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1. Introduction

In this paper, we use a geometric approach to the problem of dynamical systems.
In the framework of geometric approach, the basic physical concepts follow from the
various transformations and their invariants. For example, when the Hamiltonian
formalism is formulated in the language of the symplectic geometry, the symplectic
form 𝜔̃ plays a key role.

A lot of numerical methods have been developed to solve the ODE. However, not
all of these methods take into account the geometric (symplectic) structure. It is not
important for the local solution (short time period). In the case of global solution
(long time period), preservation of the symplectic structure is very important because
it can give more information about the system, than the equations themselves.

Fortunately, the numerical schemes, known as variational integrators have been
developed. Such numerical methods preserve the global structures and give high ac-
curacy.

In the first section of this paper the Hamiltonian formalism is formulated in the
language of the symplectic geometry. Then with the use of the simple model — linear
oscillator — we illustrate that classical Euler method does not conserve the energy 𝐻
of the system. After that, the special case of variational integrator is described. In
the last section we use it to solve Maxwell’s equations without sources.

2. Hamiltonian Formalism with Respect of Cotangent Bundle
and Symplectic Structure

2.1. Lagrangian and Hamiltonian Functions

For a neighborhood 𝑈 of point 𝑃 of the bounded manifold𝑀 there exists a coordi-
nate map with coordinates 𝑞1, . . . , 𝑞𝑛. In the following when we mention coordinates
on manifold 𝑀 , we mean local coordinates of some point 𝑃 ∈𝑀 . 𝑀 is called configu-
rational manifold. Some mechanical system has 𝑁 coordinates 𝑞𝑖 = (𝑞1(𝑡), . . . , 𝑞𝑁 (𝑡)).
Evolution in time is given by curve 𝑞𝑖(𝑡) on the manifold 𝑀 . Hamiltonian formalism
starts with Lagrangian 𝐿(𝑞𝑖, 𝑞𝑖), and momentum definition [1]:

𝑝𝑖 =
𝜕𝐿(𝑞𝑖, 𝑞𝑖)

𝜕𝑞𝑖
, 𝑞𝑖 =

d𝑞𝑖

d𝑡
. (1)
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Now we can calculate the Hamiltonian using the usual definition of 𝐻 as the Legendre
transformation of 𝐿

𝐻(𝑝𝑖, 𝑞
𝑖) = 𝑝𝑖𝑞

𝑖 − 𝐿(𝑞𝑖, 𝑞𝑖).

Def 1. Lagrangian is called nonsingular, when Hessian of 𝐿 is nonsingular:

det

(︂
𝜕2𝐿

𝜕𝑞𝑖𝜕𝑞𝑗

)︂
̸= 0

particularly strongly nonsingular, when the equation (1) may be continuously and
one-one resolved in the form of 𝑞𝑖 = 𝑣𝑖(𝑞𝑖, 𝑝𝑖), ∀𝑞𝑖, 𝑞𝑖.

If Lagrangian 𝐿 is strongly nonsingular, the Euler-Lagrange equations and the
Hamiltonian equations are equivalent [2]:

d

d𝑡

𝜕𝐿

𝜕𝑞𝑖
− 𝜕𝐿

𝜕𝑞𝑖
= 0 ⇔ 𝜕𝐻

𝜕𝑞𝑖
= −d𝑝𝑖

d𝑡
,

𝜕𝐻

𝜕𝑝𝑖
=

d𝑞𝑖

d𝑡
.

Let 𝑣⃗(𝑡) = (𝑞1, . . . , 𝑞𝑁 )𝑇 . 𝑣⃗(𝑡) is a vector field given on manifold 𝑀 (the cross-
section of the tangent bundle to a manifold 𝑀), and 𝑝(𝑡) = (𝑝1, . . . , 𝑝𝑁 ) is a 1-form
field given on manifold 𝑀 (the section of cotangent bundle to a manifold 𝑀), thus:

– the Lagrangian 𝐿(𝑞𝑖, 𝑞𝑖) is the function on the tangent bundle 𝑇𝑀 ,
– the Hamiltonian 𝐻(𝑞𝑖, 𝑝𝑖) is the function on the cotangent bundle 𝑇 *𝑀 .

2.2. Phase Space and Symplectic Structure

Manifold 𝑇 *𝑀 is called phase space. Phase space is manifold and it’s dimension
is 2𝑁 .

Def 2. A symplectic form on a manifold 𝑀 is a closed non-degenerate differential

2-form 𝜔̃
def
= d̃𝑞𝑖 ∧ d̃𝑝𝑗 .

A symplectic manifold consists of a pair (𝑇 *𝑀, 𝜔̃), a manifold 𝑇 *𝑀 and a symplec-
tic form 𝜔̃. Assigning a symplectic form 𝜔̃ to a manifold 𝑇 *𝑀 is referred to as giving
𝑀 a symplectic structure. In the following we will consider only 2 dimension phase
space with symplectic form 𝜔̃ = d̃𝑝 ∧ d̃𝑞. The curve 𝑝 = 𝑝(𝑡), 𝑞 = 𝑞(𝑡) is considered.
Tangent vector to this curve is

𝑢⃗ =
d

d𝑡
=

d𝑞

d𝑡

𝜕

𝜕𝑞
+

d𝑝

d𝑡

𝜕

𝜕𝑝
.

Now as d̃𝜔̃ = d̃d̃𝑝 ∧ d̃𝑞 + d̃𝑝 ∧ d̃d̃𝑞 ≡ 0, then Lie derivative ℒ𝑢⃗ of the symplectic
form along the vector field 𝑢⃗ is 0.

Def 3. Vector field 𝑢⃗, that satisfied ℒ𝑢⃗𝜔̃ ≡ 0 is called Hamiltonian vector field.

To find the convolution 𝜔̃(𝑢⃗) the definition 𝜔̃ = d̃𝑞 ⊗ d̃𝑝− d̃𝑝⊗ d̃𝑞, thus should be
used:

𝜔̃(𝑢⃗) = d̃𝑞(𝑢⃗)d̃𝑝− d̃𝑝(𝑢⃗)d̃𝑞 = ⟨d̃𝑞, 𝑢⃗⟩d̃𝑝− ⟨d̃𝑝, 𝑢⃗⟩d̃𝑞 =

= d̃𝑞

(︂
d

d𝑡

)︂
d̃𝑝− d̃𝑝

(︂
d

d𝑡

)︂
d̃𝑞 =

d𝑞

d𝑡
d̃𝑝− d𝑝

d𝑡
d̃𝑞 =

𝜕𝐻

𝜕𝑝
d̃𝑝+

𝜕𝐻

𝜕𝑞
= d̃𝐻.

𝜔̃(𝑢⃗, ·) = d̃𝐻(·) ⇒ 𝜔̃(𝑢⃗) = d̃𝐻 ⇒ d̃𝜔̃ = d̃(d̃𝐻) = 0.
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2.3. Canonical Transformation

Def 4. Canonical transformation is a transformation that preserves the symplectic
structure 𝜔̃.

The new coordinates 𝑃 = 𝑃 (𝑞, 𝑝) and 𝑄 = 𝑄(𝑞, 𝑝) will be canonical if d̃𝑞 ∧ d̃𝑝 =

d̃𝑄 ∧ d̃𝑃 ,

d̃𝑄∧ d̃𝑃 =

(︂
𝜕𝑄

𝜕𝑞
d̃𝑞 +

𝜕𝑄

𝜕𝑝
d̃𝑝

)︂
∧
(︂
𝜕𝑃

𝜕𝑞
d̃𝑞 +

𝜕𝑃

𝜕𝑝
d̃𝑝

)︂
=

𝜕𝑄

𝜕𝑞

𝜕𝑃

𝜕𝑞
d̃𝑞∧ d̃𝑞+

𝜕𝑄

𝜕𝑞

𝜕𝑃

𝜕𝑝
d̃𝑞∧ d̃𝑝+

+
𝜕𝑄

𝜕𝑝

𝜕𝑃

𝜕𝑞
d̃𝑝 ∧ d̃𝑞 +

𝜕𝑄

𝜕𝑝

𝜕𝑃

𝜕𝑝
d̃𝑝 ∧ d̃𝑞 =

(︂
𝜕𝑄

𝜕𝑞

𝜕𝑃

𝜕𝑝
− 𝜕𝑄

𝜕𝑝

𝜕𝑃

𝜕𝑞

)︂
d̃𝑞 ∧ d̃𝑝.

This canonical transformation should satisfy the following condition:(︂
𝜕𝑄

𝜕𝑞

𝜕𝑃

𝜕𝑝
− 𝜕𝑄

𝜕𝑝

𝜕𝑃

𝜕𝑞

)︂
= 1 ⇔ det

𝜕(𝑄,𝑃 )

𝜕(𝑞, 𝑝)
= 1. (2)

2.4. Poisson Brackets and 𝜔̃

One of the most important points in the geometrical approach to Hamiltonian
dynamics is the role of 2-form 𝜔̃. This form plays the same role in symplectic manifold
as a metric tensor in Riemann’s manifold. 𝜔̃ imposes one-one mapping for vectors and

one-forms. Let 𝑉⃗ be a vector field on 𝑀 . One-form field 𝑉 can be defined with the
following formula:

𝑉 = 𝑉 (·) def
= 𝜔̃(𝑉⃗ , ·) = 𝜔̃(𝑉⃗ ) — non-coordinate form,

(𝑉 )𝑖 = (𝜔̃)𝑖𝑗(𝑉⃗ )𝑗 = 𝜔𝑖𝑗𝑉
𝑗 — coordinate form.

In the same way on the base of the one-form field 𝛼̃ can be defined vector field 𝛼⃗
(one-one definition): 𝛼̃ = 𝜔̃(𝛼⃗, ·) = 𝜔̃(𝛼⃗).

Let 𝑓 and 𝑔 be functions on the manifold. Vector fields can be introduced: 𝑋⃗𝑓
def
=

d⃗𝑓 and 𝑋⃗𝑔
def
= d⃗𝑔, where d⃗𝑓 is the vector gradient. It can be defined from the expression

d̃𝑓 = 𝜔̃(d⃗𝑓) = 𝜔̃(𝑋⃗𝑔) = 𝑋̃𝑔.

Def 5. Following scalar is called Poisson bracket : {𝑓, 𝑔} def
= 𝜔̃(𝑋⃗𝑓 , 𝑋⃗𝑔).

𝜔̃(𝑋⃗𝑓 , ·) = 𝜔̃(d⃗𝑓, ·) = d̃𝑓(·) ⇒ 𝜔̃(𝑋⃗𝑓 , 𝑋⃗𝑔) = 𝜔̃(d⃗𝑓, d⃗𝑔) = d̃𝑓(d⃗𝑔) = ⟨d̃𝑓, d⃗𝑔⟩ = ⟨d̃𝑓, 𝑋⃗𝑔⟩,

𝑋̃𝑔 = d̃𝑔 =
𝜕

𝜕𝑞
d̃𝑞 +

𝜕

𝜕𝑝
d̃𝑝.

Now, one can find vector 𝑋⃗𝑔:

𝑋⃗𝑔 =
𝜕𝑔

𝜕𝑞

𝜕

𝜕𝑝
− 𝜕𝑔

𝜕𝑝

𝜕

𝜕𝑞
⇒ 𝜔̃(𝑋⃗𝑓 , 𝑋⃗𝑔) = d̃𝑓(𝑋⃗𝑔) = 𝑋⃗𝑔𝑓 =

𝜕𝑔

𝜕𝑞

𝜕𝑓

𝜕𝑝
− 𝜕𝑔

𝜕𝑝

𝜕𝑓

𝜕𝑞
.

So, we define Poisson brackets of 𝑓 and 𝑔. The definition clarifies geometric sense
of the Poisson brackets. It is easy to see, that they don’t depend on the coordinate
system but only on two-form 𝜔̃. Canonical transformation does not affect on the
symplectic form 𝜔̃, thus Poisson brackets remain the same. A similar statement is
true for all constants of motion (zero Poisson bracket also is invariant under canonical
transform).
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3. Numerical Methods and Symplectic Structure

3.1. Family of Runge–Kutta Methods

Anyone who has dealt with ODEs is aware that for the most of them it is not always
possible to find an analytical solution. That’s why we have to use various numerical
methods to get a solution. One of the most well-known numerical schemes may be the
family of Runge–Kutta methods, which can be defined by the following formulas [3].
There is given the array of the coefficients 𝑐2, . . . , 𝑐𝑠; 𝑏1, . . . , 𝑏𝑠; [𝑎𝑖𝑗 ], 𝑖, 𝑗 = 1, . . . , 𝑠.
For each step 𝑠+ 1 one should calculate:

𝑘𝑖(ℎ) = ℎ𝑓(𝑥+ 𝑐𝑖, 𝑦 +
𝑠∑︁

𝑗=1

𝑎𝑖𝑗𝑘𝑗(ℎ)), 𝑦(𝑥𝑗+1) = 𝑦(𝑥𝑗) +
𝑠∑︁

𝑖=1

𝑏𝑖𝑘𝑠(ℎ).

It is important to note, that the values of the coefficients 𝑐1, . . . , 𝑐𝑠; 𝑏1, . . . , 𝑏𝑠; [𝑎𝑖𝑗 ]
are chosen based on the traditions and practical use of methods [3]. These data (the
coefficients) are usually arranged in a mnemonic device, known as a Butcher tableau.

𝑐1 𝑎11 𝑎12 𝑎13 𝑎14 . . . 𝑎1𝑠
𝑐2 𝑎21 𝑎22 𝑎23 𝑎24 . . . 𝑎2𝑠
𝑐3 𝑎31 𝑎32 𝑎33 𝑎34 . . . 𝑎3𝑠
𝑐4 𝑎41 𝑎42 𝑎43 𝑎44 . . . 𝑎4𝑠
𝑐5 𝑎51 𝑎52 𝑎53 𝑎54 . . . 𝑎5𝑠
...

...
...

...
...

. . .
...

𝑐𝑠 𝑎𝑠1 𝑎𝑠2 𝑎𝑠3 𝑎𝑠4 . . . 𝑎𝑠𝑠
𝑏1 𝑏2 𝑏3 𝑏4 . . . 𝑏𝑠

=
c A

b𝑇

The above Butcher tableau describes the family of implicit Runge–Kutta methods.
But more often the explicit methods are used, where 0 < 𝑖 < 𝑗 6 𝑠:

𝑘1(ℎ) = ℎ𝑓(𝑥, 𝑦),

𝑘2(ℎ) = ℎ𝑓(𝑥+ 𝑐2, 𝑦 + 𝑎21𝑘1(ℎ)),

𝑘3(ℎ) = ℎ𝑓(𝑥+ 𝑐3, 𝑦 + 𝑎31𝑘1(ℎ) + 𝑎32𝑘2(ℎ)),

𝑘4(ℎ) = ℎ𝑓(𝑥+ 𝑐4, 𝑦 + 𝑎41𝑘1(ℎ) + 𝑎42𝑘2(ℎ) + 𝑎43𝑘3(ℎ)),

. . . . . . . . . . . . . . . . . . . . . . . .

𝑘𝑠(ℎ) = ℎ𝑓(𝑥+ 𝑐𝑠, 𝑦 + 𝑎𝑠1𝑘1(ℎ) + 𝑎𝑠2𝑘2(ℎ) + 𝑎𝑠3𝑘3(ℎ) + . . . 𝑎𝑠,𝑠−1𝑘𝑠−1(ℎ)),

𝑦(𝑥𝑗+1) = 𝑦(𝑥𝑗) +
𝑠∑︁

𝑖=1

𝑏𝑖𝑘𝑠(ℎ).

The Butcher tableau for the explicit method is simplified and all elements of matrix
𝐴, for which 0 < 𝑖 < 𝑗 6 𝑠 are equal 0.

Tables for the methods of Euler, Runge–Kutta 2nd, 3rd and 4th order for specific
values of the coefficients have the following form:

0 0

1
,

0

1/2 1/2

0 1

,

0

1/2 1/2

1 −1 2

1/6 4/6 1/6

,

0

1/2 1/2

1/2 0 1/2

1 0 0 1

1/6 1/3 1/3 1/6

.
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3.2. Runge–Kutta Methods and Symplectic Form

Before turning to the symplectic methods, it is worth to study a simple example —
harmonic oscillator with unit mass.

𝐻(𝑝, 𝑞) =
𝑞2

2
+

𝑝2

2
⇒

{︃
𝑞′(𝑡) = 𝑝(𝑡),

𝑝′(𝑡) = −𝑞(𝑡).

To solve the ODE system the Euler’s method should be applied, where 𝑡0 6 𝑡 6 𝑇 ,
ℎ = 𝑡𝑘 − 𝑡𝑘−1: {︂

𝑞𝑘+1 = 𝑞𝑘 + ℎ𝑝𝑘,

𝑝𝑘+1 = 𝑝𝑘 − ℎ𝑞𝑘.

So it can be seen, that the total energy 𝐻 of the system does not change under the
time {︂

𝑞(𝑡) = 𝐶1 cos 𝑡+ 𝐶2 sin 𝑡,

𝑝(𝑡) = 𝐶2 cos 𝑡− 𝐶1 sin 𝑡
⇒ 𝐻(𝑝, 𝑞) =

1

2
(𝐶2

1 + 𝐶2
2 ) = const.

But from the discrete system we get
1

2
(𝑝2𝑘+1+𝑞

2
𝑘+1) = (𝑝2𝑘+𝑞

2
𝑘)(ℎ

2+1), thus with each

new iteration (𝑝2𝑘 + 𝑞2𝑘) increases (ℎ
2 + 1) times. So, the total energy of the system is

not conserved, what can be clearily seen on the Figure 1.

−3 −2 −1 0 1 2 3
q

−3

−2

−1

0

1

2

3

p

Initial point

Analytical solution
Euler method

Figure 1. Phase portrait for the exact solution and the solution by Euler’s method
𝑞(0) = 2, 𝑝(0) = 1

The above example shows that some numerical methods don’t respect global char-
acteristics and structures of the problem. In our case, this structure is a symplectic
form. We mentioned its importance above. There is a problem of finding methods,
which respect a symplectic form. Such methods exist and are called symplectic inte-
grators [4–7].
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3.3. Symplectic Integrators

Symplectic integrators usually belong to the family of implicit numerical meth-
ods. Software implementation of such methods is difficult. However, for separable
Hamiltonian function 𝐻(p,q) : 𝑇 *𝑀 → R

𝐻(p,q) = 𝑇 (p) + 𝑈(q), q = (𝑞1(𝑡), . . . , 𝑞𝑁 (𝑡)), p = (𝑝1(𝑡), . . . , 𝑝𝑁 (𝑡)), (3)

it is possible to construct explicit numerical scheme. The separable Hamiltonian de-
scribes a conservative dynamic system of Newton mechanics. In the framework of
relativistic mechanics it couldn’t be represented. We divide the segment [𝑡0, 𝑡0 + 𝑇 ]
into 𝑚 equal parts with step ℎ = 𝑡𝑖+1 − 𝑡𝑖, 𝑖 = 1, . . . ,𝑚. At each step ℎ some aux-

iliary quantities are calculated. Let (p(𝑡0),q(𝑡0))
not
= (p0,q0). Before a step 𝑖 + 1, 𝑛

auxiliary quantities should be calculated.

(p𝑖,q𝑖)
𝐾1→ (p𝑖+ 1

𝑛
,q𝑖+ 1

𝑛
)
𝐾2→ . . .

𝐾𝑙→ (p𝑖+ 𝑙
𝑛
,q𝑖+ 𝑙

𝑛
)
𝐾𝑙+1→ . . .

𝐾𝑛→⏟  ⏞  
Intermediate calculations

(p(𝑡𝑖+1),q(𝑡𝑖+1)).

The scheme is very similar to Runge–Kutta method (for RK method one calcu-
lates 𝑘𝑠(ℎ) at every step). That’s why this symplectic integrator is called symplectic

Runge–Kutta method. But the main point is that every transformation (p𝑙,q𝑙)
𝐾𝑙+1→

(p𝑙+1,q𝑙+1) is canonical. In the article [5] for the case (3) the second, third and fourth
order symplectic integrators were obtained. We write them for the 2D phase space (𝑙
— order of method) as following:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑞𝑖 = 𝑞0 + ℎ
𝑖∑︁

𝑚=1

𝑎𝑚∇𝑝𝑚𝑇 (𝑞𝑚), 𝑖 = 1, . . . , 𝑙

𝑝𝑖 = 𝑝0 − ℎ
𝑖∑︁

𝑚=1

𝑏𝑚∇𝑞𝑚−1𝑈(𝑞𝑚−1), 𝑖 = 1, . . . , 𝑙 = 2, 3, 4.

We write out formulas for the second order integrator [5]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑝𝑘+ 1
2
= 𝑝𝑘 − ℎ𝑏1

𝜕𝑈

𝜕𝑞
(𝑞𝑘),

𝑞𝑘+ 1
2
= 𝑞𝑘 + ℎ𝑎1

𝜕𝑇

𝜕𝑝

(︀
𝑝𝑘+ 1

2

)︀
,

𝑝𝑘+1 = 𝑝𝑘 − ℎ

[︂
𝑏1

𝜕𝑈

𝜕𝑞
(𝑞𝑘) + 𝑏2

𝜕𝑈

𝜕𝑞

(︀
𝑞𝑘+ 1

2

)︀]︂
,

𝑞𝑘+1 = 𝑞𝑘 + ℎ

[︂
𝑎1

𝜕𝑇

𝜕𝑝

(︀
𝑝𝑘+ 1

2

)︀
+ 𝑎2

𝜕𝑇

𝜕𝑝

(︀
𝑝𝑘+1

)︀]︂
.

Coefficients (𝑎1, 𝑎2, 𝑏1, 𝑏2) are not uniquely determined. They can be calculated from
the indeterminate system of equations. In the paper [5] it is noted that the following
two cases are of the most interest:

(𝑎1, 𝑎2, 𝑏1, 𝑏2) =
(︁
1

2
,
1

2
, 0, 1

)︁
— leapfrog,

(𝑎1, 𝑎2, 𝑏1, 𝑏2) =
(︁
1, 0,

1

2
,
1

2

)︁
— pseudo-leapfrog.
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For the leapfrog case the system we have:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑝𝑘+ 1
2
= 𝑝𝑘,

𝑞𝑘+ 1
2
= 𝑞𝑘 + ℎ

1

2

𝜕𝑇

𝜕𝑝

(︀
𝑝𝑘+ 1

2

)︀
,

𝑝𝑘+1 = 𝑝𝑘 − ℎ
𝜕𝑈

𝜕𝑞

(︀
𝑞𝑘+ 1

2

)︀
,

𝑞𝑘+1 = 𝑞𝑘 + ℎ

[︂
1

2

𝜕𝑇

𝜕𝑝

(︀
𝑝𝑘+ 1

2

)︀
+

1

2

𝜕𝑇

𝜕𝑝
(𝑝𝑘+1)

]︂
.

To prove the canonicity of the transformation from (𝑝𝑘, 𝑞𝑘) to (𝑝𝑘+1, 𝑞𝑘+1) the formule
(2) should be used (for the leapfrog case):

𝜕𝑞𝑘+1/2

𝜕𝑞𝑘

𝜕𝑞𝑘+1/2

𝜕𝑝𝑘
𝜕𝑝𝑘+1/2

𝜕𝑞𝑘

𝜕𝑝𝑘+1/2

𝜕𝑝𝑘

= 1 · 1− 1

2
ℎ
𝜕2𝑇

𝜕𝑝2
· 0 = 1.

Exactly in the same way we prove the canonicity of the transformation from
(𝑝𝑘+1/2, 𝑞𝑘+1/2) to (𝑝𝑘+1, 𝑞𝑘+1) and from (𝑝𝑘, 𝑞𝑘) to (𝑝𝑘+1, 𝑞𝑘+1) for the 4th order
method. If we require the time reversibility of the numerical solution, we can deter-
mine 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑏1, 𝑏2, 𝑏3, 𝑏4 uniquely [5, 7]:

𝑎1 = 𝑎4 =
1

6

(︁
2 + 2

1
3 + 2−

1
3

)︁
, 𝑏2 = 𝑏4 =

1

2− 2
1
3

,

𝑎2 = 𝑎3 =
1

6

(︁
1− 2

1
3 − 2−

1
3

)︁
, 𝑏1 = 0, 𝑏3 =

1

1− 2
2
3

.

4. Construction of the Hamiltonian Function for a Layered
Medium without Sources

Let us use Maxwell’s equations for the isotropic medium without sources insofar
as:

– in case of currents existence we get Hamiltonian formalism with links (see [8]);
– in case of wave propagation in waveguide there are no currents in waveguide.

The medium which properties are constant on each plane perpendicular to the fixed
direction (we get 𝑂𝑧 for this direction) is called layered medium. We will consider
a plane linearly polarized monochromatic electromagnetic wave propagating in the
layered medium.

– The wave is called plane, if the solution of the wave equation has the form E(r·s, 𝑡)
(the same for H), r — radius vector and s — wave propagation direction. The
quantity E(r · s, 𝑡) for each moment of time is constant on the plane r · s = const.

– The wave is called monochromatic if fields vectors are harmonic functions of time.
– When the wave is linearly polarized and it’s electric field intensity vector is per-

pendicular to the incidence plane we will call it Transverse Electric (TE-mode).
– When the wave is linearly polarized and it’s magnetic field intensity vector is

perpendicular to the incidence plane we will call it Transverse Magnetic (TM-
mode).

If the medium is linear, it is possible to decompose any plane polarized wave into
two waves, one of which is TE-mode wave and the other one is TM-mode wave. So, we
study the plane monochromatic electromagnetic wave. Let us introduce the Cartesian
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coordinate system. The plane of the wave propagation is (𝑥𝑂𝑧) plane and

𝑘 = 𝑘0𝑛 = 𝑛
𝜔

𝑐
, 𝑘0 =

𝜔

𝑐
,
𝑐

𝑣
= 𝑛 =

√︀
𝜀(𝑧)𝜇(𝑧), k = 𝑘s,

where k is a phase vector, 𝑘—wavenumber, 𝜀(𝑧) and 𝜇(𝑧) – electric and magnetic con-
stants. Assume that 𝜀(𝑧) and 𝜇(𝑧) change along the 𝑧 axis. The vector k depends only
on 𝑧 and its component 𝑘𝑥 is constant. A complex form of the plane monochromatic
electromagnetic wave equation is [9, 10]{︂

E = ℜE0 exp(−𝑖(𝜔𝑡− k · r)), E0 = (𝐸0, 𝐸0, 𝐸0) — complex constant vector,

H = ℜH0 exp(−𝑖(𝜔𝑡− k · r)), H0 = (𝐻0, 𝐻0, 𝐻0) — complex constant vector ,

(𝑘𝑥, 𝑘𝑦, 𝑘𝑧) = k ∈ (𝑥𝑂𝑧) ⇒ 𝑘𝑦 = 0 ⇒ k · r = 𝑘𝑥𝑥+ 𝑘𝑦𝑦 + 𝑘𝑧𝑧 = 𝑘𝑥𝑥+ 𝑘𝑧𝑧,

The symbol ℜ is usually omitted during the calculations, because it is much easier
to work with complex forms of E and H. After all calculations are done, we can write
them out in their real form. The quantities E and H depend only on 𝑥 and 𝑧, thus
the following conditions are fulfilled:

𝜕E

𝜕𝑦
= 0⃗,

𝜕H

𝜕𝑦
= 0⃗,

𝜕E

𝜕𝑥
= 𝑖𝑘𝑥E,

𝜕H

𝜕𝑥
= 𝑖𝑘𝑥H,

𝜕H

𝜕𝑡
= −𝑖𝜔H, 𝜕E

𝜕𝑡
= −𝑖𝜔E. (4)

Considering the formula (4) let us write out six equations:

rotE = −𝜇

𝑐

𝜕H

𝜕𝑡
⇒

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜕𝐸𝑧

𝜕𝑦
−𝜕𝐸𝑦

𝜕𝑧
= 𝑖𝜇𝑘0𝐻𝑥,

𝜕𝐸𝑥

𝜕𝑧
−𝜕𝐸𝑧

𝜕𝑥
= 𝑖𝜇𝑘0𝐻𝑦,

𝜕𝐸𝑦

𝜕𝑥
−𝜕𝐸𝑥

𝜕𝑦
= 𝑖𝜇𝑘0𝐻𝑧,

rotH =
𝜀

𝑐

𝜕E

𝜕𝑡
⇒

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜕𝐻𝑧

𝜕𝑦
−𝜕𝐻𝑦

𝜕𝑧
= −𝑖𝜀𝑘0𝐸𝑥,

𝜕𝐻𝑥

𝜕𝑧
−𝜕𝐻𝑧

𝜕𝑥
= −𝑖𝜀𝑘0𝐸𝑦,

𝜕𝐻𝑦

𝜕𝑥
−𝜕𝐻𝑥

𝜕𝑦
= −𝑖𝜀𝑘0𝐸𝑧.

Considering the equation (4) and the following conditions for the TE–mode: 𝐸𝑥 =
𝐸𝑧 = 0, 𝐻𝑦 = 0, and for the TM–mode: 𝐻𝑥 = 𝐻𝑧 = 0, 𝐸𝑦 = 0 we get six equations:

TE-mode:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜕𝐸𝑦

𝜕𝑧
= −𝑖𝜇𝑘0𝐻𝑥,

𝜕𝐻𝑥

𝜕𝑧
= 𝑖𝑘𝑥𝐻𝑧 − 𝑖𝜀𝑘0𝐸𝑦,

𝐻𝑧 =
1

𝜇

𝑘𝑥
𝑘0
𝐸𝑦,

TM-mode:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜕𝐻𝑦

𝜕𝑧
= 𝑖𝜀𝑘0𝐸𝑥,

𝜕𝐸𝑥

𝜕𝑧
= 𝑖𝑘𝑥𝐸𝑧 + 𝑖𝜇𝑘0𝐻𝑦,

𝐸𝑧 = −1

𝜀

𝑘𝑥
𝑘0
𝐻𝑦.

In each system there is one algebraic equation and it can be used to reduce the
number of ODE. Thus we get two systems of two equations.

TE-mode:

⎧⎪⎪⎨⎪⎪⎩
𝜕𝐻𝑥

𝜕𝑧
= −𝑖𝑘0

(︂
𝜀− 1

𝜇

𝑘2𝑥
𝑘20

)︂
𝐸𝑦,

𝜕𝐸𝑦

𝜕𝑧
= −𝑖𝜇𝑘0𝐻𝑥,

TM-mode:

⎧⎪⎪⎨⎪⎪⎩
𝜕𝐸𝑥

𝜕𝑧
= 𝑖𝑘0

(︂
𝜇− 1

𝜀

𝑘2𝑥
𝑘20

)︂
𝐻𝑦,

𝜕𝐻𝑦

𝜕𝑧
= 𝑖𝜀𝑘0𝐸𝑥.

There are two invariant combinations of the electromagnetic field components.

I1 = 𝜀E2 − 𝜇H2 and I2 = 𝜀𝜇E ·H.
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The Lagrange function 𝐿 =
1

2
I1 which is written with the use of the Cartesian

components of electromagnetic field has the following form:

𝐿 =
1

2

(︀
𝜀(𝐸2

𝑥 + 𝐸2
𝑦 + 𝐸2

𝑧 )− 𝜇(𝐻2
𝑥 +𝐻2

𝑦 +𝐻2
𝑧 )
)︀
,

for our case we get 𝐿 as following

𝐿 =
1

2

[︂(︂
𝜀− 1

𝜇

𝑘2𝑥
𝑘20

)︂
𝐸2

𝑦 − 𝜇𝐻2
𝑥

]︂
⏟  ⏞  

𝐿1 TE–mode

+
1

2

[︂
−
(︂
𝜇− 1

𝜀

𝑘2𝑥
𝑘20

)︂
𝐻2

𝑦 + 𝜀𝐸2
𝑥

]︂
⏟  ⏞  

𝐿2 TM–mode

= 𝐿1 + 𝐿2.

For the transition to the Hamiltonian function the canonical variables should be
chosen. It can be done using the following replacement 𝑞1 = 𝛼𝐻𝑥 and 𝑞2 = 𝛼𝐻𝑦 where
𝛼 = const ∈ C.

d𝑞1
d𝑧

= 𝛼
𝜕𝐻𝑥

𝜕𝑧
= −𝑖𝛼𝑘0

(︂
𝜀− 1

𝜇

𝑘2𝑥
𝑘20

)︂
𝐸𝑦, 𝑝1 =

𝜕𝐿1

𝜕

[︂
d𝑞1
d𝑧

]︂ =

−
(︂
𝜀− 1

𝜇

𝑘2𝑥
𝑘20

)︂
𝐸𝑦

𝑖𝛼𝑘0

(︂
𝜀− 1

𝜇

𝑘2𝑥
𝑘20

)︂ = − 𝐸𝑦

𝑖𝛼𝑘0
,

d𝑞2
d𝑧

= 𝛼
𝜕𝐻𝑦

𝜕𝑧
= 𝑖𝛼𝜀𝑘0𝐸𝑥, 𝑝2 =

𝜕𝐿1

𝜕

[︂
d𝑞2
d𝑧

]︂ =
𝜀𝐸𝑥

𝑖𝛼𝜀𝑘0
.

Now it is possible to write out Hamiltonians 𝐻1 and 𝐻2:

𝐻1 = 𝑝1
𝜕𝑞1
𝜕𝑧

− 𝐿1 =
1

2

(︂
𝜀− 1

𝜇

𝑘2𝑥
𝑘20

)︂
𝐸2

𝑦 +
1

2
𝜇𝐻2

𝑥 > 0,

𝐻2 = 𝑝2
𝜕𝑞2
𝜕𝑧

− 𝐿2 =
1

2

(︂
𝜇− 1

𝜀

𝑘2𝑥
𝑘20

)︂
𝐻2

𝑦 +
1

2
𝜀𝐸2

𝑥 > 0.

Let 𝛼 = 1. For subsequent calculations we should use the real quantities. For the
real 𝑞1, 𝑞2, 𝑝1, 𝑝2, 𝐸𝑥, 𝐸𝑦, 𝐻𝑥, 𝐻𝑦 we get:

𝑞1 = 𝐻𝑥, 𝑝1 = −𝐸𝑦

𝑘0
, 𝑞2 = 𝐻𝑦, 𝑝2 =

𝐸𝑥

𝑘0
.

𝐻1 =
1

2
𝑘20

(︂
𝜀− 1

𝜇

𝑘2𝑥
𝑘20

)︂
𝑝21 +

1

2
𝜇𝑞21, 𝐻2 =

1

2

(︂
𝜇− 1

𝜀

𝑘2𝑥
𝑘20

)︂
𝑞22 +

1

2
𝑘20𝜀𝑝

2
2.

Hamiltonian equations [11]:

TE–mode:

⎧⎪⎪⎨⎪⎪⎩
d𝑞1
d𝑧

= 𝑘20

(︂
𝜀− 1

𝜇

𝑘2𝑥
𝑘20

)︂
𝑝1,

d𝑝1
d𝑧

= −𝜇𝑞1,
TM–mode:

⎧⎪⎪⎨⎪⎪⎩
d𝑞2
d𝑧

= 𝜀𝑘20𝑝2,

d𝑝2
d𝑧

= −
(︂
𝜇− 1

𝜀

𝑘2𝑥
𝑘20

)︂
𝑞2.

The Hamiltonians for TE and TM–mode are separable, thus there are different sim-
plectic Runge–Kutta methods for Hamiltonian equation. Using the leapfrog Runge–
Kutta method we get the following numerical schemes:
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𝑝𝑘+1 = 𝑝𝑘 − ℎ𝜇

[︂
𝑞𝑘 +

ℎ

2
𝑘20

(︂
𝜀− 1

𝜇

𝑘2𝑥
𝑘20

)︂
𝑝𝑘

]︂
,

𝑞𝑘+1 = 𝑞𝑘 +
ℎ

2
𝑘20

(︂
𝜀− 1

𝜇

𝑘2𝑥
𝑘20

)︂
(𝑝𝑘 + 𝑝𝑘+1) ,

— TE-mode,

⎧⎪⎪⎨⎪⎪⎩
𝑝𝑘+1 = 𝑝𝑘 − ℎ

(︂
𝜇− 1

𝜀

𝑘2𝑥
𝑘20

)︂[︂
𝑞𝑘 +

ℎ

2
𝜀𝑘20𝑝𝑘

]︂
,

𝑞𝑘+1 = 𝑞𝑘 +
ℎ

2
𝜀𝑘20 (𝑝𝑘 + 𝑝𝑘+1) .

— TM-mode.

The Figure 2 shows the phase portrait for 𝜀 = 𝜀1(1 + 𝑚 cos(2𝜋𝑧)) and 𝑚 =
0, 1, 𝜀1 = 1, 5, 𝜇 = 1, 𝐸𝑥(0) = 0, 𝐻𝑥(0) = 1. The coordinate 𝑧 changes from 0
to 10, number of points is 𝑁 = 2000, and the iteration step is ℎ = 0.005
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Figure 2. Phase portrait drawn for
simplectic 2d order Runge–Kutta method
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Figure 3. Modulations of 𝑞

Conclusion

We have reviewed the simplectic Runge–Kutta methods for the case of the sep-
arable Hamiltonian 𝐻(p,q) = 𝑇 (p) + 𝑉 (q). Just for these types of Hamiltonians
symplectic methods are well developed.Still there remains an open question about the
numerical methods for the Hamiltonians of the general form. It is also interesting to
study the classical numerical methods in their symplectic form. The applications of-
ten need to obtain a solution with sufficient accuracy. Perhaps the existing numerical
schemes can provide an acceptable 2 – form 𝜔̃ preservation error. This can help to
avoid the development of new methods in areas where accuracy, given by the classical
scheme is sufficient. For the classical scheme there exist already well established and
optimized software implementations. The foregoing does not cancel important the-
oretical significance of symplectic methods and their application in areas where the
accuracy of any of the classical methods will not suffice.
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УДК 517.958
Симплектические интеграторы и задача распространения

волн в слоистой среде
М.Н. Геворкян, Ю.В. Гладышева

Кафедра систем телекоммуникаций
Российский университет дружбы народов

ул. Миклуха-Маклая, д. 6, Москва, 117198, Россия

Рассмотрены численные методы, сохраняющие симплектическую структуру гамиль-
тоновой системы. Построен гамильтониан для случая распространения электромагнит-
ной волны в стратифицированной среде без источников. Решены уравнения Гамильтона
с помощью вариационного метода Рунге–Кутта 2-го порядка.

Ключевые слова: симплектические интеграторы, симплектическая структура, фор-
мализм Гамильтона, уравнения Максвелла без источников.




