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Maxwell’s Equations in Arbitrary Coordinate System
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The article is devoted to application of tensorial formalism for derivation of different types
of Maxwell’s equations. The Maxwell’s equations are written in the covariant coordinate-
free and the covariant coordinate forms. Also the relation between vectorial and tensorial
formalisms and differential operators for arbitrary holonomic coordinate system in coordinate
form is given. The results obtained by tensorial and vectorial formalisms are verified in
cylindrical and spherical coordinate systems.
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1. Introduction

Problems of waveguide mathematical modelling sometimes need curvilinear coor-
dinate system to be applied. The choice of specific coordinate system is defined by
the cross-section of the waveguide.

Usually the description of waveguide model is based on Maxwell’s equations in
Cartesian coordinate system. With the help of vector transformation property Maxwell’s
equations are rearranged for sertain coordinate system (spherical or cylindrical). But
in some problems, e.g. simulation of a heavy-particle accelerator, the waveguide may
has the form of a cone or a hyperboloid. Another example of a waveguide with a com-
plex form is the Luneberg lens, which has the form of a part of a sphere or a cylinder
attached to a planar waveguide. Therefore in the case of a waveguide with a complex
form the Maxwell’s equations should be written in a arbitrary curvilinear coordinate
system.

It’s well established to apply vectorial formalism to Maxwell’s equations. But in
this case Maxwell’s equations in a curvilinear coordinate system are lengthy. In [1]
some preliminary work on tensorial formalism resulting in a more compact form of
Maxwell’s equations is made. The tensorial formalism has a mathematical apparatus
which allows to use covariant coordinate-free form of Maxwell’s equations. In this
case the transition to a certain coordinate system may be done on the final stage of
research writing down the results. But tensorial formalism can’t be directly applied to
Maxwell’s equations because the relation between vectorial and tensorial formalisms
should be proven before.

Different forms of Maxwell’s equations are used in problems of finding Hamilton-
ian of electromagnetic field applied in variational integrator (particularly, symplectic
integrator) construction. The main task is the fulfillment of the condition of sym-
plectic structure conservation during equations discretization. The several forms of
Maxwell’s equations are used in electromagnetic field Hamiltonian derivation:

— 3-vectors;
— momentum representation (complex form is used);
— momentum representation.

As a summary the main goals of the article may be formulated: to show connection
between vectorial and tensorial formalisms (section 2); to apply tensorial formalism
for different forms of Maxwell’s equations (section 4); to verify the obtained results
by representing Maxwell’s equations in spherical and cylindrical coordinate systems
(section 5).
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2. Connection Between Vectorial and Tensorial Formalisms

Let’s use the abstract indices formalism introduced in [2] in application to tensor
algebra. In [2] « is the abstract index, o — a tensor component index. The usage of
a component index in some expression means that some arbitrary basis is introduced
in this equation and indices obey the Einstein rule of summation (the sum is taken
over every numeric index which occurs in one term of the expression twice — top and
bottom). Abstract indices have an organizing value.

Let’s consider an arbitrary n-dimensional vector and space V'*® conjugated to V'*®
space V.
In tensorial formalism the basis is given in coordinate form:

i 0
53'_33;1

e Ve, 6f:dmi€V., i=1,n.

In vectorial formalism the basis is given by elements with the length ds? upon the
corresponding coordinate:

D % ;o
(S;/ = @, 6% = C].Si y l/ = 1,’[7,.
In tensor form: o
ds? = gijdztdz?, i, j=1,n, (1)
where g;; — metric tensor.
In vector form: L
ds? = gypdstdst, i, 5 =T,n. (2)

In the case of orthogonal basis, (2) has the form:

ds? = gﬂ-rdsfdsé,, i =1,n. (3)

let’s express the vector basis through the tensor one:

¢ pilqei 9 i 0
dst = hi dz*, 957 = M gpi0
L
1 1 . . = . .
where h; , by, i, i = 1,n, — matrix of Jacobi.

For orthogonal basis from (3)

B . 74'/ 7:/ . . . .
gidrtdat = gy by by da*dat, i, 4" =T,n.

Let’s introduce the notation (for orthogonal coordinate system)

Variables h; are called Lame coefficients [3, Vol. 1, p. 34-35].

Let’s express vector fi € V* by its components f% in tensor 52 and vector &,

basises:
0

=1 = fi

i_ l—/ Z . Z/ 8 o lv/
f_f(sl’_f asi/_f

1 0
By Oxt’
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and then

In the similar way, for covectors:
fi = fi0; = fidat,

and then

1
fir = f;?, i, =1n.

7

So the connection between tensorial and vectorial formalisms is proved.

3. Tensorial Notation of Differential Operators in
Components

Let’s present the differential operators in the components (for connections associ-
ated with metric).

The expression for gradient:

(grad ¢); = (grad ¢),0;, (gradp)i = Vip = dip, i =1,n. (4)
The variable ¢ is a scalar.

The expression for an arbitrary vector divergence f eVeis:

W=V = f= T = - O = o (V). 6)

or in components:

o L i L
Msﬁﬂmm,um (6)

Variable ¢ is det (gﬂ), i=1,n.

Because of the nonnegativity of radical expression and because of M* g < 0 in
Minkowsky space let’s use the following notation |g|.

The expression for rotor is valid only in E3 space:

(rot f)l = [ﬁ,f] = (rot f)léz, (rot f)i = eiﬁvjf@ 1, Z, k= 1,737 (7)

where €% is the alternating tensor expressed by Levi-Civita simbol £¥%:

" 1 .
ellE =V ‘g‘é—g&, et = Ellia 1, 17 E - ]-73

Vgl

From (5) for divergence and (4) for gradient one can get Laplacian:

Ap =V; (Vi) = Vi (97 (grad p);) =V, (970;¢) = \/1?'81- ( lglg” @w) -
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4. Maxwell’s Equations Presentation

Let’s consider Maxwell’s equations in CGS-system [4]:

Here E and H — electric and magnetic intensities, j is the current density, p is the
charge density, c is the light velocity.

4.1. Maxwell’s Equations Covariant Form by 3-vectors
Let’s express the equation (9) in the covariant form

eV By = —VB';

VD" = 47p;
3 g (10)
eIV Hy = Vo D' + =5
V,B' = 0.

Let’s rewrite the expression (9) in the tensorial formalism components with the
help of (7) and (6):
1 i .
\/ﬁ [8LEE_ 8&EJ = —*(%B*, 1, l, E = 1,3,
1
VI0g®|
47 i

1 . _
(0 Hy — 0pH;| = —oD + i i k=13,

o (Vla®IDt) =amp. i=T3
()

1

V1g®

1

a(mwﬂ—miﬂﬁ
VIg®| =

4.2. Maxwell’s Equations Covariant Form by 4-vectors

Let’s rewrite (9) with the help of electromagnetic field tensors F,,g and Gag [5], [6,
p. 256, 263-264]:

Vo = T, (12)
VaoGay + VG +V,Gap =0, (13)
0 E1 E2 Eg 0 Dl D2 D3
—Fy 0 —-B3 B2 —Dy 0 —H3 H?
Fop = 3 1> Gap = 3 1>
= —-FEy B 0 —-B = -Dy H 0 —-H

-E3; —-B* B! 0 -D3 —-H? H! 0



100 Bulletin of PFUR. Series Mathematics. Information Sciences. Physics. No 1, 2012. Pp.96-106

E;, H%, i = 1,3, — components of electric and magnetic fields intensity vectors; D,
i 4 =1,3, — components of vectors of electric and magnetic induction.
The equation (13) may be rewritten in a simpler form

Vo *G*P =0, (14)
where the tensor *G*? dual conjugated to G*? is introduced

* (o3 1 «
GP = 7€ PG s, (15)

where e®#7 is the alternating tensor. '
The ordered pair (E;, B*) (Fop ~ (E;, B")) may be assigned to F,g by following

Foi = E;, Fij= — B, substitution P(i, J, k) — is even. (16)

So the following expressions may be written
Faﬁ ~ (Ei7Bi)7 Faﬁ ~ (_EivBi)a
Gap ~ (D;, HY), G*P ~ (-D', H)), (17)
“Gup ~ (Hi,—D"), *G*P ~ (—H',—D).

4.3. Complex Form of Maxwell’s Equations

The complex form of Maxwell’s equations was considered by various authors [7,
p. 40-42], [§]
Similar to (17) let’s introduce correspondence between an ordered pair and a com-
plex 3-vector
F'~(E',B"), F'=E'+iB"

Tm s T e (18)
G'~ (D' H"), G'=D'+iH".
Let’s express intensity and induction by means of complex vectors
Ei:F"JrFi Bi:F"—.Fi
G’ —Qk G" G’ ! G" (19)
i_ i —
D' = 5 H' = ST
Two complementary vectors
Ki=¢ = L= GT (20)

The expression (10) assumes the form
Vi(K"+ L") = 47p;

S i (21)
—iVo(K' — L) + ¥V, (Ky — Lyy) =i 4"

4.3.1. Complex Form of Maxwell’s Equations in Vacuum
From D' = E', H' = B and (20) it follows

K'=E'+iB'=F', L'=0. (22)
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Then the equations (21) will have the form

V,F' = 47 p;
. L . 23
—iVoF' + €%V, F), = 14?”]‘2. (23)

4.3.2. Complex Representation of Maxwell’s Equations in Homogeneous
Isotropic Space

In homogeneous isotropic space the following relations D = ¢ E*, uH* = B* (where
e — dielectric permittivity and g — magnetic permeability) are correct.
The resulting expressions may be simplified as follows. In (23) we need the formal

substitutions ¢ — ¢/ = \/LEW (the speed of light in vacuum is substituted by the speed
of light in medium) and j* — J_. The result:
NG
) 1 .
=eE' +i—B",
\/7
V,F' = ; 24
\/p (24)
4 / 7
eIPV =i fj—l— caali.

4.4. Momentum Representation of Maxwell’s Equations

Let’s expand the vectors of electric and magnetic fields intensity in a wavevector
Fourier series k7, 7 — abstract index:

E'(t,a?) = (2 e /d3k Bi(t, kj)es’
Hi(t,2’) = (2 T /d3k Hi(t, ey )eoe
‘ J) = 3. Rt N\ nikjxd
Bi(t,a?) m/d ke B (t, kj)ethi® | .
Di(t,z7) = (%)3 /d3k D (¢, kYol i
p(t,z?) = kiolt, k:j)e‘kﬂ' ’
jit,al) = \/(;T)g/d‘?’kjji(t, k)i

Let’s note that the vector components E(t,2’) and E‘(t,k;), (similarly: H(t,z7)
and H'(t, k;), D'(t,27) and D'(t, k;), B'(t,2?) and B'(t,k;), j'(t,2’) and j*(t, k;))
are used in different basises:

E'(t,x7) = B(t,27)6!

l’

E(t, k) = EX(t, k;)dL,

where the basis 52 is given according to the vector k;. For all k; the independent basis
is defined and that is why one can use expressions under integral sign putting down
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Maxwell’s equations from (25):

: 1 ik _ 1 i )
17|g(3)|6 J k:jEk(t, k‘j) = _EatB (t’ k;])7

ik; D' (t, k) = dmp(t, k;),
ik;Bi(t, k;) = 0.

Because of the complex form of the resulting equations the complex form of
Maxwell’s equations (18) is recommended to use

1

V@

1

V(@2m)?
1

T ] Fhart ke,

1 37 4 ikjx?
ﬁ27r)3 /d k‘j] (t, kj)e .

Remark. In terms of classical electrodynamics vectors E/, H’, B/, DJ decompo-
sitions in wavevector k7 Fourier series correspond to these vectors decomposition in
momentum Fourier series in quantum mechanics. That is why the representation (26)
may be considered as momentum representation.

Fi(t,a’) = / Ak F(t, ky)else

Gilt,al) = / By G, k)

(27)

plt,a’) =

ji(t,al) =

4.5. Spinor Form of Maxwell’s Equations

The tensor of electromagnetic field Fg and its components Fug, a, 8 = 0,3 may
be considered in spinor form [2, p. 153] (and similarly for G,3):

Fog = FaaBp;
Fap=Fanppg 2952, AABB =01, ap=03,

(28)

where ggéél, a = 0,3, — Infeld-Van der Waerden symbols defined in real spinor basis
€4 p in the following way [2, p. 161]:

AA . « A A’ a . a _A A’
9o"F =9, eaT, gaa® = 9% 48" A, (29)

0 1 1 0

Let’s write Maxwell’s equations using the spinors.
The tensor F,3 is real and antisymmetric, it can be represented in the form

Fop = papearp +eapparp, (31)
where @ 4p is a spinor of electromagnetic field:

1 ’ 1 IR>U 1 1/
YPAB ‘= §FABC’C :gFAA/BB/é‘AB :E aﬁEAB.
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Similarly
Gop = vaBEA'B' +€ABYA B, (32)
*GoB — _i,YABEA/B/ + iEAB,—yA’B/. (33)
Replacing in (12) abstract indices « by AA” and 8 by BB’, we can write:

AA'BB' _ AT .Bp
VAArF = ?j .

Using (31) we will get
VAB' B L gBA B _ AT .pp’ 34
s par =0 (34)

Similarly, from (14) and (33) it follows

’

VAByA —vAB'SA = 0. (35)
In so doing the system of Maxwell’s equations can be written as
’ / ’ 47T /
VAB' LB yBA B _ AT BB
SO/A SOA/ e J (36)
VAP - VAP A5 =0

The spinor form of Maxwell’s equations system in vacuum can be written in the
form of one equation [2, p. 385]:

’ 27‘( . /
VAT oF = =-jPP. (37)

The components of electromagnetic field spinor:

1 I
pap = GFape g% and’pp, A A BB =01 af=03

Using the equations (29), (30) and notation F; = E; — iB?, we will get [2, p. 386]:

1 . 1 1 .
P00 = 5 (Fy —iF2), o1 = ¢10 = —§F3, p11=—75 (Fy +iFy).

5. Maxwell’s Equations Presentation in Some Coordinate
Systems

5.1. Maxwell’s Equations in Cylindric Coordinate System

Due to the standard ISO 31-11 the coordinates (2!, 2%, 2%) are denoted as (p, @, 2).
In order to avoid some collisions with charge density symbol p the following notation
(r, ¢, z) will be used.

The law of coordinate transition from Cartesian coordinates to cylindric ones:

T =TCosQ,
y = rsinp, (38)

z=2Z.



104 Bulletin of PFUR. Series Mathematics. Information Sciences. Physics. No 1, 2012. Pp. 96-106

The law of coordinate transition from cylindric coordinates to Cartesian ones:

SR

p = arctg (Q) , (39)
T
z=2z.
The metric tensor:
1 0 O 1 0 0
gj=10 »2 0], g¢g9=(0 1/ 0]. (40)
0 0 1 0 0 1

Vg =r.
Lame coefficients: hy = h, =1, ho=hy, =7, hz3=h,=1.
Maxwell’s equations in cylindric coordinates (r, ¢, 2):

(41)

L3,
Hoi, - opm) = ~2o,0i+ g i k=13,
r LR = c c L (42)
1 i . 5
;(91 (T‘D*) =4rp, i=1,3,
1 i _ L
~0;(rB*) =0, i=1,3.
The final result after some rearrangements:
1 1. .,
" [0,E3 — 0,E3) = —EatB ,
1 _ 1 2
- [0.E1 — 0,Fs] = —CatB ,
1 1
—[0,By = 0, 1] = ——0, B,
1 1 1 47 .1
; [8¢H3 — 8ZH2] = —EatD + ?] y
1 1 4t 43
- [0.Hy — 0, H3| = —EatDQ + %327 43

1 1 4 .
; [arH2 - a@Hl] = _E8tD3 + 7]37

1., , 0D oD*>  8D°
D+t 90 o = 4mp,
1,  0B' 0B*> 0B®
Bttt =0

5.2. Maxwell’s equations in Spherical Coordinate System

Due to standard ISO 31-11 coordinates (x!, 2%, 23) are denoted as (7,9, ).
The law of coordinate transition from Cartesian coordinates to spherical ones:

x = 7sin cos ¢,

y = rsindsin g, (44)
z =1rcost.
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The law of coordinate transition from spherical coordinates to Cartesian ones:
r=/x2+ 9%+ 22,

/2 2

9 = arccos | —b0 | = arctg VTZAY ) (45)
VaZ+y? + 22 z

)

p = arctg

The metric tensor:

1 0 0 ! (1) 0
gij =0 r? 0 , ¢ =10 3 0 (46)
0 0 r2sin®¥ 0 0 - 1 5
r? sin” o
Vg =r?sind. (47)

Lame coefficients: hy = h, =1, ha=hy =71, hz = h, =rsind.
Maxwell’s equations in spherical coordinates (r, 9, ¢):

(0,5 — 0By = a8, i j k=T3,

r2 sin ¢
1 1, . Aw ., .
m [81HE — 8EHJ = Eath%— ?ﬂ-]j (2D E = 1,3,
1 Z, (18)
r2sin<pai (TDi) :47rp7 1= 1737
1 i
r2sin @ lv(Bi):O’ t=13
1 1. .,
g (OvEs — 0, Fo] = —— 0B,
1 1
r2gind [0 Er — 0, B3] = _EatBQ’
1 1
r2sind [0- Bz — 89 En] = _Eath’
1 1 4 .
r2sin 9 (09 H3 — O, Ha] = _EatDl l 1 (49)
1 1 47T .
Zsind S1n19 [0pHy — 0rH3] = —E(‘?tDQ + 7]27
1 4 .
r2sind s1n19 [0r H> — O Hh] = _EatDB T ?‘73’

;Dl + 8,D' + ctg¥D? + 9y D* + 9,D* = 4np,

2B' 1+ 0,B" + ctg 0B + 0y B* + 0,B° = 0.

6. Conclusion

The main results of the article are:

1. It is shown that the usage of tensorial formalism instead of vectorial one for
Maxwell’s equations may simplify mathematical expressions (particularly in non-
Cartesian coordinate systems).

2. The connection between tensorial and vectorial formalisms is shown.
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The covariant coordinate representation of differential operators for holonomic
coordinate systems is given.
It is shown how to use tensor formalism for different forms of Maxwell’s equations.
Maxwell’s equations are presented in covariant coordinate-free and covariant co-
ordinate forms.
It is shown that the results obtained by tensorial and vectorial formalisms are the
same for cylindrical and spherical coordinate systems.
Using tensorial formalism instead of vectorial one can simplify the form of equations
and intermediate results in non-Cartesian coordinate systems due to well developed
formalism of tensor analysis. The transition to vectorial formalism can be done at a
final stage if necessary.
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ypaBHeHI/Iﬂ MaKCBeJ'I.TIa B HpOI/IBBOHLHOﬁ cucreMe KoopaumHaT

. C. Kyna6os*, A. B. KopoJubkosa*, B. 1. Kopoabkos'
* Kaghedpa cucmem mesexommynurayut
' Kagpedpa paduopusuru
Poccutickuti ynusepcumem opyotcbv, 1apodos
ya. Muxayza-Maxaas, 0. 6, Mocksa, 117198, Poccus

B pabore mpomeMOHCTPHPOBAHO NpPHUMEHEHHE TEH30PHOrOo (opMam3Ma sl IOJIydeHUs
pa3ubix dopMm 3anucu ypapHennit Makcsesia. [losyaensr ypaBuenus Makcsesta B KOBapu-
aHTHOI 6eCKOOPIMHATHON M KOBapHaHTHOH kKoopnuHatHO! dopmax. [IpexsapurenbHo ycra-
HOBJIEHA CBA3b MEXKJy BEKTOPHBIM U TE€H30PHBIM (hOpMaAIM3MaMU, BBITHCAHO KOOPIMHATHOE
npejcrasienne auddepeHnnaIbHbIX ONePATOPOB IS TPOU3BOIBHBIX TOJIOHOMHBIX CHCTEM
xoopaunat. [IpoBenena Bepudukanus pe3yabTaTOB, IOJIYUYEHHBIX C IOMOIIBIO TEH30PHOIO U
BEKTOPHOTO (hOPMAIM3MOB, Ha TPUMEPE IIUINHIPUIECKON U CHEPUIECKON CUCTEM KOOPIUHAT.

KuroueBnle ciioBa: ypasHenus Makcesuta, TeH30pHBIN (popMaIn3M, KOBapUaHTHAs Oec-
KoOpamHATHAs (POpMa, KOBApUAHTHAS KOOPAUHATHAS (POPMA.





