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In this paper numerical methods that preserve the symplectic structure of the Hamiltonian
systems are considered. Hamiltonian is constructed for the propagation of electromagnetic
waves in a stratified medium without any sources. Hamilton’s equations are solved using
symplectic second-order Runge-Kutta method.
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1. Introduction

In this paper, we use a geometric approach to the problem of dynamical systems.
In the framework of geometric approach, the basic physical concepts follow from the
various transformations and their invariants. For example, when the Hamiltonian
formalism is formulated in the language of the symplectic geometry, the symplectic
form @ plays a key role.

A lot of numerical methods have been developed to solve the ODE. However, not
all of these methods take into account the geometric (symplectic) structure. It is not
important for the local solution (short time period). In the case of global solution
(long time period), preservation of the symplectic structure is very important because
it can give more information about the system, than the equations themselves.

Fortunately, the numerical schemes, known as variational integrators have been
developed. Such numerical methods preserve the global structures and give high ac-
curacy.

In the first section of this paper the Hamiltonian formalism is formulated in the
language of the symplectic geometry. Then with the use of the simple model — linear
oscillator — we illustrate that classical Euler method does not conserve the energy H
of the system. After that, the special case of variational integrator is described. In
the last section we use it to solve Maxwell’s equations without sources.

2. Hamiltonian Formalism with Respect of Cotangent Bundle
and Symplectic Structure

2.1. Lagrangian and Hamiltonian Functions

For a neighborhood U of point P of the bounded manifold M there exists a coordi-
nate map with coordinates ¢',...,¢". In the following when we mention coordinates
on manifold M, we mean local coordinates of some point P € M. M is called configu-

rational manifold. Some mechanical system has N coordinates ¢ = (' 1),...,dV(1)).
Evolution in time is given by curve ¢* (t) on the manifold M. Hamiltonian formalism
starts with Lagrangian L(q", ¢"), and momentum definition [1]:

P — T o ¢ — - . ]-

Received 15¢ November, 2011.



Gevorkyan M. N., Gladysheva J.V. Symplectic Integrators and the Problem. .. 51

Now we can calculate the Hamiltonian using the usual definition of H as the Legendre

transformation of L . , o
H(pi,q') = pid" — L(q",4").
Def 1. Lagrangian is called nonsingular, when Hessian of L is nonsingular:
9L
det <8qi841> #£0

particularly strongly nonsingular, when the equation (1) may be continuously and
one-one resolved in the form of ¢* = v*(¢*, p;), V¢', "

If Lagrangian L is strongly nonsingular, the Euler-Lagrange equations and the
Hamiltonian equations are equivalent [2]:

d oL  dL OH dp, oH d¢’

—— - = =08 =, ==
dt 9¢t  dq’ ¢’ dt’ Op; dt

Let #(t) = (¢%,...,¢™)T. ¥(t) is a vector field given on manifold M (the cross-
section of the tangent bundle to a manifold M), and p(t) = (p1,...,pnN) is a 1-form
field given on manifold M (the section of cotangent bundle to a manifold M), thus:

— the Lagrangian L(q’, q“) is the function on the tangent bundle T'M,
— the Hamiltonian H(q",p;) is the function on the cotangent bundle T* M.

2.2. Phase Space and Symplectic Structure

Manifold T*M is called phase space. Phase space is manifold and it’s dimension
is 2N.

Def 2. A symplectic form on a manifold M is a closed non-degenerate differential
~ def 7 ~
2-form w = dq' A dp;.
A symplectic manifold consists of a pair (T* M, @), a manifold 7* M and a symplec-

tic form @. Assigning a symplectic form @ to a manifold T*M is referred to as giving
M a symplectic structure. In the following we will consider only 2 dimension phase

space with symplectic form @ = dp A dg. The curve p = p(t), ¢ = q(t) is considered.
Tangent vector to this curve is

;-4 _dgo dp0o
YT U T atag " atap

Now as d& = ddp A dg + dp A ddg = 0, then Lie derivative £y of the symplectic
form along the vector field « is 0.

Def 3. Vector field i, that satisfied Lz0 = 0 is called Hamiltonian vector field.

To find the convolution (i) the definition @ = dg ® dp — dp ® dg, thus should be
used:

d
<~ (d\x =~ (d\~ dg~ dp~ OH~ OH -~
:dq(dt) p—dp(cu>dq:£dp—£dq:8]3dp+a(]de.

(@,) =dH(-) = &(@) =dH = do=d(dH) = 0.

&
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2.3. Canonical Transformation

Def 4. Canonical transformation is a transformation that preserves the symplectic
structure w.

The new coordinates P = P(q,p) and Q = Q(q,p) will be canonical if dg A dp =
dQ AN dP,

dq

8Q oP -~ @7 dQOP  9Q P
+ G gy W A da + dp A dg (aqap 8pa)d/\d

dQAdP = <88§(~1q+anp> <d +—d > 9Q Pd Ad +—Q—qud +

This canonical transformation should satisfy the following condition:

dQIP  0QIP 2(Q.P)
<3q op  Op 3(1) L& det oap) @

2.4. Poisson Brackets and @

One of the most important points in the geometrical approach to Hamiltonian
dynamics is the role of 2-form @. This form plays the same role in symplectic manifold
as a metric tensor in Riemann’s manifold. & imposes one-one mapping for vectors and

one-forms. Let V be a vector field on M. One-form field V can be defined with the
following formula:

V=V() o &(V,-) =&(V) — non-coordinate form,

(V)i = (w)ij(V) = w;; V7 — coordinate form.

In the same way on the base of the one-form field & can be defined vector field &
(one-one definition): & = @(d, -) = ©(d).

Let f and g be functions on the manifold. Vector fields can be introduced: X ¥ def
df and Xg = dg7 where df is the vector gradient. It can be defined from the expression
df = a(df) = a(Xy) = X,

Def 5. Following scalar is called Poisson bracket: {f, g} & cI)(Xf, g).

— —

&(Xy, ) =w(df, ) = df() = a(Xf, X,)

1, o(df,dg) = df(dg) = (df,dg) = (df, X,),
¢ e
g

O ~
+ aipdp

S’\Q: I
o
<

Now, one can find vector X,:

= 898 898 A AN S 898f 898]‘

So, we define Poisson brackets of f and g. The definition clarifies geometric sense
of the Poisson brackets. It is easy to see, that they don’t depend on the coordinate
system but only on two-form ©. Canonical transformation does not affect on the
symplectic form @, thus Poisson brackets remain the same. A similar statement is
true for all constants of motion (zero Poisson bracket also is invariant under canonical
transform).
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3. Numerical Methods and Symplectic Structure
3.1. Family of Runge—Kutta Methods

Anyone who has dealt with ODEs is aware that for the most of them it is not always
possible to find an analytical solution. That’s why we have to use various numerical
methods to get a solution. One of the most well-known numerical schemes may be the
family of Runge-Kutta methods, which can be defined by the following formulas [3].
There is given the array of the coefficients ca,...,cs; b1,...,bs; [a5],4,5 = 1,...,s.
For each step s + 1 one should calculate:

kalh) = hf (e 4 ey + D agks (), pare) = () + 3 biks(B).

Jj=1 i=1

It is important to note, that the values of the coefficients c1,...,cg; b1,...,bs; [a;;]
are chosen based on the traditions and practical use of methods [3]. These data (the
coefficients) are usually arranged in a mnemonic device, known as a Butcher tableau.

€1 | a1 @12 aiz ai4 ... Qis
C2 | 21 Q22 A23 A24 ... QA2g
C3 | a3z1 Az asz as4 ... 0A3s
Cq | Q41 Q42 Q43 Q44 ... G4s cl| A
Cs | Gs1  Gs2 Q53 G54 ... Q5s bl
Cs Gs1 Qg2 Ag3 Qg4 ... QAgg

b1 by b3 by ... b,

The above Butcher tableau describes the family of implicit Runge-Kutta methods.
But more often the explicit methods are used, where 0 < i < j < s:

ki(h) = hf(z,y),

ka(h) = hf(z + co,y + az1ki(h)),

k3(h) = hf(x + c3,y + as1ki(h) + az2ka(h)),

ka(h) = hf(x + ca,y + a1 ki (h) + asoka(h) + assks(h)),

k5<h) = hf(l' + Cs, Y + aslk:l (I’L) + CLSQk‘Q(h) + asgkg(h) 4+ ... as’sflk‘sfl(h)),

y(xj41) = y(x;) + Y biks(h).

i=1
The Butcher tableau for the explicit method is simplified and all elements of matrix
A, for which 0 < i < j < s are equal 0.

Tables for the methods of Euler, Runge-Kutta 2nd, 3rd and 4th order for specific
values of the coefficients have the following form:

. 0
0 1/2 | 1/2
OF?, 212, 1{2 fff , o120 12
01 1lo o 1

1/6 4/6 1/6

1/6 1/3 1/3 1/6
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3.2. Runge—Kutta Methods and Symplectic Form

Before turning to the symplectic methods, it is worth to study a simple example —
harmonic oscillator with unit mass.

2 2
@ | p
Hp,q)=5+5 =

To solve the ODE system the Euler’s method should be applied, where ¢ty <t < T,
h=t,—tp_1:

Pk+1 = Pk — hgg.
So it can be seen, that the total energy H of the system does not change under the

time
q(t) = Cicost + Cysint,
p(t) = Cycost — Cysint

{ Qk+1 = qk + hps,

= H(p,q) = %(012 + C3) = const.

1
But from the discrete system we get §(pi+1 +2,)) = (P2 +¢2)(h2+1), thus with each

new iteration (p? + ¢7) increases (h? + 1) times. So, the total energy of the system is
not conserved, what can be clearily seen on the Figure 1.
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Figure 1. Phase portrait for the exact solution and the solution by Euler’s method
q(0) =2, p(0) =1

The above example shows that some numerical methods don’t respect global char-
acteristics and structures of the problem. In our case, this structure is a symplectic
form. We mentioned its importance above. There is a problem of finding methods,
which respect a symplectic form. Such methods exist and are called symplectic inte-
grators [4-T7].
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3.3. Symplectic Integrators

Symplectic integrators usually belong to the family of implicit numerical meth-
ods. Software implementation of such methods is difficult. However, for separable
Hamiltonian function H(p,q): T*M — R

Hp.q)=T(@)+U(@), a=(¢'{t),....d"®), p=@m1(®),....,pn(t),  (3)

it is possible to construct explicit numerical scheme. The separable Hamiltonian de-
scribes a conservative dynamic system of Newton mechanics. In the framework of
relativistic mechanics it couldn’t be represented. We divide the segment [to,to + 7]

into m equal parts with step h = t;41 —t;, ¢ = 1,...,m. At each step h some aux-
ot

iliary quantities are calculated. Let (p(to),q(to)) = (po,qo). Before a step i + 1, n
auxiliary quantities should be calculated.

(Pirai) D Pyt a ) B B o a) B (), alti):

Intermediate calculations

The scheme is very similar to Runge-Kutta method (for RK method one calcu-
lates ks(h) at every step). That’s why this symplectic integrator is called symplectic

Runge—Kutta method. But the main point is that every transformation (p;,q;) Kjl
(Pi+1,q+1) is canonical. In the article [5] for the case (3) the second, third and fourth
order symplectic integrators were obtained. We write them for the 2D phase space (I
— order of method) as following:

G =q+h> anVy, T(gm), i=1,....1

m=1
i
Pi = Po — h Z bqu7n71U(qm_1), 7= 1, ey l = 2,3,4.
m=1
We write out formulas for the second order integrator [5]:
ou
P+l = Pk — hblafq(%),
orT
Tk+l =k + halaip(plﬁ»%)?

oUu oU
Pr+1 =Pk —h {blaq(%) + bzaq(CIkJr;)] ;

oT orT
Qk+1 =qr + h |:alap(pk+,_l,) + a2%(}’k+1)

Coefficients (ay,as, by, bs) are not uniquely determined. They can be calculated from
the indeterminate system of equations. In the paper [5] it is noted that the following
two cases are of the most interest:

11
(a1,a2,b1,b2) = (5, 5,0, 1) — leapfrog,

(a1,a2,b1,b2) = (1, 0, %, %) — pseudo-leapfrog.
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For the leapfrog case the system we have:

D1 = Pk,

Qe+l = Qr + h%%(pk%),

DPk+1 = Pk — h%(qk+%)7

Qo1 = i+ N %%(%r%) + %%(mﬂ)

To prove the canonicity of the transformation from (px, gx) to (Pk+1,qr+1) the formule
(2) should be used (for the leapfrog case):

OGrs1/2 OQuir)2

Iqx e |_q.q_ LT o _
Opkt+1/2 OPrt12 1-1-35h op? 0=1.
Oqx Opk

Exactly in the same way we prove the canonicity of the transformation from
(Pkt1/2: Qrt1/2) 10 (Pr+1,qr+1) and from (py,qx) to (pr+1,qk+1) for the 4th order
method. If we require the time reversibility of the numerical solution, we can deter-
mine ay, as, as, aq, by, ba, b, by uniquely [5,7]:

1 1 _1 1
a1:a4:7(2—|—23—|—2 3)7 b2:b4:7l’
6 2 —923

1 1 1 1
= = — 1—25—2_§>7 b :O,b - .
ag as 6 1 3 1_2%

4. Construction of the Hamiltonian Function for a Layered
Medium without Sources

Let us use Maxwell’s equations for the isotropic medium without sources insofar
as:

— in case of currents existence we get Hamiltonian formalism with links (see [8]);
— in case of wave propagation in waveguide there are no currents in waveguide.

The medium which properties are constant on each plane perpendicular to the fixed
direction (we get Oz for this direction) is called layered medium. We will consider
a plane linearly polarized monochromatic electromagnetic wave propagating in the
layered medium.

— The wave is called plane, if the solution of the wave equation has the form E(r-s, )
(the same for H), r — radius vector and s — wave propagation direction. The
quantity E(r-s, t) for each moment of time is constant on the plane r-s = const.

— The wave is called monochromatic if fields vectors are harmonic functions of time.

— When the wave is linearly polarized and it’s electric field intensity vector is per-
pendicular to the incidence plane we will call it Transverse Electric (TE-mode).

— When the wave is linearly polarized and it’s magnetic field intensity vector is
perpendicular to the incidence plane we will call it Transverse Magnetic (TM-
mode).

If the medium is linear, it is possible to decompose any plane polarized wave into
two waves, one of which is TE-mode wave and the other one is TM-mode wave. So, we
study the plane monochromatic electromagnetic wave. Let us introduce the Cartesian
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coordinate system. The plane of the wave propagation is (zOz) plane and

k:k‘on:ng, kozf, E:n:\/s(z)u(z), k = ks,
c c

v

where k is a phase vector, k — wavenumber, ¢(z) and u(z) — electric and magnetic con-
stants. Assume that e(z) and p(z) change along the z axis. The vector k depends only
on z and its component k, is constant. A complex form of the plane monochromatic
electromagnetic wave equation is [9,10]

H = RHgexp(—i(wt —k-r)), Hy = (Hy, Hy, Hy) — complex constant vector ,
(ka,ky, k) =k € (202) = ky=0=>k -r =k + kyy+ k.2 =k,x+ k.2,

{ E = REgexp(—i(wt —k - 1)), Eg = (Ey, Eg, Ey) — complex constant vector,

The symbol R is usually omitted during the calculations, because it is much easier
to work with complex forms of E and H. After all calculations are done, we can write
them out in their real form. The quantities E and H depend only on z and z, thus
the following conditions are fulfilled:

OH - OE oH oH OE
= (4)

0, — =0, — =ik,B, — =ik, H, — = —iwH, — = —iwE.
T e ot Yt Ty T

o _
oy

Considering the formula (4) let us write out six equations:

OE. OE, . 0H., O0H, )
- = Hz’ - = - Ez;
oy 0z teko oy 0z teko
_ _pOoH OE, OE. . _c0E OH, O0H. .
rot E = T = % ow = ipkoHy, rot H = "ot = 5 o = —ieko By,
O0E, OE, . OH, O0H, )
- = H,, — =— E..
or Oy iptho ox Oy teko

Considering the equation (4) and the following conditions for the TE-mode: E, =
E,=0,H, =0, and for the TM-mode: H, = H, = 0, E, = 0 we get six equations:

OE, OH.
— = —iuk Hma Y= Em
0z tHo 0z ieko Bz,
0H, . . E, ) .
TE-mode: 3 =ik, H, — ickoE,, TM-mode: 88 =tk B, + iukoH,,
z z
1k, 1 ky
H,=-2*E, E,=——H,.
ko Y € ko Y

In each system there is one algebraic equation and it can be used to reduce the
number of ODE. Thus we get two systems of two equations.

0H, 1 k2 0F, k2
:_’Lko (E—kg> Yo :Zk() (M_1w> I{y7
K Ro TM-mode:

2
TE-mode: 86EZ (;Z € kg
— = —iluk‘on, Y = i&kﬁoEz.
0z 0z

There are two invariant combinations of the electromagnetic field components.

S, =eE? — ,uH2 and % =euE - H.
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1
The Lagrange function L = §j1 which is written with the use of the Cartesian
components of electromagnetic field has the following form:

L:

N =

(e(E2+ E} + E2) — u(HZ + H} + H2)) ,

for our case we get L as following

1 1 k2 1 1k2
peal(c ) m ] g [ et =i

L1 TE-mode

Lo TM-mode

For the transition to the Hamiltonian function the canonical variables should be

chosen. It can be done using the following replacement ¢; = aH, and g» = aH,, where
«a = const € C.

1 k2
2 —le——73 | By
%70[8]7@ — —iak E_Eki E — 9L, _ 1 kg _ E,
dz oz 0 i k(Q) v P1= dgp - 1 1 k?c - ia’ko’
7(21 1Rk | € /{8
dQQ aHy . aLl EEm
—_— = = kj Ez’ = = = .
dz YTy e p2 |:dQ2:| 1acky
o =22
dz

Now it is possible to write out Hamiltonians H; and Ho:

dq 1 1 k2 1
Hl:plal_L1:2<€—uk%>E§+2 H§>0,
dq 1 1k2 1

Let aw = 1. For subsequent calculations we should use the real quantities. For the
real q1,492,P1, D2, E:Ea E’yv Hrv Hy we get:

_ _ B _ LB
@ =Haey pr=—7" @=Hy) p2=7-
Lo LEZY o 1 5 1 LEZN 5 1,5
H1:§k0 5—;1?8 p1+§ﬂfha H2:§ M—gk*g C_I2+§k0€p2'
Hamiltonian equations [11]:
d 1k2 d
el d G i =t
TE-mode: z o TM-mode: 5
dpy I LAY
4 Han dz ek )™

The Hamiltonians for TE and TM-mode are separable, thus there are different sim-
plectic Runge-Kutta methods for Hamiltonian equation. Using the leapfrog Runge—
Kutta method we get the following numerical schemes:
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h 1k2
Pk+1 = Pk — hpt qk+—k§ €——=5 | Pk,
2 kg
— TE-mode,
h o 1 k2
Qk+1 = gk + gk‘o €— ;/?3 (Pr + Pry1) »
1 k2 h
Pk+1 =Dk — h < - ekg> [Qk + 26’431%} )
0 — TM-mode.
h o
Qi+t = G+ 5k (Dk + Prea) -

The Figure 2 shows the phase portrait for ¢ = £1(1 + mcos(27z)) and m =
0,1, e1 = 1,5, p =1, E,(0) =0, H,(0) = 1. The coordinate z changes from 0
to 10, number of points is N = 2000, and the iteration step is h = 0.005

SN

T

Figure 2. Phase portrait drawn for Figure 3. Modulations of ¢
simplectic 2d order Runge-Kutta method

Conclusion

We have reviewed the simplectic Runge-Kutta methods for the case of the sep-
arable Hamiltonian H(p,q) = T(p) + V(q). Just for these types of Hamiltonians
symplectic methods are well developed.Still there remains an open question about the
numerical methods for the Hamiltonians of the general form. It is also interesting to
study the classical numerical methods in their symplectic form. The applications of-
ten need to obtain a solution with sufficient accuracy. Perhaps the existing numerical
schemes can provide an acceptable 2 — form @ preservation error. This can help to
avoid the development of new methods in areas where accuracy, given by the classical
scheme is sufficient. For the classical scheme there exist already well established and
optimized software implementations. The foregoing does not cancel important the-
oretical significance of symplectic methods and their application in areas where the
accuracy of any of the classical methods will not suffice.
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CuMILIeKTu4ecKue HNHTEerpaTopbl 1 3a/Jia4a pacCIlipoCTpaHEeHUuA
BOJIH B CJIOUCTOI1 cpeae

M. H. I'eBopksH, FO. B. I'magbsinieBa

Kagedpa cucmem mesekommyHurayuis
Poccutickuti ynusepcumem dpyotcovl Hapodos
ya. Muxayxa-Maxaas, 0. 6, Mocksa, 117198, Poccus

PaccMorpenbl yuciieHHEBIE METO/IBI, COXPAHAIONINE CUMIIEKTUYECKYIO CTPYKTYPY TaMUJIb-
TOHOBOH cucTeMbl. I[loCcTpoeH raMUIBTOHUAH JIJId CIydasl PACIPOCTPAHEHUST SJIEKTPOMArHUT-
HOI BOJIHBI B CTPATUMUIIMPOBAHHON cpenie 6e3 ucTouHnKoB. Pemnrennl ypaBuenus ['amMuiabrona
C TIOMOIILIO BapuanmoHnHoro merona Pynre-Kyrra 2-ro mopsaka.

KuroueBblie cjioBa: CUMILJIEKTUYECKHE MHTEIPATOPbI, CUMILJIEKTUYECKas CTPYKTypa, hop-
masim3M [amuiibToHa, ypaBHeHusi MakcBesia 6€3 HCTOYHUKOB.





