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In recent years spinor field is being used by many authors to address some burning
issues of modern cosmology. The motive behind using the spinor field as a source
for gravitational field lies on the fact that the spinor field not only can describe
the different era of the evolution but also can simulate different substances such
as perfect fluid and dark energy. Moreover, the spinor field is very sensitive to the
gravitational one and depending on the gravitational field the spinor field can react
differently and change the spacetime geometry and the spinor field itself differently.
This paper provides a brief description of the nonlinear spinor field in the Friedmann-
Lemaitre-Robertson-Walker (FLRW) model. The results are compared in Cartesian
and spherical coordinates. It is shown that during the transition from Cartesian
coordinates to spherical ones, the energy-momentum tensor acquires additional non-
zero non-diagonal components that can impose restrictions on either spinor functions
or metric ones.
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1. Introduction

In 1998, it was found that the universe is not just expanding, but doing so
with acceleration. Many hypotheses are proposed to explain this phenomenon.
The most significant of them is the hypothesis of the existence of dark energy,
which evenly fills the entire Universe and has a negative pressure. Some
perfect liquid or scalar field is used to describe dark energy.

But there is another approach. Using the spinor field as a source of
gravity. In recent years it was shown that the spinor field can give rise to
a singularity-free Universe [1]-[5]. Beside this the spinor field can accelerate
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the isotropization process of the initially anisotropic spacetime [3], [4], [6], [7].
Finally, the spinor field can be considered as an alternative model for dark
energy [7]-[17].

Moreover, it was shown that spinor field is very sensitive to gravitational
one [18] and its specific behavior in presence of the gravitational field can

alter the geometry of the spacetime as well as the components of the spinor
field itself [19].

This is possible due to the specific behavior of the spinor field in the
presence of a gravitational field. The spinor field in cosmological models has
already been considered in [3], [9], [20]. But in all these works, the spinor field
is considered in Cartesian coordinates. A spinor field in spherically symmetric
spaces was considered in [21]-[23].

As can be seen from all these works, non-diagonal components of the
energy-momentum tensor can impose additional restrictions on either metric
functions or spinor functions. In this paper we consider the spinor field in
the framework of a spherically symmetric FLRW model. The results are
compared with those obtained in Cartesian coordinates.

2. Basic equations

The action for a gravitational field and a nonlinear spinor field can be
written as follows:

Sa.00) = [ (55 + L) 49 (1)

where R is a Ricci scalar, » = 87G, G is a gravitational constant, L, is
a Lagrangian for a nonlinear spinor field, which looks like this:

Ly = % (VY 0 =V yFap) — mapyp — F (2)

where m is the mass, F' = F(K) is the nonlinear term. The K parameter
takes one of 4 values: I, J, I + J, I —J. Here I = S? = ()% and
J = P? = (¥y°y)*.
From the expression (2), we can get the equations for the spinor field:
iYHV 1 — i — Dip — TP = 0, (3)

iV, v 4 map + D+ iTyy® =0, (4)
where the following symbols are entered:
drdK
dK dI’
dF dK

Y =92PF, K, =2P—— .
K2 dK dJ
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From (2), (3) and (4) an alternative form of the Lagrangian can be obtained:

dF
L=2K = — F(K). (5)

The covariant derivatives V L are defined as follows:

v,u,w = ap,w - F,u,wﬂ (6)
Vo =0,4+yl,, (7)
where I, is a spinor affine connection that is defined as follows:
1 8e(gb) 5o
Ly =190 (W% —Tho | 7°7, (8)

where e,(,b) is a system of orthogonal 4-vectors that obey the following expres-

sions:

e&a)e(”a) = e&a)efb) =67, (9)
I (@) = €5 (x) e} ()11 (10)

The expression for the energy-momentum tensor is as follows:
Tﬁ = pyTu,u - gpyTV,u - 6/6[2KFK o F<K>]7 (11)

where the following symbols are used:
_ 7 — —_ _ _
Tuu = Z(¢7ﬂauw + WYUGMD - au¢7u¢ - awayuw)a (12)

~ 7 —
Tz/,u, = Zw(,}/uru + FI/PYM + FYVF,U, + F,u,yu>d] (13)

3. Cartesian coordinates
This section uses the following metric:
ds? = dt? — a*(t) [dz? + dy? + d2?] . (14)

Nontrivial components of the Einstein tensor in this metric have the following
form:

GO = 3= (15)

, i a2
G.=— (2— + —) i,j=1,2,3. (16)
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From metric (14), we can use (10) to find expressions for tetrads:
eéo) =1 6(11) = a(t) 6(22) = a(t) eé?’) = a(t). (17)

Expressions for I', are obtained from (17) and (8):

a Qg Qs
Lo=0 Iy =277 Ty=77" Ty=577" (18)

From (3), (4) (6), (7) and (18) we get the equations for the spinor field:
. 34
7 (64 550 = m— Dy — T4 =0, (19)
i (V+555) 3 +mib+ DG+ T =0, (20)

Non-trivial components of the energy-momentum tensor are obtained from

(11), (12), (13), (18), (19) and (20):

7Y = mS + F(K), (21)

T} = F(K) —2KFy, (22)

T = F(K)—2KFy, (23)

T3 = F(K) —2KFy. (24)

The complete system of Einstein equations looks like this:

d2

3; = 81G(mS + F(K)), (25)
a a®

2-+ 5 = 87G(F(K) — 2K Fy). (26)
a a

A more detailed description of this case can be found in the work [24].

4. Spherical coordinates

A completely different situation occurs when moving from Cartesian coor-
dinates to spherical ones. The transition is performed as follows:

x = rsin(6) cos(y), (27)
y = rsin(f) sin(yp), (28)
z =rcos(f). (29)

The following metric is obtained from (27), (28), (29) and (14):
ds? = dt? — a®(t)[dr?® + r2(d6? + sin®(0)dp?)]. (30)
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The nontrivial components of the Einstein tensor remain unchanged. Ex-
pressions for tetrads are obtained from (30) using (10):

eéo) =1 6(11) = a(t) 6(22) =a(t)r egg) = a(t)rsin(6). (31)

T, =0, (32)
L. 1o
Iy = 57"y, (33)
1, _o_
Iy = 5(657”7270 + '72'71)’ (34)
1. . _3_ . =3= ~3
T, = 5(ar sin(0)7°7" + sin(0)7°5" + cos(0)7°7?). (35)

Substituting (32), (33), (34) and (35) into (3) and (4) is obtained:
75 + 15 + iU + V32 — [m + Dl —iT9% =0, (36)
WY + IS + UGT + VBT + [m+ DJg+iT%° =0, (37)

where U = 1/ar and V = cot(0)/2ar. Now (11), (12), (13), (32)—(35) and
(36)—(37) produce non-zero components of the energy-momentum tensor:

TO = mS + F(K), (38)
T! = F(K) — 2K Fy, (39)
T2 = F(K) — 2K Fy, (40)
T3 = F(K) — 2K Fy, (41)
Iy = —Coi(e) A3, (42)
T

19 =247, (43)
TY = zsin(ﬁ)A2 — %cos(@)Al, (44)
T} = _C°:<9) A, (45)

a

From (15), (16) and T0-T3 we get the complete system of Einstein equations.
For diagonal elements we have:

3% _ e GlmS + F(K) (46)

a’
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2

2% + 2—2 — 8rG[F(K) — 2K Fy]. (47)
Expressions for non-diagonal elements:
cot ()
A3 = 4
0 s =, (48)
3
—— A3 = 4
: 0, (49)
3 . , 1 1
) sin(f)A* — 5 cos(f)A' =0, (50)
cos(0)
— A0 = 1
20 o o, 61)

where A* = 1)y°+y#1) — components of the 4-pseudovector. This shows
that the equations are identical for diagonal components, but non-diagonal
components impose some additional conditions on either metric functions
or spinor functions. These restrictions will be discussed in more detail in
the next section. But this requires equations for spinor invariants. They are
obtained from (36)—(37) and look like this:

S+3SS+2TA0 =0, P+3§P—2[m+D]A0 =0, (52)
Al + 3%/11 +2UAY =0, A2+ 3%/12 + 2V A =0, (53)
AY 4 SSAO +2UAY + 2V A% + 2[m + D|P —2YS = 0. (54)
In this instance (7°)? = 1. The first integral of this system is equal to:
S?2 + P24 (AY%)2 — (A1)2 — (A?%)?2 = a%’ C = const. (55)

5. Restrictions on the spinor functions

As mentioned earlier, the equations (48), (49), (50) and (51) impose re-
strictions on either the metric function or the spinor functions that are the
solution of the equations (36)—(37). It follows from (48)—(51) that A% = 0
and A° = 0. A restriction on A and A? looks like this:

Al = gtan(H)Az. (56)

Using (56) and equations from (48) to (51) we get the following:
2 2 0y2 2v2 [9 . 2 ¢
S% 4+ P? 4+ (AY)* — (A?) Ztan(0)+1 = — (57)

ab’
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It can also be shown [24] that if m # 0, then:

K=1=8= %, C, = const. (58)
a
If m = 0, then:
K = %, Cy = const (59)

for K=, K=J, K=1+Jand K =1—J.

6. Discussion

Though there is a number of papers dealing with FLRW cosmological model
with spinor fields, we did it again. Main idea was to see how the coordinate
transformation effects the behavior of spacetime evolution and the spinor
field. Moreover, mathematically it may help us to model different type of
stars using the spinor field as a source field. In that sense this study is the
beginning of the further studies that we plan to carry out in future.

7. Conclusions

Within the scope of spherically symmetric FLRW model we study the role
of the spinor field in the evolution of the Universe. It is found that the usual
transition from Cartesian coordinates to spherical ones leads to the appearance
of non-zero non-diagonal components of the energy-momentum tensor. The
presence of these components leads to some restrictions on spinor functions.
However, these limitations may not always directly affect the solution of
Einstein’s equations. For example, if K = I = S2, these restrictions will not
affect the solution of the equations (25) and (26).
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CnouHopHoe noJie B chepudeckKn CUMMETPUIHOMN
Bcenennoit ®puamana

Caxa Bumxaun'?, E. 1. Baxapos!, B. C. PuxBunkumii’

U Hnemumym dusuveckus uceaedosamnuti u mexnosozul
Poccutickuti ynusepcumem dpyorcov, Hapodos
ya. Muxayzo-Maxaas, 0. 6, Mockea, 117198, Poccus
2 JIabopamopus UHBOPMAUUOHHIL TETHON0UL
O6Bedunéntbil uHCMmUumym A0ePpHOIE UCCAED08AHUT
ya. 2Koauo-Kropu, 0. 6, Jyorna, Mockosckas obaacms, 141980, Poccus

B nocieaue roapr cninHOpHOE 1M0JIE UCTIOIB3YEeTCA MHOTUMU ABTOPAMU JIJIsi PEITEHU ST
HEKOTOPBIX aKTyaJIbHBIX BOIIPOCOB COBPEMEHHO KOCMOJIOTUU. MOTHB HCIIOJIH30BAHUA
CIIMHOPHOTO TOJI B KAYeCTBE NCTOYHUKA IPABUTAIIMOHHOTO MOJIS 3aKII0YAETCI B TOM,
YTO CIIMHOPHOE ITI0JI€ MOXKET H€ TOJIbKO OIIMCbhbIBAaTb Pa3/IMYHbIEC 3Tallbl 9BOJIIOITUN
Bceenennoit, HO 1 MOmEIMPOBATH PA3JIUYIHBIE TUIBI BEIECTBA, TAKNE KaK HIeabHAs
KUIKOCTh W TeMHas SHeprus. KpoMe TOro, CrimHOpPHOE 10Jie 0YEHb 1yBCTBUTEIBHO
K I'PABUTAIMOHHOMY, U B 3aBUCUMOCTU OT I'PABUTAIIMOHHOIO II0JIA CIIMTHOPHOE II0JIE
MOZKET pearupoBaThb IIO-PAa3HOMY, U3MEHAAd TEM CaMbIM I'€eOMETPUIO IPOCTPAHCTBa~
BpeMenu. B Hacrosiieit pabore JaeTcs KPaTKoe ONKUCAHNE HEJTUHEHHOrO CIIMHOPHOTO
noss B mozgean Ppunmana—/lemerpa—Pobeprcona—Yoakepa (FLRW). Pesynbrars
CPaBHMBAIOTCH B JIEKAPTOBBIX U Chepudeckux KoopauHaTtax. I[lokazaHno, 9To mnpu
repexojie OT JIEKAPTOBBIX KOOPAMHAT K CHEPUIECKUM TEH30D SHEPTUU-UMITYIHCA
nmMeeT JOIOJIHUTEJIbHBbIE HEHYJIEBble HEeInarOHaJbHbIE KOMIIOHEHTbI, KOTOPbIE MOT'YT
HAKJIa/IbIBATH OIPAHUYEHNS KaK HA CIIUHOPHBbIE (DYHKIMK, TAK U HA METPUUIECKUE.

Kirouessbie cioBa: cruHophoe 1ose, mojeias FLRW, nekaprossr Koopauuarsl, cde-
pUYEeCKUe KOOPIUHATDI



