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We present the possibilities provided by the MathPartner service of calculating
definite and indefinite integrals. MathPartner contains software implementation of
the Risch algorithm and provides users with the ability to compute antiderivatives
for elementary functions. Certain integrals, including improper integrals, can be
calculated using numerical algorithms. In this case, every user has the ability to
indicate the required accuracy with which he needs to know the numerical value of
the integral. We highlight special functions allowing us to calculate complete elliptic
integrals. These include functions for calculating the arithmetic-geometric mean
and the geometric-harmonic mean, which allow us to calculate the complete elliptic
integrals of the first kind. The set also includes the modified arithmetic-geometric
mean, proposed by Semjon Adlaj, which allows us to calculate the complete elliptic
integrals of the second kind as well as the circumference of an ellipse. The Lagutinski
algorithm is of particular interest. For given differentiation in the field of bivariate
rational functions, one can decide whether there exists a rational integral. The
algorithm is based on calculating the Lagutinski determinant. This year we are
celebrating 150th anniversary of Mikhail Lagutinski.
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arithmetic-geometric mean, modified arithmetic-geometric mean, Lagutinski de-
terminant

1. Introduction

The development of computer algebra systems and cloud computing makes
it possible to solve many computational problems. Vladimir Petrovich Gerdt
was at the forefront of the development of computer algebra. As a professional
physicist, he developed new algorithms for solving problems in mathematical
physics and implemented them in many well-known systems of computer
algebra. He has worked on systems such as REDUCE, Mathematica, Maple,
and Singular.
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Today, many useful programs and cloud services are available. A new
generation of computer algebra systems is actively developing. They are cloud-
based systems freely available on the Internet. The MathPartner service is
a nice example of this [1]–[4]. Free access to the MathPartner service is possible
at http://mathpar.ukma.edu.ua/ as well as http://mathpar.com/.

In this review, we consider only a small area of MathPartner application,
namely the calculation of definite and indefinite integrals. Symbolic compu-
tations and estimates of the computational complexity are of the greatest
interest [5]–[9]. However, in some cases, symbolic computations need to be
supplemented with numerical methods. In particular, this is true when calcu-
lating special functions [10], [11]. For example, elliptic integrals are used to
calculate the period of the simple pendulum [12] as well as some properties of
porous materials [13], [14].

Robert Henry Risch proposed a method to integrate elementary
functions [15], [16]. The method was later improved by Manuel
Bronstein [17]. In 2010–2019, an algorithm based on the Liouville–
Risch–Davenport–Trager–Bronstein theory was developed at the Laboratory
of Algebraic Computations of Derzhavin Tambov State University. A se-
ries of papers on symbolic integration algorithms was published by Svetlana
Mikhailovna Tararova [18] and Vyacheslav Alekseevich Korabelnikov [19],
[20]. The procedures were developed using object-oriented programming in
Java. Their description is given in cited publications. Since the symbolic
integration theory has not yet been completed, this algorithm can be consid-
ered as a good basis for further theoretical and practical development in this
important area.

Historically, the first major symbolic integration project was the IBM
Scratchpad project led by Richard Dimick Jenks. The development of this
project as a commercial one was later stopped by the company. However,
he played an important role in the development of the theory of symbolic
integration and attracting interest in it.

Many general computer algebra systems today support symbolic integra-
tion of elementary functions. However, they all have a common drawback
that is the incompleteness of solving the problem of symbolic integration.
Another drawback is the lack of a detailed description of the procedural imple-
mentation and the technical possibility of further development of the package
of procedures. The most famous example is the cloud-based SAGE system,
which provides access to old open source packages that have long been dis-
continued. On the other hand, commercial systems do not give users access
to their packages of procedures, and they do not have specialists who can
complete the theory of calculating the antiderivative for the composition of
simple elementary functions.

Experiments with integration problems from mathematical analysis text-
books show that many problems can be solved using any of the systems such
as Mathematica, Maple, and MathPartner. Nevertheless, for each of them,
one can find functions that have an antiderivative, but it is not calculated
by this system. The MathPartner symbolic integration package is one of
the newest packages in this area. It is developed in Java and is the most
promising for further development.

In a series of important works, Mikhail Nikolaevich Lagutinski (1871–1915)
developed a method for determining integrals of polynomial ordinary differen-
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tial equations in finite terms. He also developed the theory of integrability
in finite terms of such systems of equations [21]–[23]. Lagutinski was an
outstanding mathematician. He had worked at Kharkiv and died during the
First World War. In this article, we also consider the Lagutinski method.
Note that he published his papers as Lagoutinsky using the French

spelling [24], [25]. The authors are grateful to Mikhail Malykh for com-
ments and historical notes about M.N. Lagutinski.

2. Integrals of some functions

2.1. Indefinite integrals

To calculate the indefinite integral of an elementary function 𝑓(𝑥) one
can run the command int(𝑓)𝑑𝑥, where 𝑥 is declared in the environment
SPACE. Five number sets ℚ, ℝ, ℝ64, ℂ, and ℂ64 can be used. Over the
field ℚ, pure symbolic computations are done. For example, let us calculate
∫ 2𝑥 sin(𝑥2) 𝑑𝑥:

SPACE = Q[x];
f = 2*x*\sin(x^2);
\int(f) d x;

The output is equal to (−1) cos(𝑥2).

Next, let us calculate ∫(3𝑥2 + 2)2 𝑑𝑥:

SPACE = Q[x];
\int((3x^2+2)^2) d x;

The output is equal to (9/5)𝑥5 + 4𝑥3 + 4𝑥.

2.2. Definite integrals (the numerical algorithm)

A definite integral ∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥 can be calculated by means of the command

Nint(𝑓, 𝑎, 𝑏, 𝜀, 𝑁), where 𝜀 means the approximation to 𝜀 decimals and 𝑁
denotes the number of points in the Gaussian formula (optional). These
parameters can be omitted.

For example, let us calculate 42 decimal places of the integral ∫
𝜋

0
sin𝑥 𝑑𝑥:

SPACE = R[x]; MachineEpsilonR = 42; FLOATPOS = 42;
\Nint(\sin(x), 0, \pi);

The output is equal to 2.000000000000000000000000000000000000000000.
Next, let us approximate 𝜋:
SPACE = R[x]; MachineEpsilonR = 43; FLOATPOS = 42;
2*\Nint(\sqrt(1-x^2), -1,1);

The output is equal to 3.141592653589793238462643383279502884197169.
All 42 decimal places are accurate.
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Let us consider improper integrals of the first kind ∫
𝑏

𝑎
𝑓(𝑡) 𝑑𝑡, where 𝑎 or 𝑏

can be equal to ±∞. The integral can be calculated by means of the command
Nint(𝑓, 𝑎, 𝑏, [𝑞1, ⋯ , 𝑞𝑚], 𝜀, 𝑁), where [𝑞1, ⋯ , 𝑞𝑚] denotes the set of extreme
points of the function 𝑓 inside the interval of integration (𝑎, 𝑏), the answer is
the approximation to 𝜀 decimals, and 𝑁 denotes the number of points in the
Gaussian formula (optional). In fact, three parameters [𝑞1, ⋯ , 𝑞𝑚], 𝜀, and 𝑁
can be omitted. If the extreme points are not indicated, then the correctness
of the output is ensured when the integrand is monotonic on the interval of
integration.

For example, let us calculate ∫
+∞

−∞
exp {−(𝑥 − 5)2} 𝑑𝑥:

SPACE = R64[x];
f = \exp\{-(x-5)^2\};
\Nint(f, -\infty, \infty);

The output is equal to 1.77.
Next, let us calculate ∫

∞

0
exp{−𝑥} 𝑑𝑥:

SPACE = R[x];
MachineEpsilonR = 45; FLOATPOS = 45;
\Nint(\exp(-x), 0, \infty);

The output is equal to 1.000000000000000000000000000000000000000000000,
where all 45 decimal places are accurate.

2.3. The complete elliptic integrals

For some improper integrals, more efficient calculation methods are known.
Let us consider complete elliptic integrals [10], [12]. For positive numbers
𝑎 > 0 and 𝑏 > 0, the complete elliptic integral of the first kind can be
calculated by means of the arithmetic-geometric mean

𝐼(𝑎, 𝑏) = ∫
𝜋/2

0

𝑑𝜑
√𝑎2 cos2 𝜑 + 𝑏2 sin2 𝜑

= 𝜋
2AGM(𝑎, 𝑏)

,

where AGM(𝑎, 𝑏) denotes the arithmetic-geometric mean of 𝑎 and 𝑏. It
is equal to the limit of both sequences 𝑎𝑛 and 𝑏𝑛, where 𝑎0 = 𝑎, 𝑏0 = 𝑏,
𝑎𝑛+1 = 1

2
(𝑎𝑛 + 𝑏𝑛), and 𝑏𝑛+1 = √𝑎𝑛𝑏𝑛. The proof is based on the equality

𝐼(𝑎, 𝑏) = 𝐼 ((𝑎 + 𝑏)/2,
√

𝑎𝑏). Of course, if 𝑎 = 𝑏, then 𝐼(𝑎, 𝑎) = 𝜋/2𝑎.
On the other hand, the geometric-harmonic mean GHM(𝑎, 𝑏) is equal to

the limit of both sequences 𝑎𝑛 and 𝑏𝑛, where 𝑎0 = 𝑎, 𝑏0 = 𝑏, 𝑎𝑛+1 = √𝑎𝑛𝑏𝑛,

and 𝑏𝑛+1 = 2𝑎𝑛𝑏𝑛
𝑎𝑛 + 𝑏𝑛

. Note that AGM(𝑎, 𝑏)GHM(𝑎, 𝑏) = 𝑎𝑏.

Both AGM(𝑎, 𝑏) and GHM(𝑎, 𝑏) can be calculated in the MathPartner
service. For example, let us run the commands, where FLOATPOS denotes
the number of decimal places:
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SPACE = R64[];
FLOATPOS = 3;
a= \AGM(1, 5);
g= \GHM(1, 5);
\print(a, g);

The output is 𝑎 = 2.604 and 𝑔 = 1.920.
The complete elliptic integral of the second kind can be calculated by

means of MAGM(). It is also implemented in the MathPartner service.
The modified arithmetic-geometric mean MAGM(𝑎, 𝑏) is equal to the limit
of the sequence 𝑎𝑛, where 𝑎0 = 𝑎, 𝑏0 = 𝑏, 𝑐0 = 0, 𝑎𝑛+1 = 𝑎𝑛 + 𝑏𝑛/2,
𝑏𝑛+1 = 𝑐𝑛 + √(𝑎𝑛 − 𝑐𝑛)(𝑏𝑛 − 𝑐𝑛), and 𝑐𝑛+1 = 𝑐𝑛 − √(𝑎𝑛 − 𝑐𝑛)(𝑏𝑛 − 𝑐𝑛),

∫
𝜋/2

0

√𝑎2 cos2 𝜑 + 𝑏2 sin2 𝜑 𝑑𝜑 = 𝜋
2

⋅ MAGM(𝑎2, 𝑏2)
AGM(𝑎, 𝑏)

.

So, the circumference of an ellipse is equal to 2𝜋MAGM(𝑎2, 𝑏2)
AGM(𝑎, 𝑏)

, where 𝑎

and 𝑏 denote the semi-major and semi-minor axes.

2.4. Other special functions

The gamma function is defined via a convergent improper integral

Γ(𝑧) = ∫
∞

0
𝑥𝑧−1 exp{−𝑥} 𝑑𝑥,

where Re 𝑧 > 0. For any positive integer 𝑛, Γ(𝑛) = (𝑛 − 1)!. To calculate its
value one can run the command Gamma(𝑧).
The beta function, also called the Euler integral of the first kind, is also

defined via another integral

B(𝑥, 𝑦) = ∫
1

0
𝑡𝑥−1(1 − 𝑡)𝑦−1 𝑑𝑡,

where both inequalities hold Re𝑥 > 0 and Re 𝑦 > 0. It is closely related to
the gamma function because B(𝑥, 𝑦) = Γ(𝑥)Γ(𝑦)/Γ(𝑥 + 𝑦).
To calculate its value one can run the command Beta(𝑥, 𝑦). For example,

let us verify the equality 𝐵(2, 3) = 1/12:
SPACE = R64[];
FLOATPOS = 4;
\Beta(2, 3);

The output is equal to 0.0833.

The binomial coefficients are binom(𝑛, 𝑘) = (𝑛
𝑘

) = 𝑛!
𝑘!(𝑛 − 𝑘)!

. For suit-

able function 𝑓, the Laplace transform is the integral ∫
∞

0
𝑓(𝑡)𝑒−𝑠𝑡 𝑑𝑡.
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To calculate the Laplace transform one can run laplaceTransform().
The inverse Laplace transform can be calculated by
inverseLaplaceTransform(). Let us consider an example:

SPACE = R64[t];
L = \laplaceTransform(\exp(3t));

The output is 𝐿 = 1.0
𝑡 − 3.0

.

Next, let us calculate the inverse transform:

SPACE = R64[t];
F = \inverseLaplaceTransform(1/(t - 3));

The output is 𝐹 = 𝑒3𝑡.

3. The Lagutinski determinant

The Lagutinski method allows us to search for rational integrals of a given
differential ring [21], [24], [25]. Therefore, it can be used to integrate ordinary
differential equations in symbolic form [7], [23].
Let us consider the differential ring ℚ[𝑥, 𝑦] of bivariate polynomials over

the field ℚ, where the differentiation is given by 𝐷 = 𝑝(𝑥, 𝑦) 𝜕
𝜕𝑥

+ 𝑞(𝑥, 𝑦) 𝜕
𝜕𝑦

.
Let us consider an infinite matrix whose entries are monomials. The first row

consists of all bivariate monomials with graduated lexicographical ordering
𝑚1, 𝑚2, …. The second row consists of the first derivatives 𝐷𝑚1, 𝐷𝑚2, ….
The third row consists of the second derivatives 𝐷2𝑚1, 𝐷2𝑚2, …, and so on.

In particular, both monomials 𝑚2 and 𝑚3 are linear. For 𝑁 = 1
2

(𝑑+1)(𝑑+2),
the monomial 𝑚𝑁 is the last monomial of degree 𝑑.
The Lagutinski determinant of order 𝑛 with respect to the differentiation 𝐷

is a leading principal minor of order 𝑛 in this matrix. Of course, the first order
Lagutinski determinant is equal to 1. To calculate the Lagutinski determinant
of order 𝑛 with respect to the differentiation 𝐷 one can run the command
detL(𝑛, [𝑝, 𝑥, 𝑞, 𝑦]).
The significance of this determinant is explained by the following result

that was previously obtained by Lagutinski [24], [25], but presented here
in a modern formulation, cf. [7], [23]. A non-constant rational function
𝑓 ∈ ℚ(𝑥, 𝑦) is called an integral when 𝐷𝑓 vanishes identically.

Theorem 1 (Lagutinski). Given a differentiation 𝐷 and a positive inte-

ger 𝑑 > 0. The Lagutinski determinant of order 𝑁 = 1
2

(𝑑 + 1)(𝑑 + 2) vanishes
if and only if there exists a rational integral whose numerator and denominator
are of degree at most 𝑑.

For example, if the differentiation is given by 𝐷 = 𝜕
𝜕𝑥

+ 𝜕
𝜕𝑦

, then

𝐷(𝑥 − 𝑦) = 0. In accordance with Theorem 1, the third order Lagutinski
determinant vanishes:
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SPACE = Q[x, y];
p = 1; q = 1;
\detL(3, [p, x, q, y]);

The output is equal to zero.

Next, if the differentiation is given by 𝐷 = 𝑥 𝜕
𝜕𝑥

− 𝑦 𝜕
𝜕𝑦

, then 𝐷(𝑥𝑦) = 0.
In accordance with Theorem 1, the sixth order Lagutinski determinant van-
ishes. Moreover, the fifth order Lagutinski determinant vanishes too because
the fifth monomial coincides with the integral:

SPACE = Q[x, y];
p = x; q = -y;
\detL(5, [p, x, q, y]);

The output is equal to zero. But the third order Lagutinski determinant
is equal to −2𝑥𝑦. Thus, there does not exist any integral whose numerator
and denominator are linear. Contrariwise, if the differentiation is given

by 𝐷 = 𝑥 𝜕
𝜕𝑥

+ 𝑦 𝜕
𝜕𝑦

, then 𝐷 (𝑥 − 𝑦
𝑥 + 𝑦

) = 0. In accordance with Theorem 1,

the third order Lagutinski determinant vanishes:

SPACE = Q[x, y];
p = x; q = y;
\detL(3, [p, x, q, y]);

The output is equal to zero.

4. Conclusion

The MathPartner service has become better and allows us to solve new
problems in geometry and physics. MathPartner supports both symbolic
and numerical integration of elementary functions. Moreover, some special
functions can be calculated using fast algorithms.
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Вычисление интегралов в MathPartner

Г. И. Малашонок1, А. В. Селиверстов2

1Национальный университет «Киево-Могилянская академия»
ул. Григория Сковороды, д. 2, Киев, 04655, Украина

2Институт проблем передачи информации им. А.А. Харкевича РАН
Большой Каретный пер., д. 19-1, Москва, 127051, Россия

В статье рассмотрены возможности сервиса MathPartner по вычислению опре-
делённых и неопределённых интегралов. MathPartner содержит программную
реализацию алгоритма Риша и предоставляет пользователям возможность вы-
числять первообразные для элементарных функций. Некоторые интегралы,
в том числе несобственные, можно вычислить с помощью численных алгорит-
мов. В этом случае каждый пользователь может указать необходимую точность,
с которой ему необходимо знать числовое значение интеграла. Отметим специаль-
ные функции, которые позволяют вычислять полные эллиптические интегралы.
К ним относятся функции для вычисления арифметико-геометрического сред-
него и геометрическо-гармонического среднего, которые позволяют вычислять
полные эллиптические интегралы первого рода. Набор также включает моди-
фицированное арифметико-геометрическое среднее, которое предложил Семён
Адлай, что позволяет вычислять полные эллиптические интегралы второго рода
и длину (периметр) эллипса. Особый интерес представляет алгоритм Лагутин-
ского. Для данного дифференцирования в поле рациональных функций от двух
переменных можно решить, существует ли рациональный интеграл. Алгоритм
основан на вычислении определителя Лагутинского. В этом году мы отмечаем
150-летие со дня рождения Михаила Лагутинского.

Ключевые слова: система компьютерной алгебры, MathPartner, инте-
грал, арифметико-геометрическое среднее, модифицированное арифметико-
геометрическое среднее, определитель Лагутинского


