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We consider an arbitrary monoid M, on which an involutive division is introduced,
and the set of all its finite subsets Set M. Division is considered as a mapping
d : Set M x M, whose image d(U,m) is the set of divisors of m in U. The properties
of division and involutive division are defined axiomatically. Involutive division
was introduced in accordance with the definition of involutive monomial division,
introduced by V. P. Gerdt and Yu. A. Blinkov. New notation is proposed that provides
brief but explicit allowance for the dependence of division on the Set M element.
The theory of involutive completion (closures) of sets is presented for arbitrary
monoids, necessary and sufficient conditions for completeness (closedness) — for
monoids generated by a finite set X. The analogy between this theory and the theory
of completely continuous operators is emphasized. In the last section, we discuss the
possibility of solving the problem of replenishing a given set by successively expanding
the original domain and its connection with the axioms used in the definition of
division. All results are illustrated with examples of Thomas monomial division.
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1. Introduction

The creation of the technique of involutive bases as an alternative to the
classical Grobner bases and its application to the study of ideals in polynomial
and differential rings is undoubtedly one of the most important contributions
made by V.P. Gerdt and his disciples in computer algebra.

The concept of involutive division came to algebras from the compatibility
studies of systems of partial differential equations, dating back to the works
of Riquier [1], Janet [2], Thomas [3]|. Since the mid-1990s, V. P. Gerdt and
his students A.Yu. Zharkov and Yu. A. Blinkov have published a series of
papers in which this concept was developed in an abstract algebraic form and
indicated the wide possibilities of using involutive bases as an alternative to
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the usual Grébner bases. The first example of involutive division — Pomare
division — was introduced by Zharkov in 1993 [4]-[7].

In general terms, the concept of involutive division was introduced by Gerdt
and Blinkov in [8]-[11]. V.P. Gerdt strove for an axiomatic presentation of
the concept of involutive division, especially emphasizing this in his report
made at RUDN University in November 2020 [12]|. In our opinion, the theory
of divisions on monoids, cleared of applied issues, looks like a self-sufficient
and very elegant theory, which is complete only to the extent that was of
interest for applied researchers. We have tried to present it in general terms.

We based on §1.2 from the Dr. Sci. thesis by Blinkov [13], but have
significantly revised the terminology. The fact is that the creators of this theory
obviously intended to give it a topological interpretation, but, unfortunately,
they never did it. Therefore, a number of terms (continuity of division, closure
of sets) refer to this so far unknown topology. In our opinion, this topology
is the Zariski topology, and therefore incidental analogies taken from the R
topology greatly hinder its development.

2. Divisions on monoids

Definition 1. A set is called a monoid if a binary associative operation
called multiplication is specified on it, and there is an element 1 such that
1m = m for any m € M.

The set of all finite subsets of the set M will be denoted as Set M. For
definiteness, we will assume that () € Set M.

Definition 2. By division on the monoid M we mean the mapping
d: Set M x M — Set M,

having the following properties:
1. d(U,m) C U,
2. uedU,u),
3. if u € d(U, m), then there is an element m* € M such that m = um?*,
4. ifu € d(U,mu) and u € d(U, m’'u), then u € d(U, mm’u),
5. if U' U, then d(U,m) N U’ C d(U’,m),
valid for any U,U’ € Set M, v € U, m,m’ € M. Elements of the image

d(U,m) will be called divisors of m in U and m is said divisible by elements
of d(U, m).

Remark 1. We have split the definition of involutive division from [13, def.
5] into the definition of division in general and involutive division (def. 4
below). The notation has been changed. The notation u|;;ym used in [13]

is now changed for u € d(U,m).

Example 1. Assuming d(U,m) = {u € U : Im* € M : m*u = m}, we
will define the standard division on the monoid.
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If there is a set X € Set M such that any element of the set M other than 1
can be represented as a product of elements from X, then the monoid is said
to be generated by the set X. If such a representation is unique for an element
of the set M, then M is said to be a set of monomials, and the elements of
the set X are treated as variables.

Definition 3. An element z € X will be called multiplicative for u with
respect to U if u € d(U, zu).

The set of all multiplicative elements for u relative to U will be denoted as
X, (U, u).

Theorem 1. If x4, ...,z are multiplicative elements of X for u with respect
to U, then u € d(U,x* ... x3°u).

Proof. Corollary of the 4th property of definition 2. O

To difine division on a monoid generated by the set X, it is enough to
specify X .

Theorem 2. Suppose that a finite set X generates a monoid M and some
mapping is given X, : Set M x M — Set X.

Let us define the function d : Set M x M — Set M as follows: u € d(U,m)
if and only if w € U and there exists a product of m* elements from X (U, u)
such that m = m*u. The function d defines division by M if and only if the
embedding U" C U implies

X,(U,u) Cc X;(U',u) YuelU'. (1)

Remark 2. In [13] it was noted that “involutive division for a monomial
can be specified by defining sets of multiplicative and non-multiplicative
variables”. We have formulated this idea in the form of theorems 1 and 2.
They seem to be mutually inverse. However, according to theorem 1

v= H e = u € d(U,vu),
reX

and theorem 2 does not reverse the arrow, but asserts that if the condition
(1) is satisfied, we can define a division by M such that

v= H e <= u € d(U,vu).
reX

Proof. Property 1 of definition 2 is fulfilled, since by construction of d, the
element u € d(U, m) only if u € U. Property 2 is satisfied, since for m = u
one can take m* = 1. Property 3 is fulfilled because m* is explicitly specified
when constructing d.

Property 4 is fulfilled, since by the construction of d the embeddings
u € d(U,mu) and u € d(U,m’u) mean that there exist products v,v" of
elements from X,(U,u) such that mu = vu and m’u = v'u. But then
mm’u = vv'u and, since vv’ is the product of elements from X,;(U,u),
u e d(U,mm’u).
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Now we turn to property 5. Let U" C U and u € d(U,m)NU’, then u € U’
and there exists a product of m* of elements from X ;(U, u) such that m = m*u.
From this it follows that v € d(V,m) if and only if X,;(U,u) C X (U’,u),
i.e., the ratio (1) is true. 0

Example 2. Consider the set M of all monomials generated by the n
variables X = (z,...,,). Let us agree to write 9,27 ...z, = j,.
Thomas division is determined by the formula
z; € X (U,u) < 0;u = max 0,v.
velU

Let us check the condition (1). Let w € U" C U. If z; € X;(U,u), then the
maximum of d;v on U is achieved when v =u € U’. Since U’ C U,

max 0,v < max ;v
velU’ vel

and, therefore, the maximum is attained at v = w. This is what condition (1)
asserts.

3. Involutive divisions on monoids

Definition 4. A division d will be called involutive if for any U € Set M
and m € M the set d(U,m)
1. is empty,
2. consists of one element,
3. consists of several elements, and then for any u,u” € d(U,m), it is strictly
true that either u € d(U,u’), or v" € d(U,u).

The maximum number of distinct elements that make up d(U,m) for any
U € Set M and m € M will be called the rank of the involutive division of d.

Remark 3. Simultaneous execution of equalities u € d(U,u"), v’ € d(U,u)
by virtue of property 3 of definition 2, implies the existence of two elements
v,v" € M such that v" = vu and u = v’«/. In a monomial set, the simultaneous
fulfillment of these equalities means that v = v = 1 and therefore u = u’.
Thus, only one of them can be fulfilled in definition 4. Definition 4 implies
that only one of these equalities holds in the case of an arbitrary monoid.

Definition 4 allows ordering the linearly finite set d(U,m):
uedU,u') and u#uv < u<u.

Therefore, there exists a single maximal element, i.e., an element u such
that d(U,m) C d(U,u). This can be taken as a definition of involutivity,
equivalent to the previous one.

Definition 5. A division d will be called involutive if, for any U € Set M
and m € M, there exists and, moreover, a unique element u € U such that

d(U,m) C d(U,u).
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Example 3. Let us describe the Thomas division in more detail. Let U
be a finite subset of the set M, of all monomials in n variables. For brevity
we put

r; = max J,w.
welU

These numbers only depend on U. Let u € d(U, m), then there is a product
of v variables from X (U, u) such that m = uv. Then 9;m = 0,u + J;v.

If x; € X;(U,u), then 9;v > 0 and 0,u = r;, whence 0,v = 9,m —r; > 0.

If x; ¢ X;(U,u), then 9,v =0 and 0,u < r;, where r; > d,u = 9;m — 0.

Thus, combining both cases,

{aim —r, Omz=r;
aiv -
0 om < r;

and

diu = 0, = {Ti om i _ min(9;m, ;).

7 7 v
om Om <,

Thus, u is uniquely determined by specifying U and m. It is already
clear from this that the Thomas division is an involutive division of the
1st rank. However, we also obtained an explicit formula for d(U,m). If
0;u = min(9;m, r;) specifies an element u from U, then d(U, m) consists of
this one element. If this element does not belong to U, then d(U,m) is empty.

4. Complete sets and completely involutive divisions

Let again U € Set M.

Definition 6. A set of elements of the form mu, where © € U and m € M,
will be called a cone generated by the set U and denoted as C'(U).

Definition 7. The set of elements m € M such that d(U,m) # ), will be
called an involutive cone generated by the set U and denoted as 1;(U).

By virtue of property 3 of definition 2, 1,(U) C C(U).

Definition 8. A set U € Set M is called complete with respect to the
involutive division of d if the involutive cone generated by it coincides with
the usual one, i.e., I,(U) = C(U).

Remark 4. In [13], instead of ’complete sets’, the term ’closed sets’ is used.
We prefer the term ’complete’ because it does not give rise to connotations
with some topology on Set M.

Example 4. In M,, the embedding m € C(U) means that there is an
element v € Usuch that 9,m > 0;u Vi =1,2,...,n. With respect to Thomas
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division, m € C(U) is divisible by U if and only if v with 9, = min(9;m,r;)
belongs to U. Let U contain all monomials u satisfying the inequalities

ngazugrl Vizl,z,...,n,
where ¢, ..., ¢, are non-negative integers. Then
azm> 81U> Ci VZ: 1,2,...,”,

and therefore ¢; < d;v = min(9;m,r;) <r; and v € U. Therefore, such a set
U is complete with respect to the Thomas division.

Definition 9. A set U* € Set M is called a completion of the set U € Set M
with respect to division d if

1. U is a subset of the set U*,
2. U* is a complete set with respect to division of d, that is, I,(U*) = C(U*),
3. C(U) =C(U").

Definition 10. An involutive division d is called completely involutive if
each set from Set M has completion with respect to this division.

Remark 5. In [13], such divisions are called Noetherian, which requires
a rather lengthy explanation of the connection between the issue and the
finiteness of the ideal bases.

Example 5. For the Thomas division, the completion can be described
explicitly: the completion of U is the set U* € Set M,, formed by the monomials
v with the following property: there exists a monomial u € U such that

Ou < 0;v <.

Indeed, by the construction of U*, U C U* holds, that is, property 1
of definition 9. The fulfillment of the 3rd property is also obvious, since
U* C C(U) by construction.

Let us check the second property. Let m € C(U*), that is, there is
a monomial v* € U* and a monomial v € M, such that m = u*v, where
o,m = o;u*.

By the construction of U*, this implies that for m one can specify a monomial
u € U such that 9;m > 0;u. On the other hand, the monomial m is divisible
by U* if and only if the monomial «* with 0;u* = min(9;m, r;) belongs to U*.
But this is indeed the case, since J;u < min(d;m,r;) < ;.

This means that C(U*) = I;(U*), that is, U* is a complete set. This is the
second property.

Remark 6. Historically, the concept of Pomare division was first intro-
duced, it is involutive, and not completely involutive, which is a source of
various kinds of pathological examples, see [13, example 55| and also [4], [14],

15,
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5. Necessary and sufficient conditions
for the completeness of a set

Theorem 3 (necessary completeness condition). Let the monoid M be
generated by elements of a finite set X. For the set M to be complete with
respect to the division of d, it is necessary that

d(U,zu) #0 VYueU,Vx e X. (2)
This condition is sufficient only for a certain class of divisions.

Definition 11. A sequence {ug,u; ..., } of elements of the set U will be
called fundamental if for any ¢ there is an element z; € X such that:

Lou; & dU, zu;),

2. u;q € d(U, zu;).

Definition 12. A division of d by the monoid M will be called finite if
every fundamental sequence is finite.

Remark 7. In [13], division is called continuous if every finite fundamental
sequence does not contain two identical terms. In this case, any piece of an
infinite fundamental sequence is shorter than the total number of elements in
U and the division is finite in the sense of our definition. However, to prove
theorem 4, the ’continuity’ requirement can be weakened to that described in
our definition.

Remark 8. In our opinion, this construction is much more similar to the
concept of a completely continuous mapping, and not just a continuous one.
For this reason, we call the sequences from definition 11 fundamental, and
the property described in the definition 10, complete involutivity.

Theorem 4. If d is a finite involutive division on the monoid M generated
by elements of the finite set X, then for the set U to be complete it is necessary
and sufficient that condition (2) be satisfied.

Proof. Let condition (2) be satisfied for the set U. Take u € U and m € M
in an arbitrary way and construct a divisor of mu in U as follows.

Let us take u as the first element u, of the sequence of elements U. If
ug € d(U,um), then we will not do anything. If uy ¢ d(U,um), then among
the factors m from X there is z such that uy ¢ d(U,ugz,) by theorem 1.
But by virtue of (2) then there exists u; € U such that u; € d(U,uyz).

If u; € d(U,um), then we will not do anything. Otherwise, there is an
element x; € X such that u; ¢ d(U,uyx,).

Then, by virtue of (2), there is an element u, € U such that u, € d(U,u,z;).

Proceeding on like this, we get a sequence {ug, uq, ... } of U elements.

The described sequence is fundamental (definition 11). Under the conditions
of the theorem being proved, it is indicated that d is a finite division, therefore
every fundamental sequence is finite. By construction, its last element is
a divisor of um in U.

Thus, every element um has a divisor in U, that is, U is a complete set.
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Example 6. In the case of Thomas division, the set d(U,u;x;, ) consists
of one element w,,, and d;u;,; = min(;u;xy ,7;).
For j # k;

Oju; 1 = min(dju,, ;) = ;u;.

since u; € U. For j =k;
O, Ui = min(dy u; + 1, rki) = O u; + 1,

because otherwise it would be 9y u; +1 > 7y, which contradicts u; € U.
Thus, u; 1 = u;xy, .
From this, in particular, it is clear that there are no coinciding elements

among the elements. Since there is a finite number of products of U and X,
the fundamental sequence is finite.

6. Set completion

Problem. Given U € Set M and a finite completely involutive division of d
by M, it is required to find its completion with respect to d.

In the specified class of divisions, this problem always has a solution
(definition 10). For Thomas division, we know its explicit solution (example 5).
For other divisions, it would be desirable to solve the problem, gradually
supplementing U with new elements.

So, let U be given. By searching over two finite sets, we seek all pairs u € U
and z € X such that d(U,zu) = 0.

If there is no such pair, then the completion U* = U (theorem 4) and the
problem is solved. If there are such pairs, then we add one of the products
xu obtained in this way to the set U and obtain the set U;. Proceeding on
like this, we will expand U more and more, while remaining inside the cone
C(U). If this process is interrupted at the n-th step, then the resulting set is
complete by virtue of theorem 4. This will be the completion U* of the set
U by definition 9. However, the finiteness of U* does not imply finiteness of
the described process, since we can get sets that contain elements that are
absent in U*. To avoid this, it is necessary to indicate a rule for choosing
a pair from the set of pairs u € U,, and = € X such that d(U,,, xu) = ), which
guarantees the embedding U,, C U* at each step.

The simplest option is to take an element that is in some sense minimal,
but for this purpose we have to restrict ourselves to the special case when the
monoid is the set of monomials in n variables that make up the set X. Let
this set be given a monomial order, say, deglex.

Given U, among the pairs u € U and = € X such that d(U,zu) = 0, we
take the one for which the product uz is minimal. By virtue of property 5 of
definition 2

d(U*,zu) NU C d(U, zu) = (.

That is why v € d(U*, zu) ¢ U.

By virtue of property 3 of definition 2 there is an element m € M such that
zu =vm. If m =1, then zu =v € U* and U; = U U {zu} C U* and you can
go to the next step.

Regarding the second option, when m > 1, one can notice the following.
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Theorem 5. If m > 1, then d(U,v) is not empty.

Proof. Since v € U* C C(U), there exists a pair u; € U and m; € M such
that v = myu;.

If my = 1, then v = u; € U, which is impossible. Therefore, m; > 1.
Therefore, xu = uymmy, m,m; > 1.

This means that u,;y < uz for any y € X. Since we initially chose the
minimum pair, d(U,uy) #0 Vy e X.

Let us denote the set of variables that are included in m; as Y.

Ifu;, € d(U,uyy) Vy €Y, then by virtue of theorem 1, u; € d(U,u;m;) =
d(U,v), i.e., d(U,v) is not empty.

Otherwise, there is y; € Ysuch that u; ¢ d(U,u ;).

The set d(U,uyy,) itself is not empty, let uy, € U belong to it, then u; # u,
and there exists m, € M such that u,y; = uym’. But then

mym’
1

and m is divisible by y,, since y; € Y. Thus, we get the first elements u, u,
of the fundamental sequence, and v = u;m; = uym,.

Repeating the above considerations in relation to the representation v =
UyMq, we get either u, € d(U,v), or the next element of the sequence. Since
every fundamental sequence is finite, at some step we get u,, € d(U,v), that
is, d(U,v) # 0. .

The process of solving the problem described above will stop if the following

condition is met:
d(U,v) =0 Vve (U*-U). (3)

It does not follow from property 5 of definition 2 and should be somehow
imposed on the division in question.

Example 7. For the Thomas division, the completion U* of the set U was
described in example 5: it is formed by monomials v for which there exists
a monomial v € U such that 0,u < 9;v < r;.

The criterion of emptiness for d(U,v) is indicated at the end of example 3:
d(U,v) is empty if and only if 0,w = min(9;v,r;) specifies an element w that
is not in U. For v € U* this equality reduces to the trivial J,w = 0,v, that is,
w = v. By hypothesis, v ¢ U, so d(U,v) is empty.

7. Discussion

As easily seen, all the basic concepts are introduced for arbitrary monoids.
The sufficient criterion for completeness (theorem 4) is proved for monoids
generated by a finite set, and the algorithm for successive completion of a set
only for a set of monomials. Moreover, axiom 5 of definition 2 of division
appears only in the last section and, by and large, it is lacking in the proof
of the correctness of the completion algorithm. Possibly, this part of the
definition of division could be slightly corrected.
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This axiom is the only one that suggests changing the domain. In fact, all
the results presented, except for theorem 5, are satisfied for a fixed U, that
is, the function d is considered as a function of one argument. Division is
not a good functor from Set M to Set M. Many questions here seem to be
unclear. The focus was on the completion of a set, but not the uniqueness of
such a completion. Moreover, there can be obviously sets enclosed between
a complete set and its cone, ’overfull’ sets. They hamper proving theorem 5,
but what is their true role in division theory?
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OO0 MHBOJIIOTUBHOM JdeJIEHUU HAa MOHOUIAX
0. K. Kpoiitop', M. JI. Magabix" 2

U Poccutickuti yrusepcumem dpyorcto, napodoes
ya. Muxayzro-Maxaas, 0. 6, Mocksa, 117198, Poccus
2 JTa6opamopus ungopmayuornms mexnosozuts um. M. I'. Mewepakosa
O06BedUHEHNBIT UHCMUMYM, AJCPHBLT UCCACO0BAHUTL
ya. Koauvo-Kropu, 0. 6, Hyona, Mockosckasn obaacmo, 141980, Poccus

PaccmarpuBaercs npousBoibHbIA MoHOUI M, Ha KOTOPOM BBEIEHO MHBOJIIOTUB-
HOEe JieJIeHrde, M MHOXKECTBO BCEX €ro KOHEYHbIX HojaMmHoxkecTB Set M. lesenue
paccMmaTpuBaeTcsa Kak orobpaxkenue d : Set M x M, o6pas koroporo d(U,m) —
MHOKeCTBO sesmuresieit m B U. CoiicTBa J1eJIeHUsI 1 MHBOJIIOTUBHOIO JEJI€HUsT 3310~
IOTCA aKCHOMATHYECKHU. IIOHATHS MHBOJIIOTHBHOIO JIEJIEHUs] BBEJIEHO B COOTBETCTBUU
C OIpeeIeHreM WHBOJIIOTUBHOIO MOHOMUAJILHOTO IejieHusi, BBeaéuabiM B. I1. Tepm-
toMm u FO.A. BymmakosbiM. [Ipemioxken psii HOBBIX OOO3HAYUEHUM, O3BOJISIOIINX
KOPOTKO, HO SIBHO YYHUTBHIBATH 3aBUCHMOCTD JieJieHndA OT 3djemenTa Set M. Teopus un-
BOJIFOTUBHOTO TIONIOJIHEHUS (3aMbIKAHWs) MHOYKECTB U3JIOXKEHA JJIsl IPOM3BOJILHBIX
MOHOU/IOB, HEOOXOIUMbBIE U JIOCTATOYHBIE YCJIOBUSI TIOJTHOTHI (3aMKHYTOCTH) — JIJIsT
MOHOU/IOB, TTOPOXKIEHHBIX KOHEIHBIM MHOKecTBOM X. [lomuépkuyTa aHagorus Mex-
JIy 9TOi Teopueil 1 Teopueil BIIOJIHE HEIPEPHIBHBIX OIIepaTopoB. B mociieaneM pasmese
00Cy XK IeHA BO3MOXKHOCTh PEIeHUs 3a/Ia9u O TOMOJTHEHUU 3aJAHHOTO MHOXKECTBA, IIy-
TEM TI0CJIE0BATEILHOTO PACITUPEHNA UCXOTHON 00JIaCTH U €€ CBA3Db C AKCHOMAMU,
HCIOJIb3YEMBIMHU B OIIPEIEIEHUN JejieHns. Bece pe3yabrarhl MpONIIOCTPUPOBAHDI
[IpUMEpPaMU O MOHOMMAJILHOM JeJeHnH TomMaca.
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