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The asymptotic method is a very attractive area of applied mathematics. There
are many modern research directions which use a small parameter such as statistical
mechanics, chemical reaction theory and so on. The application of the Fokker—Planck
equation (FPE) with a small parameter is the most popular because this equation
is the parabolic partial differential equations and the solutions of FPE give the
probability density function.

In this paper we investigate the singularly perturbed Cauchy problem for symmet-
ric linear system of parabolic partial differential equations with a small parameter.
We assume that this system is the Tikhonov non-homogeneous system with constant
coefficients. The paper aims to consider this Cauchy problem, apply the asymptotic
method and construct expansions of the solutions in the form of two-type decom-
position. This decomposition has regular and border-layer parts. The main result
of this paper is a justification of an asymptotic expansion for the solutions of this
Cauchy problem. Our method can be applied in a wide variety of cases for singularly
perturbed Cauchy problems of Fokker—Planck equations.
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equation, Cauchy problem, Fokker—Planck equation

1. Introduction

It is well known that the differential operator, which is applied in the theory
of measure, has such form:

L= aiﬂ‘aggiaxj +b'9,, 1<i,j<d, deN.

The solution of the equation L*u = 0 is Borel measures on an open set
Q € R and there is the relation

/Lfd,u =0, VfeCrQ).
Q

(©) Bouatta M. A., Vasilyev S.A., Vinitsky S.I., 2021

This work is licensed under a Creative Commons Attribution 4.0 International License
BY http://creativecommons.org/licenses/by/4.0/



M. A. Bouatta et al., The asymptotic solution of a singularly perturbed ... 127

If the measure p has a density p, then p is conjugate solution of the equation
8mi8zjaijp(x) =0, b'p(x) =0, ze.
Similarly, we can consider parabolic operators in the form
P=0,— ﬁxiﬁxjaij + E)Tibi,

and there are appropriate parabolic equations P*u = 0 for finding measures
pon R™ x [0,7]. The equations for the study of density have the form of
Fokker—Planck equation (FPE)

Oyp(a,t) — D, 0, ali(z,t)pl(x, ) + 0, bi(x, p(x,1) = 0.

FPE equation uses for analysis a macroscopic process but for a small subsys-
tem.

We can formulate the singularly perturbed Cauchy problem for FPE in the
form:

ed,p(x,t,e) — 8$i8$jaij(x, t)p(x,t,e) + 0, b (z,t)p(x,t,e) = 0,

p(x,0,e) = po(z), x€Q, Vpy(x)€ C5(Q),
where € > 0 is a small parameter.

If we assume € = 0, we can get a degenerate Cauchy problem in the following
form:

amiaxjaiﬂ'(x, t)p(x,t) — 9, b*(x,t)p(x,t) = 0,
p_((ﬁ,O) = Po(x>7 x € Q’ Vp()({lf) = CSO(Q>=

where solutions p(zx,t) are solutions of the degenerate problem and p may
differ from solutions p(z,t) significantly.

A large number of methods have been developed for the analytical
and numerical study of FPE solutions [1]-[8]. Hyung Ju Hwang and
Jinoh Kim [9], [10] study the initial-boundary value problem for the
Vlasov—Poisson—Fokker—Planck equations in an interval with absorbing
boundary conditions. They introduce the Deep Neural Network (DNN)
approximated solutions to the kinetic Fokker—Planck equation in a bounded
interval and study the large-time asymptotic behavior of the solutions and
other physically relevant macroscopic quantities. Shu-Nan Li and Bing-Yang
Cao [11] obtained solutions based on the fractional Fokker—Planck equation
(FFPE) with a generic time- and length-dependence of an “effective thermal
conductivity” (k.g), namely, k.gLa with L being the system length. They
formulate the effective thermal conductivity in terms of entropy generation,
which does not rely on the local-equilibrium hypothesis. Hrishikesh Patel
and Bernie D. Shizgal [12] compare the Kappa distribution of space plas-
mas modelled with a particular Fokker—Planck equation for a two component
system with the linear Fokker—Planck equation that has been used to study
the Student t-distribution. Lucas Philip and Bernie D. Shizgal [13]| consider
the one-dimensional bistable Fokker—Planck equation with specific drift and
diffusion coefficients so as to model protein folding. Yunfei Su and Lei Yao
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[14] study the hydrodynamic limit for the inhomogeneous incompressible
Fokker—Planck equations.

The development of the asymptotic analysis of singularly perturbed
differential equations and systems of differential equations was made by
A.N. Tikhonov [15], M. I. Vishik and L. A. Lyusternik [16], A. B. Vasil’eva [17],
S.A. Lomov [18], V. A. Trenogin [19], J. L. Lions [20] and other researchers
during the second half of the 20th century. There is a large number of recent
works. O. Hawamdeh and A. Perjan [21]| study an asymptotic expansions
for linear symmetric hyperbolic systems with small parameter. Using the
boundary layer functions method of Lyusternik—Vishik, A. Perjan [22] ob-
tains the asymptotic expansions of the solutions to the Cauchy problem
for the linear symmetric hyperbolic system as the small parameter ¢ — 0.
A.N. Gorban [23] investigates a model reduction in chemical dynamics with
slow invariant manifolds and singular perturbations. Bor-Yann Chen, Liy-
ing Wu and Junming Hong [24] consider singular limits of reaction diffusion
equations and geometric flows with discontinuous velocity.

In this paper we apply the results of the paper [21] and investigate the
Cauchy problem for the singularly perturbed Tikhonov-type symmetric system
of non-homogeneous constant coefficients linear parabolic partial differential
equations (LPPDE system) with a small parameter. We use the asymptotic
method for this Cauchy problem and construct expansions of solutions in
the form of decomposition, which has regular and border-layer parts. The
main result of this paper is a proof of a justification theorem of an asymptotic
expansion for this Cauchy problem. Our method can be applied in a wide
variety of cases for singularly perturbed Cauchy problems of Fokker—Planck
equations.

2. Singularly perturbed Cauchy problem for LPPDE
system

We consider the following singularly perturbed Cauchy problem (P.),

Pu(z,t,e) = f(x,t), z€RI >0, (1)
u(r,0,e) = uy(z), x€RY, (2)

where € > 0 is a small parameter.

Thus, P. = P,+¢P, is a parabolic operator, where P, = A,0,+ B;(9,)+ D;,
1=0,1,

d d
Bz(ax) = Z Bipa:cp - Z Czpqa a
p=1 p,q=1
Bip = (bg)?,t:p Cipq = (ng)?t 1 D = (d;t)?,tzl are real constants of
symmetric n x n matrices and % > 0, ¢4 > 0, di, > 0 (Vs,t = 1,...,n),

d>1, u(x,0,e) : RY x [0,00) x (0,00) — R"™, f(x,t) : R x [0,00) — R,
f(x,t) € C,
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0 0 0 I .

where I, is an identity matrix and
A=Ay+ed,, B(9,)=DBy0,)+eB(9,), D=Dy+eDy,
L;9,)=B;0,)+D;, i=0,1, 9,=(9/0,,..,0/0,).

(2 x

The special forms of matrices A, and A; determine the natural representa-
tions of matrices B;, D; by blocks in the forms:

B.(5,) — (Bm 2,) B, @)) D, — (D D) o
B;k2< :c) Bz (630) D:(2 DiS
where B;;(9,), Dzl € me (R), Bj(9,), Dy € M™""™(R), By3(9,),
D;3 € M—m)*(n=m)(R) and * means transposition, and

d d
= ZB;;%?ng - Y Crydy O, s i=10,1,57=1,2,3,
=1

P,q=1
BOl (b0p> 00— (com)
,t=1,m> pq st /s,t=1,m>
0 0
B02 (b p>57m,t:m+l,n’ C]?t? = (Cstpq)s:l,m,t:m—&-l n?

0 0
B03 (b p)s,t:m-i-l,n’ ng = <Cstpq)s,t:m+l,n'

The aim of our work is to construct the asymptotic solution u(e, x,t) for
(P.) with a small parameter ¢ — 0.

Thus, the investigation of the solution u(e, x,t) depends on the structure

of the operator P.. The norm, which determines the convergence of the

perturbed system solution, is also very important.

We denote the usual Sobolev spaces by H?® with the scalar product in the
form:

(u,0), = / A+ URE) de

where s € R, 4(¢) = Flu] (¢ € R?) and F~![u] are the direct and the inverse
Fourier transforms of the function u in S”. Let Hj = (H®)¢ be a notation of
the Hilbert space, which is associated with the scalar product

d
f17f2 Zfl]?fQj i:(fipm: id)? i1=1,2,
1

,]:

and with the norm | - || ;, which is generated by this scalar product.
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Let D’((a,b), X) be a space of vectorial distributions on (a,b) with values
in Banach space X. We can set

WHP(a,b; X) = {u € D'((a,b); X); u) € LP(a,b; X), j =0,1,..., k},

for k € N* and 1 < p < oo, where 1) is the distributional derivative of order
j and WOP(a,b; X) = LP(a,b; X) for k = 0.
We denote operator L,;(3d,.) in the form:

L;;(9,) = B;;(0,) + Dy,

and
F:COI(f7g>a UO :COI(U’07U‘1>1

where f,u, € M™*(R), g,u, € M™*L(R).
We assume that
H1: B,,, C;,,, D;; 1 =0,1,p,q= 1, d are real symmetric matrices;
H2: (D, Orr > (Do, gn-m = qoln|?, with gy > 0 for all ¢ € R™ and
neR"™.

Thus, the operator (P.) is a symmetric parabolic system (H1) and the

g
operator (F,) is an elliptic-parabolic system in case: det Bys # 0 and B, = 0.

3. Formal asymptotic expansions of the singularly
perturbed Cauchy problem (P.)

€

We construct the formal asymptotic expansions of the solutions u(e, z,t)
for the Cauchy problem (P.) on the positive powers of the small parameter &
in this section.

We can use the following asymptotic expansion of the solution u(e, z,t) for
the problem (P.) according to the method of Lyusternik—Vishik [16]:

N
U(E,l',t) = V(:L’,t,S)—FZ(Z’,T) = ZSk(Vk(l',t>—|—Zk(l‘,T))+RN(6,$,t), (3)
k=0

where 7 = t/e, and Z(z,7) = Zy(z,7) + - + eNZy(x,T) is the boundary
layer function, which describes the singular behavior of the solution u(e, z,t)
within a neighborhood of the set {(z,0), x € R%}, which is the boundary
layer.

The function V(z,t) = Vy(z,t) + - + eNVy(x,t) is the regular part of
expansion (3).

We assume that the function Z(z,7) is small for large 7, i.e. Z — 0 as
T — 00. There is the solutions behavior u(e, z,t)-Au(0, z,t) of the singularly
perturbed Cauchy problem (P.), when € — 0 within the boundary layer, then
the function Z(z, 7) has to be reduced for the discrepancy elimination of the
solutions u(e, x,0) and u(0,z,0).

We can substitute expansion (3) into (1) formally and identify the coeffi-
cients of the same powers of €, which contain the same variables.
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Then we can get the following equations:
POVk:Fk<$7t)7 xERd, t>07 (4)

where
FO:f(x7t)7 Fk:_Plvk—17 k‘zl,...,N,

Ay0,.7, = Fy(z,7), k=0,1,...,N, (5)
A(LoZy+ L1 Zyn 1 +0,Zy) =0, z€RY 7>0,
F,=0, F,=—LyZ,—A,0.%,,
Fo=—LyZy | — L Z »—A0.Z, 1, k=2,..,N,
(Py+eP))Ry = F(x,t,e), xR t>0, (6)
F=—eN"N (P Vy+ L Zy) —eNAy(LoZy + L1 Zy_y)-

We can substitute (3) into initial condition (2)

Ry(g,2,0) =0, x¢&RY, (7)
Vo(,0) + Zy(x,0) = Uy(z), x € R, (8)
Vi(2,0) + Z,(2,0) =0,z € RY, k=1,...,N. (9)

We can use the following notation for convenience

_ [ Xk — | Yk _ Ik _ [ Fia

Where Xk,'Uk.,fk,Fkl - mel(R)’ Yk,wk,gk,FkQ € M(n_m)X1<R)

We can use (5), (8), and (9) for X, and Y}, so that

0, X, =F,, X,—0, 71— 400, (11)
and
0.Y, + Ly3Y), = Fio(z,7), x€RY 7>0,
Yy(2,0) = uy(z) —wy(z,0), x€R4, (12)
Y, (2,0) = —w,(z,0), k=1,..,N, z&R%
where

F01 =0, F11 = _L01X0 - L02Yo7
Fiy = —Loy X1 — LooYy 1 — L1 Xjo — L1pYy o, k=2..,N,
L;l‘j(f) :B;‘j(ﬁ’)—l—D’!‘ 1=0,1, 7=1,2,3.

17
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Similarly, we can obtain the problems for v, and w;, from (4) and (8), (9).

atvk+L01Uk+L02wk:fk('rat)? k:()?l?"'aNa

) Liovy, + Loswy, = gp(x,t), x € R =0,1,...,N, t>0,
vg(2,0) = yy(z) — Xo(x,0),

(v, (2,0) = =X, (2,0), k=1,...,N, z¢cR?

(13)

Thus, we have the problems for determining the functions X, Y, vy, wy

and Ry.

4. Justifying asymptotic expansions of the singularly
perturbed Cauchy problem (P,)

€

We investigate the validity of the expansion (3) in the following sections.
We can consider the problem (13) in the next form

Oyv + Loyv + Logw = f(x, 1),
Lisv+ Lgsw = g(x,t), x€R >0, (14)
v(z,0) = h(z), = €RY

d
Ly; = By;(0,) + Dy; = ZBOJa > Cpqdy 0, + Dyji j=1,2,3.
p,q=1

We use the following problem for the solvability and regularity justifications
of the problem (14)

0,0(§) + (Dyy + i|f|301(5>>27<§) + (Do + Z'|5|B02< §))w(€) = f<57t),
(Dy + 1€ B (£))5(€) + (Dgg + il€] Bos (€))D(€) = §(&, 1),
9(€,0) = h(&),
(15)
ZBOJ (&p/1€]) —il¢] Z Coa(&,€,/1€1%),

P,q=1
where i = 0,1, j = 1,2,3, £ e R
We prove the following lemmas.

Lemma 1. The matriz Dys + i|¢|Bys(€) is invertible for ¢ € R% under the

assumptions (H1), (H2) and the function € — (Dyg +1|€|Bys(€)) ! is bounded
on RY.

Proof. We can use the method of the simultaneous reduction of two ma-
trices to the diagonal form for proving this lemma and we assume that
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D3 = Dyg and Dy3 = (dgt)s,t=m7
orthogonal matrix 7 € M" ™ (R), TyT, = I

n—m?

dY, >0 (s,t = —m,n). There is an
which

TfDong = A(z) — diag(Al, ceey An—m)’

where A\, >0, k= 1,...,n —m are the eigenvalues of matrix D;.
We can use the transformation of the matrix By;(&) in the form:

C(€) = Ag ' Ty Bys (6)T1 Ag .

As the matrix C(£) is a real symmetric, then there exists an orthogonal
matrix 7,(£) € M(R™ ), such that

T3C(&)Ty = A(§) = diag(py (§); -+ s b (£)),

where 11 (§), ..., fhy_m (&) are real eigenvalues of matrix C'(£). Thus, we have
the transformations of this type:
T*()DosT(€) = Ly T7(6)Boa(©)T(€) = A©), (16)

where T'(€) = Ty Ay 1T, (€). We can use (16) so that

1

Dy +il€|Bys (&) = T* (&) (L + 1|EIA)T ().

It means that the matrix Dy; + i|€|Bys(€) is invertible and we have

(Dos + il€|Bos (€)™ = T() A1 () (L, — il T (), (17)

where
Ay (§) = diag((1+ [§2p5) ™ o, (L €707 ) 7).
The orthogonality of the matrix 7,(£) implies the boundedness of the
function ¢ — T(£) on R4,

The boundedness of the matrix (Dys 4 i|¢|Bys(€))~* follows from (17).
Lemma 1 is proved. O

We can obtain the solution of the problem (15) from Lemma 1

d . ~
{w(g,w + K(€)o(6,t) = H(E 1), (18)

B(&,0) = h(€),
where

@(&,t) = (Dos + il€] Bos (€)1 (g(&, 1) — (Dpz + 1€ By (£))3(&, 1)), (19)

K(f) = D01 + i|§|301<§) - (Doz + i|§|302(€>>(D03+
+il€ Bos (€)1 ( Dy + 161 Bia (€)), - (20)
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H(&,1) = f(&,1) — (Dya + i€ Bya(€)) (Dos + ilé| Bz (€)1 §(&,1).
Lemma 2. The matriz K (&) can be represented in the form

K () = Ko(&) +il¢] K1 (§) + [€PK,(6), € € R, (21)

under the assumptions (H1), (H2), where the functions § — K;(§), j =0,1,2
are bounded on R% and K, K, are real symmetric for K, > 0.

Proof. Let us substitute (17) into (20). We can obtain the representation
(21), where

Ko(f) = G01 - GOQT*AlT*Gaz - |§|2<G02TA1AT*b32 + b02TA1AT*G62)a

K1 (&) = by + GoaT A AT Gy — GooTA T by —
— b TA TGy — |€|Pbo T AL AT b5,

KQ (5) = b02TA1T*b62-

Accordingly, K;(§), j = 0,1,2 are bounded on Re and K} = K, K3 = K,.
It remains to prove that K, > 0. Let us denote the eigenvalues of the real
symmetric matrix A as A\;(A), j=1,...,m, where \; <Ay <+ < A,

We can use Ostrowski’s theorem so that

)‘j(K2(f)) = )‘j(bo2TA1T*bE§2) = gj)‘j(A1> > 0,

where 0 < A (b TT7b}5) < 6
Therefore, Lemma 2 is proved.

i < Ap (b TT"bg,). It means that K, > 0.
We can prove the following proposition.

Proposition 1. Let the assumptions (H1), (H2) be fulfilled and [ € N*. If
the conditions h € H: L F = col(f, g) € WHH(0,T; H2) are true, then

there exists a unique strong solution V = col(v,w) € Wh°(0,T; H?) of the
problem (14) and

IViweo,z:m5) < CT) (Illsszisrm + IFlwirormg ) - (22)
Proof. Consider the Cauchy problem
ds () —
{dtvu) +E(©i() =0 23)
0(0)=h, 0<t<T,

in the Hilbert space H = {f = (f;,....fn); (1 + |£P)3f.(&) €
L?(R%), k=1,...,m}, equipped with the scalar product (f,g)y = fR

&

—~
—_
+
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1€1%)%(f, §)gm dE. We can use the representation (21) and demonstrate that
the operator —K (§) : H — H satisfies the conditions

Re(—=Kf, f)g <w(f, fu Re(_K*f,f)ng(f»f)m f€eH,

where w = sup, _pq | Ko (&)|lgm_gm + 0 With a positive parameter § > 0. This
means that the operator —(K + wl) is maximal dissipative on H.

The Cauchy problem (23) generates a C|, semigroup of operators {T (t), t >
0} on H [21]. Thus, we have the next estimation |[0(-,¢)|y < e“*|h| 4 for any

heH, ie |T(t)] < e, where

d, . - ~ - - ~
— 00, O < —(Kod(-,1),0(- 1) g — (0(,1), Ko0(+, 1) i < 2w[0(-, )3
Using Parseval’s equality, we can get that the Cauchy problem (F[Kv] =

K(&)v) .
{Ev(t) + Ku(t) =0, (24)
v(0) =v,, 0<t<T,

where the operators {T'(t),t > 0} on H;, generates the semigroup C, where
v(-,t) = T(t)vy, |T(t)] < e*t. Thus, we can solve the Cauchy problem

d ~ wt
{%z(t) + (K +wl)z(t) = f(t)ev", (25)
2(0) =y, 0<t<T,

where the semigroup Cj, has the representation in the form T, (t) = T'(t)e “*.

Hence, there exists a unique mild solution of this problem z € C([0,T]; H,)
for every y, € HS,, f € L'(0,T; H?,) [21], and

A0 =Tyl + [ Tolt = s)5(s)e=ds,
0

”Z”C([O,T};an) < ”yo”s,m + HfHLl(O,T;an)ewT

Moreover, if the next y, € H:2 f € WHH(0,T; HS,) and | € N* are true,
then z is a strong solution of the problem (25), 2 € W-°(0,T; H$,) and

Hz”leOO(O,T;an) < C(T)(”youswz,m + ”f”lel(O,T;an))'

We can note that the solution y of the Cauchy problem

{%m + Ky(t) = f, 26)
y(0)=1y,, 0<t<T,
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and the solution z of the problem (25) are connected with the equality

y(t) = e “t2(t).
Consequently, we have the same for y,, f and [ € N* so that

[yllwr.oo 0,715, < O (N0l s, + 1 lwrerio,mirs,))-

Using (18), the last estimation and the boundedness of the matrix (Gy3 +
i|€|b(€))!, we can obtain the next estimation

HUHWLOC(O,T;H?SW) <
S C() Pl ss20,m + 1 fllwrrormsy + lglwraorms ). (27)

m n—m

We can get the estimation from (19) and (27) in the form:

HwHWl’OO(O,T;an) <
< C(T) (||h“s+21+1,m + 1 flwrro, 1 mrsm) + ||9||Wla1(0,T;H;t%n)> . (28)

Thus, the estimations (27) and (28) imply the estimation (23). Proposition 1
is proved. 0

Let us consider the next Cauchy problem

_ d
{8TY—|—L03Y—F(1:,T)790€R, >0, (29)

Y(2,0) = yo(z), =€ R™L

Proposition 2. Let the assumptions (H1), (H2) be fulfilled and [ € N*. If
the conditions y, € HtL | F e W}'(0,00; HS_, ) are true, then there exists

n—m> loc
a unique strong solution Y € W">°(0, 00; HS _, ) of the problem (29) and the

loc
inequality is satisfied for this solution

Ha7l—Y<7 T)”s,n—m < Ceiqu(”yO”s-ﬁ—l,n—m—’—
-1 .
S IO F )t + / OO |OLE(-, 0], 1 dB). (30)
v=0 0

Proof. The operator —L3(0,,) is a dissipative under the assumptions (H1),
(H2) and it generates the C,, semigroup of the contractions S(7) on HS_ .
Thus, there exists a unique mild solution Y € C([0,00); H:_,,) of the Cauchy
problem (29). Hence, we can obtain the estimation |S(7)| < e %7, 7 > 0,
which with the next equality

Y(-,7)=S(1)y, + /T SO)F(-,7—0)do
0

gives the estimation (30) in the case [ = 0. We can obtain the estimation (30)
by differentiating to 7 the equation (29) in the case [ > 1. Proposition 2 is
proved. O
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Using these propositions, we can determine the functions V), and Z,. Hence,
it follows from (11) for £ = 0 that X, = 0. We can find the main regular term
Vy = col(vgy, wy) of the expansion (3) from (13) and Proposition 1. Instantly,
we have the following:

wy(@,0) = FH(Gog + il€|bo3 (§)) TH(9(8, 0) — (G +il&]b52(£)) 0 (£))]-

Lemma 1 and the Parseval equality permit us to obtain the next estimation

lwo (-5 0) s n—m < C(llg(-0)

s,n—m + Hu0||s+1,m> <
< C(Uolss1m +1FC 05 5). (31)

Proposition 2 permits us to define the function Y}, as a solution of Cauchy
problem (12). Moreover, we can obtain the next inequality from (30) and (31)

107Y5 (5 )l nm < Ce ([0 lsyig1,m + 1ECL0)yin)- (32)

Thus, we can find the main singular term Z; = col(0,Y],) of the expan-
sion (3).

Let us obtain the next terms of this expansion. Let us suppose that the
terms Vj,..., V,_; and Z,,...,Z,_, are already found. We can obtain the
terms V), and Z;, and show that the next estimations

IVillwr.oe0,7;m5) < CD) (100 54214 3141,0F
+ ”F('?O>Hs+2l+3k72,n + ”FHWZJ(O,T;HTSL””“*Z))? (33)

and
”6‘er]€(’ T)”s,n < Ceiqoﬁr(l + Tk) (”U0||s+l+k:+1,” + ”F(’ 0>||8+l+k’n) (34)

are true, if we suppose that such estimations are true for previous terms. We
can note that the estimations (33), (34) for V|, and Z,, follow from (22) and
(32).

At first, if we solve the problem (11), we can get

Xty == [ Bat.0)d,

where the integral exists due to the estimation (34) for Z,_,. Using (34) for
Z,_, and for Z,_,, we obtain the next estimation:
1055 (o )l = 1057 Fpy ()l <
< CU07 21 () s + 107 25 (5 s0,0) <
< Cem®T(L+ 7D (Wollstarnm + I1FC0sriik-1,0)s (35)
for I > 1. Similarly, we can get the estimation (35) in the case | = 0.

Using Proposition 1 and v, (+,0) = —X(+,0), we can solve the problem (13)
and find the functions V..
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Using the next estimation
IVillwoso,m5) < CUXRC0)lsr2041,m + IViallwros 0,1 m509)s

and also (22), (33) for V,,_; and (35) for X}, we can find the estimation (33)
for V.
Instantly, we can obtain the next equality

wi(,0) = FY[(Dys + i[€| Bys (€)1 (3k(&,0) — (Djsy + i|€| Bgn () X4 (€, 0))]

and establish the estimation

”wk<7 O)HS,n—m < C(”gk(?0> s,n—m + ”Xk(? 0)||s+1,m) <
S COUX-1 G0 sg1m + 11Xk GO g1 m + lwi1 (5 0) g1 mm) <
S CUUlssrs1m +1FC O gipn)- (36)

Using (34) for Z,_; and (35) for X,,, we can obtain the next unequality

Hag—Fk2('7T)”s,n—m < C(”8”erk(7 T)”s-i—l,m + Hag—Zk—l('7T>”s+l,n) <
< Ce 0T (L+ 7" N (|0 lssrinsrn + 1FC O sqiznn)- (37)

We can find the next estimation from (30), (36) and (37)
[07Y5 (s )l snm < Cem 0w, 0) 1t

-1 -
+ Z HaﬂlfFlﬁ(? O)Hs-ﬁ-l—u—l,n—m + / e‘loeHag_Fk2(., e)Hs,n—m de) <
v=0 0
< Cem7(1 + Tk)<||Uo ||s+l+k:+1,n + [ F(, 0)”s+l+k,n>' (38)

The estimations (35) and (38) imply the estimation (34) for Z,.
We can prove the main result of our work.

Theorem 1. Let us suppose that B and G satisfy conditions (H1), (H2)
and 0 < | < N + 1. If the conditions U, € HfﬁQlH(NH), F €
WL, T; H,i””s(NH)) are true, then there exists a unique strong solu-
tion U € Who(0,T; HS) of the problem (P.). The expansion (3) is true for
this solution, where V. and Z,, are determined by problems (13), (11), (12)
respectively and they satisfy the estimations (33), (34). The estimation

HRN1H%V1,O<>(O,T;H;,L) + 51/2”RN2 ”%/VLOO(O,T;H;*L_m) < C<T)5N+1il (39)

is true with C(T') depending on T, |Uy| s o143(N+1),n- ||F||WH1’1(07T;HZ+21+3<N+1>>

and qq for the remainder term Ry = col(Ryq, Ryo). In particular, if we
assume N = 0, then there is the next estimation

U=V, — ZOHC([O,T];H;) < C(T)51/4-
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Proof. Using the properties of the C|, semigroup of operators, we can
obtain the solvability of the problem (P.). Indeed, the operator —(B(9,)+ D)
is closed and dissipative on H, . This operator generates the C, semigroup of
contractions on H;, which solves the problem (P.). Moreover, the conditions
Uy, € H: F e WHL(0,T; H), OVF(-,0) € H3 vt v =0,..,1—1,1>1
imply the regularity of the solution U € W>(0,T; H?). Using the method
from [21], we can prove the estimation (39). Furthermore, all constants depend
on the norms, which are indicated in the Theorem 1, and they are represented

by C(T). Let us denote the next relations R, = 9! RN, R, =0'Ry;,i=1,2.
We can find that (BR;, R)), ,, is a pure imaginary value from the condition

(H1). Consequently, we can get the next equation

d

dt<ARl< )7 Rl<'7t>)s,n + Q(GRl<'a t)? Rl('a t))s,n = QRG((?%F(',t), Rl('7t>)s,n

Using the assumption (H2), we can get the next inequality

d

dt (ARZ( )’ Rl('? t))s,n + QqO(RZZ('ﬂ t)? Rl2('7 t))s,n—m <

<2/ F (1), Ry(,1)) 5 |- (40)
The estimations (33) and (34) yield the next estimation
(OLF (1), Ry (1)) gl < M HH(PL(OFVN (1)) + 67 Ly (072 (+ 7)), (41)
Ri(+1)) sl + eV Lo(OLZN (- 7)) + Ly (0L Zy 1 (-, 7)),
Ao Ry(,1))s,n] <
S OM)EN T BWOIRL () m + (X + KO DIR(8)]0),

where 0 <t < T,7 = t/e and k(t) = e"9/%(1 + (t/e)N). Integrating (40) by
t and using (41), we can get the next inequality

| Ry (-, 1)) do <

snm

g,m—f—g”RlQ(" ) s,n— m+2q0/ ”RlQ
<Ry (5 0)Z o + €l Ria (4 0) 3 o + C(T) (N l/ R(O) [ Ry (-5 0) 5 1 dO+
0
t
+/ (e + w(0) N IR (L 0)]n dO), 0<EST, (42)
0

We can note that

~—
|
_

Ry(-,0) =) (=A"Y(B(9,)+ D))" 1Ay F(-,0), 1>1,

N
Il
o
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and according to (7), Ry(-,0) = 0.
Therefore, using the equality A™1 A, = A, and (34), (35), we can find the
next estimation
[ATL Oy F (-, 0)]s, <
< €N+1 ”(A_lplallijN)(? O)Hs,n + €N+1_V||(A_1L185ZN)('7 0)||s,n+
+ eV AG(Ly0Y Zy 4 L10¥ Z 1) (-, 0)], <
< C(T)(eN +eNv) < O(T)eN 7,

where 0 <e < 1,0 < v < N.
Thus, we can obtain the next inequalities

-1
IR, 05, <D 1ATH(B(3,) + D))" AT O F (-, 0)]5,, <
v=0
-1
SC(T))Y et Ny < O(T)eN 11 (43)
v=0

If the conditions [ < N + 1,0 <t < T, ¢ < 0 are true, we can obtain the
estimations

t t t
/ KO Ry (-, 0)] . d6 < / k(0) d6 + / K(O)|[ Ry (-, 0)|2.m d6 <
0 0 0

t

<O+ [ RO)IRy (OLE, d0. (40
0
and
t
(1) / (N 4 /(O)N TRy (-,0)]., d6 <
0
t
< O(T)N11 4 g, / IRy (20|21 A6+
0
t
Lo / (N 4 ()N Ry (- 0|20 dO. (45)
0

Using the next inequality

t
IRy (o )2+ €l Rin s D + 0 / IRy (0|2 1 d <
0
t
< C(T) (N1 4 / (N4 1 k()N | Ryy (-, 0)|2,, dO), 0 <t < T,
0

and the estimations (43), (44), (45), we can find the inequality (42).
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Using Gronwall’s lemma and the last inequality, we can get the estimations
R (012, <CT)eN M 0<t<T, (46)

and

df < C(T)eN=H1 0<t < T. (47)

s,n—m

t
AR (O 0 [ 1Bl
0
Using (43) and (47), we can obtain the estimation
HRl2<'7 t)”?,nfm <

t
<R 0) 2,0 0+ 2 / IR (-, )
0

N

s,n—m ||R(l+1)2<'? 9>||5,n7m do

t 1/2

<o@ w2 ([ Ry OE 0 ndd)
0

t 1/2
( / ||R<l+1>2<-,e>||z,nmd9) <OV 0<t<T. (48)
0

The estimates (46) and (48) imply the estimate (39). Therefore, Theorem 1
is proved. 0

Thus, we justify asymptotic expansions of the singularly perturbed Cauchy
problem (P,)

el

5. Conclusions

In this paper we investigate the Cauchy problem for the singularly per-
turbed Tikhonov-type symmetric system of Fokker—Planck equations. This
system consists of non-homogeneous constant coefficients linear parabolic
partial differential equations with a small parameter. For these singularly
perturbed Cauchy problems a method for constructing asymptotic solutions
is proposed. We use the asymptotic method for this Cauchy problem and
construct expansions of solutions in the form of decomposition, which has
regular and border-layer parts. The asymptotic solutions in the form of reg-
ular and boundary-layer parts are obtained and the question of asymptotic
solutions behavior when € — 0 is investigated. The main result of our work is
a justification of an asymptotic expansion for this Cauchy problem. We prove
the justification theorem for the asymptotic solutions. Our method can be
applied in a wide variety of cases for singularly perturbed Cauchy problems
of Fokker—Planck equations. The Fokker—Planck equation is connected with
the Chapman—Kolmogorov equation for the transition probability function of
a Markov process.

Our results give the approach to investigate the fast-changing processes
in liquids and gases, plasma, solid state theory, magnetic, hydrodynamics,
radiophysics, telecommunication technology, chemistry, biology, finance and
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so on. An extension of Fokker—Planck equations with a small parameter to
model non-Markovian processes is also possible.
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AcuMmniToTuyeckoe perneHnue CUHTYJISITPHO BO3MYUIEHHOU
zagauu Komm gns ypaBHeHuss @okkepa—llianka

M. A. Byarra!, C. A. Bacuawes', C. 1. Bununkuii':?

L Poccutickuti yrueepcumem opysc6v. napodos
ya. Muxayzo-Maxaas, 0. 6, Mockea, 117198, Poccus
2 O6Bedunénmvits unemumym A0epHILE UCCAO08aHU
ya. 2Koauo-Kropu, 0. 6, yorna, Mockosckan obaacms, 141980, Poccus

AcvMmToTHYIeCKTE METO/BI — OYeHb BaykKHas O0JIACTD MPUKJIATIHON MaTeMaTH-
ku. CylnecTByeT MHOXKECTBO COBPEMEHHBIX HAIIPABJIEHUN UCCJIEIOBAHUI, B KOTOPHIX
HCIIOJIB3yEeTCA MaJlblil IIapaMeTp, HaIlpUMep CTaTUCTUYeCKad MEXaHUKa, TeOpUd XU-
MuUIecKux peaknuit u ap. cnonb3oBanue ypapuenus Poxkkepa—lLmanka ¢ maabim
mapaMeTpoM OY€Hb BOCTPEOOBAHO, ITOCKOJIBKY 9TO YpPABHEHUE SIBJISIETCS Iapabosmde-
cKuUM T PepeHITnabHBIM yPABHEHNEM B YACTHBIX ITPOU3BOMHBIX, & PEIIEHNsS ITOTO
ypaBHEHUs JAI0T (PYHKIIUIO MJIOTHOCTA BEPOSTHOCTH.

B pabore ucciemyerca cuHryisipHO BO3MyIEHHaS 3amada Komm mia cuMmmerpud-
HO¥ JIMHEHHOW CUCTEMBI TTapabondeckux muddepeHnaabHbIX YPABHEHUN B 9aCTHBIX
IIPOU3BOJAHBIX C MaJIbIM ITapaMeE€TPOM. MbI opeariojgaraeM, 9To 9Ta CUCTeMa ABJIACT-
CsI HEOJIHOPO/IHO# CUCTEMOI TMXOHOBCKOT'O THUIIA C TOCTOAHHBIMU KOI(PDUIMEeHTAMY.
Hesb ucciemoBanuss — paccMOTPeTh 3Ty 33149y Kolu, IpuMeHnTh aCUMITOTHIECKU i
METOJI ¥ TOCTPOUTH ACUMITOTUIECKUE PA3JIOXKEHUS PEIeHUil B BAJIE 1By XKOMIIOHEHT-
HOTO psifa. Takum 06pasoM, 3TO pas3/ioKeHUe UMeeT PEryJIsPHYIO U MOrPAHCJIONHYTO
qactu. OCHOBHBIM PE3yJIbTATOM JAHHON PabOTHI SBJIAETCH 0DOCHOBAHUE ACUMIITOTH-
YeCKOTO PAa3JI0XKEeHUsl JiJisd perrennii 3toil 3amaun Komu. Hamr meTom moxker ObITh
IPUMEHEH IIJTdd IITUPOKOT0 KPYyTa, CHHTY/ISIPHO BO3MYIIEHHBIX 3a1a4 Koru 1j1s ypas-
Hennit Pokkepa—Ilianka.

KuaroueBbie ciioBa: acUMNOTOTHUYECKUIT aHaAW3, CHUHTYJISAPHO BO3MYIIEHHOE
nuddepenrmaabHoe ypaBHenne, 3amada Komm, ypasaenune Poxkepa—Ilnamka



