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In this paper we study the problem of searching for the design of the magnetic system for
creation of a magnetic field with the required characteristics in the given area. On the basis
of analysis of the mathematical model of the magnetic system rather a general approach is
proposed to the solving of the inverse problem, which was written by the Fredholm equation:

𝐻(𝑧) =

∫︁
𝑆

𝐽(𝑠)𝐺(𝑧, 𝑠)d𝑠, 𝑧 ∈ 𝑈, 𝑠 ∈ 𝑆.

It was necessary to define the current density distribution function 𝐽(𝑠) and the existing
winding geometry for creation of a required magnetic field 𝐻(𝑧). In the paper a method of
solving those by means of regularized iterative processes is proposed. On the base of the
concrete magnetic system we perform the numerical study of influence of different factors on
the character of the magnetic field being designed.

Key words and phrases: magnet systems, inverse problem, Fredholm equation, regu-
larized iterative processes.

1. Introduction

When designing magnetic system it’s necessary to solve the inverse problem, that
is, via a given magnetic field to define current parameters or, its geometrical charac-
teristics, or all that simultaneously.

The definition of the beam density distribution in the magnetic system, in which
the geometry is known, is a linear inverse problem for the given field.

When the required field must be created with the help of conductors, the value
of the current which varies similar to the coordinates of their position providing the
current in all the conductors is the same, we come to the solving of the inverse prob-
lem [1].

In this paper we consider the construction of a mathematical model of the magnetic
system for this kind of the problem and the methods and numerical algorithms for
their solution by using the Tikhonov regularization methods. Because a magnetic field
is supposed to be given by one of its components (𝐻𝑥, 𝐻𝑦, 𝐻𝑧) depending on a specific
problem, so further 𝐻 sample will be used for notation.

2. Mathematical Model of the Magnetic System

Let in a region 𝑈 with the help of the sources of current distributed in the region
𝑆 a field 𝐻 should be created with the given characteristics (for example, the whole
homogeneous field in the region 𝑈). It is known, that the field in any point 𝑧 of set 𝑈
is defined by the expression

𝐻(𝑧) =

∫︁
𝑆

𝐽(𝑠)𝐺(𝑧, 𝑠)d𝑠, 𝑧 ∈ 𝑈, 𝑠 ∈ 𝑆 (1)
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where 𝐽(𝑠) is a distributed density function of the current in the system, 𝐺(𝑧, 𝑠) is a
Green function, that analytically depends both on the geometry of the source of the
magnetic system and on the point 𝑧 ∈ 𝑈 .

The inverse problem, namely, a definition over the given density of distribution of
current in the magnetic system with the known geometry is a linear inverse problem
(model 1).

Then the mathematical problem reduces to the solution of the Fredholm linear
integral equation of the first order with unknown function 𝐽(𝑠).

If the composition of the magnetic field includes not only variant density of current
and arrangement source of current, then we must solve the nonlinear inverse problem
(model 2) with unknown 𝐽(𝑠) and 𝑠 ∈ 𝑆.

3. Method of Solution of the Inverse Problem (Model 1)

It is known that the problem of solution of the first order Fredholm integral equa-
tion (1) is related to the non-correct defined class of the problems, because the large
changing in the 𝐽(𝑠) solution can correspond the small changing of the input data
𝐻(𝑧). To obtain a stable solution of the non-correct defined problem, A. N. Tikhonov
developed a regularized algorithm [1].

Here we will use the second order method of a regularization in order to solve the
problem.

For this, we construct a smooth parametric functional

𝐹𝛼[𝐽(𝑠), 𝐻(𝑧)] = Φ[𝐽(𝑠), 𝐻(𝑧)] + 𝛼 Ω[𝐽(𝑠)], (2)

where

Φ[𝐽(𝑠), 𝐻(𝑧)] =

∫︁
𝑈

[𝐻(𝑧)−
∫︁
𝑆

𝐽(𝑠)𝐺(𝑧, 𝑠)d𝑠]2d𝑧 (3)

is the quadratic deviation of the operator 𝐴[𝑧, 𝐽(𝑠)] =

∫︁
𝑆

𝐽(𝑠)𝐺(𝑧, 𝑠)d𝑠 of function

𝐻(𝑧),

Ω[𝐽(𝑠)] =

∫︁
𝑆

𝐽2(𝑠)d𝑠 (4)

is the regularizational functional, or a stable one, and 𝛼 is a numeric parameter of the
regularization (𝛼 > 0).

Theorem 1. For any function 𝐻(𝑧) ∈ 𝐿2 and for any 𝛼 > 0 there exists one
and only one 2(𝑛+ 1) differencial function 𝐽𝛼

𝑛 (𝑠), which realizes the minimum of the
smooth functional 𝐹𝛼[𝐽(𝑠), 𝐻(𝑧)] of the form (2).

Theorem 2. If 𝐻(𝑧) = 𝐴[𝑧, 𝐽(𝑠)], 𝐽(𝑠) ∈ 𝐶(𝑛+1), then for any 𝜖 > 0 and auxil-
iary values 0 < 𝛾1 < 𝛾2 there exists 𝛿(𝜖, 𝛾1, 𝛾2, 𝐽) so that, if

1.− ‖𝐻̃𝛿(𝑧)− *𝐻(𝑧)‖𝐿2 6 𝛿,where 𝐻̃𝛿(𝑧) ∈ 𝐿2;
2.− 𝛼 = 𝛼(𝛿) has the order 𝛿2;

3.− 𝛾1 6
𝛿2

𝛼(𝛿)
6 𝛾2,

then 𝐽𝛼
𝛿,𝑛(𝑠) is a minimum of 𝐹𝛼

𝑛 [𝐽
𝛼
𝑛 (𝑠), 𝐻̃𝛿(𝑧)] and

‖𝐽𝛼
𝛿,𝑛(𝑠)

(𝑖) − 𝐽*(𝑠)(𝑖)‖ 6 𝜖, 𝑠 ∈ 𝑆, 𝑖 = 1, 2, · · · , 𝑛 with 𝛿 < 𝛿0(𝜖, 𝛾1, 𝛾2, 𝐽).

For this theorem we infer that there exists a function 𝐽𝛼
𝑛 , that is a minimum of

functional 𝐹𝛼
𝑛 in the form (2) which reduces to the solution of the equation (1) 𝐽(𝑠).

The complete demostration of this and other conditions one can find in [1].
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When applying the regularizational method, the selection of parameter 𝛼 is one of
the main problems.

The point is that not always for the obtained smooth solution the discrepancy
principle is being fulfilled, i.e. the inequality

‖𝐻̃𝛿 −𝐻*‖ 6 𝛿, (5)

where 𝛿 is precision of the approximate input data 𝐻̃𝛿, 𝐻
* is the precise value of the

input data, holds.

In practice, for the solution of the non-correct and correct problem it is necessary to
find the solution, that satisfies the required precision. In [2] V. A. Morozov suggested,
as the main quality criteria to select, the regularization parameter of the deflection
principle.

Discrepancy Principle. Set any 0 < 𝛿 6 𝛿0 and any 0 < ℎ 6 ℎ0 with condition

𝜒(ℎ, 𝛿, 𝐽) = (‖𝐴ℎ𝐽 −𝐴𝐽‖0 + 𝛿)× (1 + 𝛽(𝛿, ℎ))1/2 < ‖𝐴ℎ𝐽 − 𝐻̃𝛿‖0,

where 𝛽(𝛿, ℎ) is a positive function, such that lim𝛿,ℎ→0 𝛽(𝛿, ℎ) = 0, and 𝐽𝛼 is the
solution obtained for the minimum of functional 𝐹𝛼(𝐽,𝐻).

Then there exists at least one value of the regulartization parameter 𝛼 = 𝛼(𝛿, ℎ) >

0, so that 𝜌𝛿ℎ(𝛼(𝛿, ℎ)) = 𝜒2(ℎ, 𝛿, 𝐽), lim𝛿,ℎ→0 𝐽
𝛼
𝛿ℎ = 𝐽𝛼 and 𝐽𝛼

𝛿ℎ = 𝐽
𝛼(𝛿,ℎ)
𝛿ℎ .

4. Numerical Algorithm for the Solution of the Problem of
Model 1

In the expression (2), if presenting the integral in the form of sums, we obtain

𝐹𝛼 =
𝑁∑︁
𝑗=1

[𝐻𝑗(𝑧𝑗)−
𝑀∑︁
𝑖=1

𝐽𝑖(𝑠𝑖)𝐾𝑖𝑗(𝑧𝑗 , 𝑠𝑖)]
2Δ𝑧𝑗 + 𝛼

𝑀∑︁
𝑖=1

𝐽2
𝑖 (𝑠𝑖)Δ𝑠𝑖, (6)

where 𝑁 is a number of points from the set 𝑈 , 𝑀 is a number of points from the set

𝑆, 𝑀 6 𝑁 and 𝐾𝑖𝑗 =

∫︁
Δ𝑠𝑖

𝐺(𝑧𝑗 , 𝑠)d𝑠.

Suppose Δ𝑠𝑖 = Δ𝑠 = const, Δ𝑧𝑗 = Δ𝑧 = const.

The condition of the minimum of the functional 𝐹𝛼 is

𝜕𝐹𝛼

𝜕𝐽1
= 0,

𝜕𝐹𝛼

𝜕𝐽2
= 0, · · · , 𝜕𝐹

𝛼

𝜕𝐽𝑀
= 0. (7)

Taking into account (7), we obtain

𝜕𝐹𝛼

𝜕𝐽𝑙
= −

𝑁∑︁
𝑗=1

𝐻𝑗𝐾𝑙𝑗Δ𝑧 +
𝑁∑︁
𝑗=1

𝑀∑︁
𝑖=1

𝐽𝑖𝐾𝑙𝑗𝐾𝑖𝑗Δ𝑧 + 𝛼𝐽𝑙Δ𝑠 = 0, 𝑙 = 1÷𝑀. (8)

In such a way we have a system 𝑀 linear algebraic equations with the unknowns
𝑁 of the 𝐽𝑙 form:

𝑀∑︁
𝑖=1

𝐽𝑖

𝑁∑︁
𝑗=1

𝐾𝑙𝑗𝐾𝑖𝑗Δ𝑧 + 𝛼𝐽𝑙Δ𝑠 =
𝑁∑︁
𝑗=1

𝐻𝑗𝐾𝑙𝑗Δ𝑧, 𝑙 = 1÷𝑀. (9)
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Supposing 𝛼Δ𝑠 = 𝛼′Δ𝑧, we obtain

𝑀∑︁
𝑖=1

𝐽𝑖

𝑁∑︁
𝑗=1

𝐾𝑙𝑗𝐾𝑖𝑗 + 𝛼′𝐽𝑙 =
𝑁∑︁
𝑗=1

𝐻𝑗𝐾𝑙𝑗 , 𝑙 = 1÷𝑀. (10)

Obviously, 𝛼′ serves the meaning of arbitrary coefficient 𝛼. Therefore the system
of equations for 𝐽𝑙 can be written finally in the form

𝑀∑︁
𝑖=1

𝐽𝑖

𝑁∑︁
𝑗=1

𝐾𝑙𝑗𝐾𝑖𝑗 + 𝛼𝐽𝑙 =
𝑁∑︁
𝑗=1

𝐻𝑗𝐾𝑙𝑗 , 𝑙 = 1÷𝑀. (11)

If the magnetic system is a discrete set of coils, then the field 𝐻(𝑧) in any point
𝑧 ∈ 𝑈 is defined in the following way:

𝐻(𝑧) =
𝑀∑︁
𝑖=1

𝐽𝑖

∫︁
Δ𝑠𝑖

𝐺(𝑧, 𝑠)d𝑠, (12)

where 𝑀 is a number of coils, 𝐽𝑖 is the current density in the i-st coil, Δ𝑠𝑖 is the
selection of the i-th coil, 𝐺(𝑧, 𝑠) is a Green function.

Having solved the system of equations (12), we obtain a discrete set 𝐽𝑙, 𝑙 = 1÷𝑀 ,
that is a solution of the problem (1). Similar to that, we define the distribution of the
current density in the magnetic system for creation of field 𝐻(𝑧𝑗), 𝑗 = 1÷𝑁, 𝑧𝑗 ∈ 𝑈 .

5. Particular Case of the Mathematical Model 2

Let in some region 𝑆 with a disposition 𝑀 of conductors with the same current
𝐼0, the field 𝐻 be created.

In the system 𝐻(𝑧), 𝑧 ∈ 𝑈 we have

𝐻(𝑧) = 𝐼0

𝑀∑︁
𝑖=1

𝐺(𝑠𝑖, 𝑧), (13)

where 𝐺(𝑠𝑖, 𝑧) is the Green function for the i-th conductor.
Both a current 𝐼0 and the coordinates 𝑠𝑖 of the conductors, which would provide

the given field 𝐻(𝑧), 𝑧 ∈ 𝑈 in a best way, should be defined.
The function 𝐺(𝑠𝑖, 𝑧) is usually a nonlinear one concerning the coordinate of the

conductors 𝑠𝑖, therefore the analysed problem is a non-linear inverse problem.
Additional difficulty in the solving of the inverse problem is the restriction in the

parameters [3]. However in any particular case one can efficiently find a solution for
the given condition of the problem. Let us consider this case.

Let a parameter of the conductors disposition in the region 𝑆 be only one coor-
dinate, for example 𝑥, the region of disposition of the conductors in the axis 𝑥 being
known, 𝑥1 6 𝑥𝑖 6 𝑥2.

Then the equation (14) will has the form:

𝐻(𝑧) = 𝐼0

𝑀∑︁
𝑖=1

𝐺(𝑥𝑖, 𝑧), 𝑧 ∈ 𝑈, 𝑥1 6 𝑥𝑖 6 𝑥2. (14)

We must define 𝐼0 , 𝑥𝑖 to create the field 𝐻(𝑧), 𝑧 ∈ 𝑈 in the magnetic system. The
problem (15) is a non-linear inverse problem.



Polyakova R.V., Yudin I. P. Calculation of the Magnetic System by the So . . . 65

6. Numerical Algorithm of the Solution of the Problem in
Model 2

The solution of the problem (15) was divided in two steps. In the first step, the
current density in the twisters is continuously distributed in the range of the given
problem. The equation (14) has the form

𝐻(𝑧) =

𝑥2∫︁
𝑥1

𝐽(𝑥)𝐺(𝑥, 𝑧)d𝑥.

This problem and the algorithm of its solution was analysed in the points 2, 3. To
select the solution 𝐽𝛼(𝑥), (𝛼 is the regularization parameter) we calculate the following
conditions of the problem:
1. The precision of the calculation of 𝐻(𝑧) cannot be worse than the required pre-

cision of the magnetic field in the created magnetic system;
2. For all permissible interval [𝑥1, 𝑥2], a function 𝐽𝛼(𝑥) must keep the sign;
3. |𝐽𝛼(𝑥)| 6 𝐽𝑑𝑜𝑝 is the permissible current density.

Suppose, that there exists a continuous solution 𝐽𝛼(𝑥), that satisfies all three
conditions.

In the second step, we divide the interval [𝑥1, 𝑥2] in 𝑀 subintervals [𝑥𝑖1, 𝑥
𝑖
2], 𝑖 =

1÷𝑀.
Then

𝐻(𝑧) =
𝑀∑︁
𝑖=1

𝑥𝑖
2∫︁

𝑥𝑖
1

𝐽𝛼(𝑥)𝐺(𝑥, 𝑧)d𝑥, 𝑧 ∈ 𝑈. (15)

For each subinterval [𝑥𝑖1, 𝑥
𝑖
2] satisfies the conditions of the theorems about the mean

value (as chosen function 𝐽𝛼(𝑥)), therefore

𝐻(𝑧𝑗) =
𝑀∑︁
𝑖=1

𝐺(𝑥𝑗𝑖 , 𝑧𝑗)

𝑥𝑖
2∫︁

𝑥𝑖
1

𝐽𝛼(𝑥)d𝑥, 𝑗 = 1÷𝑁, (16)

where 𝑁 is a number of points in the region 𝑈 , in which analyses field 𝐻,𝑥𝑗𝑖 is a point
in the i-th intervals. The limits 𝑥𝑖1, 𝑥

𝑖
2 chosen such that

𝑥𝑖
2∫︁

𝑥𝑖
1

𝐽𝛼(𝑥)d𝑥 =

𝑥𝑖+1
2∫︁

𝑥𝑖+1
1

𝐽𝛼(𝑥)d𝑥 = 𝐼0, (17)

i.e.

𝐼0 =
1

𝑀

𝑥2∫︁
𝑥1

𝐽𝛼(𝑥)d𝑥,

then

𝐻(𝑧𝑗) = 𝐼0

𝑀∑︁
𝑖=1

𝐺(𝑥𝑗𝑖 , 𝑧𝑗) (18)

Obviously that for different 𝑧𝑗 there exists its point 𝑥𝑗𝑖 , but based on the theorem
of the mean values, it is always in the intervals [𝑥𝑖1, 𝑥

𝑖
2]. This means, that unknown

coordinate 𝑥𝑖 is also in the i-th interval and it is defined from the condition of minimum
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of the functional

𝜙(𝑥𝑖) =
𝑁∑︁
𝑗=1

⎡⎢⎣ 𝑥𝑖
2∫︁

𝑥𝑖
1

𝐽𝛼(𝑥)𝐺(𝑥, 𝑧𝑗)d𝑥− 𝐼0𝐺(𝑥𝑖, 𝑧𝑗)

⎤⎥⎦
2

𝑚, (19)

𝜕𝜙(𝑥𝑖)

𝜕𝑥𝑖
=

𝑁∑︁
𝑗=1

⎡⎢⎣ 𝑥𝑖
2∫︁

𝑥𝑖
1

𝐽𝛼(𝑥)𝐺(𝑥, 𝑧𝑗)d𝑥− 𝐼0𝐺(𝑥𝑖, 𝑧𝑗)

⎤⎥⎦ 𝜕𝐺(𝑥𝑖, 𝑧𝑗)

𝜕𝑥𝑖
= 0, 𝑥𝑖1 6 𝑥𝑖 6 𝑥

𝑖
2. (20)

Then the solution of the problem is reduced to the solving of𝑀 sequential nonlinear
equations in the form (20) with one unknown, moreover, the limits of the existence of
the solution are known.

Note that we have analyzed the algorithms for creating a magnetic system with
infinite thin conductor.

It’s easy to demonstrate that for the finite size of the conductor, the algorithms
completely persist, but in this case the Green function is under the sign of integration
by the section of the conductor.

When the permissible geometrical region of arranging the conductor is defined as
the nonlinear one, the density does not involve particular difficulties too and can be
described by the similar algorithm.

7. Example of a Numerical Calculation of Real Magnetic
System

Let’s consider an example of practically developed application of the algorithm to
create non-metallic superconductor (SP) of the bipolar magnet, that was composed
by triangular winding of excitement, its geometry is showed in Fig. 1.

Figure 1. The bipolar SP configuration in the plane of the winding; b-one of the possible
real SP configuration

From Fig. 1 it is obvious that the magnetic system was composed by triangular
winding and it has a perimeter dimension of the aperture of magnet.

Using the developed numerical algorithm for the nonlinear inverse solution we
calculate the mathematical model of the system, with a homogeneous field in which
80% of the aperture represent 10−5 ÷ 10−6 for the magnitude of file 4–5 Tl.

The mathematical problem was set in the following mode.
Let in some region 𝑈 (see Fig. 1a), an halogenous field 𝐻(𝑧), 𝑧 ∈ 𝑈 be created,

using an arrangement𝑀 of the conductors of the triangular section in the given limited
region 𝑆 with condition that the current 𝐼0 for all conductors is the same. For this
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magnetic system

𝐻(𝑧) = 𝐼0

𝑀∑︁
𝑖=1

𝐺(𝑠𝑖, 𝑧), 𝑠𝑖 ∈ 𝑆, 𝑧 ∈ 𝑈. (21)

In the Descartes’system of carotenes 𝑠𝑖 = {𝑥𝑖, 𝑦𝑖}, 𝑧 = {𝑥, 𝑦}

𝐺(𝑠𝑖, 𝑧) =
𝑦 − 𝑦𝑖 + 𝑏

2
ln

(𝑥− 𝑥𝑖 + 𝑎)2 + (𝑦 − 𝑦𝑖 + 𝑏)2

(𝑥− 𝑥𝑖 − 𝑎)2 + (𝑦 − 𝑦𝑖 + 𝑏)2
+

+
𝑦 − 𝑦𝑖 − 𝑏

2
ln

(𝑥− 𝑥𝑖 − 𝑎)2 + (𝑦 − 𝑦𝑖 − 𝑏)2

(𝑥− 𝑥𝑖 + 𝑎)2 + (𝑦 − 𝑦𝑖 − 𝑏)2
+

+ (𝑥− 𝑥𝑖 + 𝑎)
(︁
arctg

𝑥− 𝑥𝑖 + 𝑎

𝑦 − 𝑦𝑖 − 𝑏
− arctg

𝑥− 𝑥𝑖 + 𝑎

𝑦 − 𝑦𝑖 + 𝑏

)︁
+

+ (𝑥− 𝑥𝑖 − 𝑎)
(︁
arctg

𝑥− 𝑥𝑖 − 𝑎

𝑦 − 𝑦𝑖 + 𝑏
− arctg

𝑥− 𝑥𝑖 − 𝑎

𝑦 − 𝑦𝑖 − 𝑏

)︁
, (22)

where 𝑎 is the half-dimension of the tire along 𝑥, 𝑏 is the half-dimension of the tire
along 𝑦, 𝐺(𝑠𝑖, 𝑧) is the Green function for the triangular tire in the Descartes system
of coordinates.

𝑀 = 𝑁𝑥 +𝑁𝑦,

𝑁𝑥 is the number of the creep tire of axis 𝑥, 𝑁𝑦 is the number of the creep tire of axis
𝑦, or

𝑀 =
𝑘∑︁

𝑙=1

𝑁𝑙,

𝑘 is the number of the winding blocks, and 𝑁𝑙 is the number of the creeps in the 1-th
bloks.

We must define not only 𝐼0, but undetermine the block configuration that forms
the homogeneus field 𝐻(𝑧) for every point 𝑧 ∈ 𝑈 with a precision non less than
10−5 − 10−6.

Fig. 2 shows a continuous a continuous distribution 𝐽𝛼
𝑥 and 𝐽𝛼

𝑦 for 𝑀 = 48
creep and its approximation by continous ”blocks” function for each subinterval.

Figure 2. The continuous distribution 𝐽𝛼(𝑠) and its approximation 𝐽𝛼(𝑠) by constant
subinterval function “blocks”

Table 1 contains the numerical calculation for the optimal variant of the magnet;
the scheme of this magnet is presented in Fig. 1b.
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8. Conclusion

1. In this paper we analyze the method of solving the nonlinear inverse problems
which are necessary for the description of the mathematical model of magnetic
system of some class.

2. The developed numerical algorithm, based on the method of regularization of the
solution of non-correct problems with restrictions in the searched parameters, is
reduced to the nonlinear type of problem (15) for the solution of 𝑀 sequential
nonlinear equations with one incognita. It permits to avoid difficulties, related to
the solution of the system of the nonlinear equations. This solution is frequently
reduced to the inverse problem.

3. To realize the proposed method in computer a numerical algorithm was developed
and Fortran programs package was written.

4. Using this complex program, some practical problems [4] were solved, one of those
was analyzed as an example in section 7.
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УДК 537.8
Расчёт магнитной системы при помощи решения обратной

задачи магнитостатики
Р. В. Полякова*, И. П. Юдин†
* Лаборатория информационных технологий
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Объединённый институт ядерных исследований

ул. Жолио-Кюри, д.6, Дубна, Московская область, 141980, Россия

В данной работе решается задача поиска конструкции магнитной системы для со-
здания магнитного поля с требуемыми характеристиками в заданной области. На осно-
ве анализа математической модели магнитной системы предлагается достаточно общий
подход к решению нелинейной обратной задачи, которая описывается уравнением Фред-
гольма:

𝐻(𝑧) =

∫︁
𝑆

𝐽(𝑠)𝐺(𝑧, 𝑠)d𝑠, 𝑧 ∈ 𝑈, 𝑠 ∈ 𝑆.

Необходимо определить распределение плотности тока 𝐽(𝑠), а также расстановку ис-
точников тока для создания поля 𝐻(𝑧). В работе предлагается метод решения этих
задач с помощью регуляризованных итерационных процессов. На примере конкретной
магнитной системы проводится численное исследование влияния различных факторов
на характер создаваемого магнитного поля.

Ключевые слова: магнитные системы, уравнение Фредгольма, метод регуляриза-
ции.




