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There are many queuing systems that accept single arrivals, accumulate them and
service only as a group. Examples of such systems exist in various areas of human life,
from traffic of transport to processing requests on a computer network. Therefore,
our study is actual. In this paper some class of finite Markovian queueing models with
single arrivals and group services are studied. We considered the forward Kolmogorov
system for corresponding class of Markov chains. The method of obtaining bounds of
convergence on the rate via the notion of the logarithmic norm of a linear operator
function is not applicable here. This approach gives sharp bounds for the situation of
essentially non-negative matrix of the corresponding system, but in our case it does
not hold. Here we use the method of ‘differential inequalities’ to obtaining bounds on
the rate of convergence to the limiting characteristics for the class of finite Markovian
queueing models. We obtain bounds on the rate of convergence and compute the
limiting characteristics for a specific non-stationary model too. Note the results can
be successfully applied for modeling complex biological systems with possible single
births and deaths of a group of particles.

Key words and phrases: queuing system, Markovian queues, forward Kolmogorov
system, rate of convergence, limiting characteristics

1. Introduction

Consider a Markovian queueing model on the finite state space {0,1,..., N}
with single arrivals and group services, see the first motivation in [1] and
more recent studies in [2], [3].

Let X(t) be the corresponding queue-length process for any ¢ > 0. Denote
by p;;(s,t) = P{X(t) =j|X(s) =i}, 3,5 > 0, 0 < s < t the transition
probabilities of X (¢) and by p,(t) = P{X(t) = i} — the probability that the
Markov chain X (#) is in state i at time ¢t. Let p(t) = (py(t), p1(2), ... ENGE
be the vector of state probabilities at the moment t.
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The probabilistic dynamics of the process X (t) is described by the forward

Kolmogorov system

dx = A(t)x,

1
= (1)
where A(t) = QT(t) is the transposed intensity matrix. All column sums of
this matrix are zeros for any ¢t > 0, and A(t) is essentially nonnegative (i.e.
all its off-diagonal elements are nonnegative for any ¢ > 0), and all ‘intensity
functions’ a,;(t) are analytical in ¢.

We suppose that a,;(t) = 0 for 7 > j— 1, all rates service do not depend on
the size of a queue, i.e. a,;,(t) = by(t) for k > 1, arrival rates a; ; ,(t) =

A;(t). The process X (t) belongs to class (III), see [3]. The matrix A(t) for
X (t) has the following structure:
ago(t)  by(t)  by(t)  bs(t) by_1(t) bn(t)
A(t) aqa(t) by(t)  by(t) by_2(t) by_1(t)
0 Ag(t) agy(t) by(1) by_s(t) by s(t)
A(t) = 0 0 As(t)  ass(t) by_a(t)  by_3(t) (2)
6 0 0 0 aNf11\.r71<t> b1.<t>
0 0 0 0 An_1(t)  ayn(t)

2. Stationary Markovian queueing model

In this paper we consider a subclass of the class (III) satisfying additional
suppositions b, (t) =0, 1 <i < N —1, by(t) = b(t) and X;(t) = A(t) for any i,

t>0.

The difficulty of studying this model is due to the fact that it is not possible
to apply the most convenient method of the logarithmic norm for it, see [3].
Now we get the following expression for the transposed intensity matrix:

age(t) 0 0 0 b(t)
At) a(t) 0O 0 0
ap=| 0 A eml Y ®)
0 0 0 an_1n-1(t) 0
0 0 0 A(t) ann(t)
We perform the following system transformations. Since p, (t) = 1 —
> p; (t), one can rewrite the system (1) as
i>1
Y Bzttt (4)

%:
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where f(t> = ()‘ (t) >0a 70)Ta Z= (pl (t),p2(t), apN(t))Ta

T N S S S -
A ay 00 - 0 0
0 A oag; 0 - 0 0
B(t) = 0 0 A ay - 0 0 |- (5)
0 0 0 0 * ay,ng O
0 0 0 0 - A any

All bounds on the rate of convergence to the limiting regime for X(¢)
correspond to the same bounds of the solutions of system

dy _

= B, (6)

Denote by T upper triangular matrix

1 11 -1
o1 1 -1
T=10 0 1 (7)
00O 1
Let u(t) = Ty(t), then
du
27 pr
M B (i), ®
where
- 0 0 0 —b
A =) 0 0 —b
_ 0 X =) 0 —b
B*(t) =TBt)T ! = 9
(t) = TB() . (9
0 0 0 - A —(\+Db)

Let us remark that the matrix B*(t) is not essentially non-negative. This
means that the method of the logarithmic norm is inconvenient to apply (it
gives poor results). That’s why we use the method of ‘differential inequalities’,
which was described in [4]-]6].

Let D = diag(d,,d,, ...dy) be a diagonal matrix and d,;, i = 1,..., N be
nonzero numbers. By w(t) denote a product Du(t), then one can rewrite (8)
as following system
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dw
o = BT (Ow(), (10)
where
- 0 0 0 0 b4
d d
AFE oA 000 0 b
cds —p. %
B =ppwpt=| O ra A0 0 b-ay
0 0 0 0 T
0 0 0 0 -« X A—p
N-1

By u(t) denote an arbitrary solution of system (8), then we can consider
an interval (¢,,t,) with fixed signs of the coordinates u,(t) and choose the
elements of the diagonal matrix such that signs of the entries d, are equal
with signs of corresponding coordinates u,(t) of the solution of system (8).

Since any djui(t) > 0 on the corresponding time interval, the sum

N
> dui(t) = |wl|| can be considered as the corresponding norm.
k=1

Denote B*(t) = (b;‘;(t))N . Now, if the function ap(t) is such that

ij=1
N
bii(t) < —ap(t), j=1,..., N, then the following bound holds:
1 D
i=1
N
il 4(E) o
=1 ok
dr dt = Z Z bij (t)wj < —ap(t) [w].
j=1 i=1

We set o = min {a(t)}, where the minimum is taken over all intervals
with different combinations of coordinate signs of the solution. Hence for any
such combination we have the inequality

— [t ot (r)dr
lw(t)] < e % O ws)].
If we compared all the norms, then one can obtain the final bound

ly(®)] < Ce b Dy (0)], (11)

where C'is a corresponding constant.
In our case (in general, all intensities depend on the time )

N-1
d d d

E w;:_)\.< ——2>~w —)\~(1——3>.w _>\.< ——4>~w e
d,) ! dy) 2 dg) °

=1
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d, d d
—(x+p- 14+ 2L 422 4 N-1 .
O T IR

1) Let all uy, ..., uy be positive. Since (1 — dé—ﬂ) must be positive, we have

7

and we have ap = A- (1 —h).

2) Let all uy, ..., u;, be positive, and all u;_{, ..., uy negative. Similarly
|d’L| > ‘di+1|' Suppose dl = hN_k+1, d2 = hN_k+2, ceey dk = hN, dk‘+1 = _h,
dy o = —h?%, ..., dyy := —hN then

N-1
i) () e (3)
w 1_— .w 1_— A. _— .w —_— e —
i=1 ( dl b d3 ’
dy  dy B
oo )
— A (1—h)wy = A (L= h)-wy—A-(1—h) - wy — - —

1

1 1 1
2 k
- <A+b~ (1—h—h — W S s +"'+E>> Wy,
In this case ap = A - (1 — h) too.
3) Let all u, ..., u;, be positive, and all u;,, ..., u, negative and all u,_,
., uy be positive too. As before |d;| > |d;,|. Suppose d; := hV* d, :=
RN=RR2 0 dy = RN dy g = RN dy = RN ST d = R R

dyyq:=h, dg o :=h? .., dy:=—h""5

N—1
d d d
o (2 ) ()
d, d, dy
N . _
(+ ( dy dy dN )) N1
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A (=R wy = A (1—h) - wy— A (1 —h) - wy — e —
1
A (1—h) -y —A- <1 + F) A (1—R) -y sy ——A-(1—h)-w, | —

_)\<1_J’_—_>ws_A(1_h)ws+1_._

1 1
_<)\ +b (1 + hS*k‘Fl Lo hS —h— h2 e hsfk + W 4t E))'wN’

as before ap, = A- (1 —h).
In the general case, we do the same. Then we have C' = h'™" and the
following bound

ly(0)] < 2NRIY - e MR y(0). (12)

In general non-stationary situation

ly(8)] < 2NN - o= AT ) (13)

3. Non-stationary Markovian queueing model

Here we consider a specific queueing model with 1-periodic intensities:
A(t) = 2+ sin(27t) and b(t) = (2 + cos(27t)), then

2 + sin(27t) aqq 0 0 - 0 0
Alt) = 0 2 +sin(27t) agy 0 - 0 0
0 0 0 0o - AN_1N—-1 0

0 0 0 0 - 2+sin(27t) an N

and B*(t) = (b;‘;(t))]_v_ _» Where b (t) = =2 —sin(2mt), if 1 <i < N — 1
1,]=—
b (1) = —4 — sin(2t) — cos(27t), bix(t) = — (2+ cos(2m)) - 5=, if 1 <i <

N —1, b:(*z'q)(t) = (2 + sin(27t)) - %, if 2 < i < N, all other elements are
zZero.
Then we have the following bound on the rate of convergence

ly()] < 2N - RN e P ) (14)
namely
ly(®)] < 2N - hI=N L m (T p BRI ) (15)
hence N n
ly ()] < 2N - AN ety (0)]. (16)

The right-hand side of estimate (16) decreases rather slowly with increasing ¢.
However, this does not mean that the estimate is inaccurate because the real
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rate of convergence is rather slow. For example, let N = 50 and h = % In

Figures 1-3 we can see the state probability of an empty queue p,(t) a

convergence rate function of time t¢.
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Figure 1. Probability of the empty queue p(t) for ¢ € [0, 250] with initial conditions

X(0) =50 (black) and X(0) = 0 (gray)

0,080 |

x(t)

0,025
0,020 E
0,016
a1

0,008

0,000t

—X@=0 | |
— X(0)=50{

30 32 34 36 38 40 42 44 46 48 S50 52 54 56 58 60 62 G4
t

66 68 70

Figure 2. Probability of the empty queue pq(¢) for ¢ € [30, 70] with initial conditions

X (0) =50 (black) and X(0) = 0 (gray)
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Figure 3. Probability of the empty queue p,(t) for t € [249, 250] with initial conditions
X(0) =50 (black) and X(0) =0 (gray)

4. Conclusions

Some new class of finite Markovian queueing models with single arrivals
and group services was considered. Bounds on the rate of convergence for
these models and computations of the limiting characteristics for a specific
non-stationary model were obtained.

The obtained results belong to the theory of queueing systems and can
be applied, for example, in medical and biological stochastic systems, which
satisfy the adopted assumptions.

For describing possibility of applications of Markovian queues we can refer
to [7]-[17], which contains a broad overview and a classification of time-
dependent queueing systems.
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O ckopoCTHM CXOAMMOCTHU OJHOTO KJIACCA MapPKOBCKUX
Ierei ¢ rpynmnoBbIM OOCJ/Iy>KMBAaHUEM TPeOOBaHUIA

A. JI. KprokoBa

Bosozodekuti 20cydapemeenmnill yrusepcumenm
ya. Jewuna, 0. 15, Boaozda, 160000, Poccus

Cy1mecTByeT MHOXKECTBO CHCTEM MaCCOBOTO OOCJIYXKUBaHUs, KOTOPbIE TPUHUMA~
0T €JIUHUIHBIE TPEOOBAHNS, HAKATIIMBAIOT UX U OOCIYKUBAIOT TOJBKO KaK TPYTIIY.
IIpumepbr Takux cUCTEM MOXKHO HAWTH B PA3JUIHBIX O00JIACTAX UEJIOBEUECKON KU3HU
— oT TpaduKa TPAHCIOPTHBIX MEPEBO30K JI0 0OPAbOTKU 3alIPOCOB B KOMITBIOTED-
HBIX CeTAX. DTUM OOyCIaBIMBAETCS aKTYaJbHOCTD HAIIETO UCCIeI0Banus. B 3ol
cTaTbe U3ydaeTcs HEKOTOPbIH KJIACC KOHEUHBIX MAPKOBCKUX MOJIEJIell MAacCOBOTO 00-
CJIy’KUBAHUs C OIUHOYHBIM IMPUOBITUEM ¥ I'PYIIOBBIM 0OCTyKuBaHueM. PaccmoTpena
npsiMas cuctema KoJsiMoroposa jisi COOTBETCTBYIOIIEro Kiacca memeit Mapkosa. Me-
TOJI, OTIPEJICIEHUsT TPAHUTL CXOJMMOCTH, OCHOBAHHBIN HA MOHSITUN JIOTAPUMMUAIECKON
HOPMBI, 3/IeCh He MpuMeHuM. Takoi TmOoIX0 Ja6T TOYHBbIE OIEHKH JIJIsi MOJIEJIei, JJist
KOTOPBIX MATPHUIA COOTBETCTBYIOIIEH CUCTEMBI CYIIECTBEHHO HEOTPHUIATEIbHA, HO
B HAIIIEM CJIy4ae 3TO He TaK. 37eCh Mbl UCIOJIb30BaJM HOBBIH MeTo «muddepen-
[IMAJBHBIX HEPABEHCTBY JIJIs MOJIyYeHUe ONMEHKU CKOPOCTU CXOJUMOCTHU JIJIsT 9TOTO
KJlaCcCa KOHEYIHBIX MapPKOBCKHUX Moﬂeﬂeﬁ. KpOMe TOTr'0, MbI ITOJIYI1UJIN OIIEHKN CKOPO-
CTHU CXOIUMOCTH ¥ BBIYUCJIAIN TIPEJIeIbHBIE XAPAKTEPUCTUKY U IS COOTBETCTBYIOIIEH
HECTAIMOHAPHON MOJEJIM. 3aMETUM, UTO PE3YIBTATHI MOTYT OBIThH YCIIENTHO TPUMEHEe-
HBI JIJIT MOJIEJIMPOBAHUS CJIOXKHBIX OMOJIOTMIECKUX CHCTEM, B KOTOPBIX BO3MOXKHBI
POXKIEHNSA HOBBIX OCOOEH TOJBKO IO OJHOW W rUOesIb TPYIIIL.

KoarouyeBble cjioBa: crucreMa MacCOBOIO OOCIIy2KMBaHUs, MAPKOBCKUI IIPOIECC, -
Mag cucreMa KoaMoroposa, CKOPOCTH CXOIMMOCTH, IIpeJeSIbHbIE XapaKTEPUCTUKI



