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This paper provides a gentle introduction to the foundational ideas, concepts and results
in the field of science dedicated to the theory of statistical function estimation and pattern
recognition. The so-called VC Theory of Vapnik and Chervonenkis is introduced and explored
gradually. The emphasis is placed on helping the reader appreciate the importance of the
extension of the classical law of large numbers to function spaces, and the key role that
”new” concepts such as Empirical Risk Minimization (ERM) principle, ERM consistency,
VC-dimension, and complexity control play in constructing algorithms that yield function
estimators with optimal properties. As much as possible, each key concept is introduced
via a tangible example, with the hope of helping the reader grasp the essential core of the
foundational concept under exploration.
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1. Introduction

Let X and Y be two sets, and consider their Cartesian product Z ≡ X ×Y. Now,
define Zn ≡ Z ×Z × . . .×Z to be the n-fold cartesian product of Z. Assume that Z
is equipped with a probability measure ψ, and let

z ∈ Zn with z = ((x1, y1), (x2, y2), . . . , (xn, yn))

denote the realization of a random sample of n examples, where each example zi =
(xi, yi) is independently drawn according to the above probability measure ψ on the
product space Z ≡ X ×Y. Throughout this paper, we consider the following problem:
Given a random sample z = ((x1, y1), (x2, y2), . . . , (xn, yn)) and assuming that the
probability measure ψ is unknown, find the function f : X → Y that best captures
the dependencies between the xi’s and the yi’s. We shall refer to X as the input
space, and to Y as the output space. To help clarify the key concepts, ideas and
results of interest, we shall consider a special case: X ⊆ R2 and Y = {−1,+1} or
Y = {0, 1}, corresponding to binary classification in the plane (two dimensional space).
Despite its relatively straightforward nature, this special case will provide most of the
ingredients needed to address the key foundational issues underlying the theory of
statistical function estimation and pattern recognition. Thanks to the fact the binary
classification problem is studied using rather basic mathematical tools, the intuition
underlying the theory should be followed without too much effort, our emphasis here
having been placed on the clarity of the results rather than the technical details thereof.
The rest of this paper is organized as follows: in the remainder of section 2, the main
definitions and concepts of statistical function estimation are provided. Section 3
explores the concepts introduced in section 2 for the specific case of binary classification
in the two dimensional Euclidean space. Section 4 presents the foundational theorems
with as much intuitive guidance and examples as possible. Section 4 also touches on
some advanced concepts of statistical function estimation such as growth function and
VC-dimension, while section 5 is dedicated to the conclusion and the discussion.
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2. Loss Functions, Risk Functionals and Optimal
Prediction

Def 1 (Loss function and risk functional). Let f denote any generic function
mapping an element x of X to its corresponding image f(x) in Y. Each time x is
drawn from ψ(x), the disagreement between the image f(x) and the true image y is
called the loss, denoted by L(y, f(x)). The expected value of this loss function with
respect to the distribution ψ(x, y) is called the risk functional of f . We shall denote
the risk functional of f by R(f), so that

R(f) = E[L(Y, f(X))] =
∫
L(y, f(x))dψ(x, y).

Best predictor (universal): The best function f∗ over the space YX of all measur-
able functions from X to Y is therefore

f∗ = arg inf
f
R(f).

The risk R∗ corresponding to f∗ is then defined as

R∗ = R(f∗) = inf
f
R(f).

Best predictor in function class F ⊂ YX : It turns out in practice that, because
of the fact that ψ is unknown, it is hard (almost impossible) to obtain an expression
for f∗. One therefore needs to select a function space F ⊂ YX , and then choose the
best estimator f̃ from F , i.e.,

f̃ = arg inf
f∈F

R(f).

The risk R̃ associated with the best function in class F is then defined as

R̃ = R(f̃) = inf
f∈F

R(f).

Empirical Risk Minimization Principle: Since the distribution ψ(x, y) that
generates the observations is unknown in practice, the risk functional R(f) which is
our criterion for choosing the “best” function f̃(x) from the function class F cannot be
computed. The theoretical risk functional R(f) is replaced by the so-called empirical
risk functional

Rz
n(f) =

1
n

n∑
i=1

L(yi, f(xi)) (1)

based on the random sample z = ((x1, y1), . . . , (xn, yn)). The Empirical Risk Mini-
mization (ERM) principle then consists of finding

fz
n = arg min

f∈F
Rz
n(f).

The slightly complex notation fz
n is used to emphasize the fact that the estimator

obtained via the empirical risk is a random function based on a sample z of size n. The
index n in this case helps to create the sequence of functions when it comes to studying
properties such as convergence and rates of convergence. Indeed, a natural question
that arises upon realizing that one is dealing with three different types of functions
namely f∗, f̃ and fz

n is: What is the relationship between these three functions? For
one thing, is it possible to quantify the difference between f∗ and f̃ , i.e., for some



42 Fokoué E.

norm ‖ · ‖, what is the value of ‖f̃ − f∗‖? Since fz
n is considered as an estimator of f̃ ,

the natural statistical question is then: Is fz
n a consistent estimator of f̃? And if so,

what is the rate of convergence of fz
n to f̃? One may even be more ambitious and ask

instead: Is fz
n a consistent estimator of f∗? And if so, what is the rate of convergence

of fz
n to f∗? In other words, what can be said about

lim
n→∞

Prob
z∈Zn

{
‖fz
n − f̃‖ < ε

}
or for that matter

lim
n→∞

Prob
z∈Zn

{
‖fz
n − f∗‖ < ε

}
?

It turns out that addressing the comparison between fz
n and f̃ or f̃ is hard, partly

because finding the appropriate norm is not easy, but also constructing bounds is not
clear even if one finds such a norm. Fortunately, since all the functions are derived
through the risk functional, a more manageable approach to comparing the functions
is to compare their corresponding risk functionals. For instance, given a fixed function
f , how does R(f) compare to Rz

n(f)? Or more formally, for a fixed function f , and
for all ε > 0, what is the value of

lim
n→∞

Prob
z∈Zn

{
|Rz
n(f)−R(f)| < ε

}
.

In other words, for a fixed given function f , does the empirical risk Rz
n(f) converge

to the theoretical risk R(f)? This convergence of risk functionals for a fixed function
f will be referred to later as point wise convergence. Unlike the direct comparison
of the functions that ran into problems as mentioned earlier, this comparison via
risk functionals provides the added advantage that one can then make confidence
statements about the unknown value of R(f). For instance, for a given 0 < δ < 1, one
can make statements of the form∣∣Rz

n(f)−R(f)
∣∣ 6 φ(n, δ)

with a probability of at least 1 − δ. Indeed, it turns out that pointwise convergence
of the empirical risk to the true risk for a fixed function can be established by rather
straightforward application of Chebyshev’s inequality.

Theorem 1 (Chebyshev’s inequality). Let ξ be a random variable with finite mean
E[ξ] and finite variance σ2(ξ) = V(ξ). Then, ∀ε > 0,

Prob
{
|ξ − E(ξ)| > ε

}
6

V(ξ)
ε2

.

A very natural application of Chebyshev’s inequality is its use in the study of sums
of independent random variables. Indeed, if ξ is a random variable on a probability
space Z with finite mean µ = E[ξ] and finite variance σ2(ξ) = V(ξ) = σ2, then ∀ε > 0,

Prob
z∈Zn

{∣∣∣∣∣ 1n
n∑
i=1

ξ(zi)− µ
∣∣∣∣∣ > ε

}
6

σ2

nε2
.

An immediate (direct) consequence of Chebyshev’s inequality is the fact that the
empirical mean 1

n

∑n
i=1 ξ(zi) converges in probability to the theoretical mean µ in the

limit of very large samples (as n→∞), i.e.,

1
n

n∑
i=1

ξ(zi)
P−→

n→∞
µ.
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Application to risk functionals: Consider a fixed function f ∈ F , and let
the random variable of interest be ξ with ξ(z) = L(yi, f(vxi)). Then Rz

n(f) =
(1/n)

∑n
i=1 ξ(zi) and R(f) = E(ξ). Besides, it can be easily shown that R(f) =

E(Rz
n(f)). As a result, by Chebyshev’s inequality, for a fixed function f , ∀ε > 0,

Prob
z∈Zn

{|Rz
n(f)−R(f)| > ε} 6

σ2

nε2
,

so that, for a fixed function f ∈ F ,

Rz
n(f) P−→

n→∞
R(f).

Another, and perhaps even more important application of Chebyshev’s inequality
will be its use in deriving confidence statements about the difference between the
empirical quantities of interest and their theoretical counterpart. In other words,
while it is important that the convergence occurs, it will be crucial in learning theory
to know how fast the convergence is in terms of (a) the number of examples observed
(sample size); (b) the confidence level desired (1 − δ); and (c) a characteristic of the
function class under consideration, maybe through its quantities like variances and
other moments. For instance, the above Chebyshev’s inequality on sums of random
variables can be rewritten as

Prob
z∈Zn


∣∣∣∣∣ 1n

n∑
i=1

ξ(zi)− µ
∣∣∣∣∣ 6

√
σ2

nδ

 6 1− δ,

by simply setting ε =
√
σ2/(mδ) for any 0 < δ < 1. Therefore, one could assert, that

with confidence at least 1− δ,∣∣∣∣∣ 1n
n∑
i=1

ξ(zi)− µ
∣∣∣∣∣ <

√
1
δ

σ2

n
.

Bounds and rates for fixed f : Applying the above to risks functionals yields, for
a fixed f ∈ F ,

|Rz
n(f)−R(f)| <

√
1
δ

σ2

n
.

As it turns out, extensions (improvements) on Chebyshev’s inequality will yield faster
rates of convergence of empirical quantities Rz

n(f) to their theoretical counterparts
R(f). One such improvement is provided by Hoeffding’s inequality.

Theorem 2 (Hoeffding’s inequality). Let ξ(z1), ξ(z2), . . . , ξ(zn) be a collection of
i.i.d random variables with ξ(zi) ∈ [a, b]. Then, ∀ε > 0,

Prob

[∣∣∣∣∣ 1n
n∑
i=1

ξ(zi)− E(ξ)

∣∣∣∣∣ > ε

]
6 2 exp

( −2nε2

(b− a)2

)
.

For all δ ∈ (0, 1), Hoeffding’s inequality allows one to write

Prob

∣∣∣∣∣ 1n
n∑
i=1

ξ(zi)− E(ξ)

∣∣∣∣∣ > (b− a)

√
ln 2

δ

2n

 6 δ,

so that with probability at least 1− δ,∣∣∣∣∣ 1n
n∑
i=1

ξ(zi)− E(ξ)

∣∣∣∣∣ 6 (b− a)

√
ln 2

δ

2n
.
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Assuming the loss function is bounded, a direct application of Hoeffding’s inequality
to risks functionals for a fixed f ∈ F yields,

|Rz
n(f)−R(f)| < (b− a)

√
ln 2

δ

2n
.

By rewriting the Chebyshev bound as

|Rz
n(f)−R(f)| <

√
2
δ

1
2n
σ2. (2)

it appears clear that Hoeffding provides faster rates of convergence, since the term in
δ is changed from 2/δ to ln(2/δ), and also instead of the variance σ2 of ξ, we now
(b − a). Most of the that bounds are encountered here will have in them a function
of 2/δ, a function of 1/2n and a function of the variance. Indeed, 1 − δ confidence
bounds will be typically of the form

c

[
ln(2/δ)
n

] 1
2 +θ

with 0 < θ < 1
2 depending on the variance of the random variable ξ.

For all the good insights they help gain, the above bounds, by virtue of their point
wise nature, suffer from the following limitations: Given two distinct functions f and
g both from F , the set Zf of samples for which the probabilistic inequality holds for
fixed f may differ from the Zg of samples for which the probabilistic inequality holds
for fixed g. In other words, crucially needed comparisons of the type

|Rz
n(f)−R(g)| or |Rz

n(g)−R(f)|

are not taken into account in the study of pointwise convergence. Clearly, more
important than point wise convergence is uniform convergence that helps compare
the risk functionals, not just for a fixed function, but for functions across the space
of functions under consideration. For instance, it is crucial to quantify or at least
provide a bound for the difference between the empirical risk Rz

n(fz
n) and the smallest

risk R̃ = R(f̃) in the function class F under consideration, but also the difference
between Rz

n(fz
n) and R̃ = R(f̃). In other words, one needs to study random sequences

like ∣∣R(fz
n)− inf

f∈F
R(f)

∣∣ and
∣∣Rz

n(fz
n)− inf

f∈F
R(f)

∣∣
to gain insights into the quality of function estimation provided by fz

n through the
ERM principle. More generally, it boils to investigating various aspects of

lim
n→∞

Prob
z∈Zn

{
sup
f∈F

∣∣Rz
n(f)−R(f)

∣∣ < ε

}
.

A reasoning on error decomposition and consistency of estimators along with rates,
bounds and algorithms applies to function spaces: indeed, the difference between the
true risk R(fz

n) associated with fz
n and the overall minimum risk R∗ can be decomposed

to explore in greater details the source of error in the function estimation process:

R(fz
n)−R∗ = R(fz

n)−R(f̃)︸ ︷︷ ︸
Estimation error

+ R(f̃)−R∗︸ ︷︷ ︸
Approximation error

. (3)
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Theorem 3 (Consistency of the Empirical Risk Minimization principle). The
ERM principle is consistent if it provides a sequence of functions fz

n, n = 1, 2, . . .
for which both the expected risk R(fz

n) and the empirical risk Rz
n(fz

n) converge to the
minimal possible value of the risk R(f̃) in the function class under consideration, i.e.,

R(fz
n) P−→

n→∞
inf
f∈F

R(f) = R(f̃) and Rz
n(fz

n) P−→
n→∞

inf
f∈F

R(f) = R(f̃).

It turns out the above theorem on the consistency of the empirical risk minimization
principle constitutes one of the four pillars of statistical learning theory as formulated
and presented by such authors as [1]. When constructing function estimators, the least
one should do is assess the convergence of the empirical quantities of interest to their
theoretical counterparts. In [1], Vapnik provides the following four questions as the
keys to statistical learning theory (a) What are the necessary and sufficient conditions
for the consistency of a learning process based on the ERM principle? This first
questions suggests the need for a theory of consistency of learning processes. (b) How
fast is the rate of convergence of the learning process? A question that opens the door to
the need for a nonasymptotic theory of the rate of convergence of learning processes as
opposed to the traditional - sometimes unrealistic - asymptotic theory. (c) How can one
control the rate of convergence (the generalization ability) of the learning process?. Here,
the implication of the question is the need to develop tools and a theory for controlling
the generalization ability of learning processes; and finally, (d) How can one construct
algorithms that can control the generalization ability of the learning process?. This last
question, clearly of interest to practitioners, allows statistical learning theory to seek to
provide tools along with a theory for constructing/devising learning algorithms, with
the aim of consolidating all the four pillars. Algorithms constructed this way are
expected to focus on the problem at hand, with all its aspects taken into account as
thoroughly as possible. In [1], Vapnik discusses the details of this theorem at length,
and extends the exploration to include the difference between what he calls trivial
consistency and non-trivial consistency. To better understand consistency in function
spaces, consider the sequence of random variables

ωn = sup
f∈F
|R(f)−Rz

n(f)|, (4)

and consider studying

lim
n→∞

P

{
sup
f∈F
|R(f)−Rz

n(f)| > ε

}
= 0, ∀ε > 0.

Vapnik shows that the sequence of the means of the random variable ξn converges to
zero as the number n of observations increases [1]. He also remarks that the sequence
of random variables ξn converges in probability to zero if the set of functions F ,
contains a finite number N of elements. We will show that later in the case of pattern
recognition. It remains then to describe the properties of the set of functions F , and
probability measure ψ(x, y) under which the sequence of random variables ξn converges
in probability to zero.

lim
n→∞

P

{[
sup
f∈F

[R(f)−Rz
n(f)] > ε

]
or

[
sup
f∈F

[Rz
n(f)−R(f)] > ε

]}
= 0.

3. Statistical Theory of Pattern Recognition

Instead of exploring the details of the above theorem in pure abstraction, one
of the most commonly encountered statistical tasks will now be explored under the
framework of statistical learning theory and the details of the theorem will be clarified
along the way: that task is statistical pattern recognition, and in this case binary
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classification in two dimensional space will be studied. For this problem, the so-called
0− 1 loss function defined below is used. More specifically,

L(y, f(x)) = I(y 6= f(x)) =
{

0 if y = f(x),
1 if y 6= f(x).

(5)

Now, with the zero-one loss function in binary classification, our corresponding true
risk (also known as theoretical risk or generalization error or true error) is given by

R(f) =
∫
L(y, f(x))dψ(x, y) = E [I(Y 6= f(X))] = Prob(X,Y )∼ψ[Y 6= f(X)]. (6)

The true error R(f) of a classifier f therefore defines the probability that f mis-
classifies any arbitrary observation randomly draw from the population of interest
according to the distribution ψ. It is important to note from the definition that R(f)
can also be interpreted as the expected disagreement between classifier f and the
truth about the label y of x.

How is the Bayes’ classifier obtained? Consider a pattern x from the input
space, and a class label y. Let p(x|y) denote the class conditional density of x in
class y, and let Prob[Y = y] denote the prior probability of class membership. The
posterior probability of class membership is defined as

Prob[Y = y|x] =
Prob[Y = y]p(x|y)

p(x)
.

Given a pattern x to be classified, the Bayes classification strategy consists of

Assigning x to the class with maximum posterior probability.

More formally, with f∗ denoting the function from X to {−1,+1} that implements
the Bayes classifier, we have,

f∗(x) =


+1, if Prob[Y = +1|x] = max

y∈{−1,+1}
{Prob[Y = y|x]} ,

−1, if Prob[Y = −1|x] = max
y∈{−1,+1}

{Prob[Y = y|x]} .

For simplicity, we shall write

f∗(x) = arg max
c∈{−1,+1}

Prob(Y = c|x). (7)

Theorem 4. The minimizer of the 0−1 risk functional over all possible classifiers
is the Bayes classifier f∗ defined above. Therefore, the Bayes’ classifier f∗ is such
that

f∗(x) = arg inf
f

Prob(X,Y )∼ψ[Y 6= f(X)] = arg inf
f

E [I(Y 6= f(X))].

Proof. Given x, the conditional risk (risk given x) can be broken down as follows:
the conditional risk of assigning x to class +1 is

R(f(x) = +1) = L(f(x) = +1, Y = +1)Prob[Y = +1|x] +
+ L(f(x) = +1, Y = −1)Prob[Y = −1|x] =
= Prob[Y = −1|x] = 1− Prob[Y = +1|x].

From the above, minimizing the risk R(f(x) = +1) of deciding to assign x to class
+1 under the 0-1 loss is equivalent to maximizing the posterior probability Prob[Y =
+1|x] of x being in class +1. Therefore, the function f that minimizes R(f(x) = +1)
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is the same function that is based on Prob[Y = +1|x] being the maximum. With all
that, if

g = arg min
f
R(f(x) = +1),

then
g(x) = arg max

c∈{−1,+1}
Prob(Y = c|x) = f∗(x).

The same reasoning can be made for R(f(x) = −1). The Bayes classifier is indeed the
universal minimizer of the 0-1 risk functional.

Note that the definition and therefore the construction of the Bayes classifier requires
the knowledge of the probability density p(x, y) = p(x|y)p(y) which in practice is
unknown. As stated in section 1, one then has to select a space of functions that one
assumes contains a good classifier of the data.

A Simple Two Dimensional Classification Task

Consider the classification task of Figure 1 as an illustrative example. In order to
construct the Bayes classifier for this task, one needs to know the probability measure
according to which the points are generated.

Figure 1. Binary classification task in a two dimensional space

One way to circumvent the fact of not knowing ψ(x, y) is to estimate the density
p(x, y) and then construct the approximate Bayes’ classifier. However, density estima-
tion, as warned by Vapnik [1] and many other authors is, not only a hard problem in
it own right, but an ill-posed problem also. In fact, a standard wisdom promoted by
Vapnik in statistical learning theory is to solve the classification problem as directly
as possible and avoid complicating the task with many intermediary and often hard
problems. Instead of trying the construct the overall best classifier for the task, one
should consider restricting the function search to a class of classifiers. In this case, the
scatter seems to suggest that linear separation might be a decent strategy. In other
words, one may consider finding the best linear separating hyperplane, i.e.

F =
{
f : X → {−1,+1}|∃α0 ∈ R, (α1, . . . , αp)> = α ∈ Rp|

f(x) = sign
(
α>x + α0

)
,∀x ∈ X

}
.

It is important to note that although the function spaces in the above examples are
driven by parameters that are components of a vector, α need not be a vector for more



48 Fokoué E.

general function spaces. In fact, α is allowed to be any abstract set of parameters,
so that any arbitrary set of functions can be defined and handled by this framework.
Now, since the true risk for the best function in this class F cannot be computed
because of the fact that ψ(x, y) is unknown, one has to turn to the empirical risk. The
empirical risk or empirical error corresponding to the true risk of equation (6), is given
by

Rz
n(f) =

1
n

n∑
i=1

I(yi 6= f(xi)) = Prob(x,y)∼S [Y 6= f(X)] . (8)

I is the indicator function, and Prob(x,y)∼S [. . .] is a probability taken with respect to
the uniform distribution over the sample S. Rz

n(f) is therefore the realized disagree-
ment between classifier f and the truth about the label y of x based on information
contained in the sample S. In the case of the example of Figure 1, the function

fz
n = arg min

f∈F
Rz
n(f)

is the straight line that separates the two classes with the minimum number of mis-
classifications. It is crucial to mention that, in the presence of the data of Figure 1,
seeking to minimize the empirical risk without restricting the function class does lead
overfitting. Indeed, one could construct a classifier that achieves zero empirical risk,
but such a classifier, not only is too complex, but also does not generalize well, in the
sense that future observations are likely to be misclassified. The control of complexity
mentioned earlier as one of the pillars of statistical learning theory does come into play
in such cases. Statistical learning theory deals with this issue by way of the so-called
Structural risk minimization principle [1]. For now, the focus is on the convergence
of the ERM principle in pattern recognition. It is easy to see that, for a given (fixed)
function (classifier) f ,

E[Rz
n(f)] = R(f). (9)

Remember that the goal of statistical function estimation is to devise a technique
(strategy) that chooses from the function class F , the one function whose true risk is
as close as possible to the lowest risk in class F . The question arises: since one cannot
calculate the true error, how can one devise a learning strategy for choosing classifiers
based on it? Tentative answer: At least devise strategies that yield functions for
which the upper bound on the theoretical risk is as tight as possible, so that one can
make confidence statements of the form:

With probability 1− δ over an i.i.d. draw of some sample according to the distribution
ψ, the expected future error rate of some classifier is bounded by some function
φ(δ, error rate on sample) of δ and the error rate on sample.

If one resort to Chebyshev’s inequality encountered earlier, it is easy to see that

Prob
z∈Zn

{∣∣Rz
n(f)−R(f)

∣∣ > ε
}

6
R(f)(1−R(f))

nε2

for a given classifier f . Since max
R(f)∈[0,1]

R(f)(1−R(f)) = 1
4 , we have

√
R(f)(1−R(f))

nδ
<

√
1

4nδ
.

Based on Chebyshev’s inequality, for a given classifier f , with a probability of at least
1 − δ, the bound on the difference between the true risk R(f) and the empirical risk
Rz
n(f) is given by

|Rz
n(f)−R(f)| <

√
1

4nδ
.
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A tighter bound is derived from Hoeffding’s inequality mentioned earlier. More specif-
ically, for a fixed function f and for any δ ∈ (0, 1),

R(f) 6 Rz
n(f) +

√
ln 2

δ

2n
.

with probability at least 1− δ.
Fact 1. The bound yielded by Hoeffding’s inequality is tighter than the one derived

from Chebyshev’s inequality.

Proof. Clearly, we need to find out which of ln 2/δ or 1/2δ is larger. This is the
same as comparing exp(1/2δ) and 2/δ, which in turns means comparing a(2/δ) and
2/δ where a = exp(1/4). With δ > 0, a(2/δ) > 2/δ, so that, we know that Hoeffding’s
bounds are tighter. The graph also confirms this.

Figure 2. Chernoff vs Chebyshev bounds for proportions: δ = 0.01

Figure 3. Chernoff vs Chebyshev bounds for proportions: δ = 0.05
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In all the above, we only addressed pointwise convergence of Rz
n(f) to R(f), i.e.,

for a fixed machine f ∈ F , we studied the convergence of

Prob
z∈Zn

{∣∣Rz
n(f)−R(f)

∣∣ > ε
}

to 0.

Needless to mention that pointwise convergence is of very little use here for reasons
mentioned in great detail in section 1. Indeed, when one writes for a fixed function f
and for any δ ∈ (0, 1),

R(f) 6 Rz
n(f) +

√
ln 2

δ

2n
.

with probability at least 1 − δ, one actually means the following: If we choose a fixed
function f and then collect many different samples z ∈ Zn, then the corresponding
empirical risks for most of those samples a proportion of at least 1− δ of them will be
close to the true risk. However, for a fixed sample z ∈ Zn, one can find a function for
which the difference between the empirical risk and the theoretical risk is very large,
especially if the function class F is large enough. Therefore, instead, for bounds to be
useful, they have to apply to all function in F , not just pointwise. A more interesting
issue to address is uniform convergence. That is, for all machines, f ∈ F , determine
the necessary and sufficient conditions for the convergence of

Prob
z∈Zn

{
sup
f∈F
|Rz
n(f)−R(f)| > ε

}
to 0.

4. Derivation of Bounds on the Generalization
Error

4.1. Bounds for Finite Function Classes

Suppose that the function class F has m functions in it, i.e., F = {f1, f2, . . . , fm}.
One seeks to derive bounds that apply at once to all the functions in F . In other
words, instead of stopping at the inequality

Prob
z∈Zn

{∣∣Rz
n(f)−R(f)

∣∣ > ε
}

6 2e−2nε2 ,

one needs to compute the proportion

Prob
z∈Zn

{
sup
f∈F
|Rz
n(f)−R(f)| > ε

}
= Prob

z∈Zn

{
∃f ∈ F :

∣∣Rz
n(f)−R(f)

∣∣ > ε
}
.

The supremum of all deviations is greater than ε if there exists at least one function
whose deviation is greater than ε.

Lemma 1. The function class F has m functions in it, i.e., F = {f1, f2, . . . , fm},
then Hoeffding’s inequality is extended to the supremum so that, ∀ε > 0,

Prob
z∈Zn

{
sup
f∈F
|Rz
n(f)−R(f)| > ε

}
6 2me−2nε2 .

Proof.

Prob
z∈Zn

{
sup
f∈F
|Rz
n(f)−R(f)| > ε

}
= Prob

z∈Zn

{
∃f ∈ F :

∣∣Rz
n(f)−R(f)

∣∣ > ε
}

=

= Prob
z∈Zn

{
m⋃
i=1

{∣∣Rz
n(fi)−R(fi)

∣∣ > ε
}}

6
m∑
i=1

Prob
z∈Zn

{∣∣Rz
n(fi)−R(fi)

∣∣ > ε
}

6 2me−2nε2 .
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Proposition 1. If the function class F is finite, i.e. F = {f1, f2, . . . , fm}, where
m = |F| = #F = Number of functions in the class F , then, for all f ∈ F ,

R(f) 6 Rz
n(f) +

(
lnm+ ln 2

δ

2n

)1/2

with probability at least 1− δ, ∀δ > 0.

Proof. It is obvious that for all f ∈ F ,

|Rz
n(f)−R(f)| 6 sup

f∈F
|Rz
n(f)−R(f)|.

Therefore, by virtue of the above lemma, ∀f ∈ F ,

|Rz
n(f)−R(f)| 6 2me−2nε2 .

For all δ ∈ (0, 1), setting δ = 2me−2nε2 yields

∀f ∈ F , |Rz
n(f)−R(f)| 6

√
lnm+ ln 2

δ

2n

with probability at least 1− δ, as required.

Since the above result applies to all the functions in F , it therefore applies to

fz
n = arg min

f∈F
Rz
n(f)

which is the function constructed by the algorithm to classify the data. One can
therefore safely write,

R(fz
n) 6 Rz

n(fz
n) +

(
lnm+ ln 2

δ

2n

)1/2

,

thereby providing a bound on the true error for the classifier in hand. The term
lnm reflects the fact that the bound on the generalization error must hold for all the
functions in the class F .
While the above results help compare the empirical risk to the theoretical risk across
the function class, there remains the need to compare the true risk of the constructed
function R(fz

n) to the smallest risk in the class or the smallest risk overall. The
following theorem helps do just that.

Theorem 5. If Rz
n(f) and R(f) are close for all f ∈ F , i.e., ∀ε > 0,

sup
f∈F
|Rz
n(f)−R(f)| 6 ε, then R(fz

n)−R(f̃) 6 2ε.

Proof. Recall that we did define fz
n as the best function that is yielded by the

empirical risk Rz
n(f) in the function class F . Recall also that Rz

n(fz
n) can be made as

small as possible as we saw earlier. Therefore, with f̃ being the best true risk in class
F , we always have

Rz
n(f̃)−Rz

n(fz
n) > 0.

As a result,

R(fz
n) = R(fz

n)−R(f̃) +R(f̃) = Rz
n(f̃)−Rz

n(fz
n) +R(fz

n)−R(f̃) +R(f̃) 6
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6 2sup
f∈F
|R(f)−Rz

n(f)|+R(f̃).

Consequently,
R(fz

n)−R(f̃) 6 2sup
f∈F
|R(f)−Rz

n(f)|

as required.

Corollary 1. A direct consequence of the above theorem is the following:

R(fz
n) 6 R(f̃) + 2

(
lnm+ ln 2

δ

2n

)1/2

(10)

with probability at least 1− δ, ∀δ > 0, where as before

f̃ = arg inf
f∈F

R(f) and fz
n = argmin

f∈F
Rz
n(f).

Equation (10) is of foundational importance, because it reveals clearly that the size
of the function class controls the uniform bound on the crucial generalization error:
Indeed, if the size m of the function class F increases, then R(f̃) is caused to increase
while R(fz

n) decreases, so that the trade-off between the two is controlled by the size
m of the function class. This raises the natural question as to what happens when
the function class is infinite dimensional. Indeed, for infinite dimensional function
spaces, one will need to introduce such concepts as the capacity of the function space,
measured through devices such as the VC-dimension and covering numbers.

4.2. Statistical Theory for Infinite Dimensional Spaces

When the function class F is uncountable, one way to define its “size” is by way
of the samples on which the functions from that class operate. In the case of binary
classification for instance, the number of labellings (−1,+1) yielded by separating
hyperplanes on a given sample z ∈ Zn of size n is finite even though the number of
hyperplanes itself is infinite. One could define

Fz = {(f(z1), f(z2), . . . , f(zn)) : f ∈ F}

to be the set of ways in which z = (z1, z2, . . . , zn) can be classified.
Def 2. The growth function is the maximum number of ways in which n points

can be classified by a function class. More specifically,

SF (n) = sup
z∈Zn

|Fz|.

For the binary classification task, there are 2n ways to classify a sample of size n into
two classes {= 1,+1}. Therefore, for binary classification SF (n) 6 2n for any function
class F . The following theorem by Vapnik and Chervonenkis plays a foundational role
in statistical learning theory.

Theorem 6 (Vapnik-Chervonenkis). For any δ ∈ (0, 1),

∀f ∈ F , R(f) 6 Rz
n(f) + 2

√
2

lnSF (2n) + ln 2
δ

2n

with probability at least 1− δ.
It is therefore crucial to be able to compute the growth function SF (n) of a given
function class F . The concept of VC-dimension provides a way to manipulate the
growth function.
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Def 3 (VC-dimension). The VC-dimension h of a function class F is the largest
n such that

SF (n) = 2n.

It is shown [1] that, if F is the class of separating hyperplanes in a p dimensional
space, then

V Cdim(F) = h = p+ 1.

The VC-dimension and the growth function for that matter can be viewed as
as measures of the effective size of a function class. In a sense, by “projecting” the
function class onto a finite sample, one avoids simply counting the number of functions
in that class, and instead one captures the geometry of the function class and can
therefore compute finite quantity that measure the size of that class relative to the
finite sample.

The question remains: how does the VC-dimension help provide bounds on the
generalization error when the function class is infinite dimensional. The answer re-
quires the following lemma.

Lemma 2 (Vapnik and Chervonenkis, Sauer, Shelah). Let F be a function class
with finite VC-dimension h. Then

SF (n) 6
n∑
i=0

(
n

i

)
, and for all n > h SF (n) 6

(
en

h

)h
.

From the above lemma, the following result is derived immediately: If a function class
F has finite VC-dimension h, then for all δ ∈ (0, 1),

∀f ∈ F , R(f) 6 Rz
n(f) + 2

√√√√
2
h
(

ln 2n
h + 1

)
+ ln 2

δ

n
(11)

with probability at least 1− δ. As a consequence of the above result, it turns out that
the difference between the empirical risk and the true risk of order at most

√
(h lnn)/n.

A finite VC-dimension ensures that the empirical risk converges uniformly over the
class to the true risk.

5. Conclusion and Discussion

This paper has provided a general introduction to the theory underlying statistical
function estimation and pattern recognition. As mentioned in section 1, there are
indeed four pillars of statistical learning theory, of which we have touched on the
first two, namely, (a) the necessary and sufficient conditions for the consistency of
the Empirical Risk Minimization (ERM) principle, and (a) the derivation of non-
asymptotic rates of convergence thereof. The remaining two aspects of the foundation,
namely (c) the control of complexity and (d) the construction of learning algorithms
requires a substantial amount of space. The introduction provided here sheds enough
light onto the usefulness and the challenges of this field. Clearly, while it is good to
build classifiers, it is crucial to study their theoretical properties, and that’s what this
field provides.

The field is vast and the topics and variety and many. A more detailed account of
the topic with applications and more advanced theoretical developments can be found
in the cited references.
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Статья представляет собой краткий обзор фундаментальных идей, концепций и ре-
зультатов теории статистического оценивания функций и распознавания образов. Ма-
териал опирается на теорию Вапника–Червоненкиса. Особое внимание уделяется тому,
чтобы помочь читателю оценить важность распространения классического закона боль-
ших чисел на функциональные пространства и ключевую роль, которую играют та-
кие новые понятия, как принцип минимизации эмпирического риска, состоятельность
оценок при построении алгоритмов, обеспечивающих оценку функций с оптимальными
свойствами.




