О росте решений обыкновенных дифференциальных уравнений с запаздывающим аргументом

Э. Ш. Шамов

Кафедра высшей математики Дагестанский государственный технический университет пр. И.Шамиля, 70, 367015, Махачкала, Дагестан, Россия

Рассматривается функционально-дифференциальное уравнение n-го порядка с неограниченными операторными коэффициентами и отклонениями аргументов в гильбертовом пространстве. Доказывается теорема о существовании решений, убывающих быстрее экспоненты.

Ключевые слова: функционально-дифференциальное уравнение, резольвентный оператор, обратимый оператор, неограниченный оператор, вполне непрерывный оператор, замкнутый оператор, операторные коэффициенты.

Однородные обыкновенные дифференциальные уравнения с постоянными коэффициентами не обладают решениями, убывающими быстрее экспоненты, поскольку их решения имеют вид $e^{kx}P_n(x)$, где $P_n(x)$ — многочлен, степень которого на единицу меньше кратности корня характеристического уравнения или $e^{iax},\,a\in\mathbb{R}.$ Что касается уравнений в частных производных, то хорошо известно решение задачи Коши для уравнения теплопроводности

$$u(x,t) = \int_{-\infty}^{\infty} \frac{\varphi_0(\xi)}{2a\sqrt{\pi t}} e^{-\frac{(\xi-x)^2}{4a^2t}} d\xi = e^{-\frac{x^2}{4a^2t}} \int_{-\infty}^{\infty} \frac{\varphi_0(\xi)}{2a\sqrt{\pi t}} e^{-\frac{\xi^2 - 2\xi x}{4a^2t}} d\xi,$$

убывающее как e^{-x^2} , то есть быстрее экспоненты e^{-x} . Обыкновенные функционально-дифференциальные уравнения могут обладать решениями, убывающими быстрее экспоненты, например, как нетрудно прове-

рить,
$$u'(t) - \sum_{j=0}^{m} a_j(t)u(t-h_j) = 0$$
 имеет своим решением функцию e^{-t^2} , если

$$a_{j}(t) = a_{j}te^{-(2h_{j}t-h_{j}^{2})}, \sum_{j=0}^{m}a_{j} = -2$$
. Эти простые примеры и факты показыва-

ют важность вопроса о росте решений уравнений с запаздывающим аргументом. Впервые этот вопрос в случае уравнения первого порядка с неограниченным операторным коэффициентом $Lu \equiv \frac{1}{i} \frac{\mathrm{d}u}{\mathrm{d}t} - Au = 0$ был рассмотрен в работе [1]. В работе [2] рассматриваются вопросы о существовании решений функциональнодифференциального уравнения п-го порядка с неограниченными операторными коэффициентами

$$L_{po}^{n}u(t) \equiv D_{t}^{n}u(t) - \sum_{k=0}^{n-1} \sum_{j=0}^{m} \left[A_{kj} + A_{kj}(t) \right] S_{h_{kj} + h_{kj}(t)} D_{t}^{k}u(t) = f(t), \quad t > t_{0}, \quad (1)$$

убывающие как экспонента и быстрее. Здесь $D_t^k = \frac{1}{i^k} \frac{\mathrm{d}^k}{\mathrm{d}t^k}, \; (A_{kj} + A_{kj}(t)) : Y \to$ Y — замкнутые операторы, $k=\overline{0,n-1},\ j=\overline{0,m},\ A_{kj}:X\to Y$ — вполне непрерывные операторы, $k=\overline{0,n-1},\ j=\overline{1,m},\ X,\ Y$ — гильбертовы пространства, $X\subset Y,\ h'_{kj}(t)\leqslant r<1,\ k,j\geqslant 0,\ t>t_0>-\infty.$ На отклонения аргумента $h_{kj},\ h_{kj}(t)$ накладывается условие $h_{k0}(t)\equiv h_{k0}=0,\ k=\overline{0,n-1},$ позволяющее

Статья поступила в редакцию 1 марта 2010 г.

включить в уравнение (1) уравнение без отклонения аргумента как частный случай. Порождаемый уравнением (1) оператор L^n_{po} рассматривается как оператор $L^n_{po}: X^{n,\alpha}_{R^{t_0}_\perp} \to Y^{0,\alpha}_{R^{t_0}_\perp}$, где $\alpha=\mathrm{const},\ R^{t_0}_+\equiv [t_0,\infty)\,,$

$$X_{R_{+}^{t_{0}}}^{n,\alpha} = \left\{ u(t), u(t) = 0, t \leqslant t_{0}, \|u(t)\| = \left(\int_{t_{0}}^{\infty} e^{2\alpha t} \left(\sum_{k=0}^{n-1} \|u^{(k)}(t)\|_{X}^{2} + \|u^{(n)}(t)\|_{Y}^{2} \right) dt \right)^{\frac{1}{2}} < \infty \right\},$$

$$Y_{R_{+}^{t_{0}}}^{0,\alpha} = \left\{ u(t), u(t) = 0, t \leqslant t_{0}, \|u(t)\| = \left(\int_{t_{0}}^{\infty} e^{2\alpha t} \|u(t)\|_{Y}^{2} dt \right)^{\frac{1}{2}} < \infty \right\}.$$

Для уравнения (1) рассматривается задача с начальными условиями

$$u^{(k)}(t) = g_k(t), \quad t \le t_0, \quad u^{(k)}(t_0 + 0) = g_k(t_0), \quad k = \overline{0, n - 1}.$$
 (2)

Доказываемая ниже теорема может быть истолкована как результат, аналогичный классической теореме Фрагмена–Линделёфа [3], которая для гармонической в полуполосе $0 \le x \le 1$, t > 0 функции u(x,t), удовлетворяющей граничным условиям u(0,t) = u(1,t) = 0, $t \ge 0$, утверждает, что если она ограничена в данной полуполосе, то она убывает экспоненциально (по t).

В данной статье продолжены исследования, начатые в работе [2], получены условия на операторные коэффициенты A_{kj} , $A_{kj}(t)$, на отклонения аргумен-

та
$$h_{kj}(t)$$
, на резольвентный оператор $R_p^n(\lambda) \equiv \left[\lambda^n E - \sum_{k=0}^{n-1} \sum_{j=0}^m A_{kj} \lambda^k e^{-i\lambda h_{kj}}\right]^{-1}$:

 $Y \to X$, при которых решение u(t) задачи (1), (2), принадлежащее $L^2(R^{t_0}_+, X)$, $k = \overline{0, n-1}$, вместе со своими производными $u'(t), u''(t), \ldots, u_{(n-1)}(t)$ убывает быстрее экспоненты. В дальнейшем нам понадобятся следующие утверждения.

Теорема 1 (Теорема Планшереля [4]). Преобразование Фурье переводит функции $L^2(R,H)$ в $L^2(R,H)$. Более точно, если $f(t) \in L^2(R,H)$, то функция $\tilde{f}(\lambda)$ существует и $\tilde{f}(\lambda) \in L^2(R,H)$. При этом $\left\|\tilde{f}(\lambda)\right\|_{L^2(R,H)} = \|f(t)\|_{L^2(R,H)}$,

$$f(t) = \lim_{N \to \infty} \frac{1}{\sqrt{2\pi}} \int_{-N}^{N} e^{i\lambda t} \tilde{f}(\lambda) d\lambda.$$

Из этой теоремы следует, что, если $\operatorname{Im} \lambda = \alpha$, то $\|\widetilde{f}(\lambda)\|_{L^2(\operatorname{Im} \lambda = \alpha, H)} = \|f(t)\|_R^{0,\alpha}$.

Лемма 1 (Лемма Римана–Лебега [4]). Если $f(t) \in L^1(R, H)$, то

$$\lim_{p \to \infty} \int_{-\infty}^{\infty} f(t) \left\{ \begin{array}{c} \sin pt \\ \cos pt \end{array} \right\} dt = 0.$$

Лемма 2 (лемма 1.2.1 [4]). Если $A: Y \to Y$ — замкнутый оператор, $A: X \to Y$ — вполне непрерывный оператор, то для любого $\varepsilon > 0$ существует константа $\chi_A(\varepsilon)$, что имеет место неравенство $||Au||_Y \leqslant \varepsilon ||u||_X + \chi_A(\varepsilon)||u||_Y$, для любого $u \in X \subset Y$.

Заметим, что приведённое неравенство можно получить и для квадратов норм, т.е. оно верно и в виде неравенства $\|Au\|_Y^2 \leqslant \varepsilon^2 \|u\|_X^2 + \chi_A^2(\varepsilon) \|u\|_Y^2$. Доказана следующая

Теорема 2. Пусть выполнены условия:

а) $A_{kj}: Y \to Y$ — замкнутые операторы, $j = \overline{0,m}, \ k = \overline{0,n-1}, \ A_{kj}: X \to Y$ — вполне непрерывные операторы, $k = \overline{0,n-1}, \ j = \overline{1,m};$ для любого $\delta > 0$ $\|A_{kj}(t)\|_Y = O(e^{-\delta t}), \ t \to \infty, \ j = \overline{0,m}, \ k = \overline{0,n-1};$

б) резольвента $R_p^n(\lambda)$ регулярна в полуплоскости $\operatorname{Im} \lambda \geqslant 0$,

$$||R_p^n(\lambda)||_X \leqslant C \exp\left\{\left(\frac{\alpha-1}{a}\right)^{\alpha-1} \left(\frac{\operatorname{Im}\lambda}{\alpha}\right)^{\alpha}\right\}, \quad a > 0, \quad \alpha > 1;$$

 $e)\; f(t) \in Y_{R_{-0}^{t_0}}^{0,\delta}\;$ для любого $\delta>0;$

$$arepsilon)\;h_{kj}'(t)\leqslant r<1,\;t_0\leqslant t<\infty,\;\int\limits_{t_0}^\infty e^{2\delta t}\chi_{A_{kj}}^2ig(e^{-\delta t}ig)|h_{kj}(t)|\mathrm{d}t<\infty,\;$$
 для любого $\delta>0,$

 $j = \overline{1, m}, \ k = \overline{0, n - 1};$

д) u(t) — решение уравнения (1), $u^{(k)}(t) \in L^2(R^{t_2}_+, X)$, $k = \overline{0, n-1}$

$$t_{2} = \min \left(t_{1}, \min_{\substack{1 \le j \le m \\ 0 \le k \le n-1}} (t_{0} - h_{kj}) \right), t_{1} = \min_{\substack{1 \le j \le m \\ 0 \le k \le n-1}} \inf \{ \varphi_{kj}(t) \}, \varphi_{kj}(t) \equiv t - h_{kj} - h_{kj}(t).$$

Тогда
$$\int\limits_{t_0}^{\infty}e^{2(a-\varepsilon)t^{\beta}}\|u(t)\|_X^2\mathrm{d}t\leqslant C\int\limits_{t_0}^{\infty}e^{2\delta t}\|f(t)\|_Y^2\mathrm{d}t,\; \frac{1}{\alpha}+\frac{1}{\beta}=1,\; \varepsilon>0.$$

Доказательство. Так как при изучении поведения решений при $t \to \infty$ вклад начальной функции является незначительным, то можно облегчить решение задачи, переходя от решения u(t) начальной задачи (1), (2) к новой функции

$$\vartheta(t)=\eta(t)u(t),$$
 где $\eta(t)=egin{cases} 0,&t\leqslant t_0,\\ 1,&t>t_0+1, \end{cases}$ $\eta(t)\in C^\infty,\ 0\leqslant\eta(t)\leqslant 1.$ Для новой функции $\vartheta(t)$ получим уравнение

$$L_{po}^{n}\vartheta(t) = D_{t}^{n}(\eta(t)u(t)) - \sum_{k=0}^{n-1} \sum_{j=0}^{m} [A_{kj} + A_{kj}(t)] S_{h_{kj} + h_{kj}(t)} D_{t}^{k}(\eta(t)u(t)) =$$

$$= \sum_{v=0}^{n-1} C_{n}^{v} D_{t}^{n-v} \eta(t) D_{t}^{v} u(t) + \eta(t) D_{t}^{n} u(t) - \sum_{k=0}^{n-1} \sum_{j=0}^{m} [A_{kj} + A_{kj}(t)] S_{h_{kj} + h_{kj}(t)} D_{t}^{k}(\eta(t)u(t)).$$

Прибавляя и вычитая в правой части полученного равенства слагаемое $\eta(t) \sum_{k=0}^{n-1} \sum_{i=0}^m \left[A_{kj} + A_{kj}(t) \right] S_{h_{kj} + h_{kj}(t)} D_t^k u(t), \text{ получим}$

$$L_{po}^{n}\vartheta(t) = \eta(t)f(t) + \sum_{v=0}^{n-1} C_{n}^{v} D_{t}^{n-v} \eta(t) D_{t}^{v} u(t) + \sum_{k=0}^{n-1} \sum_{j=0}^{m} \left[A_{kj} + A_{kj}(t) \right] \times \left[\eta(t) S_{h_{kj} + h_{kj}(t)} D_{t}^{k} u(t) - S_{h_{kj} + h_{kj}(t)} D_{t}^{k} \left(\eta(t) u(t) \right) \right].$$

Перенося с левой части последнего равенства сумму

$$\sum_{k=0}^{n-1} \sum_{j=0}^{m} \left[A_{kj} + A_{kj}(t) \right] S_{h_{kj} + h_{kj}(t)} D_t^k \vartheta(t)$$

в правую часть и вычитая из обеих частей выражение $\sum_{k=0}^{n-1} \sum_{j=0}^m A_{kj} S_{h_{kj}} D_t^k \vartheta(t) \equiv$

 $\sum_{k=0}^{n-1} \sum_{j=0}^{m} A_{kj} S_{h_{kj}} D_t^k (\eta(t) u(t)), \text{ получим выражение } L_p^n \vartheta(t) \text{ через } u(t):$

$$L_p^n \vartheta(t) = \eta(t) f(t) + \sum_{v=0}^{n-1} C_n^v D_t^{n-v} \eta(t) D_t^v u(t) + \sum_{k=0}^{n-1} \sum_{j=0}^m \left[A_{kj} + A_{kj}(t) \right] \times$$

$$\times \eta(t) S_{h_{kj} + h_{kj}(t)} D_t^k u(t) - \sum_{k=0}^{n-1} \sum_{j=0}^m A_{kj} S_{h_{kj}} D_t^k \left(\eta(t) u(t) \right).$$
 (3)

Применяя к уравнению (3) преобразование Фурье, получим

$$\tilde{\vartheta}(\lambda) = R_p^n \left\{ \tilde{f}_{\eta}(\lambda) + \sum_{\nu=0}^{n-1} C_{\eta}^{\nu} \tilde{u}_{\nu\eta}(\lambda) + \sum_{k=0}^{n-1} \sum_{j=0}^m \sum_{v=0}^k C_k^v \tilde{A}_{kj\eta}(\lambda) + \sum_{k=0}^{n-1} \sum_{j=0}^m \tilde{z}_{kj\eta}(\lambda) \right\}, \quad (4)$$

где
$$\tilde{f}_{\eta}(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{t_0}^{\infty} e^{-i\lambda t} \eta(t) f(t) dt$$
, $\tilde{u}_{\nu\eta}(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{t_0}^{\infty} e^{-i\lambda t} D_t^{n-\nu} \eta(t) D_t^{\nu} u(t) dt$,

$$\tilde{A}_{kj\eta}(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{t_0}^{\infty} e^{-i\lambda t} A_{kj}(t) \eta(t) S_{h_{kj} + h_{kj}(t)} D_t^k u(t) dt,$$

$$\tilde{z}_{kj\eta}(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{t_0}^{\infty} e^{-i\lambda t} A_{kj} \left(\eta(t) S_{h_{kj} + h_{kj}(t)} D_t^k u(t) - \sum_{\nu=0}^k C_k^{\nu} S_{h_{kj}} D_t^{k-\nu} \eta(t) D_t^{\nu} u(t) \right) dt.$$

Заметим, что интегралы в выражениях преобразований Фурье в (4), в которых встречаются производные от функции $\eta(t)$, фактически взяты по конечному интервалу $(t_0, t_0 + 1)$, что будет учтено в дальнейшем. При этом они являются финитными функциями.

Покажем регулярность в верхней полуплоскости ${\rm Im}\,\lambda\geqslant 0$ всех функций в фигурных скобках в правой части равенства (4), полученных применением преобразования Фурье к уравнению (3). Согласно определению бесконечно дифференцируемой функции $\eta(t)$ все интегралы, которые содержат $D_t^k\eta(t),\,k\geqslant 1$, являются интегралами по конечному промежутку $(t_0,\,t_0+1)$, ввиду того, что $D_t^k\eta(t)=0$ вне этого интервала. Преобразования Фурье таких функций являются целыми функциями экспоненциального типа, а потому регулярны в верхней полуплоскости ${\rm Im}\,\lambda\geqslant 0$.

Для производной функции $\tilde{f}_{\eta}(\lambda)$ имеет место оценка

$$\left\|\frac{\mathrm{d}\tilde{f}_{\eta}(\lambda)}{\mathrm{d}\lambda}\right\|_{Y}=\left\|\frac{1}{\sqrt{2\pi}}\int\limits_{t_{0}}^{\infty}e^{-i\lambda t}\left(-it\right)\eta(t)f(t)\mathrm{d}t\right\|_{Y}\leqslant$$

$$\leqslant \left(\int_{t_0}^{\infty} e^{-2\varepsilon t} |t|^2 dt\right)^{\frac{1}{2}} \left(\int_{t_0}^{\infty} e^{2(\operatorname{Im}\lambda + \varepsilon)} t ||f(t)||_Y^2 dt\right)^{\frac{1}{2}} \leqslant \infty, \quad \operatorname{Im}\lambda + \varepsilon = \delta > 0,$$

 $\varepsilon > 0$ достаточно мало. Отсюда в силу условия в) теоремы следует регулярность функции $\tilde{f}_n(\lambda)$ в полуплоскости $\mathrm{Im}\,\lambda \geqslant 0$.

Аналогично можно показать регулярность и слагаемых, содержащих $A_{kj}(t)$.

В частности, для
$$\tilde{A}_{0j\eta}(\lambda)=\int\limits_{t_0}^{\infty}e^{-i\lambda t}\eta(t)A_{0j}(t)S_{h_{0j}+h_{0j}(t)}u(t)\mathrm{d}t$$
 имеем

$$\left\| \frac{d\tilde{A}_{0j\eta}(\lambda)}{d\lambda} \right\| = \left\| \int_{t_0}^{\infty} e^{-i\lambda t} (-it) \eta(t) A_{0j}(t) S_{h_{0j} + h_{0j}(t)} u(t) \right\|_{Y} dt \leq$$

$$\leq C \left[\int_{t_0}^{\infty} \left\| u \left(t - h_{0j} - h_{0j}(t) \right) \right\|^{2} dt \right]^{\frac{1}{2}} \leq C \int_{t_0}^{\infty} \left\| u \left(t - h_{0j} - h_{0j}(t) \right) \right\|_{X}^{2} \times$$

$$\times \frac{d \left(t - h_{0j} - h_{0j}(t) \right)}{1 - h'_{0j}(t)} \leq \frac{C}{1 - r} \int_{t - h_{0j} - h_{0j}(t)}^{\infty} \left\| u(t) \right\|_{X}^{2} dt \leq C_{1} \int_{t_{2}}^{\infty} \left\| u(t) \right\|_{X}^{2} dt < \infty$$

в силу условий а) и д) теоремы.

Для оценки слагаемого $\tilde{z}_{kj\eta}(\lambda)$ применим лемму 1 о характеристической функции с $\varepsilon=\varepsilon(t)=e^{-(\operatorname{Im}\lambda+\gamma)t},\ \gamma>0$. Для $\tilde{z}_{kj\eta}(\lambda)$ из (4) при k=0 имеем

$$\left\| \frac{\mathrm{d}\tilde{z}_{0j\eta}(\lambda)}{\mathrm{d}\lambda} \right\|_{Y} = \left\| \frac{1}{\sqrt{2\pi}} \int_{t_{0}}^{\infty} e^{-i\lambda t} (-it) A_{0j} (\eta(t) S_{h_{0j} + h_{0j}(t)} - S_{h_{0j}} \eta(t)) u(t) \mathrm{d}t \right\|_{Y} \le$$

$$\le \left(\int_{t_{0}}^{+\infty} e^{-2\gamma t} |t|^{2} \mathrm{d}t \right)^{\frac{1}{2}} \left(\int_{t_{0}}^{+\infty} e^{2(\mathrm{Im}\,\lambda + \gamma)} \left\| A_{0j} (\eta(t) S_{h_{0j} + h_{0j}(t)} - S_{h_{0j}} \eta(t)) u(t) \right\|_{Y}^{2} \mathrm{d}t \right)^{\frac{1}{2}}.$$

В силу условия $\gamma>0$ первый интеграл в правой части полученного неравенства является сходящимся. Оценим второй интеграл. Для этого применим лемму 1 о характеристической функции с $\varepsilon=\varepsilon(t)=e^{-i(\operatorname{Im}\lambda+\gamma)t},\ \gamma>0$, к норме под знаком последнего интеграла. Имеем

$$\int_{t_{0}}^{\infty} e^{2(\operatorname{Im}\lambda + \gamma)t} \left(e^{2(\operatorname{Im}\lambda + \gamma)t} \right) \left\| \left(\eta(t) S_{h_{0j} + h_{0j}(t)} - S_{h_{0j}} \eta(t) \right) u(t) \right\|_{Y}^{2} dt +
+ \int_{t_{0}}^{\infty} \chi_{A_{0j}}^{2} e^{2(\operatorname{Im}\lambda + \gamma)t} \left(e^{2(\operatorname{Im}\lambda + \gamma)t} \right) \left\| \left(\eta(t) S_{h_{0j} + h_{0j}(t)} - S_{h_{0j}} \eta(t) \right) u(t) \right\|_{Y}^{2} dt \le
\le c \int_{t_{0}}^{\infty} \left\| u(t - h_{0j} - h_{0j}(t)) \right\|_{X}^{2} dt + c_{1} \int_{t_{0}}^{\infty} \left\| u(t - h_{0j}) \right\|_{X}^{2} dt +$$

$$+ c_{2} \int_{t_{0}}^{\infty} e^{2(\operatorname{Im}\lambda + \gamma)t} \chi_{A_{0j}}^{2} \left(e^{2(\operatorname{Im}\lambda + \gamma)t}\right) \left\|u\left(t - h_{0j} - h_{0j}(t)\right) - u\left(t - h_{0j}\right)\right\|_{Y}^{2} dt =$$

$$= c \int_{t_{0}}^{\infty} \left\|u\left(t - h_{0j} - h_{0j}(t)\right)\right\|_{X}^{2} \frac{d\left(t - h_{0j} - h_{0j}(t)\right)}{1 - h'_{0j}(t)} + c_{1} \int_{t_{0} - h_{0j}}^{\infty} \left\|u(t)\right\|_{X}^{2} dt +$$

$$+ c_{2} \int_{t_{0}}^{\infty} e^{2(\operatorname{Im}\lambda + \gamma)t} \chi_{A_{0j}}^{2} \left(e^{2(\operatorname{Im}\lambda + \gamma)t}\right) \left\|\int_{t_{0} - h_{0j}}^{t_{0j} - h_{0j}(t)} u'\left(s\right) ds\right\|_{Y}^{2} dt \le$$

$$\le \frac{c}{1 - r} \int_{t_{0} - h_{0j} - h_{0j}(t)}^{\infty} \left\|u(t)\right\|_{X}^{2} dt + c_{1} \int_{t_{0} - h_{0j}}^{\infty} \left\|u(t)\right\|_{X}^{2} dt +$$

$$+ \int_{t_{0}}^{\infty} e^{2(\operatorname{Im}\lambda + \gamma)t} \chi_{A_{0j}}^{2} \left(e^{2(\operatorname{Im}\lambda + \gamma)t}\right) |h_{0j}(t)| \left\|\int_{t_{0} - h_{0j}}^{t_{0j} - h_{0j}(t)} \left\|u'\left(s\right)\right\|_{Y}^{2} ds dt \right| \le$$

$$\le c_{3} \int_{t_{0}}^{\infty} \left\|u(t)\right\|_{X}^{2} dt + \int_{t_{0}}^{\infty} e^{2(\operatorname{Im}\lambda + \gamma)t} \chi_{A_{0j}}^{2} \left(e^{2(\operatorname{Im}\lambda + \gamma)t}\right) \times$$

$$\times \left|h_{0j}(t)\right| \left\|\int_{t_{0} - h_{0j}}^{t_{0j} - h_{0j}(t)} \left\|u'\left(s\right)\right\|_{Y}^{2} ds dt \right| = I.$$

Изменяя порядок интегрирования в последнем интеграле, получим

$$I = c_{3} \int_{t_{0}}^{\infty} \|u(t)\|_{X}^{2} dt + \int_{t_{0}}^{\infty} \|u'(s)\|_{Y}^{2} ds \int_{s+h_{0j}}^{\varphi_{0j}^{-1}(s)} e^{2\delta t} \chi_{A_{0j}}^{2} \left(e^{-\delta t}\right) |h_{0j}(t)| dt \leqslant$$

$$\leqslant c_{3} \int_{t_{0}}^{\infty} \|u(t)\|_{X}^{2} dt + A_{4} \int_{t_{0}}^{\infty} \|u'(s)\|_{Y}^{2} ds \leqslant c_{5} \int_{t_{0}}^{\infty} \left(\|u(t)\|_{X}^{2} + \|u'(t)\|_{Y}^{2}\right) dt,$$

где $\varphi_{0j}(t) \equiv t - h_{0j} - h_{0j}(t)$, $\varphi_{0j}^{-1}(t)$ — обратная к $\varphi_{0j}(t)$ функция. Отсюда, в силу условий г) и д) теоремы, следует регулярность функции $z_{0j\eta}(\lambda)$ для $\operatorname{Im} \lambda \geqslant 0$. При $k \geqslant 1$, $D_t^k \eta(t)$ — финитная функция, что существенно при доказательстве требуемых неравенств. Вводя обозначения

$$\tilde{A}'_{kj\eta}(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{t_0}^{\infty} e^{-i\lambda t} \eta(t) A_{kj}(t) S_{h_{kj} + h_{kj}(t)} D_t^k u(t) dt,$$

имеем

$$\left\| \frac{\mathrm{d}\tilde{A}_{kj\eta}'(\lambda)}{\mathrm{d}\lambda} \right\|_{Y} \leqslant \int\limits_{t_{0}}^{\infty} e^{\mathrm{Im}\,\lambda t} |t| \eta(t) \left\| A_{kj}(t) S_{h_{kj} + h_{kj}(t)} D_{t}^{k} u(t) \right\|_{Y} \mathrm{d}t \leqslant$$

$$\leqslant c \left(\int\limits_{t_0}^{\infty} e^{-2\varepsilon t} |t|^2 \mathrm{d}t\right)^{\frac{1}{2}} \left(\int\limits_{t_0}^{\infty} e^{2(\operatorname{Im}\lambda + \varepsilon)t} \left\|A_{kj}(t)\right\|_Y^2 \left\|S_{h_{kj} + h_{kj}(t)} D_t^k u(t)\right\|_X^2 \mathrm{d}t\right)^{\frac{1}{2}}.$$

Сходимость первого интеграла в правой части полученного неравенства очевидна. Поэтому оценим второй интеграл. Имеем

$$\begin{split} \int\limits_{t_0}^{\infty} e^{(-\delta t)^2} e^{2(\operatorname{Im}\lambda + \varepsilon)t} \left\| D_t^k u \big(t - h_{kj} - h_{kj}(t)\big) \right\|_X^2 \mathrm{d}t &\leqslant \frac{1}{1-r} \int\limits_{t_0}^{\infty} \left\| D_t^k u(t) \right\|_X^2 \mathrm{d}t \leqslant \\ &\leqslant c \int\limits_{t_0}^{\infty} \left\| D_t^k u(t) \right\|_X^2 \mathrm{d}t \quad \text{для любого } k, \quad 1 \leqslant k \leqslant n. \end{split}$$

Отсюда в силу условий а) и д) теоремы следует $\left\| \frac{\mathrm{d} \tilde{A}'_{kj\eta}(\lambda)}{\mathrm{d} \lambda} \right\|_{Y} \leqslant c < \infty.$

При оценке

$$\frac{\partial}{\partial \lambda} \left(\tilde{z}'_{kj\eta}(\lambda) \right) \equiv \frac{\mathrm{d}}{\mathrm{d}\lambda} \frac{1}{\sqrt{2\pi}} \int_{t_0}^{\infty} e^{-i\lambda t} A_{kj} \left(\eta(t) S_{h_{kj} + h_{kj}(t)} - S_{h_{kj}} \eta(t) S_{h_{kj}} \right) D_t^k u(t) \mathrm{d}t$$

имеем

$$\left\| \frac{\mathrm{d}\tilde{z}'_{kj\eta}(\lambda)}{\mathrm{d}\lambda} \right\|_{Y} \leqslant \left\| \frac{1}{\sqrt{2\pi}} \int_{t_{0}}^{\infty} e^{-i\lambda t} (-it) \left(S_{h_{kj}} \eta(t) - \eta(t) S_{h_{kj} + h_{kj}(t)} \right) D_{t}^{k} u(t) \mathrm{d}t \right\|_{Y} \leqslant \left(c \int_{t_{0}}^{\infty} e^{-2\gamma t} |t|^{2} \mathrm{d}t \right)^{\frac{1}{2}} \times \left(\int_{t_{0}}^{\infty} e^{2(\mathrm{Im}\,\lambda + \gamma)t} \left\| A_{kj} \left(S_{h_{kj}} \eta(t) S_{h_{kj}} - \eta(t) S_{h_{kj} + h_{kj}(t)} \right) D_{t}^{k} u(t) \right\|_{Y}^{2} \mathrm{d}t \right)^{\frac{1}{2}}.$$

Оценим второй интеграл в правой части полученного неравенства:

$$\int_{t_{0}}^{\infty} e^{2(\operatorname{Im}\lambda + \gamma)t} e^{2(\operatorname{Im}\lambda + \gamma)t} \| \eta(t - h_{kj}) D_{t}^{k} u(t - h_{kj}) - \eta(t) D_{t}^{k} u(t - h_{kj} - h_{kj}(t)) \|_{X}^{2} + \\
+ \chi_{A_{kj}}^{2} e^{-(\operatorname{Im}\lambda + \gamma)t} \| \eta(t - h_{kj}) D_{t}^{k} u(t - h_{kj}(t)) - \eta(t) D_{t}^{k} u(t - h_{kj} - h_{kj}(t)) \|_{Y}^{2} dt \leqslant \\
\leqslant c \int_{t_{0}}^{\infty} \| D_{t}^{k} u(t - h_{kj}) \|_{X}^{2} dt + c_{1} \int_{t_{0}}^{\infty} \| D_{t}^{k} u(t - h_{kj} - h_{kj}(t)) \|_{X}^{2} dt + \\
+ \int_{t_{0}}^{\infty} e^{2(\operatorname{Im}\lambda + \gamma)t} \chi_{A_{kj}}^{2} e^{-(\operatorname{Im}\lambda + \gamma)} \left(\left\| \int_{t - h_{kj} - h_{kj}(t)}^{t - h_{kj}} D_{t}^{k+1} u(s) ds \right\|_{Y}^{2} dt \leqslant \right)$$

$$\leqslant c_{2} \int_{t_{0}}^{\infty} \|D_{t}^{k} u(t)\|_{X}^{2} dt + c_{3} \int_{t_{0}}^{\infty} \|D_{t}^{k+1} u(t)\|_{Y}^{2} dt \leqslant c_{2} \int_{t_{0}}^{\infty} \|D_{t}^{k} u(t)\|_{X}^{2} dt + c_{3} \int_{t_{0}}^{\infty} \left\|\sum_{k=0}^{n-1} \sum_{j=0}^{m} \left[A_{kj} + A_{kj}(t)\right] S_{h_{kj} + h_{kj}(t)} D_{t}^{k} u(t) + f(t) \right\|_{Y}^{2} dt \leqslant c_{2} \int_{t_{0}}^{\infty} \|D_{t}^{k} u(t)\|_{X}^{2} dt + c_{3} \int_{t_{0}}^{\infty} \|f(t)\|_{Y}^{2} dt.$$

Таким образом, выражение в фигурных скобках в правой части равенства (4) в условиях теоремы представляет собой регулярную функцию в верхней полуплоскости $\operatorname{Im} \lambda \geqslant 0$. Отсюда и из условия б) теоремы следует регулярность функции $\tilde{\vartheta}(\lambda)$, определяемой равенством (4) в $\operatorname{Im} \lambda \geqslant 0$, поскольку мы доказали оценки для случая любой функции $D_t^k u(t), \ k=0,\,1,\,\ldots,\,n-1$.

Покажем теперь, что все функции в фигурных скобках в правой части равенства (4) стремятся к нулю равномерно при $|\lambda| \to \infty$ в любой полосе $0 \leqslant {\rm Im}\, \lambda \leqslant \tau < \infty, \, \lambda$ — плоскости.

Справедливость утверждения для функции $\tilde{f}_{\eta}(\lambda)$ следует из представления

$$\tilde{f}_{\eta}(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{t_0}^{\infty} e^{\tau t} \eta(t) f(t) \left[\cos \sigma t - i \sin \sigma t\right] dt.$$

Так как

$$\begin{split} \int\limits_{t_0}^{\infty} e^{\operatorname{Im}\lambda t} \left\| f(t) \right\|_{Y} \mathrm{d}t &\leqslant \int\limits_{t_0}^{\infty} e^{\tau t} \left\| f(t) \right\|_{Y} \mathrm{d}t \leqslant \\ &\leqslant \left(\int\limits_{t_0}^{\infty} e^{-2\gamma t} \mathrm{d}t \right)^{\frac{1}{2}} \left(\int\limits_{t_0}^{\infty} e^{2(\tau + \gamma)t} \left\| f(t) \right\|_{Y}^{2} \mathrm{d}t \right)^{\frac{1}{2}} < \infty \end{split}$$

для любого $\gamma>0$ и в силу леммы Римана–Лебега, то отсюда и из приведённого выше представления $\tilde{f}_{\eta}(\lambda)$ следует, что $\|f_{\eta}(\lambda)\|_{Y}\to 0$ равномерно при $|\lambda|\to\infty$ по прямой ${\rm Im}\,\lambda=\tau$, следовательно, в полосе $0\leqslant {\rm Im}\,\lambda\leqslant \tau$ и подавно. Что касается функции

$$\tilde{A}_{kj\eta}(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{t_0}^{\infty} e^{-i\lambda t} \eta(t) A_{kj}(t) S_{h_{kj} + h_{kj}(t)} D_t^k u(t) dt,$$

то

$$\tilde{A}_{kj\eta}(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{t_0}^{\infty} e^{-i(\sigma+i\tau)t} \eta(t) A_{kj}(t) S_{h_{kj}+h_{kj}(t)} D_t^k u(t) dt =$$

$$= \frac{1}{\sqrt{2\pi}} \int_{t_0}^{\infty} e^{\tau t} A_{kj}(t) D_t^k u(t - h_{kj} - h_{kj}(t)) \left[\cos \sigma t - i \sin \sigma t\right] dt.$$

Далее имеем

$$\int_{t_0}^{\infty} e^{\tau t} |\eta(t)| \|A_{kj}(t)\|_{Y} \|D_t^k u(t - h_{kj} - h_{kj}(t))\|_{X} dt \le$$

$$\le c \left(\int_{t_0}^{\infty} e^{-2\gamma t} dt \right)^{\frac{1}{2}} \left(\int_{t_0}^{\infty} e^{2(\tau + \gamma)t} \|A_{kj}(t)\|_{Y}^{2} \|D_t^k u(t - h_{kj} - h_{kj}(t))\|_{X}^{2} dt \right)^{\frac{1}{2}}.$$

Оценивая интеграл в последней скобке, получим оценку

$$\int_{t_0}^{\infty} e^{2(\tau+\gamma)t} \|A_{kj}(t)\|_{Y}^{2} \|D_{t}^{k}u(t-h_{kj}-h_{kj}(t))\|_{X}^{2} dt \leq
\leq \frac{c}{1-r} \int_{t_0}^{\infty} \|u(t)\|_{X}^{2} dt \leq c \int_{t_0}^{\infty} \|D_{t}^{k}u(t)\|_{X}^{2} dt,$$

с учётом условия теоремы на u(t).

Отсюда и из леммы Римана—Лебега следует равномерное стремление к нулю функции $\tilde{A}_{kj\eta}(\lambda)$ при $|\lambda| \to \infty$ в верхней полуплоскости ${\rm Im}\, \lambda > 0$ по норме пространства Y.

Аналогично имеем

$$\tilde{z}_{kj\eta}(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{t_0}^{\infty} e^{-i\lambda t} A_{kj} \left(S_{h_{kj}} \eta(t) S_{h_{kj}} - \eta(t) S_{h_{kj} + h_{kj}(t)} \right) D_t^k u(t) dt = \frac{1}{\sqrt{2\pi}} \int_{t_0}^{\infty} e^{\tau t} \times A_{kj} \left(\eta(t - h_{kj}) D_t^k u(t - h_{kj}) - \eta(t) D_t^k u(t - h_{kj} - h_{kj}(t)) \right) \left[\cos \sigma t - i \sin \sigma t \right] dt.$$

Далее имеем

$$\int_{t_0}^{\infty} \|e^{\tau t} \left(\eta(t - h_{kj}) D_t^k u(t - h_{kj} - h_{kj}(t)) \right) \|_{Y} dt \leqslant \left(\int_{t_0}^{\infty} e^{-2\gamma t} dt \right)^{\frac{1}{2}} \times \left(\int_{t_0}^{\infty} e^{2(\tau + \gamma)t} \| A_{kj} \left(\eta(t - h_{kj}) D_t^k u(t - h_{kj}) - \eta(t) D_t^k u(t - h_{kj} - h_{kj}(t)) \right) \|_{Y}^{2} dt \right)^{\frac{1}{2}},$$

где

$$\begin{split} &\int\limits_{t_0}^{\infty} e^{2(\tau+\gamma)t} \, \Big\| A_{kj} \Big(\eta(t-h_{kj}) D_t^k u(t-h_{kj}) - \eta(t) D_t^k u \Big(t-h_{kj}-h_{kj}(t)\Big) \Big) \Big\|_Y^2 \, \mathrm{d}t \leqslant \\ &\leqslant c \int\limits_{t_0}^{\infty} \big\| D_t^k u(t) \big\|_X^2 \, \mathrm{d}t + \frac{c}{1-r} \int\limits_{t_0}^{\infty} \big\| D_t^k u(t) \big\|_X^2 \, \mathrm{d}t + \int\limits_{t_0}^{\infty} \big\| D_t^{k+1} u(s) \big\|_X^2 \, \mathrm{d}s \times \\ &\times \int\limits_{t_0}^{\infty} e^{2(\tau+\gamma)t} \chi_{A_{kj}}^2 e^{-(\tau+\gamma)t} \, |h_{kj}(t)| \, \mathrm{d}t \leqslant c_2 \int\limits_{t_0}^{\infty} \big\| \Big(D_t^k + D_t^{k+1} \Big) \, u(t) \big\|_X^2 \, \mathrm{d}t \end{split}$$

в силу условий теоремы на u(t).

Таким образом, $\|\tilde{z}_{kj\eta}(\lambda)\|_X \to 0$ равномерно в верхней полуплоскости ${\rm Im}\,\lambda\geqslant 0$ при $|\lambda|\to\infty$. Далее из представления

$$\tilde{A}'_{kj\eta}(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{t_0}^{\infty} e^{\tau t} A_{kj}(t) D_t^{k+1} u \left(t - h_{kj} - h_{kj}(t)\right) \left[\cos \sigma t - i \sin \sigma t\right] dt$$

и из

$$\begin{split} & \int\limits_{t_0}^{\infty} e^{\tau t} |\eta(t)| \cdot \|A_{kj}(t)\|_{Y} \left\| D_{t}^{k+1} u \left(t - h_{kj} - h_{kj}(t) \right) \right\|_{X} \mathrm{d}t \leqslant \\ & \leqslant c \left(\int\limits_{t_0}^{\infty} e^{-2\gamma t} \mathrm{d}t \right)^{\frac{1}{2}} \left(\int\limits_{t_0}^{\infty} e^{2(\tau + \gamma)t} \left\| A_{kj}(t) \right\|_{Y}^{2} \left\| D_{t}^{k+1} u \left(t - h_{kj} - h_{kj}(t) \right) \right\|_{X}^{2} \mathrm{d}t \right)^{\frac{1}{2}}, \end{split}$$

$$\int_{t_0}^{\infty} e^{2\delta t} e^{-2\delta t} \|D_t^{k+1} u(t - h_{kj} - h_{kj}(t))\|_X^2 dt \leqslant$$

$$\leqslant c \int_{t_0}^{\infty} \|D_t^{k+1} u(t - h_{kj} - h_{kj}(t))\|_X^2 dt \leqslant c \int_{t_0}^{\infty} \|D_t^{k+1} u(t)\|_X^2 dt \leqslant \infty$$

следует наше утверждение для функции $\tilde{A}'_{kjn}(\lambda)$. При k=n-1

$$\tilde{z}_{kj\eta}(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{t_0}^{\infty} e^{\tau t} A_{kj}(t) \times \left(\eta(t - h_{kj}) D_t^{n-1} u(t - h_{kj}) - \eta(t) D_t^{n-1} u(t - h_{kj} - h_{kj}(t)) \right) \left[\cos \sigma t - i \sin \sigma t \right] dt$$

$$\int_{t_0}^{\infty} e^{\tau t} \left\| A_{kj} \left(\eta(t - h_{kj}) D_t^{n-1} u(t - h_{kj}) - \eta(t) D_t^{n-1} u(t - h_{kj} - h_{kj}(t)) \right) \right\|_{Y} dt \leqslant$$

$$\leqslant c \left(\int_{t_0}^{\infty} e^{-2\gamma t} dt \right)^{\frac{1}{2}} \times \left(\int_{t_0}^{\infty} e^{2(\tau + \gamma)t} \times \left\| A_{kj} \left(\eta(t - h_{kj}) D_t^{n-1} u(t - h_{kj}) - \eta(t) D_t^{n-1} u(t - h_{kj} - h_{kj}(t)) \right) \right\|_{Y}^{2} dt \right)^{\frac{1}{2}},$$

$$\int_{t_0}^{\infty} e^{2(\tau+\gamma)t} \left\| A_{kj} \left(\eta(t-h_{kj}) D_t^{n-1} u(t-h_{kj}) - \eta(t) D_t^{n-1} u(t-h_{kj}-h_{kj}(t)) \right) \right\|_Y^2 dt \le C \int_{t_0}^{\infty} \left\| D_t^{n-1} u(t-h_{kj}) \right\|_X^2 dt + C_1 \int_{t_0}^{\infty} \left\| D_t^{n-1} u(t-h_{kj}-h_{kj}(t)) \right\|_X^2 dt + C_1 \int_{t_0}^{\infty} \left\| D_t^{n-1} u(t-h_{kj}-h_{kj}(t) \right\|_X^2 dt + C_1 \int_{t_0}^{\infty} \left\| D_t^{n-1} u(t-h_{kj}-h_{kj}($$

$$+ \int_{t_0}^{\infty} e^{2(\delta+\gamma)t} \chi_{A_{kj}}^{2} \left(e^{-(\tau+\gamma)t} \right) \left\| D_{t}^{n-1} u(t-h_{kj}) + D_{t}^{n-1} u(t-h_{kj}-h_{kj}(t)) \right\|_{Y}^{2} dt \le$$

$$\le c \int_{t_0}^{\infty} \left\| D_{t}^{n-1} u(t) \right\|_{X}^{2} dt + \frac{c}{1-r} \int_{t_0}^{\infty} \left\| D_{t}^{n-1} u(t) \right\|_{X}^{2} dt +$$

$$+ \int_{t_0}^{\infty} e^{2(\tau+\gamma)t} \chi_{A_{kj}}^{2} \left(e^{-(\tau+\gamma)t} \right) \left\| \int_{t-h_{kj}-h_{kj}(t)}^{t-h_{kj}} D_{t}^{n} u(s) ds \right\|_{Y}^{2} dt \le$$

$$\le c_{2} \int_{t_0}^{\infty} \left\| D_{t}^{n-1} u(t) \right\|_{X}^{2} dt + \int_{t_0}^{\infty} e^{2(\tau+\gamma)t} \chi_{A_{kj}}^{2} \left(e^{-(\tau+\gamma)t} \right) \times$$

$$\times |h_{kj}(t)| \cdot \left\| \int_{t-h_{kj}}^{t-h_{kj}-h_{kj}(t)} \left\| D_{t}^{n} u(t) ds \right\|_{Y}^{2} ds \right| dt \le c_{2} \int_{t_0}^{\infty} \left\| u'(t) \right\|_{X}^{2} dt +$$

$$+ \int_{t_0}^{\infty} \left\| D_{t}^{n} u(s) \right\|_{Y}^{2} ds \int_{s+h_{kj}}^{\infty} e^{2(\tau+\gamma)t} \chi_{A_{kj}}^{2} \left(e^{-(\tau+\gamma)t} \right) \cdot |h_{kj}(t)| dt \le$$

$$\le c_{2} \int_{t_0}^{\infty} \left\| D_{t}^{n-1} u(t) \right\|_{X}^{2} dt + c_{3} \int_{t_0}^{\infty} \left\| D_{t}^{n} u(t) \right\|_{Y}^{2} dt \le c_{2} \int_{t_2}^{\infty} \left\| D_{t}^{n-1} u(t) \right\|_{X}^{2} dt +$$

$$+ c_{3} \int_{t_0}^{\infty} \left\| \sum_{k=0}^{n-1} \sum_{j=0}^{m} \left[A_{kj} + A_{kj}(t) \right] S_{h_{kj} + h_{kj}(t)} D_{t}^{k} u(t) + f(t) \right\|_{Y}^{2} dt < \infty$$

следует равномерное стремление к нулю в полосе $0 \le \operatorname{Im} \lambda \le \tau$ для любого $\tau > 0$ функции $\tilde{z}'_{kj\eta}(\lambda)$ по норме пространства Y.

Так как для фиксированного значения ${\rm Im}\,\lambda=\tau$ величина $\|R_p^n(\lambda)\|_X$ ограничена в силу условия б) теоремы, то из (4) следует, что $\|\tilde{\vartheta}(\lambda)\|_X\to 0$ равномерно при $|\lambda|\to\infty$ в любой полосе $0\leqslant {\rm Im}\,\lambda\leqslant \tau<\infty$.

Поскольку u(t) и $\vartheta(t)$ отличаются друг от друга только на отрезке $[t_0, t_0+1]$ и $u(t) \in L^2((t_2, \infty), X)$, то в силу теоремы Планшереля $\|\tilde{\vartheta}(\lambda)\|_X \in L_2(\operatorname{Im} \lambda = 0)$ на действительной оси.

Поэтому, согласно теореме Коши,

$$\begin{split} \vartheta(t) &= \frac{1}{\sqrt{2\pi}} \int\limits_{\mathrm{Im}} \int\limits_{\lambda=0} e^{i\lambda t} \tilde{\vartheta}(\lambda) d\lambda = \\ &= \frac{1}{\sqrt{2\pi}} \int\limits_{\mathrm{Im}} \int\limits_{\lambda=0} e^{i\lambda t} R_p^n(\lambda) \left\{ \tilde{f}_{\eta}(\lambda) + \tilde{u}_{\nu\eta}(\lambda) + \tilde{A}_{kj\eta}(\lambda) + \tilde{z}_{kj\eta}(\lambda) \right\} \mathrm{d}\lambda. \end{split}$$

Отсюда по теореме Планшереля

$$\int_{-\infty}^{+\infty} \left\| e^{\tau t} \vartheta(t) \right\|_{X}^{2} dt = \int_{-\infty}^{+\infty} e^{2\tau t} \left\| \vartheta(t) \right\|_{X}^{2} dt =$$

$$= \int_{-\infty}^{+\infty} \left\| R_p^n(\lambda) \left\{ \tilde{f}_{\eta}(\lambda) + \tilde{u}_{\nu\eta}(\lambda) + \tilde{A}_{kj\eta}(\lambda) + \tilde{z}_{kj\eta}(\lambda) \right\} \right\|_Y^2 d\lambda, \quad \lambda = \sigma + i\tau$$

или

$$\exp\left[\left(-2\left(\frac{\alpha-1}{a}\right)^{\alpha-1}\left(\frac{\operatorname{Im}\lambda}{\alpha}\right)^{\alpha}\right)\right]\int_{t_0}^{+\infty}e^{2\tau t}\left\|\vartheta(t)\right\|_{X}^{2}dt \leqslant$$

$$\leqslant \int_{-\infty}^{+\infty}\left\|\left\{\tilde{f}_{\eta}(\lambda)+\tilde{u}_{\nu\eta}(\lambda)+\tilde{A}_{kj\eta}(\lambda)+\tilde{z}_{kj\eta}(\lambda)\right\}\right\|_{Y}^{2}d\lambda,$$

где ${\rm Im}\,\lambda=\tau$ и последний интеграл в правой части полученного неравенства взят вдоль прямой ${\rm Im}\,\lambda=\tau$ слева направо.

Перейдя от интервала интегрирования (t_0, ∞) к интервалу (t, ∞) , t > 0, $t > t_0$, мы лишь усилим последнее неравенство. Таким образом,

$$\exp\left[\operatorname{Im} \lambda t - \left(\frac{\alpha - 1}{a}\right)^{\alpha - 1} \left(\frac{\operatorname{Im} \lambda}{a}\right)^{\alpha}\right] \int_{t}^{+\infty} \|\vartheta(s)\|_{X}^{2} ds \leqslant$$

$$\leqslant \int_{-\infty}^{+\infty} \left\|\left\{\tilde{f}_{\eta}(\lambda) + \tilde{u}_{\nu\eta}(\lambda) + \tilde{A}_{kj\eta}(\lambda) + \tilde{z}_{kj\eta}(\lambda)\right\}\right\|_{Y}^{2} d\lambda.$$

Так как t>0 фиксировано и ${\rm Im}\,\lambda>0,$ то, полагая ${\rm Im}\,\lambda=\frac{a\alpha}{\alpha-1}t^{\frac{1}{\alpha-1}},\ \beta=\frac{\alpha}{\alpha-1},$ получим

$$\exp\left\{2\left[\frac{a\alpha}{\alpha-1}t^{\frac{1}{\alpha-1}}t - \left(\frac{\alpha-1}{a}\right)^{\alpha-1}\left(\frac{a\alpha}{\alpha-1}t^{\frac{1}{\alpha-1}}\frac{1}{\alpha}\right)^{\alpha}\right]\right\} =$$

$$= \exp\left\{2t^{\beta}\left[\left(\frac{a\alpha}{\alpha-1}\right) - \left(\frac{\alpha-1}{a}\right)^{\alpha-1}\left(\frac{a}{\alpha-1}\right)^{\alpha}\right]\right\} =$$

$$= \exp\left\{2\left[t^{\beta}\left(\frac{a\alpha}{\alpha-1} - \frac{\alpha}{\alpha-1}\right)\right]\right\} = e^{2at^{\beta}}.$$

Таким образом, получили неравенство

$$e^{2at^{\beta}} \int_{t}^{+\infty} \|\vartheta(s)\|_{X}^{2} ds \leqslant \int_{-\infty}^{+\infty} \left\| \left\{ \tilde{f}_{\eta}(\lambda) + \tilde{u}_{\nu\eta}(\lambda) + \tilde{A}_{kj\eta}(\lambda) + \tilde{z}_{kj\eta}(\lambda) \right\} \right\|_{Y}^{2} d\lambda.$$

Из этого неравенства следует

$$e^{2a(t+j)^{\beta}} \int_{t+j}^{+\infty} \|\vartheta(s)\|_X^2 ds \leqslant \int_{-\infty}^{+\infty} \left\{ \tilde{f}_{\eta}(\lambda) + \tilde{u}_{\nu\eta}(\lambda) + \tilde{A}_{kj\eta}(\lambda) + \tilde{z}_{kj\eta}(\lambda) \right\},$$

$$e^{2a(t+j)^{\beta}-\mu(t+j+1)^{\beta}}\int_{t+j}^{t+j+1}e^{\mu s^{\beta}}\|\vartheta(s)\|_{X}^{2}\,\mathrm{d}s\leqslant$$

$$\leq \int_{-\infty}^{+\infty} \left\| \left\{ \tilde{f}_{\eta}(\lambda) + \tilde{u}_{\nu\eta}(\lambda) + \tilde{A}_{kj\eta}(\lambda) + \tilde{z}_{kj\eta}(\lambda) \right\} \right\|_{Y}^{2} d\lambda, \quad (5)$$

где μ — произвольная положительная константа.

Покажем связь последних неравенств. Имеем

$$e^{2a(t+j)^{\beta} - \mu(t+j+1)^{\beta}} \int_{t+j}^{t+j+1} e^{\mu s^{\beta}} \|\vartheta(s)\|_{X}^{2} ds \leq$$

$$\leq e^{2a(t+j)^{\beta}} \int_{t+j}^{t+j+1} \|\vartheta(s)\|_{X}^{2} ds \leq e^{2a(1+j)^{\beta}} \int_{t+j}^{\infty} \|\vartheta(s)\|_{X}^{2} ds.$$

В данном случае $\exp\Bigl(-\mu\bigl((t+j+1)^\beta-s^\beta\bigr)\Bigr)\leqslant 1$, так как $t+j< s< t+j+1, t+j+1\geqslant s$. Полагая $\mu=2(a-\varepsilon)$ и учитывая, что $\beta>1$, имеем $2a(t+j)^\beta-\mu\,(t+j+1)>\frac{\varepsilon}{2}(t+j)^\beta$. Это неравенство можно получить из неравенства $\Bigl(1+\frac{1}{t+j}\Bigr)^\beta<1+A, A>0$ и $t+j\equiv T$ — достаточно большое.

Таким образом, неравенство (5) можно написать так

$$e^{\frac{\varepsilon}{2}(1+j)^{\beta}} \int_{t+j}^{t+j+1} e^{\mu s^{\beta}} \|\vartheta(s)\|_{X}^{2} ds \leqslant \int_{-\infty}^{+\infty} \left\| \left\{ \tilde{f}_{\eta}(\lambda) + \tilde{u}_{\nu\eta}(\lambda) + \tilde{A}_{kj\eta}(\lambda) + \tilde{z}_{kj\eta}(\lambda) \right\} \right\|_{Y}^{2} d\lambda,$$

$$\int_{t+j}^{t+j+1} e^{2(a-\varepsilon)s^{\beta}} \|\vartheta(s)\|_{X}^{2} ds \leqslant$$

$$\leqslant e^{-\frac{\varepsilon}{2}(t+j)^{\beta}} \int_{-\infty}^{+\infty} \|\left\{\tilde{f}_{\eta}(\lambda) + \tilde{u}_{\nu\eta}(\lambda) + \tilde{A}_{kj\eta}(\lambda) + \tilde{z}_{kj\eta}(\lambda)\right\}\|_{Y}^{2} d\lambda.$$

Суммируя по j = 0, 1, 2, ..., получим

$$\int_{t}^{+\infty} e^{2(a-\varepsilon)s^{\beta}} \|\vartheta(s)\|_{X}^{2} ds \leqslant c \int_{-\infty}^{+\infty} \left\| \left\{ \tilde{f}_{\eta}(\lambda) + \tilde{u}_{\nu\eta}(\lambda) + \tilde{A}_{kj\eta}(\lambda) + \tilde{z}_{kj\eta}(\lambda) \right\} \right\|_{Y}^{2} d\lambda, \quad (6)$$

ибо ряд
$$\sum_{j=0}^{\infty} \exp\left(-\frac{\varepsilon}{2}(t+j)^{\beta}\right)$$
 сходится.

Для завершения доказательства теоремы остаётся показать сходимость интеграла

$$\int_{-\infty}^{+\infty} \left\| R_p^n \left\{ \tilde{f}_{\eta}(\lambda) + \sum_{\nu=0}^{n-1} C_{\eta}^{\nu} \tilde{u}_{\nu\eta}(\lambda) + \sum_{k=0}^{n-1} \sum_{j=0}^{m} \sum_{v=0}^{k} C_k^{v} \tilde{A}_{kj\eta}(\lambda) + \sum_{k=0}^{n-1} \sum_{j=0}^{m} \tilde{z}_{kj\eta}(\lambda) \right\} \right\|_{Y}^{2} d\lambda \leqslant$$

$$\leqslant c \left\{ \int_{-\infty}^{+\infty} \left\| \tilde{f}_{\eta} \left(\sigma + i\tau \right) \right\|_{Y}^{2} d\sigma + \sum_{\nu=0}^{n-1} \int_{-\infty}^{+\infty} \left\| \tilde{u}_{\nu\eta} \left(\sigma + i\tau \right) \right\|_{Y}^{2} d\sigma + \right.$$

$$+ \sum_{k=0}^{n-1} \sum_{j=0}^{m} \sum_{\mu=0}^{k} \int_{-\infty}^{+\infty} \left\| \tilde{A}_{kj\eta} \left(\sigma + i\tau \right) \right\|_{Y}^{2} d\sigma + \sum_{k=0}^{n-1} \sum_{j=0}^{m} \int_{-\infty}^{+\infty} \left\| \tilde{z}_{kj\eta} \left(\sigma + i\tau \right) \right\|_{Y}^{2} d\sigma \right\},$$

$$c = \text{const.}$$

Для каждого слагаемого из фигурных скобок, используя теорему Планшереля, получим

$$\int_{-\infty}^{+\infty} \left\| \tilde{f}_{\eta} \left(\sigma + i\tau \right) \right\|_{Y}^{2} d\sigma \leqslant \int_{-\infty}^{+\infty} e^{2\tau t} |\eta(t)|^{2} \|f(t)\|_{Y}^{2} dt \leqslant \int_{t_{0}}^{+\infty} e^{2\tau t} \|f(t)\|_{Y}^{2} dt < \infty,$$

$$\int_{-\infty}^{+\infty} \left\| \tilde{u}_{0\eta} \left(\sigma + i\tau \right) \right\|_{Y}^{2} d\sigma \leqslant \int_{-\infty}^{+\infty} e^{2\tau t} |\eta(t)|^{2} \|D_{t}^{n} u(t)\|_{Y}^{2} dt \leqslant \int_{-\infty}^{+\infty} e^{2\tau t} \|D_{t}^{n} u(t)\|_{X}^{2} dt < \infty,$$

$$\int_{-\infty}^{+\infty} \left\| \tilde{u}_{1\eta} \left(\sigma + i\tau \right) \right\|_{Y}^{2} d\sigma = \int_{-\infty}^{+\infty} e^{2\tau t} |\eta'(t)|^{2} \|D_{t}^{n-1} u(t)\|_{Y}^{2} d\sigma = \int_{t_{0}}^{t_{0}+1} e^{2\tau t} \|D_{t}^{n-1} u(t)\|_{X}^{2} dt < \infty.$$

Все остальные интегралы, в которых встречаются производные от функции $\eta(t)$, будут интегралами по конечному интервалу $(t_0, t_0 + 1)$.

Что касается остальных интегралов, то, используя условия а) и д) теоремы, имеем

$$\int_{-\infty}^{+\infty} \left\| \tilde{A}_{0j\eta} \left(\sigma + i\tau \right) \right\|_{Y}^{2} d\sigma \leqslant \int_{-\infty}^{+\infty} e^{2\tau t} \left\| A_{0j\eta}(t) \eta(t) S_{h_{0j} + h_{0j}(t)} u(t) \right\|_{Y}^{2} dt \leqslant$$

$$\leqslant \left(\int_{t_{0}}^{\infty} e^{-2\varepsilon t} dt \right)^{\frac{1}{2}} \left(\int_{t_{0}}^{\infty} e^{2(\tau + \varepsilon)t} \left\| A_{0j}(t) \right\|_{Y}^{2} \left\| S_{h_{0j} + h_{0j}(t)} u(t) \right\|_{X}^{2} dt \right)^{\frac{1}{2}} \leqslant$$

$$\leqslant \frac{c}{1 - r} \int_{t_{2}}^{\infty} \left\| u(t) \right\|_{X}^{2} dt < \infty.$$

Аналогично доказывается и сходимость остальных интегралов, связанных с $\tilde{A}_{kj\eta}(\lambda)$, при оценке которых слева получится интеграл $\frac{A}{1-r}\int\limits_{t_0}^{\infty}\left\|D_t^ku(t)\right\|_X^2\mathrm{d}t<\infty,\,k=1,\,2,\,\ldots,\,n-1.$ Для оценки оставшихся интегралов от $\tilde{z}_{kj\eta}(\lambda)$ используем лемму 1 о характеристической функции $\chi\left(\varepsilon\right)$ оператора A. Имеем

$$\int_{-\infty}^{+\infty} \|\tilde{z}_{0j\eta} (\sigma + i\tau)\|_{Y}^{2} d\sigma \leqslant
\leqslant \int_{-\infty}^{+\infty} e^{2\tau t} \|\eta(t - h_{0j})u(t - h_{0j}) - \eta(t)u(t - h_{0j} - h_{0j}(t))\|_{X}^{2} dt +
+ \chi_{A_{0j}}^{2} e^{-\tau t} \|\eta(t - h_{0j})u(t - h_{0j}) - \eta(t)u(t - h_{0j} - h_{0j}(t))\|_{Y}^{2} dt \leqslant
\leqslant c_{2} \int_{t_{2}}^{\infty} \|u(t)\|_{X}^{2} dt + c_{3} \int_{t_{2}}^{\infty} \|u'(t)\|_{X}^{2} dt < \infty.$$

Как видно из выражения для $\tilde{z}_{kj\eta}(\lambda)$ при появлении производной от $\eta(t)$ под соответствующим интегралом окажется финитная функция, равная нулю вне (t_0, t_0+1) . Поэтому доказательство сходимости соответствующих интегралов не представляется трудной задачей. Таким образом, после приведённого доказатель-

ства неравенство (6) принимает вид
$$\int\limits_{t_0}^{\infty}e^{2(a-\varepsilon)t^{\beta}}\left\|u(t)\right\|_X^2\mathrm{d}t\leqslant c\int\limits_{t_0}^{\infty}e^{2\delta t}\left\|f(t)\right\|_Y^2\mathrm{d}t.$$
 Теорема доказана.

Литература

- 1. Алиев Р. Г. О дифференциальных уравнениях в банаховом пространстве, решения которых убывают быстрее экспоненты // Вестник МГУ. 1974. № 5. С. 3—7. [Aliev R. G. O differencialjnihkh uravneniyakh v banakhovom prostranstve, resheniya kotorihkh ubihvayut bihstree ehksponentih // Vestnik MGU. 1974. No 5. S. 3–7.]
- 2. Алиев Р. Г., Шамов Э. Ш. Об одной теореме типа Фрагмена–Линделёфа для функционально-дифференциального уравнения с операторными коэффициентами в гильбертовом пространстве // Сборник «ФДУ и их приложения». 2009. № 5. С. 43–47. [Aliev R. G., Shamov Eh. Sh. Ob odnoyj teoreme tipa Fragmena–Lindelyofa dlya funkcionaljno-differencialjnogo uravneniya s operatornihmi koehfficientami v giljbertovom prostranstve // Sbornik «FDU i ikh prilozheniya». 2009. No 5. S. 43–47.]
- 3. Лакс П. Д. Теорема Фрагмена—Линделёфа в гармоническом анализе и её применение к некоторым вопросам теории эллиптических уравнений // «Математика», сб. переводов. 1959. Т. 3, № 4. С. 107–132. [Laks P. D. Teorema Fragmena—Lindelyofa v garmonicheskom analize i eyo primenenie k nekotorihm voprosam teorii ehllipticheskikh uravneniyj // «Matematika», sb. perevodov. 1959. Т. 3, No 4. S. 107–132.]
- 4. Алиев Р. Г. Функционально-дифференциальные уравнения в гильбертовом пространстве. Махачкала, 2001. [Aliev R. G. Funkcionaljno-differencialjnihe uravneniya v giljbertovom prostranstve. Makhachkala, 2001.]

UDC 517.9

About Growth of Solutions to Ordinary Differential Equation with the Delay Argument

E. Sh. Shamov

Department of Higher Mathematics Dagestan State Technical University 70, I. Shamil avenue, Makhachkala, 367015, Dagestan, Russia

The functional-differential n-order equation with unbounded operational coefficient and deviations of arguments is considered. The existence theorem of the existence of solutions decreasing rapidly compared to exponent, is proved in the article.

Key words and phrases: functional-differential equation, resolvent operator, invertible (recoverable) operator, unbounded operator, completely continuous, closed operator, operational coefficient.