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We consider an arbitrary monoid 𝑀, on which an involutive division is introduced,
and the set of all its finite subsets Set𝑀. Division is considered as a mapping
𝑑 ∶ Set𝑀 × 𝑀, whose image 𝑑(𝑈, 𝑚) is the set of divisors of 𝑚 in 𝑈. The properties
of division and involutive division are defined axiomatically. Involutive division
was introduced in accordance with the definition of involutive monomial division,
introduced by V.P. Gerdt and Yu.A. Blinkov. New notation is proposed that provides
brief but explicit allowance for the dependence of division on the Set𝑀 element.
The theory of involutive completion (closures) of sets is presented for arbitrary
monoids, necessary and sufficient conditions for completeness (closedness) — for
monoids generated by a finite set 𝑋. The analogy between this theory and the theory
of completely continuous operators is emphasized. In the last section, we discuss the
possibility of solving the problem of replenishing a given set by successively expanding
the original domain and its connection with the axioms used in the definition of
division. All results are illustrated with examples of Thomas monomial division.

Key words and phrases: involutive monomial division, Gröbner basis

1. Introduction

The creation of the technique of involutive bases as an alternative to the
classical Gröbner bases and its application to the study of ideals in polynomial
and differential rings is undoubtedly one of the most important contributions
made by V.P. Gerdt and his disciples in computer algebra.
The concept of involutive division came to algebras from the compatibility

studies of systems of partial differential equations, dating back to the works
of Riquier [1], Janet [2], Thomas [3]. Since the mid-1990s, V.P. Gerdt and
his students A.Yu. Zharkov and Yu.A. Blinkov have published a series of
papers in which this concept was developed in an abstract algebraic form and
indicated the wide possibilities of using involutive bases as an alternative to
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the usual Gröbner bases. The first example of involutive division — Pomare
division — was introduced by Zharkov in 1993 [4]–[7].
In general terms, the concept of involutive division was introduced by Gerdt

and Blinkov in [8]–[11]. V. P. Gerdt strove for an axiomatic presentation of
the concept of involutive division, especially emphasizing this in his report
made at RUDN University in November 2020 [12]. In our opinion, the theory
of divisions on monoids, cleared of applied issues, looks like a self-sufficient
and very elegant theory, which is complete only to the extent that was of
interest for applied researchers. We have tried to present it in general terms.
We based on §1.2 from the Dr. Sci. thesis by Blinkov [13], but have

significantly revised the terminology. The fact is that the creators of this theory
obviously intended to give it a topological interpretation, but, unfortunately,
they never did it. Therefore, a number of terms (continuity of division, closure
of sets) refer to this so far unknown topology. In our opinion, this topology
is the Zariski topology, and therefore incidental analogies taken from the ℝ
topology greatly hinder its development.

2. Divisions on monoids

Definition 1. A set is called a monoid if a binary associative operation
called multiplication is specified on it, and there is an element 1 such that
1𝑚 = 𝑚 for any 𝑚 ∈ 𝑀.

The set of all finite subsets of the set 𝑀 will be denoted as Set𝑀. For
definiteness, we will assume that ∅ ∈ Set𝑀.

Definition 2. By division on the monoid 𝑀 we mean the mapping

𝑑 ∶ Set𝑀 × 𝑀 → Set𝑀,

having the following properties:

1. 𝑑(𝑈, 𝑚) ⊂ 𝑈,
2. 𝑢 ∈ 𝑑(𝑈, 𝑢),
3. if 𝑢 ∈ 𝑑(𝑈, 𝑚), then there is an element 𝑚∗ ∈ 𝑀 such that 𝑚 = 𝑢𝑚∗,
4. if 𝑢 ∈ 𝑑(𝑈, 𝑚𝑢) and 𝑢 ∈ 𝑑(𝑈, 𝑚′𝑢), then 𝑢 ∈ 𝑑(𝑈, 𝑚𝑚′𝑢),
5. if 𝑈 ′ ⊂ 𝑈, then 𝑑(𝑈, 𝑚) ∩ 𝑈 ′ ⊂ 𝑑(𝑈 ′, 𝑚),

valid for any 𝑈, 𝑈 ′ ∈ Set𝑀, 𝑢 ∈ 𝑈, 𝑚, 𝑚′ ∈ 𝑀. Elements of the image
𝑑(𝑈, 𝑚) will be called divisors of 𝑚 in 𝑈 and 𝑚 is said divisible by elements
of 𝑑(𝑈, 𝑚).

Remark 1. We have split the definition of involutive division from [13, def.
5] into the definition of division in general and involutive division (def. 4
below). The notation has been changed. The notation 𝑢|ℒ(𝑈)𝑚 used in [13]

is now changed for 𝑢 ∈ 𝑑(𝑈, 𝑚).

Example 1. Assuming 𝑑(𝑈, 𝑚) = {𝑢 ∈ 𝑈 ∶ ∃𝑚∗ ∈ 𝑀 ∶ 𝑚∗𝑢 = 𝑚}, we
will define the standard division on the monoid.
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If there is a set 𝑋 ∈ Set𝑀 such that any element of the set 𝑀 other than 1
can be represented as a product of elements from 𝑋, then the monoid is said
to be generated by the set 𝑋. If such a representation is unique for an element
of the set 𝑀, then 𝑀 is said to be a set of monomials, and the elements of
the set 𝑋 are treated as variables.

Definition 3. An element 𝑥 ∈ 𝑋 will be called multiplicative for 𝑢 with
respect to 𝑈 if 𝑢 ∈ 𝑑(𝑈, 𝑥𝑢).
The set of all multiplicative elements for 𝑢 relative to 𝑈 will be denoted as

𝑋𝑑(𝑈, 𝑢).

Theorem 1. If 𝑥1, … , 𝑥𝑠 are multiplicative elements of 𝑋 for 𝑢 with respect

to 𝑈, then 𝑢 ∈ 𝑑(𝑈, 𝑥𝑗1
1 … 𝑥𝑗𝑠𝑠 𝑢).

Proof. Corollary of the 4th property of definition 2. �

To difine division on a monoid generated by the set 𝑋, it is enough to
specify 𝑋𝑑.

Theorem 2. Suppose that a finite set 𝑋 generates a monoid 𝑀 and some
mapping is given 𝑋𝑑 ∶ Set𝑀 × 𝑀 → Set𝑋.
Let us define the function 𝑑 ∶ Set𝑀 × 𝑀 → Set𝑀 as follows: 𝑢 ∈ 𝑑(𝑈, 𝑚)

if and only if 𝑢 ∈ 𝑈 and there exists a product of 𝑚∗ elements from 𝑋𝑑(𝑈, 𝑢)
such that 𝑚 = 𝑚∗𝑢. The function 𝑑 defines division by 𝑀 if and only if the
embedding 𝑈 ′ ⊂ 𝑈 implies

𝑋𝑑(𝑈, 𝑢) ⊂ 𝑋𝑑(𝑈 ′, 𝑢) ∀𝑢 ∈ 𝑈 ′. (1)

Remark 2. In [13] it was noted that “involutive division for a monomial
can be specified by defining sets of multiplicative and non-multiplicative
variables”. We have formulated this idea in the form of theorems 1 and 2.
They seem to be mutually inverse. However, according to theorem 1

𝑣 = ∏
𝑥∈𝑋

𝑥𝑗𝑥 ⟹ 𝑢 ∈ 𝑑(𝑈, 𝑣𝑢),

and theorem 2 does not reverse the arrow, but asserts that if the condition
(1) is satisfied, we can define a division by 𝑀 such that

𝑣 = ∏
𝑥∈𝑋

𝑥𝑗𝑥 ⟺ 𝑢 ∈ 𝑑(𝑈, 𝑣𝑢).

Proof. Property 1 of definition 2 is fulfilled, since by construction of 𝑑, the
element 𝑢 ∈ 𝑑(𝑈, 𝑚) only if 𝑢 ∈ 𝑈. Property 2 is satisfied, since for 𝑚 = 𝑢
one can take 𝑚∗ = 1. Property 3 is fulfilled because 𝑚∗ is explicitly specified
when constructing 𝑑.
Property 4 is fulfilled, since by the construction of 𝑑 the embeddings

𝑢 ∈ 𝑑(𝑈, 𝑚𝑢) and 𝑢 ∈ 𝑑(𝑈, 𝑚′𝑢) mean that there exist products 𝑣, 𝑣′ of
elements from 𝑋𝑑(𝑈, 𝑢) such that 𝑚𝑢 = 𝑣𝑢 and 𝑚′𝑢 = 𝑣′𝑢. But then
𝑚𝑚′𝑢 = 𝑣𝑣′𝑢 and, since 𝑣𝑣′ is the product of elements from 𝑋𝑑(𝑈, 𝑢),
𝑢 ∈ 𝑑(𝑈, 𝑚𝑚′𝑢).
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Now we turn to property 5. Let 𝑈 ′ ⊂ 𝑈 and 𝑢 ∈ 𝑑(𝑈, 𝑚) ∩ 𝑈 ′, then 𝑢 ∈ 𝑈 ′

and there exists a product of 𝑚∗ of elements from 𝑋𝑑(𝑈, 𝑢) such that 𝑚 = 𝑚∗𝑢.
From this it follows that 𝑢 ∈ 𝑑(𝑉 , 𝑚) if and only if 𝑋𝑑(𝑈, 𝑢) ⊂ 𝑋𝑑(𝑈 ′, 𝑢),
i.e., the ratio (1) is true. �

Example 2. Consider the set 𝑀 of all monomials generated by the 𝑛
variables 𝑋 = (𝑥1, … , 𝑥𝑛). Let us agree to write 𝜕𝑖𝑥

𝑗1
1 … 𝑥𝑗𝑛𝑛 = 𝑗𝑖.

Thomas division is determined by the formula

𝑥𝑖 ∈ 𝑋𝑑(𝑈, 𝑢) ⇔ 𝜕𝑖𝑢 = max
𝑣∈𝑈

𝜕𝑖𝑣.

Let us check the condition (1). Let 𝑢 ∈ 𝑈 ′ ⊂ 𝑈. If 𝑥𝑖 ∈ 𝑋𝑑(𝑈, 𝑢), then the
maximum of 𝜕𝑖𝑣 on 𝑈 is achieved when 𝑣 = 𝑢 ∈ 𝑈 ′. Since 𝑈 ′ ⊂ 𝑈,

max
𝑣∈𝑈′

𝜕𝑖𝑣 ⩽ max
𝑣∈𝑈

𝜕𝑖𝑣

and, therefore, the maximum is attained at 𝑣 = 𝑢. This is what condition (1)
asserts.

3. Involutive divisions on monoids

Definition 4. A division 𝑑 will be called involutive if for any 𝑈 ∈ Set𝑀
and 𝑚 ∈ 𝑀 the set 𝑑(𝑈, 𝑚)
1. is empty,
2. consists of one element,
3. consists of several elements, and then for any 𝑢, 𝑢′ ∈ 𝑑(𝑈, 𝑚), it is strictly

true that either 𝑢 ∈ 𝑑(𝑈, 𝑢′), or 𝑢′ ∈ 𝑑(𝑈, 𝑢).
The maximum number of distinct elements that make up 𝑑(𝑈, 𝑚) for any

𝑈 ∈ Set𝑀 and 𝑚 ∈ 𝑀 will be called the rank of the involutive division of 𝑑.

Remark 3. Simultaneous execution of equalities 𝑢 ∈ 𝑑(𝑈, 𝑢′), 𝑢′ ∈ 𝑑(𝑈, 𝑢)
by virtue of property 3 of definition 2, implies the existence of two elements
𝑣, 𝑣′ ∈ 𝑀 such that 𝑢′ = 𝑣𝑢 and 𝑢 = 𝑣′𝑢′. In a monomial set, the simultaneous
fulfillment of these equalities means that 𝑣 = 𝑣′ = 1 and therefore 𝑢 = 𝑢′.
Thus, only one of them can be fulfilled in definition 4. Definition 4 implies
that only one of these equalities holds in the case of an arbitrary monoid.

Definition 4 allows ordering the linearly finite set 𝑑(𝑈, 𝑚):

𝑢 ∈ 𝑑(𝑈, 𝑢′) and 𝑢 ≠ 𝑢′ ⇔ 𝑢 < 𝑢′.

Therefore, there exists a single maximal element, i.e., an element 𝑢 such
that 𝑑(𝑈, 𝑚) ⊂ 𝑑(𝑈, 𝑢). This can be taken as a definition of involutivity,
equivalent to the previous one.

Definition 5. A division 𝑑 will be called involutive if, for any 𝑈 ∈ Set𝑀
and 𝑚 ∈ 𝑀, there exists and, moreover, a unique element 𝑢 ∈ 𝑈 such that

𝑑(𝑈, 𝑚) ⊂ 𝑑(𝑈, 𝑢).
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Example 3. Let us describe the Thomas division in more detail. Let 𝑈
be a finite subset of the set 𝑀𝑛 of all monomials in 𝑛 variables. For brevity
we put

𝑟𝑖 = max
𝑤∈𝑈

𝜕𝑖𝑤.

These numbers only depend on 𝑈. Let 𝑢 ∈ 𝑑(𝑈, 𝑚), then there is a product
of 𝑣 variables from 𝑋𝑑(𝑈, 𝑢) such that 𝑚 = 𝑢𝑣. Then 𝜕𝑖𝑚 = 𝜕𝑖𝑢 + 𝜕𝑖𝑣.
If 𝑥𝑖 ∈ 𝑋𝑑(𝑈, 𝑢), then 𝜕𝑖𝑣 ⩾ 0 and 𝜕𝑖𝑢 = 𝑟𝑖, whence 𝜕𝑖𝑣 = 𝜕𝑖𝑚 − 𝑟𝑖 ⩾ 0.
If 𝑥𝑖 ∉ 𝑋𝑑(𝑈, 𝑢), then 𝜕𝑖𝑣 = 0 and 𝜕𝑖𝑢 < 𝑟𝑖, where 𝑟𝑖 > 𝜕𝑖𝑢 = 𝜕𝑖𝑚 − 0.
Thus, combining both cases,

𝜕𝑖𝑣 =
⎧{
⎨{⎩

𝜕𝑖𝑚 − 𝑟𝑖 𝜕𝑖𝑚 ⩾ 𝑟𝑖

0 𝜕𝑖𝑚 < 𝑟𝑖

and

𝜕𝑖𝑢 = 𝜕𝑖
𝑚
𝑣

=
⎧{
⎨{⎩

𝑟𝑖 𝜕𝑖𝑚 ⩾ 𝑟𝑖

𝜕𝑖𝑚 𝜕𝑖𝑚 < 𝑟𝑖

= min(𝜕𝑖𝑚, 𝑟𝑖).

Thus, 𝑢 is uniquely determined by specifying 𝑈 and 𝑚. It is already
clear from this that the Thomas division is an involutive division of the
1st rank. However, we also obtained an explicit formula for 𝑑(𝑈, 𝑚). If
𝜕𝑖𝑢 = min(𝜕𝑖𝑚, 𝑟𝑖) specifies an element 𝑢 from 𝑈, then 𝑑(𝑈, 𝑚) consists of
this one element. If this element does not belong to 𝑈, then 𝑑(𝑈, 𝑚) is empty.

4. Complete sets and completely involutive divisions

Let again 𝑈 ∈ Set𝑀.

Definition 6. A set of elements of the form 𝑚𝑢, where 𝑢 ∈ 𝑈 and 𝑚 ∈ 𝑀,
will be called a cone generated by the set 𝑈 and denoted as 𝐶(𝑈).

Definition 7. The set of elements 𝑚 ∈ 𝑀 such that 𝑑(𝑈, 𝑚) ≠ ∅, will be
called an involutive cone generated by the set 𝑈 and denoted as 𝐼𝑑(𝑈).

By virtue of property 3 of definition 2, 𝐼𝑑(𝑈) ⊆ 𝐶(𝑈).

Definition 8. A set 𝑈 ∈ Set𝑀 is called complete with respect to the
involutive division of 𝑑 if the involutive cone generated by it coincides with
the usual one, i.e., 𝐼𝑑(𝑈) = 𝐶(𝑈).

Remark 4. In [13], instead of ’complete sets’, the term ’closed sets’ is used.
We prefer the term ’complete’ because it does not give rise to connotations
with some topology on Set𝑀.

Example 4. In 𝑀𝑛 the embedding 𝑚 ∈ 𝐶(𝑈) means that there is an
element 𝑢 ∈ 𝑈 such that 𝜕𝑖𝑚 ⩾ 𝜕𝑖𝑢 ∀𝑖 = 1, 2, … , 𝑛. With respect to Thomas
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division, 𝑚 ∈ 𝐶(𝑈) is divisible by 𝑈 if and only if 𝑣 with 𝜕𝑖𝑣 = min(𝜕𝑖𝑚, 𝑟𝑖)
belongs to 𝑈. Let 𝑈 contain all monomials 𝑢 satisfying the inequalities

𝑐𝑖 ⩽ 𝜕𝑖𝑢 ⩽ 𝑟𝑖 ∀𝑖 = 1, 2, … , 𝑛,

where 𝑐1, … , 𝑐𝑛 are non-negative integers. Then

𝜕𝑖𝑚 ⩾ 𝜕𝑖𝑢 ⩾ 𝑐𝑖 ∀𝑖 = 1, 2, … , 𝑛,

and therefore 𝑐𝑖 ⩽ 𝜕𝑖𝑣 = min(𝜕𝑖𝑚, 𝑟𝑖) ⩽ 𝑟𝑖 and 𝑣 ∈ 𝑈. Therefore, such a set
𝑈 is complete with respect to the Thomas division.

Definition 9. A set 𝑈 ∗ ∈ Set𝑀 is called a completion of the set 𝑈 ∈ Set𝑀
with respect to division 𝑑 if

1. 𝑈 is a subset of the set 𝑈 ∗,
2. 𝑈∗ is a complete set with respect to division of 𝑑, that is, 𝐼𝑑(𝑈∗) = 𝐶(𝑈 ∗),
3. 𝐶(𝑈) = 𝐶(𝑈 ∗).

Definition 10. An involutive division 𝑑 is called completely involutive if
each set from Set𝑀 has completion with respect to this division.

Remark 5. In [13], such divisions are called Noetherian, which requires
a rather lengthy explanation of the connection between the issue and the
finiteness of the ideal bases.

Example 5. For the Thomas division, the completion can be described
explicitly: the completion of 𝑈 is the set 𝑈 ∗ ∈ Set𝑀𝑛 formed by the monomials
𝑣 with the following property: there exists a monomial 𝑢 ∈ 𝑈 such that

𝜕𝑖𝑢 ⩽ 𝜕𝑖𝑣 ⩽ 𝑟𝑖.

Indeed, by the construction of 𝑈 ∗, 𝑈 ⊆ 𝑈 ∗ holds, that is, property 1
of definition 9. The fulfillment of the 3rd property is also obvious, since
𝑈 ∗ ⊂ 𝐶(𝑈) by construction.
Let us check the second property. Let 𝑚 ∈ 𝐶(𝑈 ∗), that is, there is

a monomial 𝑢∗ ∈ 𝑈 ∗ and a monomial 𝑣 ∈ 𝑀𝑛 such that 𝑚 = 𝑢∗𝑣, where
𝜕𝑖𝑚 ⩾ 𝜕𝑖𝑢∗.
By the construction of 𝑈∗, this implies that for 𝑚 one can specify a monomial

𝑢 ∈ 𝑈 such that 𝜕𝑖𝑚 ⩾ 𝜕𝑖𝑢. On the other hand, the monomial 𝑚 is divisible
by 𝑈 ∗ if and only if the monomial 𝑢∗ with 𝜕𝑖𝑢∗ = min(𝜕𝑖𝑚, 𝑟𝑖) belongs to 𝑈 ∗.
But this is indeed the case, since 𝜕𝑖𝑢 ⩽ min(𝜕𝑖𝑚, 𝑟𝑖) ⩽ 𝑟𝑖.
This means that 𝐶(𝑈∗) = 𝐼𝑇(𝑈 ∗), that is, 𝑈 ∗ is a complete set. This is the

second property.

Remark 6. Historically, the concept of Pomare division was first intro-
duced, it is involutive, and not completely involutive, which is a source of
various kinds of pathological examples, see [13, example 55] and also [4], [14],
[15].
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5. Necessary and sufficient conditions
for the completeness of a set

Theorem 3 (necessary completeness condition). Let the monoid 𝑀 be
generated by elements of a finite set 𝑋. For the set 𝑀 to be complete with
respect to the division of 𝑑, it is necessary that

𝑑(𝑈, 𝑥𝑢) ≠ ∅ ∀𝑢 ∈ 𝑈, ∀𝑥 ∈ 𝑋. (2)

This condition is sufficient only for a certain class of divisions.

Definition 11. A sequence {𝑢0, 𝑢1 … , } of elements of the set 𝑈 will be
called fundamental if for any 𝑖 there is an element 𝑥𝑖 ∈ 𝑋 such that:

1. 𝑢𝑖 ∉ 𝑑(𝑈, 𝑥𝑖𝑢𝑖),
2. 𝑢𝑖+1 ∈ 𝑑(𝑈, 𝑥𝑖𝑢𝑖).

Definition 12. A division of 𝑑 by the monoid 𝑀 will be called finite if
every fundamental sequence is finite.

Remark 7. In [13], division is called continuous if every finite fundamental
sequence does not contain two identical terms. In this case, any piece of an
infinite fundamental sequence is shorter than the total number of elements in
𝑈 and the division is finite in the sense of our definition. However, to prove
theorem 4, the ’continuity’ requirement can be weakened to that described in
our definition.

Remark 8. In our opinion, this construction is much more similar to the
concept of a completely continuous mapping, and not just a continuous one.
For this reason, we call the sequences from definition 11 fundamental, and
the property described in the definition 10, complete involutivity.

Theorem 4. If 𝑑 is a finite involutive division on the monoid 𝑀 generated
by elements of the finite set 𝑋, then for the set 𝑈 to be complete it is necessary
and sufficient that condition (2) be satisfied.

Proof. Let condition (2) be satisfied for the set 𝑈. Take 𝑢 ∈ 𝑈 and 𝑚 ∈ 𝑀
in an arbitrary way and construct a divisor of 𝑚𝑢 in 𝑈 as follows.
Let us take 𝑢 as the first element 𝑢0 of the sequence of elements 𝑈. If

𝑢0 ∈ 𝑑(𝑈, 𝑢𝑚), then we will not do anything. If 𝑢0 ∉ 𝑑(𝑈, 𝑢𝑚), then among
the factors 𝑚 from 𝑋 there is 𝑥0 such that 𝑢0 ∉ 𝑑(𝑈, 𝑢0𝑥0) by theorem 1.
But by virtue of (2) then there exists 𝑢1 ∈ 𝑈 such that 𝑢1 ∈ 𝑑(𝑈, 𝑢0𝑥0).
If 𝑢1 ∈ 𝑑(𝑈, 𝑢𝑚), then we will not do anything. Otherwise, there is an

element 𝑥1 ∈ 𝑋 such that 𝑢1 ∉ 𝑑(𝑈, 𝑢1𝑥1).
Then, by virtue of (2), there is an element 𝑢2 ∈ 𝑈 such that 𝑢2 ∈ 𝑑(𝑈, 𝑢1𝑥1).
Proceeding on like this, we get a sequence {𝑢0, 𝑢1, … } of 𝑈 elements.
The described sequence is fundamental (definition 11). Under the conditions

of the theorem being proved, it is indicated that 𝑑 is a finite division, therefore
every fundamental sequence is finite. By construction, its last element is
a divisor of 𝑢𝑚 in 𝑈.
Thus, every element 𝑢𝑚 has a divisor in 𝑈, that is, 𝑈 is a complete set. �
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Example 6. In the case of Thomas division, the set 𝑑(𝑈, 𝑢𝑖𝑥𝑘𝑖
) consists

of one element 𝑢𝑖+1, and 𝜕𝑗𝑢𝑖+1 = min(𝜕𝑗𝑢𝑖𝑥𝑘𝑖
, 𝑟𝑗).

For 𝑗 ≠ 𝑘𝑖
𝜕𝑗𝑢𝑖+1 = min(𝜕𝑗𝑢𝑖, 𝑟𝑗) = 𝜕𝑗𝑢𝑖.

since 𝑢𝑖 ∈ 𝑈. For 𝑗 = 𝑘𝑖

𝜕𝑘𝑖
𝑢𝑖+1 = min(𝜕𝑘𝑖

𝑢𝑖 + 1, 𝑟𝑘𝑖
) = 𝜕𝑘𝑖

𝑢𝑖 + 1,

because otherwise it would be 𝜕𝑘𝑖
𝑢𝑖 + 1 > 𝑟𝑘𝑖

, which contradicts 𝑢𝑖 ∈ 𝑈.
Thus, 𝑢𝑖+1 = 𝑢𝑖𝑥𝑘𝑖

.

From this, in particular, it is clear that there are no coinciding elements
among the elements. Since there is a finite number of products of 𝑈 and 𝑋,
the fundamental sequence is finite.

6. Set completion

Problem. Given 𝑈 ∈ Set𝑀 and a finite completely involutive division of 𝑑
by 𝑀, it is required to find its completion with respect to 𝑑.
In the specified class of divisions, this problem always has a solution

(definition 10). For Thomas division, we know its explicit solution (example 5).
For other divisions, it would be desirable to solve the problem, gradually
supplementing 𝑈 with new elements.
So, let 𝑈 be given. By searching over two finite sets, we seek all pairs 𝑢 ∈ 𝑈

and 𝑥 ∈ 𝑋 such that 𝑑(𝑈, 𝑥𝑢) = ∅.
If there is no such pair, then the completion 𝑈 ∗ = 𝑈 (theorem 4) and the

problem is solved. If there are such pairs, then we add one of the products
𝑥𝑢 obtained in this way to the set 𝑈 and obtain the set 𝑈1. Proceeding on
like this, we will expand 𝑈 more and more, while remaining inside the cone
𝐶(𝑈). If this process is interrupted at the 𝑛-th step, then the resulting set is
complete by virtue of theorem 4. This will be the completion 𝑈∗ of the set
𝑈 by definition 9. However, the finiteness of 𝑈 ∗ does not imply finiteness of
the described process, since we can get sets that contain elements that are
absent in 𝑈∗. To avoid this, it is necessary to indicate a rule for choosing
a pair from the set of pairs 𝑢 ∈ 𝑈𝑛 and 𝑥 ∈ 𝑋 such that 𝑑(𝑈𝑛, 𝑥𝑢) = ∅, which
guarantees the embedding 𝑈𝑛 ⊂ 𝑈 ∗ at each step.
The simplest option is to take an element that is in some sense minimal,

but for this purpose we have to restrict ourselves to the special case when the
monoid is the set of monomials in 𝑛 variables that make up the set 𝑋. Let
this set be given a monomial order, say, deglex.
Given 𝑈, among the pairs 𝑢 ∈ 𝑈 and 𝑥 ∈ 𝑋 such that 𝑑(𝑈, 𝑥𝑢) = ∅, we

take the one for which the product 𝑢𝑥 is minimal. By virtue of property 5 of
definition 2

𝑑(𝑈 ∗, 𝑥𝑢) ∩ 𝑈 ⊂ 𝑑(𝑈, 𝑥𝑢) = ∅.
That is why 𝑣 ∈ 𝑑(𝑈 ∗, 𝑥𝑢) ∉ 𝑈.
By virtue of property 3 of definition 2 there is an element 𝑚 ∈ 𝑀 such that

𝑥𝑢 = 𝑣𝑚. If 𝑚 = 1, then 𝑥𝑢 = 𝑣 ∈ 𝑈∗ and 𝑈1 = 𝑈 ∪ {𝑥𝑢} ⊂ 𝑈 ∗ and you can
go to the next step.
Regarding the second option, when 𝑚 > 1, one can notice the following.
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Theorem 5. If 𝑚 > 1, then 𝑑(𝑈, 𝑣) is not empty.

Proof. Since 𝑣 ∈ 𝑈 ∗ ⊂ 𝐶(𝑈), there exists a pair 𝑢1 ∈ 𝑈 and 𝑚1 ∈ 𝑀 such
that 𝑣 = 𝑚1𝑢1.
If 𝑚1 = 1, then 𝑣 = 𝑢1 ∈ 𝑈, which is impossible. Therefore, 𝑚1 > 1.

Therefore, 𝑥𝑢 = 𝑢1𝑚𝑚1, 𝑚, 𝑚1 > 1.
This means that 𝑢1𝑦 < 𝑢𝑥 for any 𝑦 ∈ 𝑋. Since we initially chose the

minimum pair, 𝑑(𝑈, 𝑢1𝑦) ≠ ∅ ∀𝑦 ∈ 𝑋.
Let us denote the set of variables that are included in 𝑚1 as 𝑌.
If 𝑢1 ∈ 𝑑(𝑈, 𝑢1𝑦) ∀𝑦 ∈ 𝑌, then by virtue of theorem 1, 𝑢1 ∈ 𝑑(𝑈, 𝑢1𝑚1) =

𝑑(𝑈, 𝑣), i.e., 𝑑(𝑈, 𝑣) is not empty.
Otherwise, there is 𝑦1 ∈ 𝑌 such that 𝑢1 ∉ 𝑑(𝑈, 𝑢1𝑦1).
The set 𝑑(𝑈, 𝑢1𝑦1) itself is not empty, let 𝑢2 ∈ 𝑈 belong to it, then 𝑢1 ≠ 𝑢2

and there exists 𝑚2 ∈ 𝑀 such that 𝑢1𝑦1 = 𝑢2𝑚′. But then

𝑣 = 𝑢1𝑚1 = 𝑢2𝑚2, 𝑚2 = 𝑚1𝑚′

𝑦1
,

and 𝑚1 is divisible by 𝑦1, since 𝑦1 ∈ 𝑌. Thus, we get the first elements 𝑢1, 𝑢2
of the fundamental sequence, and 𝑣 = 𝑢1𝑚1 = 𝑢2𝑚2.
Repeating the above considerations in relation to the representation 𝑣 =

𝑢2𝑚2, we get either 𝑢2 ∈ 𝑑(𝑈, 𝑣), or the next element of the sequence. Since
every fundamental sequence is finite, at some step we get 𝑢𝑛 ∈ 𝑑(𝑈, 𝑣), that
is, 𝑑(𝑈, 𝑣) ≠ ∅. �

The process of solving the problem described above will stop if the following
condition is met:

𝑑(𝑈, 𝑣) = ∅ ∀𝑣 ∈ (𝑈 ∗ − 𝑈). (3)

It does not follow from property 5 of definition 2 and should be somehow
imposed on the division in question.

Example 7. For the Thomas division, the completion 𝑈 ∗ of the set 𝑈 was
described in example 5: it is formed by monomials 𝑣 for which there exists
a monomial 𝑢 ∈ 𝑈 such that 𝜕𝑖𝑢 ⩽ 𝜕𝑖𝑣 ⩽ 𝑟𝑖.
The criterion of emptiness for 𝑑(𝑈, 𝑣) is indicated at the end of example 3:

𝑑(𝑈, 𝑣) is empty if and only if 𝜕𝑖𝑤 = min(𝜕𝑖𝑣, 𝑟𝑖) specifies an element 𝑤 that
is not in 𝑈. For 𝑣 ∈ 𝑈 ∗ this equality reduces to the trivial 𝜕𝑖𝑤 = 𝜕𝑖𝑣, that is,
𝑤 = 𝑣. By hypothesis, 𝑣 ∉ 𝑈, so 𝑑(𝑈, 𝑣) is empty.

7. Discussion

As easily seen, all the basic concepts are introduced for arbitrary monoids.
The sufficient criterion for completeness (theorem 4) is proved for monoids
generated by a finite set, and the algorithm for successive completion of a set
only for a set of monomials. Moreover, axiom 5 of definition 2 of division
appears only in the last section and, by and large, it is lacking in the proof
of the correctness of the completion algorithm. Possibly, this part of the
definition of division could be slightly corrected.
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This axiom is the only one that suggests changing the domain. In fact, all
the results presented, except for theorem 5, are satisfied for a fixed 𝑈, that
is, the function 𝑑 is considered as a function of one argument. Division is
not a good functor from Set𝑀 to Set𝑀. Many questions here seem to be
unclear. The focus was on the completion of a set, but not the uniqueness of
such a completion. Moreover, there can be obviously sets enclosed between
a complete set and its cone, ’overfull’ sets. They hamper proving theorem 5,
but what is their true role in division theory?
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Об инволютивном делении на моноидах

О. К. Кройтор1, М. Д. Малых1, 2
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Объединённый институт ядерных исследований

ул. Жолио-Кюри, д. 6, Дубна, Московская область, 141980, Россия

Рассматривается произвольный моноид 𝑀, на котором введено инволютив-
ное деление, и множество всех его конечных подмножеств Set𝑀. Деление
рассматривается как отображение 𝑑 ∶ Set𝑀 × 𝑀, образ которого 𝑑(𝑈, 𝑚) —
множество делителей 𝑚 в 𝑈. Свойства деления и инволютивного деления зада-
ются аксиоматически. Понятия инволютивного деления введено в соответствии
с определением инволютивного мономиального деления, введённым В.П. Герд-
том и Ю.А. Блинковым. Предложен ряд новых обозначений, позволяющих
коротко, но явно учитывать зависимость деления от элемента Set𝑀. Теория ин-
волютивного пополнения (замыкания) множеств изложена для произвольных
моноидов, необходимые и достаточные условия полноты (замкнутости) — для
моноидов, порождённых конечным множеством 𝑋. Подчёркнута аналогия меж-
ду этой теорией и теорией вполне непрерывных операторов. В последнем разделе
обсуждена возможность решения задачи о пополнении заданного множества пу-
тём последовательного расширения исходной области и её связь с аксиомами,
используемыми в определении деления. Все результаты проиллюстрированы
примерами о мономиальном делении Томаса.

Ключевые слова: инволютивное мономиальное деление, базис Грёбнера


