+1,𝑚 + ‖𝑤𝑘−1(⋅, 0)‖𝑠+1,𝑛−𝑚) ⩽

⩽ 𝐶(‖𝑈0‖𝑠+𝑘+1,𝑛 + ‖𝐹(⋅, 0)‖𝑠+𝑘,𝑛). (36)

Using (34) for 𝑍𝑘−1 and (35) for 𝑋𝑘, we can obtain the next unequality

‖𝜕𝑙
𝜏𝐹𝑘2(⋅, 𝜏)‖𝑠,𝑛−𝑚 ⩽ 𝐶(‖𝜕𝑙

𝜏𝑋𝑘(⋅, 𝜏)‖𝑠+1,𝑚 + ‖𝜕𝑙
𝜏𝑍𝑘−1(⋅, 𝜏)‖𝑠+1,𝑛) ⩽

⩽ 𝐶𝑒−𝑞0𝜏(1 + 𝜏𝑘−1)(‖𝑈0‖𝑠+𝑙+𝑘+1,𝑛 + ‖𝐹(⋅, 0)‖𝑠+𝑙+𝑘,𝑛). (37)

We can find the next estimation from (30), (36) and (37)

‖𝜕𝑙
𝜏𝑌𝑘(⋅, 𝜏)‖𝑠,𝑛−𝑚 ⩽ 𝐶𝑒−𝑞0𝜏(‖𝑤𝑘(⋅, 0)‖𝑠+𝑙,𝑛−𝑚+

+
𝑙−1
∑
𝜈=0

‖𝜕𝜈
𝜏 𝐹𝑘2(⋅, 0)‖𝑠+𝑙−𝜈−1,𝑛−𝑚 + ∫

𝜏

0
𝑒𝑞0𝜃‖𝜕𝑙

𝜏𝐹𝑘2(⋅, 𝜃)‖𝑠,𝑛−𝑚 𝑑𝜃) ⩽

⩽ 𝐶𝑒−𝑞0𝜏(1 + 𝜏𝑘)(‖𝑈0‖𝑠+𝑙+𝑘+1,𝑛 + ‖𝐹(⋅, 0)‖𝑠+𝑙+𝑘,𝑛). (38)

The estimations (35) and (38) imply the estimation (34) for 𝑍𝑘.
We can prove the main result of our work.

Theorem 1. Let us suppose that 𝐵 and 𝐺 satisfy conditions (H1), (H2)

and 0 ⩽ 𝑙 < 𝑁 + 1. If the conditions 𝑈0 ∈ 𝐻𝑠+2𝑙+3(𝑁+1)
𝑛 , 𝐹 ∈

𝑊 𝑙+1,1(0, 𝑇 ; 𝐻𝑠+2𝑙+3(𝑁+1)
𝑛 ) are true, then there exists a unique strong solu-

tion 𝑈 ∈ 𝑊 𝑙,∞(0, 𝑇 ; 𝐻𝑠
𝑛) of the problem (𝑃𝜀). The expansion (3) is true for

this solution, where 𝑉𝑘 and 𝑍𝑘 are determined by problems (13), (11), (12)
respectively and they satisfy the estimations (33), (34). The estimation

‖𝑅𝑁1‖2
𝑊 𝑙,∞(0,𝑇 ;𝐻𝑠

𝑚) + 𝜀1/2‖𝑅𝑁2‖2
𝑊 𝑙,∞(0,𝑇 ;𝐻𝑠

𝑛−𝑚) ⩽ 𝐶(𝑇 )𝜀𝑁+1−𝑙 (39)

is true with 𝐶(𝑇 ) depending on 𝑇, ‖𝑈0‖𝑠+2𝑙+3(𝑁+1),𝑛, ‖𝐹‖𝑊 𝑙+1,1(0,𝑇 ;𝐻𝑠+2𝑙+3(𝑁+1)
𝑛 )

and 𝑞0 for the remainder term 𝑅𝑁 = col(𝑅𝑁1, 𝑅𝑁2). In particular, if we
assume 𝑁 = 0, then there is the next estimation

‖𝑈 − 𝑉0 − 𝑍0‖𝐶([0,𝑇 ];𝐻𝑠
𝑛) ⩽ 𝐶(𝑇 )𝜀1/4.
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Proof. Using the properties of the 𝐶0 semigroup of operators, we can
obtain the solvability of the problem (𝑃𝜀). Indeed, the operator −(𝐵(𝜕𝑥)+𝐷)
is closed and dissipative on 𝐻𝑠

𝑛. This operator generates the 𝐶0 semigroup of
contractions on 𝐻𝑠

𝑛, which solves the problem (𝑃𝜀). Moreover, the conditions

𝑈0 ∈ 𝐻𝑠+𝑙
𝑛 , 𝐹 ∈ 𝑊 𝑙,1(0, 𝑇 ; 𝐻𝑠

𝑛), 𝜕𝜈
𝑡 𝐹(⋅, 0) ∈ 𝐻𝑠+𝑙−𝜈−1

𝑛 , 𝜈 = 0, … , 𝑙 − 1, 𝑙 ⩾ 1
imply the regularity of the solution 𝑈 ∈ 𝑊 𝑙,∞(0, 𝑇 ; 𝐻𝑠

𝑛). Using the method
from [21], we can prove the estimation (39). Furthermore, all constants depend
on the norms, which are indicated in the Theorem 1, and they are represented

by 𝐶(𝑇 ). Let us denote the next relations 𝑅𝑙 = 𝜕𝑙
𝑡𝑅𝑁, 𝑅𝑙𝑖 = 𝜕𝑙

𝑡𝑅𝑁𝑖, 𝑖 = 1, 2.
We can find that (𝐵𝑅𝑙, 𝑅𝑙)𝑠,𝑛 is a pure imaginary value from the condition

(H1). Consequently, we can get the next equation

𝑑
𝑑𝑡

(𝐴𝑅𝑙(⋅, 𝑡), 𝑅𝑙(⋅, 𝑡))𝑠,𝑛 + 2(𝐺𝑅𝑙(⋅, 𝑡), 𝑅𝑙(⋅, 𝑡))𝑠,𝑛 = 2𝑅𝑒(𝜕𝑙
𝑡𝐹(⋅, 𝑡), 𝑅𝑙(⋅, 𝑡))𝑠,𝑛.

Using the assumption (𝐻2), we can get the next inequality

𝑑
𝑑𝑡

(𝐴𝑅𝑙(⋅, 𝑡), 𝑅𝑙(⋅, 𝑡))𝑠,𝑛 + 2𝑞0(𝑅𝑙2(⋅, 𝑡), 𝑅𝑙2(⋅, 𝑡))𝑠,𝑛−𝑚 ⩽

⩽ 2|(𝜕𝑙
𝑡𝐹(⋅, 𝑡), 𝑅𝑙(⋅, 𝑡))𝑠,𝑛|. (40)

The estimations (33) and (34) yield the next estimation

|(𝜕𝑙
𝑡𝐹(⋅, 𝑡), 𝑅𝑙(⋅, 𝑡))𝑠,𝑛| ⩽ 𝜀𝑁+1|(𝑃1(𝜕𝑙

𝑡𝑉𝑁(⋅, 𝑡)) + 𝜀−𝑙𝐿1(𝜕𝑙
𝜏𝑍𝑁(⋅, 𝜏)), (41)

𝑅𝑙(⋅, 𝑡))𝑠,𝑛| + 𝜀𝑁−𝑙|(𝐿0(𝜕𝑙
𝜏𝑍𝑁(⋅, 𝜏)) + 𝐿1(𝜕𝑙

𝜏𝑍𝑁−1(⋅, 𝜏)),

𝐴0𝑅𝑙(⋅, 𝑡))𝑠,𝑛| ⩽
⩽ 𝐶(𝑇 )(𝜀𝑁−𝑙𝜅(𝑡)‖𝑅𝑙1(⋅, 𝑡)‖𝑠,𝑚 + (𝜀𝑁+1 + 𝜅(𝑡)𝜀𝑁+1−𝑙)‖𝑅𝑙(⋅, 𝑡))‖𝑠,𝑛),

where 0 ⩽ 𝑡 ⩽ 𝑇 , 𝜏 = 𝑡/𝜀 and 𝜅(𝑡) = 𝑒−𝑞0𝑡/𝜀(1 + (𝑡/𝜀)𝑁). Integrating (40) by
𝑡 and using (41), we can get the next inequality

‖𝑅𝑙1(⋅, 𝑡))‖2
𝑠,𝑚 + 𝜀‖𝑅𝑙2(⋅, 𝑡))‖2

𝑠,𝑛−𝑚 + 2𝑞0 ∫
𝑡

0
‖𝑅𝑙2(⋅, 𝜃)‖2

𝑠,𝑛−𝑚 𝑑𝜃 ⩽

⩽ ‖𝑅𝑙1(⋅, 0)‖2
𝑠,𝑚 + 𝜀‖𝑅𝑙2(⋅, 0))‖2

𝑠,𝑛−𝑚 + 𝐶(𝑇 )(𝜀𝑁−𝑙 ∫
𝑡

0
𝜅(𝜃)‖𝑅𝑙1(⋅, 𝜃)‖𝑠,𝑚 𝑑𝜃+

+ ∫
𝑡

0
(𝜀𝑁+1 + 𝜅(𝜃)𝜀𝑁−𝑙+1)‖𝑅𝑙(⋅, 𝜃)‖𝑠,𝑛 𝑑𝜃), 0 ⩽ 𝑡 ⩽ 𝑇 , (42)

We can note that

𝑅𝑙(⋅, 0) =
𝑙−1
∑
𝜈=0

(−𝐴−1(𝐵(𝜕𝑥) + 𝐷))𝑙−𝜈−1𝐴−1𝜕𝜈
𝑡 𝐹(⋅, 0), 𝑙 ⩾ 1,
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and according to (7), 𝑅0(⋅, 0) = 0.

Therefore, using the equality 𝐴−1𝐴0 = 𝐴0 and (34), (35), we can find the
next estimation

‖𝐴−1𝜕𝜈
𝑡 𝐹(⋅, 0)‖𝑠,𝑛 ⩽

⩽ 𝜀𝑁+1‖(𝐴−1𝑃1𝜕𝜈
𝑡 𝑉𝑁)(⋅, 0)‖𝑠,𝑛 + 𝜀𝑁+1−𝜈‖(𝐴−1𝐿1𝜕𝜈

𝜏 𝑍𝑁)(⋅, 0)‖𝑠,𝑛+
+ 𝜀𝑁−𝜈‖𝐴0(𝐿0𝜕𝜈

𝜏 𝑍𝑁 + 𝐿1𝜕𝜈
𝜏 𝑍𝑁−1)(⋅, 0)‖𝑠,𝑛 ⩽

⩽ 𝐶(𝑇 )(𝜀𝑁 + 𝜀𝑁−𝜈) ⩽ 𝐶(𝑇 )𝜀𝑁−𝜈,

where 0 < 𝜀 < 1, 0 ⩽ 𝜈 ⩽ 𝑁.
Thus, we can obtain the next inequalities

‖𝑅𝑙(⋅, 0)‖𝑠,𝑛 ⩽
𝑙−1
∑
𝜈=0

‖𝐴−1(𝐵(𝜕𝑥) + 𝐷))𝑙−𝜈−1𝐴−1𝜕𝜈
𝑡 𝐹(⋅, 0)‖𝑠,𝑛 ⩽

⩽ 𝐶(𝑇 )
𝑙−1
∑
𝜈=0

𝜀−(𝑙−𝜈−1) ⋅ 𝜀𝑁−𝜈 ⩽ 𝐶(𝑇 )𝜀𝑁−𝑙+1. (43)

If the conditions 𝑙 < 𝑁 + 1, 0 ⩽ 𝑡 ⩽ 𝑇 , 𝜀 ≪ 0 are true, we can obtain the
estimations

∫
𝑡

0
𝜅(𝜃)‖𝑅𝑙1(⋅, 𝜃)‖𝑠,𝑚 𝑑𝜃 ⩽ ∫

𝑡

0
𝜅(𝜃) 𝑑𝜃 + ∫

𝑡

0
𝜅(𝜃)‖𝑅𝑙1(⋅, 𝜃)‖2

𝑠,𝑚 𝑑𝜃 ⩽

⩽ 𝐶(𝑇 )𝜀 + ∫
𝑡

0
𝜅(𝜃)‖𝑅𝑙1(⋅, 𝜃)‖2

𝑠,𝑚 𝑑𝜃, (44)

and

𝐶(𝑇 ) ∫
𝑡

0
(𝜀𝑁+1 + 𝜅(𝜃)𝜀𝑁−𝑙+1)‖𝑅𝑙(⋅, 𝜃)‖𝑠,𝑛 𝑑𝜃 ⩽

⩽ 𝐶(𝑇 )𝜀𝑁−𝑙+1 + 𝑞0 ∫
𝑡

0
‖𝑅𝑙2(⋅, 𝜃)‖2

𝑠,𝑛−𝑚 𝑑𝜃+

+ 𝐶(𝑇 ) ∫
𝑡

0
(𝜀𝑁+1 + 𝜅(𝜃)𝜀𝑁−𝑙+1)‖𝑅𝑙1(⋅, 𝜃)‖2

𝑠,𝑚 𝑑𝜃. (45)

Using the next inequality

‖𝑅𝑙1(⋅, 𝑡))‖2
𝑠,𝑚 + 𝜀‖𝑅𝑙2(⋅, 𝑡))‖2

𝑠,𝑛−𝑚 + 𝑞0 ∫
𝑡

0
‖𝑅𝑙2(⋅, 𝜃)‖2

𝑠,𝑛−𝑚 𝑑𝜃 ⩽

⩽ 𝐶(𝑇 )(𝜀𝑁−𝑙+1 + ∫
𝑡

0
(𝜀𝑁+1 + 𝜅(𝜃)𝜀𝑁−𝑙)‖𝑅𝑙1(⋅, 𝜃)‖2

𝑠,𝑚 𝑑𝜃), 0 ⩽ 𝑡 ⩽ 𝑇 ,

and the estimations (43), (44), (45), we can find the inequality (42).
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Using Gronwall’s lemma and the last inequality, we can get the estimations

‖𝑅𝑙1(⋅, 𝑡)‖2
𝑠,𝑚 ⩽ 𝐶(𝑇 )𝜀𝑁−𝑙+1, 0 ⩽ 𝑡 ⩽ 𝑇 , (46)

and

𝜀‖𝑅𝑙2(⋅, 𝑡)‖2
𝑠,𝑛−𝑚 +𝑞0 ∫

𝑡

0
‖𝑅𝑙2(⋅, 𝜃)‖2

𝑠,𝑛−𝑚 𝑑𝜃 ⩽ 𝐶(𝑇 )𝜀𝑁−𝑙+1, 0 ⩽ 𝑡 ⩽ 𝑇 . (47)

Using (43) and (47), we can obtain the estimation

‖𝑅𝑙2(⋅, 𝑡)‖2
𝑠,𝑛−𝑚 ⩽

⩽ ‖𝑅𝑙2(⋅, 0)‖2
𝑠,𝑛−𝑚 + 2 ∫

𝑡

0
‖𝑅𝑙2(⋅, 𝜃)‖𝑠,𝑛−𝑚‖𝑅(𝑙+1)2(⋅, 𝜃)‖𝑠,𝑛−𝑚 𝑑𝜃 ⩽

⩽ 𝐶(𝑇 )𝜀2(𝑁−𝑙+1) + 2 (∫
𝑡

0
‖𝑅𝑙2(⋅, 𝜃)‖2

𝑠,𝑛−𝑚 𝑑𝜃)
1/2

×

× (∫
𝑡

0
‖𝑅(𝑙+1)2(⋅, 𝜃)‖2

𝑠,𝑛−𝑚 𝑑𝜃)
1/2

⩽ 𝐶(𝑇 )𝜀𝑁−𝑙+1/2, 0 ⩽ 𝑡 ⩽ 𝑇 . (48)

The estimates (46) and (48) imply the estimate (39). Therefore, Theorem 1
is proved. �

Thus, we justify asymptotic expansions of the singularly perturbed Cauchy
problem (𝑃𝜖).

5. Conclusions

In this paper we investigate the Cauchy problem for the singularly per-
turbed Tikhonov-type symmetric system of Fokker–Planck equations. This
system consists of non-homogeneous constant coefficients linear parabolic
partial differential equations with a small parameter. For these singularly
perturbed Cauchy problems a method for constructing asymptotic solutions
is proposed. We use the asymptotic method for this Cauchy problem and
construct expansions of solutions in the form of decomposition, which has
regular and border-layer parts. The asymptotic solutions in the form of reg-
ular and boundary-layer parts are obtained and the question of asymptotic
solutions behavior when 𝜀 → 0 is investigated. The main result of our work is
a justification of an asymptotic expansion for this Cauchy problem. We prove
the justification theorem for the asymptotic solutions. Our method can be
applied in a wide variety of cases for singularly perturbed Cauchy problems
of Fokker–Planck equations. The Fokker–Planck equation is connected with
the Chapman–Kolmogorov equation for the transition probability function of
a Markov process.

Our results give the approach to investigate the fast-changing processes
in liquids and gases, plasma, solid state theory, magnetic, hydrodynamics,
radiophysics, telecommunication technology, chemistry, biology, finance and
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so on. An extension of Fokker–Planck equations with a small parameter to
model non-Markovian processes is also possible.
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Асимптотическое решение сингулярно возмущённой
задачи Коши для уравнения Фоккера–Планка

М. А. Буатта1, С. А. Васильев1, С. И. Виницкий1, 2

1 Российский университет дружбы народов
ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия
2 Объединённый институт ядерных исследований

ул. Жолио-Кюри, д. 6, Дубна, Московская область, 141980, Россия

Асимптотические методы — очень важная область прикладной математи-
ки. Существует множество современных направлений исследований, в которых
используется малый параметр, например статистическая механика, теория хи-
мических реакций и др. Использование уравнения Фоккера–Планка с малым
параметром очень востребовано, поскольку это уравнение является параболиче-
ским дифференциальным уравнением в частных производных, а решения этого
уравнения дают функцию плотности вероятности.

В работе исследуется сингулярно возмущённая задача Коши для симметрич-
ной линейной системы параболических дифференциальных уравнений в частных
производных с малым параметром. Мы предполагаем, что эта система являет-
ся неоднородной системой тихоновского типа с постоянными коэффициентами.
Цель исследования — рассмотреть эту задачу Коши, применить асимптотический
метод и построить асимптотические разложения решений в виде двухкомпонент-
ного ряда. Таким образом, это разложение имеет регулярную и погранслойную
части. Основным результатом данной работы является обоснование асимптоти-
ческого разложения для решений этой задачи Коши. Наш метод может быть
применён для широкого круга сингулярно возмущённых задач Коши для урав-
нений Фоккера–Планка.

Ключевые слова: асимптотический анализ, сингулярно возмущённое
дифференциальное уравнение, задача Коши, уравнение Фоккера–Планка



146 DCM&ACS. 2021, 29 (2) 146–157

Research article

UDC 519.872:519.217

PACS 07.05.Tp, 02.60.Pn, 02.70.Bf

DOI: 10.22363/2658-4670-2021-29-2-146-157

Calculation of special functions arising in the problem
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To apply the incomplete Galerkin method to the problem of the scattering of
electromagnetic waves by lenses, it is necessary to study the differential equations for
the field amplitudes. These equations belong to the class of linear ordinary differential
equations with Fuchsian singularities and, in the case of the Lüneburg lens, are
integrated in special functions of mathematical physics, namely, the Whittaker and
Heun functions.

The Maple computer algebra system has tools for working with Whittaker and Heun
functions, but in some cases this system gives very large values   for these functions,
and their plots contain various kinds of artifacts. Therefore, the results of calculations
in the Maple’11 and Maple’2019 systems of special functions related to the problem
of scattering by a Lüneburg lens need additional verification. For this purpose, an
algorithm for finding solutions to linear ordinary differential equations with Fuchsian
singular points by the method of Frobenius series was implemented, designed as
a software package Fucsh for Sage. The problem of scattering by a Lüneburg lens
is used as a test case. The calculation results are compared with similar results
obtained in different versions of CAS Maple.

Fuchs for Sage allows computing solutions to other linear differential equations
that cannot be expressed in terms of known special functions.

Key words and phrases: linear differential equations, Whittaker functions, Heun
functions

1. Introduction

The problem of diffraction of a plane electromagnetic wave by a ball with
an arbitrary radially symmetric filling allows the construction of an analytical
solution by the incomplete Galerkin method [1]. Let us make use of a spherical
coordinate system and assume that the dielectric constant of the ball 𝜖 depends
only on 𝑟, and the permeability 𝜇 is constant. Let us expand the Borgnis
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potentials 𝑢, 𝑣 for electric- and magnetic-type fields in terms of the system of
spherical functions:

𝑢 =
∞

∑
𝑛=1

𝑢𝑛(𝑟)𝑃 (1)
𝑛 (𝜃) sin 𝜙, 𝑣 =

∞
∑
𝑛=1

𝑣𝑛(𝑟)𝑃 (1)
𝑛 (𝜃) sin 𝜙.

Functions 𝑢𝑛(𝑟), 𝑣𝑛(𝑟) satisfy linear differential equations of the second
order: for TE-polarized wave

𝑑
𝑑𝑟

1
𝜇

𝑑𝑢𝑛
𝑑𝑟

+ [𝑘2𝜖 − 𝑛(𝑛 + 1)
𝜇𝑟2 ] 𝑢𝑛 = 0, (1)

and for TM-polarized wave

𝑑
𝑑𝑟

1
𝜖

𝑑𝑣𝑛
𝑑𝑟

+ [𝑘2𝜇 − 𝑛(𝑛 + 1)
𝜖𝑟2 ] 𝑣𝑛 = 0. (2)

Not only in the classical case of a ball with constant filling, but also in the
case of a Lüneburg lens, when

𝜖 =
⎧{
⎨{⎩

2 − 𝑟2, 𝑟 < 1,
1, 𝑟 > 1,

these equations are integrated in special functions of mathematical physics.
In the classical case, the cylindrical functions are obtained [2]–[4]. For
a Lüneburg lens, (1) was integrated in the paper by Lock [5] in terms of
Whittaker functions. In the Maple system [6] both equations (1) and (2) for
a Lüneburg lens are integrable: the solution to Eq. (1) is expressed in terms
of Whittaker functions and the solution to Eq. (2) in terms of Heun functions.

When working with these functions in the Maple system, we faced the fact
that they take on huge values that grow indefinitely with an increase in 𝑛, and
all sorts of artifacts (gaps and ripples) appear in the plots. This observation
raised doubts about the adequacy of the algorithms used in Maple.

However, it is easy to see that both equations (1) and (2) are linear
differential equations of the 2nd order that have a Fuchsian singular point [7]
at 𝑟 = 0. Therefore, their solutions upon the analytic dependence of 𝜖 on 𝑟 can
be expanded in the Frobenius series [7]. The coefficients of the equations (1)
and (2) have finite nonzero singular points only where the functions 𝜖 and 1/𝜖
have them, respectively. In particular, if 𝜖 is a polynomial, then the Frobenius
series for the solution to Eq. (1) converges for all 𝑟, and the Frobenius series
for the solution of Eq. (2) converges in a circle, on the boundary of which
the complex zero with the least modulus lies [7]. For example, in the case of
the Lüneburg lens, the Frobenius series for the solution to Eq. (1) converges

for all 𝑟, and for the solution of Eq. (2), the radius of convergence is
√

2.
Therefore, to find the field in the lens, it is quite sufficient to calculate the
coefficients of the Frobenius series for the solutions of Eqs. (1) and (2).
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2. Fuchs for Sage package

In general, the problem of finding Frobenius series can be formulated as
follows: for a linear differential equation

𝑥2𝑦″ + 𝑥𝑝𝑦′ + 𝑞𝑦 = 0, (3)

with meromorphic functions 𝑝, 𝑞, construct a solution in the form of a series

𝑦 = 𝑥𝑟(1 + 𝑢1𝑥 + 𝑢2𝑥2 + … ),

where 𝑟 is a root of characteristic equation

𝑟(𝑟 − 1) + 𝑝(0)𝑟 + 𝑞(0) = 0. (4)

Usually, both roots of this equation correspond to solutions, but in some
cases, when choosing a root with a smaller real part, a solution in the
form of a series does not exist. In this case, there is one solution in the
form of a Frobenius series, and the second solution is obtained from the
Liouville formulas connecting two solutions of a second-order linear differential
equation [7]. The solution to this problem was implemented in CAS Sage [8],
as the Fuchs for Sage software package.

Given symbolic expressions 𝑝 and 𝑞, the function fuchs_order(p,q) returns
the roots of Eq. (4) as elements of the algebraic number field.

sage: load('fuchs.sage')
None
sage: fuchs_order(1,x^2-3^2)
[-3, 3]
sage: fuchs_order(1,x^2-8)
[-2.828427124746190?, 2.828427124746190?]

Function fuchs_order(p,q,r,N) returns symbolic expression

𝑦 = 𝑥𝑟(1 + 𝑢1𝑥 + 𝑢2𝑥2 + ⋯ + 𝑢𝑁𝑥𝑁),

given symbolic expressions 𝑝 and 𝑞, order 𝑟, and number 𝑁 of the sought
series terms.

This function supports operation with non-rational roots:

sage: R=fuchs_order(1,x^2-8)
sage: fuchs_series(1,x^2-8,R[1],10)
(-(1.41301303805500?e-9)*x^10 + (2.212333918945947?e-7)*x^8
- 0.00002417081750580247?*x^6 + 0.001690534180537310?*x^4
- 0.06530096874093536?*x^2 + 1)*x^2.828427124746190?

Let us give an example of calculating the solution of Eq. (1) for the case of
a Lüneburg lens with numerical values of the parameters 𝑘, 𝑛:

sage: k=4
sage: n=3
sage: p=0
sage: q=k^2*x^2*(2-x^2) -n*(n+1)
sage: fuchs_order(p,q)
[-3, 4]
sage: expand(fuchs_series(p,q,4,10))
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-3712/19305*x^14 + 1928/3861*x^12 - 448/429*x^10
+ 164/99*x^8 - 16/9*x^6 + x^4

The terms of this series do not form a monotonic sequence (see figure 1),
therefore, when summing the series, it is important to take a sufficient number
of terms.

50 100 150 200 250 300
n

-6e14

-4e14

-2e14

2e14

4e14

6e14

unxn + r

Figure 1. Solution for the Lüneburg lens: distribution of the values of the terms of the series

over 𝑛 — the summand number of the Frobenius series. Calculations are performed

for the point 𝑥 = 4

3. Calculation of special functions in the Lüneburg case

Fuchs for Sage allows describing the partial solutions of Eqs. (1) and (2),
bounded at zero, in the form of the first 𝑁 terms of the Frobenius series. In
our experiments, a moment was revealed after which a further increase in
the number of terms did not lead to a noticeable change in the sum at the
reference points. Of course, it would be very convenient to get not greatly
overstated theoretical estimates for the number of terms that must be kept in
the series in order to preserve the chosen accuracy.

In order to exclude the influence of round-off errors, calculations are carried
out in the field of rational numbers, the summation of the series was carried out
at rational points of the real axis. For visibility, the rational values obtained
without round-off errors are presented in the plots below in logarithmic scale.

Let us compare the results of computer experiments in Sage and Maple
for the case of a Lüneburg lens. As noted above, in this case, solutions in
the form of a series can be compared with solutions in special functions of
mathematical physics that are used in the Maple system.
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3.1. ТЕ field

In the case of the Lüneburg lens, the coefficients of Eq. (1) have only two
singular points (𝑟 = 0 and 𝑟 = ∞) and therefore this series can be expressed
in terms of the degenerate hypergeometric function or the Whittaker function
[9, §13.14] [10]. The Maple system uses the expression

𝑢𝑛 = 1√
𝑟
WhittakerM (𝑘

2
, 2𝑛 + 1

4
, 𝑘𝑟2) .

This solution to Eq. (1) differs from those obtained using the Frobenius
method by the multiplicative constant, which can be found in symbolic form
using the Taylor series expansion.

Figure 2. Function ln |𝑢𝑛(𝑥)| in case 3, 𝑘 = 40, 𝑛 = 25, plotted in Sage (left)

and Maple’2019 (right). In Fuchs for Sage we took 400 terms and the calculations were

performed at 221 points

We compared the results of calculating the solution by the Frobenius method
and by means of Maple’2019 for 3 representative cases: 1) 𝑘 = 4, 𝑛 = 3, 2)
𝑘 = 10, 𝑛 = 3, 3) 𝑘 = 40, 𝑛 = 25. Despite some difficulties associated with
the difference in the automatic selection of proportions of the plots, in all
cases the calculation using our package leads to the same results as using
Maple, at least with graphic accuracy, see, e.g., figure 2. For a more accurate
analysis, we calculated the values at the reference points, see Table 1. It is
clearly seen that the values found in Sage and Maple match up to a round-off
error. Thus, the numbers to which the Frobenius series converge coincide
with the results of the built-in Maple algorithms with high accuracy. Thus,
both the algorithm for calculating the Frobenius series and the high orders
of magnitude of the sought functions observed in numerical experiments are
verified.
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3.2. ТМ field

Equation (2) has 4 singular points in the complex plane: 𝑟 = 0, 𝑟 = ±
√

2,
and 𝑟 = ∞. Therefore, its solutions are expressed in terms of the Heun
confluent function [9, §31.12] [11]. In Maple the expression

𝑣𝑛 = 𝑒𝑘𝑟2/2HeunC(2𝑘, 𝑛 + 1/2, −2, 𝑘2, −𝑘2 + 3/4, 𝑟2/2)𝑟𝑛+1 (5)

is used. To find the multiplicative constant, by analogy with above, we tried
to find the first non-vanishing term of the Taylor series of this function in
the vicinity of the point 𝑟 = 0. Unfortunately, the standard function taylor
cannot be applied to the 𝑣𝑛 function for expansion in Taylor series.
Remark. An attempt of using taylor to find the first three partial

sums of the Taylor series at the point 𝑟 = 0 leads to the result 𝑂(𝑟4). An
attempt to find the fourth partial sum at the point 𝑟 = 0 leads to an
error Error, (in series/function) unable to compute series. We
observed this kind of failure in all test examples without exception. When
choosing a point other than zero as the center of the expansion, the function
taylor works without errors.

Nevertheless, computer experiments show that the function (5), calculated
in Maple, coincides with a high accuracy with the sum of the Frobenius series,
see Table 2. This makes us to assume that the desired constant is 1.

Figure 3. Plot of function ln |𝑣𝑛(𝑥)| at 𝑘 = 18, 𝑛 = 1; on the right – Frobenius series with

𝑁 = 200 terms, calculated at 41 points, on the left – plot from Maple’2019

Unlike Eq. (1), Eq. (2) has a finite singular point, namely 𝑥 =
√

2. We will

now show that for 𝑥 ⩾
√

2 the Maple system produces incorrect results for
representing the function 𝑣𝑛(𝑥).

The Frobenius exponents in the vicinity of the Fuchsian singular point

𝑥 =
√

2 of Eq. (2) are equal to 0 and 2, and do not depend on the parameters
𝑛 and 𝑘. In the first case, the application of our function leads to division by
zero, which indicates the presence of a logarithmic singularity in the expression
of the desired function [7], [11]. In this case, the solution corresponding to the

Frobenius exponent equal to 0 is bounded at the singular point 𝑥 =
√

2. In
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the second case, according to Fuchs theorem [7] we obtain a Frobenius series
with a nonzero radius of convergence. Therefore, the function 𝑣𝑛(𝑥) continues

analytically beyond the point 𝑥 =
√

2, having a removable singularity at this
point for real values of 𝑥. The plot of the Frobenius series sum (figure 3) fully

confirms that 𝑣𝑛 has a finite limit at the point 𝑥 =
√

2; it cannot give more,

since it diverges at 𝑥 >
√

2.

A numerical experiment in Fuchs for Sage indicates the convergence of the

Frobenius series for the function 𝑣𝑛(𝑥) at the point 𝑥 =
√

2 in the field of real
numbers, see Table 3. However, this convergence is noticeably slower than at

rational points 𝑥 <
√

2.

The situation in Maple looks much less clear. Substitution

of the value 𝑥 =
√

2 in the Maple system yields the result
Float(infinity)+Float(infinity)*I for all the values of 𝑘, 𝑛 we checked.
In this case, the plot of 𝑣𝑛(𝑥), obtained by means of Maple’2019, is cut off at

this point. Substitution of values 𝑥 >
√

2 results in complex numbers of astro-
nomical orders of magnitude, for example evalf(eval(V, r = 3/2)) yields
-5.630587096*10^12 + (1.389900117*10^15)*I, for the parameter values
𝑘 = 10, 𝑛 = 3.

Moreover, when calculating the Heun function in Maple, problems appear
that are characteristic of the accumulation of round-off errors when summing
a power series. In older versions of Maple, these problems were encountered
for all considered parameters, and their first appearance took place already at
𝑘 = 10, see figure 4. In new versions, the same shortcomings in the display of
plots appear in a different range of parameters: the highest harmonic 𝑛 = 1
is displayed incorrectly at 𝑘 ⩾ 18 (see figure 3, left, and 5). At the same
time, even a relatively small number of terms of the Frobenius series makes it
possible to obtain a smooth curve without artifacts, see figure 3, right.

r
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K0,02
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Figure 4. Heun functions 𝑣𝑛 for values

𝑘 = 10, 𝑛 = 1, 2, 3 in Maple’11

Figure 5. Calculation of functions

ln |𝑣𝑛(𝑥)|. Case 3, 𝑘 = 40, 𝑛 = 25
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Figure 6. Plot of function ln |𝑣𝑛(𝑥)| at 𝑘 = 40, 𝑛 = 25, left — plot from Maple’2019,

right — Frobenius series with 250 terms and 82 values of 𝑥 used

4. Conclusion

In this paper, we present the Fuchs for Sage package , which allows calcu-
lating the solutions of second-order equations having the Fuchsian singularity
with high accuracy and, in particular, looking for the potentials of the fields
scattered by a ball with a wide class of dielectric constant radial dependences.
This is confirmed by a comparison with the case of a Lüneburg lens, when
the solution is expressed in terms of the known functions of mathematical
physics.

At the same time, we made sure in an independent way that the solutions
of the equations (1) and (2) in the case of a Lüneburg lens can change by
many orders, as it happened in Maple.

The results of our research can be useful for analyzing the electromagnetic
field in the vicinity of the focus of the Lüneburg lens [5].

It should be especially noted that the symbolic expression for TM fields in
terms of Heun confluent functions found in Maple is dangerous for use, since
it gives results that are not completely correct from a theoretical point of
view. At the same time, even a small number of terms of the Frobenius series
allows good approximations to the values of the sought functions, see figure 6.
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О вычислении специальных функций, возникающих
при исследовании задачи дифракции

на диэлектрическом шаре

К. Ю. Малышев

Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына
Московский государственный университет имени М.В. Ломоносова

Ленинские горы, д. 1, стр. 2, Москва, ГСП-1, 119991, Россия

Для применения неполного метода Галёркина к задаче о рассеянии электромаг-
нитных волн на линзах необходимо исследовать дифференциальные уравнения
для амплитуд полей. Эти уравнения принадлежат к классу линейных обыкно-
венных дифференциальных уравнений с фуксовыми особенностями и, в случае
линзы Люнеберга, интегрируются в специальных функциях математической
физики — функциях Уиттекера и Гойна.

В системе компьютерной алгебры Maple имеются инструменты для работы
с функциями Уиттекера и Гойна, однако в ряде случаев эта система выдаёт
очень большие значения для этих функций, а их графики содержат разного рода
артефакты. Поэтому результаты вычислений в системах Maple’11 и Maple’2019
специальных функций, связанных с задачей рассеяния на линзе Люнеберга, нуж-
даются в дополнительной проверке. С этой целью был реализован алгоритм
нахождения решений линейных обыкновенных дифференциальных уравнений
с фуксовыми особыми точками методом рядов Фробениуса, оформленный в виде
пакета программ Fuchs for Sage. Задача рассеяния на линзе Люнеберга ис-
пользуется в качестве тестового примера. Результаты расчётов сопоставляются
с аналогичными результатами работы в CAS Maple разных версий.

Пакет Fucsh for Sage позволяет вычислять решения и других линейных диф-
ференциальных уравнений, решения которых не выражаются через известные
специальные функции.

Ключевые слова: линейные дифференциальные уравнения, функции Уиттеке-
ра, функции Гойна
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The concept of cloud computing was created to better preserve user privacy and
data storage security. However, the resources allocated for processing this data must
be optimally allocated. The problem of optimal resource management in the loud
computing environment is described in many scientific publications. To solve the
problems of optimality of the distribution of resources of systems, you can use the
construction and analysis of QS. We conduct an analysis of two-buffer queuing system
with cross-type service and additional penalties, based on the literature reviewed in
the article. This allows us to assess how suitable the model presented in the article is
for application to cloud computing. For a given system different options for selecting
applications from queues are possible, queue numbers, therefore, the intensities of
transitions between the states of the system will change. For this, the system has
a choice policy that allows the system to decide how to behave depending on its
state. There are four components of such selection management models, which is
a stationary policy for selecting a queue number to service a ticket on a vacated
virtual machine each time immediately before service ends. A simulation model
was built for numerical analysis. The results obtained indicate that requests are
practically not delayed in the queue of the presented QS, and therefore the policy
for a given model can be considered optimal. Although Poisson flow is the simplest
for simulation, it is quite acceptable for performance evaluation. In the future, it is
planned to conduct several more experiments for different values of the intensity of
requests and various types of incoming flows.
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queues, optimal policy
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1. Introduction

In order to preserve and protect the users confidential data of computing
resources, the concept of Cloud Computing was developed as a way to provide
secure storage and processing of data for companies and individuals. Cloud
Computing includes not only programs and applications delivered as services
over the Internet, but also the hardware and system software in the data
centers that provide those services. This technology has five main charac-
teristics [1]: on-demand self-service, broad network access, resource pooling,
rapid elasticity and measured service. In addition, Cloud Computing includes
three main types of services: Infrastructure as a Service, Platform as a Ser-
vices, and Software as a Service [2]. There are four different ways to use this
technology: Public Cloud, Private Cloud, Community Cloud, and Hybrid
Cloud.

Nowadays the Cloud Computing model has taken on an increasingly promi-
nent role in a variety of IT-environments, where service providers seek to meet
the needs of their customers and improve their competitive position. The in-
crease in the number of users and the expansion of the services provided has
led to the need for more storage space. As a result, service providers must
work to increase the bandwidth of online data centers. Cloud Computing has
become an integral part of maintaining high performance to improve com-
petitiveness [3]. It is the fastest growing technology, and therefore, there are
some challenges for developers and for those who use them. Let’s consider
some tasks:

— tasks of distribution and use of resources;
— model of calculations MapReduce (model of parallel computing over very

large amounts of data) [4];
— protection of cloud infrastructure [5];
— ensuring the reliability of the work of many servers [6];
— homomorphic codes (a form of encryption);
— identification of spam pages [7];
— organization of information search.

The problem of optimal resource management in the Сloud Сomputing
environment is described in many scientific publications. As known, one of
the approaches to solving this problem is the construction of Queuing Systems
(QS). To analyze the distribution of resources and develop an optimal method
of performance management, in [8] a multiservice QS of a Cloud Computing
model with the same type of tasks and identical servers is investigated. The
optimization criterion is the minimization of the ratio of the average queue
length to the number of lost tasks. It should be noted that the efficient
operation of such a network presupposes the ability to flexibly respond to
changes in the demand for computing power by turning on/off machines.
Therefore, for a heterogeneous environment of Cloud Computing virtual
machines the open Jackson queue network model was proposed in [9], which
allows solving the problem of scaling the number of virtual machines. To
solve this problem the architecture of an elastic system of dynamic resource
management with several queues is presented in [10]. The model of an
open system with message queues is presented in [11], where reliability is
guaranteed due to the mechanism for optimizing the timeout duration, which
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does not allow the loss of a single message. The cloud architecture on e-
health platforms in medical centers was studied in [12], where a model of two
sequential 𝑀/𝑀/𝑠 queues is proposed: the first assumes receiving services for
registration, data verification and consultation, and the second is for accessing
the cloud database if the serving server is free. Here, it is possible for tasks to
go into orbit, i.e. repeated calls if the service server is busy, and to leave the
system due to impatience. The proposed model reduces the overall waiting
time by 25% compared to the existing model, and also increases resource
efficiency.

We will analyze a two-buffer queuing system with cross-type service and
additional penalties. System model describing the trajectory of movement
of customers is described in Section 2. Part 3 presents a multidimensional
Markov chain. Experimental evaluation of the model is presented in Section 4.

2. System model

2.1. Overview

Let us consider the case presented in Figure 1.

Figure 1. The architecture of two-class multi-server queuing system with a controllable

cross-connectivity

In this scenario, two web applications (web apps), classes 1 and 2 in figure,
are deployed over the cloud and parallelized on two different services. Each
server hosts groups of virtual machines (VM) and each group is assigned to
its own class. If the server is not able to provide access to the web apps, the
cloud can adapt to network load conditions and another server will provide
the necessary resources on demand. In other words, in the system of applied
cross-type service, when customers can connect both to the virtual machines
of selected server type and to an alternative if there are free virtual machines.
If the cloud is not able to provide services, i.e. all virtual machines are busy,
the customer will wait for answer. Note that the duration of a service is not
related to the type of web apps (class), but is related to a number of server.
This scenario of service imposes additional penalties, when customer service
on the server assigned to this class of application is cheaper than providing
additional resources on an alternative server. It would be logical to assume
that it would be more profitable for the cloud provider to leave the customer
to wait for the release of resources on his group of virtual machines. But
customer waiting also imposes cost losses, downtime of resources, as well as
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long processing of a request on a low-performance server will be unprofitable
factors. As a result, the main idea is to optimally distribute customers
between the two servers by calculating the optimal scheme for queue selecting.

2.2. Admission control

In this and the next section consider in more detail how access to virtual
machines is performed. With this configuration (as mentioned earlier), the
following processes are possible in the operation of the system: receipt of
a request from a customer to connect to the cloud, providing access to the
first server and providing access to the second server. For the case of receipt
of the request:

1. If there are no waiting customers and virtual machines corresponding to
this type of request are free, then access to the service can be initiated.

2. If there are no waiting customers, virtual machines corresponding to this
type of request are busy, but the alternatives are free, then access to the
service can be initiated on alternative server.

3. If all servers are busy, the customer will wait for cloud access in its queue.

2.3. Selection control

The considered system takes into account the cost of providing access to
a particular server, therefore it is important to describe the processes that
occur when providing a web app on both servers. For the case of providing
access to the first server:

1. If there are no waiting customers, then the virtual machines of first server
will be idle.

2. If there are first-class waiting customers and there are no second-class
waiting customers, then first-class waiting customer will be given access
to the first server.

3. If there are no first-class waiting customers and there are second-class
waiting customers, then second-class waiting customer will be given
access to the first server.

4. If there are all-classes waiting customers, it is necessary to select who
will be given access to the first server.

And for the case of providing access to the second server:

1. If there are no waiting customers, then the virtual machines of second
server will be idle.

2. If there are second-class waiting customers and there are no first-class
waiting customers, then second-class waiting customer will be given
access to the second server.

3. If there are no second-class waiting customers and there are first-class
waiting customers, then first-class waiting customer will be given access
to the second server.

4. If there are all-classes waiting customers, it is necessary to select who
will be given access to the first server.

Item 3 reflects the condition of queuing only when all virtual machines are
busy. To make the functioning of the system clearer, let’s limit the number of
virtual machines on each server to one. An example of such system is shown
in the Figure 5. In the figure groups of virtual machines (in our case, one
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VM on each server) are shown with circles, the different classes are indicated
by a filled circle and a shaded circle. A circle within a rectangle represents
a waiting customer.

Figure 2. Example of system behavior with one virtual machine on each server

2.4. Problem of finding a routing policy

The step of describing how to access the servers is led to the problem of
selection the class of customers when both servers are busy and the system
has both types of waiting customers (items 4 in cases of providing access to
the servers in previous section are just responsible for this problem). Hence,
the question arises - how to define customers who will serviced when the
virtual machine is released, i.e. what type of request will be granted access to
the cloud. This customer’s choice will call a routing policy.

There are several methods for organizing and processing queues. We can
use the fixed principle or, for example, exhaustive, when we take requests from
one queue until it becomes empty then from another until this one becomes
empty then we go back to the first, etc. Also we can choose a random principle:
from the first, then from the second. Hence, how to choose the routing policy
with maximum efficiency?

Therefore, the first thing is to understand the criterion by which to choose
the best, i.e. optimal routing policy. The most common problem for models
with additional penalties, i.e. which take into account the costs of waiting
in queues and servicing on ”own” or ”alternative” virtual machines, is the
problem of minimizing average losses per unit of time. This problem covers
special cases of minimizing the average number of requests or the average
time in the system. Let’s choose the first option as a criterion for routing
policy for our study.

And the second thing is how to find this optimal policy: either by brute
force, or using a controlled queuing system, the analysis of which allows to
find for a given criterion this optimal policy. This algorithm is dynamic and
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will depend on the state of the system. Those, for each state its own optimal
routing policy (some control matrix) can be chosen. This approach allows for
a more narrowly configure the system.

3. Queuing model

3.1. Description

The queuing network depicted in Figure 3 models the application of Figure 1.

Figure 3. Model in the form of a queuing system

The main parameters of the system are reflected in Table 1. It is composed
of two buffers and cross-type service. The system has 𝑁1 and 𝑁2 (𝑁1+𝑁2 = 𝑁,
𝑁𝑘, 𝑘 ∈ {1, 2}) groups of devices, as well as storage units with infinite capacity
for the first and second class of customers.Two classes of arrivals are assumed
to be generated according a Poisson process with parameters 𝜆1 and 𝜆2. The
service time is distributed exponentially with intensities 𝜇1 and 𝜇2, in such
a way that 0 < 𝜇2 ⩽ 𝜇1 < ∞. It is also taken into account that one group
of devices is more powerful than another. If all groups of devices are busy,
the customers arrive in the infinite buffer of its type. The service cost we
denote by 𝑐𝑘𝑗, where 𝑘 ∈ {1, 2} is the class of customers and 𝑗 ∈ {1, 2} is the

indicator of our and alternative devices, (𝑐𝑘2 > 𝑐𝑘1): 1 — servicing on our
devices, 2 — servicing on an alternative. In other words, 𝑐11/𝑐21 — cost of
servicing on our first/second group devices; 𝑐12/𝑐22 — cost of servicing on
an alternative first/second group devices; 𝑐𝑘0 (𝑐𝑘0 > 0) — cost of waiting for

service in the 𝑘-buffer, 𝑘 ∈ {1, 2}.

3.2. Stochastic process

According the above system description, denote as 𝑄𝑘(𝑡) — number of
customers in the 𝑘-buffer at time 𝑡 and 𝐷𝑘𝑗(𝑡) — number of 𝑗-customers on

𝑘-server at time 𝑡. In other words, at some arbitrary time: 𝑑11 — number of
customers of the 1st type on virtual machines of the 1st server, 𝑑12 — number
of customers of the 2nd type on virtual machines of the 1st server, 𝑑21 —
number of customers of the 1st type on virtual machines of the 2nd server,
𝑑22 — number of customers of the 2nd type on virtual machines of the 2nd
server.
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So, this system may be modeled by a multidimensional Markov chain with

continuous time �⃗�(𝑡) = {𝑄1(𝑡), 𝑄2(𝑡), 𝐷11(𝑡), 𝐷12(𝑡), 𝐷21(𝑡), 𝐷22(𝑡)} – the
number of customers in the system at 𝑡, 𝑡 ⩾ 0 on a state space 𝑋:

𝑋 = {( ⃗𝑥 = (𝑞1, 𝑞2, 𝑑11, 𝑑12, 𝑑21, 𝑑22)) ∶ 𝑑𝑘𝑗 ⩾ 0, 𝑞𝑘 ⩾ 0, 𝑘, 𝑗 = 1, 2; (1)

(0, 0, 𝑑11, 𝑑12, 𝑑21, 𝑑22) ∶ 𝑑𝑘1 + 𝑑𝑘2 ⩽ 𝑁𝑘; (2)

𝑞1 + 𝑞2 > 0, 𝑑𝑘1 + 𝑑𝑘2 = 𝑁𝑘, 𝑘 = 1, 2}. (3)

Table 1

System parameters

Parame-

ters

Description

Server

𝑘 server, 𝑘 = {1; 2}
𝑁𝑘 number of devices (virtual machines) of 𝑘-server

𝜇𝑘 service intensity of 𝑘-server virtual machines (expo-

nential distribution)

Customer and queue

𝑗 type of arrivals (class of customer), 𝑗 = {1; 2}
𝜆𝑗 𝑘-th incoming flow rate

Cost

𝑐𝑘0 cost of waiting in 𝑘-customer queue

𝑐𝑘1 cost of 𝑘-customer servicing on our devices

𝑐𝑘2 cost of 𝑘-customer servicing on alternative devices

3.3. Policy

It is clear that if there are different options for selecting customers from
queues then the transition intensity between the states of the system will
change. Transition rate matrix can be described in accordance with the
rules from in 2.2, 2.3 when 𝑞1 + 𝑞2 = 0. And if two queues are occupied,
𝑑𝑘𝑗 > 0, 𝑞1 + 𝑞2 ⩾ 1 (p.4 of 2.3), then in accordance with the queue selection

function in a fixed state ⃗𝑥 when servicing 𝑗-type customers on 𝑘-service:

𝑓𝑘𝑗( ⃗𝑥) ∈ {1, 2}, ⃗𝑥 ∈ 𝑋 ∶ 𝑞1 + 𝑞2 > 0. (4)

Those the elements are the numbers of the queue from which the customer
for the freed device will be taken. Based on the given rules if 𝑞2 ⩾ 1, 𝑞1 = 0
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then 𝑓𝑘𝑗( ⃗𝑥) = 2, if 𝑞1 ⩾ 1, 𝑞2 = 0 then 𝑓𝑘𝑗( ⃗𝑥) = 1. At 𝑞1 ⩾ 1, 𝑞2 ⩾ 1 𝑓𝑘𝑗( ⃗𝑥) is

not defined. Besides, this function will depend not only on the current state of
the system, but also on the server on which the customer was served. Denote

as ⃗𝑓( ⃗𝑥) = (𝑓11 ( ⃗𝑥) , 𝑓12 ( ⃗𝑥) , 𝑓21 ( ⃗𝑥) , 𝑓22 ( ⃗𝑥)) – vector of politics at different
values of 𝑘, 𝑗. We will call the routing policy a vector

𝑓 = ⃗𝑓 = ( ⃗𝑓( ⃗𝑥), ⃗𝑥 ∈ 𝑋 ∶ 𝑞1 + 𝑞2 > 0) (5)

of the four components of such selection management models, which is a sta-
tionary policy for selecting a queue number to service a customer on a vacated
device each time immediately before service ends. It will depend on the server
on which the customer was served and what class of customer it is.

Thus, if define a fixed strategy 𝑓 we can write out the corresponding
equilibrium equations system and find the probability distribution. This
probability distribution will be denoted as:

𝜋𝑓( ⃗𝑥) = P[𝑓 (𝑡) = ⃗𝑥]. (6)

3.4. Minimizing cost as optimal policy

Now based on reduction of delays as the selected optimization criterion, it
is necessary to compute the service cost for our and alternative devices taking
into account waiting in the queue. In some state 𝑥 it can be represented by:

𝑐 ( ⃗𝑥) =
2

∑
𝑘=1

(𝑐𝑘0𝑞𝑘 + 𝑐𝑘1𝑑𝑘1+𝑐𝑘2𝑑𝑘2). (7)

Then the average cost of operating the system for a fixed policy can be
described as:

𝑔𝑓 = ∑
�⃗�∈𝑋

𝑐( ⃗𝑥)𝜋𝑓( ⃗𝑥). (8)

Finally, we will consider the optimal routing policy f* to be the one that
minimizes these values:

𝑔∗ = min
𝑓

𝑔𝑓. (9)

There is an iterative routing policy algorithm [13] that allows, based on
the initial, fixed policy, to construct a sequence of improved policies until
the optimal average cost is reached. As a result of performing the described
steps, we get matrix of queue selection for each state of the system taking
into account the minimization of costs.

4. Simulation model and numerical analysis

4.1. Performance measures

We have studied the properties of a two-buffer queuing system with cross-
type service and additional penalties. Performance parameters of this system
can be easily found. The average number of customers of each type in the
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queue, which is obtained by summing the number of customers in the queue
for a fixed routing policy over all system states:

𝑄𝑘 = ∑
�⃗�∈𝑋

𝑞𝑘𝜋𝑓( ⃗𝑥) =

=
∞

∑
𝑞1=0

∞
∑
𝑞2=0

∑
𝑑11+𝑑12=𝑁1

∑
𝑑21+𝑑22=𝑁2

𝑞𝑘𝜋𝑓(𝑞1, 𝑞2, 𝑑11, 𝑑12, 𝑑21, 𝑑22). (10)

The average number of devices servicing 1 and 2 classes of customers, which
is calculated by summing the number of customers serviced over all system
states:

𝐶𝑗= ∑
�⃗�∈𝑋

(𝑑11 + 𝑑12 + 𝑑21 + 𝑑22)𝜋𝑓( ⃗𝑥)=

= ∑
𝑞1+𝑞2=0

𝑁1

∑
𝑑11+𝑑12=0

𝑁2

∑
𝑑21+𝑑22=0

2
∑
𝑘=0

(𝑑𝑘1 + 𝑑𝑘2)𝜋𝑓(𝑞1, 𝑞2, 𝑑11, 𝑑12, 𝑑21, 𝑑22) +

+ ∑
𝑞1+𝑞2>0

∑
𝑑11+𝑑12=𝑁1

∑
𝑑21+𝑑22=𝑁2

(𝑁1 + 𝑁2)𝜋𝑓(𝑞1, 𝑞2, 𝑑11, 𝑑12, 𝑑21, 𝑑22) . (11)

And the average number of customers in the system: 𝑁 =
2

∑
𝑗=1

(𝑄𝑗 + 𝐶𝑗).

4.2. Simulation model

It has already been shown that the considered routing policy depends on the
states of the system. Therefore, it is dynamic, which means that the question
arises how this policy (i.e. transition rate matrix) is sensitive to changes in
input data. Another issue is the study of the behavior of the model in other
distribution laws. If the first question can be solved by a mathematical model,
then the second cannot. Therefore, to analyze the studied model we build
a simulation model in the Anylogic environment.

To simulate the proposed model, we settled on the AnyLogic software tool.
AnyLogic system is based on the use of the object-oriented Java language. This
determines the principles for creating, debugging, and deploying simulation
models. One of the features of this tool is the ability to flexibly integrate
with external programs, in our case, it is msSQL.

Since the selection policy is a fairly large array of data, we load it into an
external Database Management System (DBMS) and each time, according
to the degree of fullness of the queues, AnyLogic sends a request to msSQL.
Table 2 lists the elements and their values of the simulator.

Formulated the table of rules is as follows:
(𝑞1, 𝑞2, 𝑑11, 𝑑12, 𝑑21, 𝑑22, 𝑓11, 𝑓12, 𝑓21, 𝑓22) where 𝑞1 and 𝑞2 is current
queue status. 𝑑11 is number of order from their queue 𝑑12 is number of
orders from someone else’s queue. 𝑑21 and 𝑑22 are similarly. Indicators
(𝑓11, 𝑓12, 𝑓21, 𝑓22) reflect which queue the request is taken from, where it is
denoted by binary values 0 and 1. SQL requests s are written on selectOutput
elements of the AnyLogic simulator.
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Figure 4. Basic architecture of the simulator

Table 2

Simulation components

Elements Value

source1 input flow

source1 input flow

TS1,TS2,TS,TS3 elements for marking orders with

a temporary labels

queue1,queue2 two classes of queues

TE1,TE2 elements for reading labels

selectOutput1,selectOut-

put2

elements that distribute to instrument

groups according to SQL requests

dalay1,delay2 Group of devices

auxiliary variables

delA busy state of the first device group

delS busy state of the second device group

qu1 current state of first queue size

qu2 current state of second queue size
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4.3. Numerical example

We start considering requests arriving at rate system with 𝑁1 = 𝑁2 = 5
virtual machines on each server. Assume that the incoming flow rates of the
1st and 2nd classes are identical and equal 𝜆1 = 𝜆2 = 30. Since the first server
is faster then the service intensity in the devices of the first server is 𝜇1 = 20
and in the second server is 𝜇2 = 5. The system also has two buffers of infinite
capacity. The results of simulation (under exponential assumptions) in the
Anylogic environment (Figure 5) are presented in the Table 3. Because the
input data for this model is a fixed routing policy then only a fixed case is
considered here. Also, the behavior of the system was studied under normal
distribution assumptions.

Figure 5. Model schema in Anylogic

The results obtained indicate that requests are practically not delayed
in the queue, and therefore the policy for a given model can be considered
optimal. Although Poisson flow is the simplest for simulation, it is quite
acceptable for performance evaluation.

5. Conclusions

In this paper we analyze the queuing system with two parallel buffers
supplied with two groups of servers. A queuing system and a simulation
model have been constructed. Initial data were set and the results of the
simulation model were obtained. The results obtained indicate that requests
are practically not delayed in the queue of the presented QS, and therefore the
policy for a given model can be considered optimal. Although Poisson flow is
the simplest for simulation, it is quite acceptable for performance evaluation.
In the future, it is planned to conduct several more experiments for different
values of the intensity of requests and various types of incoming flows.
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Table 3

Simulation results

Key Performance Indicators Exp

(30)

Norm

(30,

0.001)

Norm

(30,

0.01)

Average 1-queue length 0.206 0.289 0.163

Average 2-queue length 0.153 0.168 0.121

Average number of customers ser-

viced on the 1st group of virtual

machines

3.85 3.87 3.32

Average number of customers ser-

viced on the 2nd group of virtual

machines

3.91 3.94 3.41

Average number of 1-class customers

in the system

4.11 4.18 3.68

Average number of 2-class customers

in the system

04.08 4.10 3.531

Average time of 1-class of waiting

customers

0.007 0.008 0.005

Average time of 2-class of waiting

customers

0.005 0.004 0.004

Average time in the system of cus-

tomers serviced on the 1st group of

virtual machines

0.0503 0.0503 0.0402

Average time in the system of cus-

tomers serviced on the 2nd group of

virtual machines

0.199 0.199 0.169

Average time in the system of 1-class

customers

0.068 0.070 0.059

Average time in the system of 2-class

customers

0.133 0.135 0.124
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К анализу двухбуферной системы массового
обслуживания с кросс-типом обслуживания

и дополнительными штрафами

И. А. Кочеткова1, 2, А. С. Власкина1, Д. В. Ефросинин1, 3,

А. А. Хакимов1, С. А. Бурцева1
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ул. Вавилова, д. 44, корп. 2, Москва, 119333, Россия

3 Линцский университет
Альтенбергерштрассе, д. 69, Линц, Австрия, 4040

Концепция облачных вычислений была создана для улучшения конфиден-
циальности пользователей и безопасности хранения данных. Однако ресурсы,
выделяемые для обработки этих данных, должны быть правильно распределены.
Проблема оптимального управления ресурсами в среде облачных вычислений
описана во многих научных публикациях. Для решения задач оптимальности
распределения ресурсов систем можно использовать построение и анализ харак-
теристик СМО. Авторами проведён анализ системы массового обслуживания
с двумя очередями с кросс-типом обслуживания и дополнительными штрафами,
который основывается на литературных источниках, рассмотренных в статье.
Это позволяет нам оценить, насколько модель, представленная в статье, подхо-
дит для применения в облачных вычислениях. Данная система предполагает
разные варианты выбора заявок из очередей, номеров очередей, следовательно,
интенсивности переходов между состояниями системы будут меняться. Для это-
го предлагается политика выбора, которая позволяет системе решать, как себя
вести в зависимости от своего состояния. Используются четыре компоненты мо-
дели управления выбором, которые представляют собой стационарную политику
для определения номера очереди, из которой будет взята заявка на обслужива-
ние. Данный выбор происходит каждый раз непосредственно перед окончанием
обслуживания. Для численного анализа построена имитационная модель.

Ключевые слова: система массового обслуживания, облачные вычисле-
ния, пуассоновский поток, параллельные очереди, оптимальная политика


