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1. Introduction

Periodic structures as photonic crystals are widely used in modern laser devices,
communication technologies and for creating various beam splitters and filters. Diffrac-
tion gratings are applied for creating 3D television sets, DVD and Blu-ray drives and
reflective structures (Berkley mirror). It is important to simulate diffraction on such
structures to design optical systems with predetermined properties based on photonic
crystals and diffraction gratings. Methods of simulating diffraction on periodic struc-
tures uses theory of Floquet-Bloch and rigorous coupled-wave analysis (RCWA) [1,2].
Current work is dedicated to analysis of photonic band gaps and simulating diffraction
on one-dimensional binary diffraction grating using RCWA. The Maxwell’s equations
for isotropic media and constitutive relations based on the cgs system were used as a
model.

2. One-Dimensional Photonic Crystal

The photonic crystal is a dielectric structure with periodical refractive index along
one or more directions. A distinctive feature of these structures is the presence of so-
called photonic band gaps, preventing the propagation of waves of a certain frequency.
Due to this property, with the help of photonic crystals it’s possible to create devices
that can reflect or transmit light with fixed wavelength.

We consider the formation of photonic band gaps by example of monochromatic
waves propagating along z-axis, which is perpendicular to the direction of periodicity
of one-dimensional photonic crystal. Its dielectric permittivity is a periodic function
of z:

(1)

where n is a number of the cell and € (z) = & (z + d), where d is a period and a is the
width of layer with dielectric permittivity e;.

Since the mediums are isotropic, the TE and TM polarizations propagate inde-
pendently and they can be considered separately. Consider the case of waves of TE
polarization. We can reduce Maxwell’s equations to the following wave equation:

_fe, (n—1)d<z<nd-—a,
e(2) = €9, nd—a < z<nd,

O’E,)02* + kiBE, =0, (B=¢e—k2/k]). (2)

From this equation, we find a general solution for the field components in a uniform
layer, and then obtain the system considering the condition that the tangential field
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components at the interface between two media with z = (n — 1)d and z = nd — a,
from which we find equations relating the undetermined coefficients from (n — 1)-th
cell with n-th cell in a layer with a dielectric constant eo:

A,(fll mii  MMi2 Ag)
@ |~ @ | (3)
B,”, ma1  Ma22 By,

where m;j depends of geometrical and optical properties of layers of each crystal cell.

Next, we find the general periodic solution for T'E polarized waves using the theory
of Floquet-Bloch [1], according to which a decision of wave equation in a layered

periodic medium can be found in the form F (z) = E (2) 5>~ where F (2) is a
periodic function with the period of d. Constant K is called the Bloch wave number.

From (3) and the condition of periodicity, we obtain the following system:

mi1 Mmi2 A%Q) _ pikd Ag) <4)
mo1 MMag B’ELQ) o Br(f) ’

In this system, the factor of ¢ is an eigenvalue of the coefficient matrix. Then

solving the characteristic equation of this system with respect to factor ¢, given
that the coefficient matrix is unimodular, we obtain:
2cos Kd = my1 + mos. (5)

Substituting the values of the coefficient matrix to the (5), we obtain the dispersion
equation in implicit form, which establishes the relationship between the Bloch wave
number K, frequency w, and z-component k, of wave vector. The dispersion equation
for TE waves:

cos Kd = cos (ko\/ﬁilb> cos (ko \/Ea) — %% sin (ko \/Eb) sin (ko 52a) . (6)

If [(m11 + ma2) /2| > 1, K takes complex values, the Bloch wave is evanescent,
and the propagation of electromagnetic waves is impossible in this region, it is called
band gap. If |(m11 +ma2) /2] < 1, K is real, this is the case of permitted zones, in
this area Bloch waves will propagate.

The dependence of the wave vector k, and frequency w is shown below in fig. 1.
Dark areas correspond to areas of transmission. Wave frequencies with the value of
this area will be distributed in the environment. Bright areas correspond to the band
gaps. These frequencies are forbidden and light cannot propagate in the medium.
Such waves will be reflected from the structure.

3. One-Dimensional Binary Diffraction Grating
A linearly polarized electromagnetic field incident at A-periodic binary grating
at an angle © (Fig.1.). The wave-vector of the incident field is obtained from the
geometry: ki = k(sin6, 0, cosf) = nrko (sinf, 0, cos ) with ky = i—w and ny —

refractive index in region I. The wave-vectors of reflected and transmitted diffracted
orders can be determined from the Floquet condition:

kgj = ko (n; sin 6 —j)j\{)) , (7)
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Figure 1. The Band Structure for TE-waves
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Figure 2. Geometry for the Diffraction Problem

(konz)® —k2;,  Re ((konL)2 - kgj) >0

— kij — (kOnL)Q, Re ((konL)2 - k:iJ) <0,

The grating is bound by two media: input media with refractive index ny = /2y, as
a rule vacuum, and output media with refractive index n;; = /27, which corresponds
to substrate. Relative permittivity in the grating region is a A-periodic function
e(x) = e(x + mA), m = 0, £1, £2, ..., which is expandable in a Fourier series.
Fllectromagnetic fields in regions I and II are satisfied to Rayleigh expansion on the
orm:

kL .; = L=I1I. (8)

u = exp (—ikons (sin 0z + cos02)) + > Rjexp (—i (kyjz — kr,252)), 9)

j=—o0

U= Z Tjexp (=i (kyjx — krr,25(2 — d))), (10)

j=—00
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where u corresponds to E, in TE case and H, in TM case, R; and T are amplitudes
of the reflected and transmitted diffracted orders, which corresponds to £, in TE case
and H, in TM case.

The problem of planar diffraction is decomposed into two independent problems:
TE- and T'M-polarization. The general problem is to find R; and T}.

The case of T'E-polarization is fully described in article [2]. We will consider the
case of T'M-polarization. Main steps of algorithm are presented below.

1. Fourier series for tangential electric and magnetic fields in the grating region:

H, Z Uyj (z)exp (—ikzjz), Ep=1 Z Szj (2) exp (—ikgjz) . (11)
J

2. Substituting Fourier series for tangential electric and magnetic fields into corre-
sponding equations:

_ o, 1 0Sz;  kaoj _ ks
ij—p ij = koS, ko 87;] - koj (Z €i—p kop pr> — Uy;. (12)
p p

3. Previous coupled-wave equations can be reduced to:

6*U,/0(=')’| = [FB[U,)], (13)

where 2’ = koz, B = K, F'K,~I, K, = diag {k. _n/ko,. .., keo/ko,- - -ken/ko},
I — identity matrix, F~! — is a toeplitz matrix of components of the Fourier
series of function 1/e (), F — inverse to F~1.

4. Solving previous equation we obtain:

z) = Z_: Wim {C;L exp (—koqmz) + ¢, exp [koqm (z — d)]} , (14)
Smj (Z) = Z Ujim {—C:;l €xp (_kUsz) + ca:m exXp [kOQm (Z - d)]} ) (15)

where w;,, and g, are the elements of the eigenvector matrix W and the positive
square root of the eigenvalues of matrix FB;v,,, is the element of the matrix

V= F_1WQ7 Q = dzag {QI7 qz, ..., Qn}
5. Using boundary conditions at the input boundary we obtain:

Sjo+Rj= > wim [ch + ¢, exp (—kogmd)] , (16)
m=1
i cosfs _ ki, 2R = i Vim [eh — ¢ exp (—kogmd)] (17)
nr 50 — ko’n = im |[Cm m 04m 9
and at the output boundary:
Z wjm et exp (—kogmd) + c;] =T, (18)
m=1
- k
—_ . I1,z5
mZZI Vim [} exp (—kogmd) — c;,] =i <k0n§j> Tj. (19)
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6. Eliminating R; and T} from previous equations we obtain:

. kr,2j
Z(Sj()( ij‘f'

2
k:onI

cos 0 - + | . krzj
nt ) =2 o [z Foy i +vjm} +

m=1

- — .kI,z'
+ mzzzl Cpp XD (—koGmd) |:Zkonéwjm — Ujm] , (20)

n
kI 2
Z Cr-; exp(_kOde) |:_7’kI;:2J Wim +vjm:| +
m=1 01

n
_ N
+ D Cpim [_Zk;;ﬂj Wjm — Ujm] =0. (21)
m=1

II
7. Solving the system of linear equations we obtain ¢;}, and c,,,. Substituting ¢;}, and

¢,, into corresponding equations we determine R; and 7. The efficiencies of the
diffracted orders are given by:

R, = |R;|*Re (’M) 7

kony cos @

krr zj ko cos 6
T, = |T;]*Re | 2422 ) /(22527
i = |Tjl e<n§1>/< " >

The results of comparison between simulation and spectrophotometrical data for
copper binary grating with period 200000nm, spike width 110000nm and spike height
187nm in the case of TM-polarization with incidence angle 8° are presented below.

(22)

Figure 3. Comparison Between Simulation and Spectrophotometrical Data
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PacnpocrpaHenune nosisipu30BaHHOIO MOHOXPOMAaTUY€CKOT'O

CcBeTa B MEepUOANYECKUX CTPYKTypax
. B. IuBakoB, A. A. TioTioOHHUK
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Pabora nocssiieHa aHaIN3y 3alPENEHHBIX 30H OJTHOMEPHOI0 (POTOHHOIO KPHUCTAJLIIA U MO-
JIEJTUPOBAHUIO JUMDPAKIMKA CBETA Ha OJHOMEPHON GUHAPHOM A PaKIMOHHON PENIETKE METO-
noM RCWA. Merox RCWA ommcan 151 0THOMEPHBIX (DOTOHHBIX KPUCTAJIIOB U OJHOMEPHBIX
OuHAPHBIX AUMPAKIUOHHBIX peméToK. [IpuBeeHo cpaBHeHUe Pe3yJIbTaTOB MOJIEIUPOBAHUS
CO CIEKTPO(MOTOMETPUYIECKUMH JTAHHBIMHU.

KuaroueBsie ciioBa: RCWA, nepuoaudeckue cpeipl, audpakiyst, GOTOHHBIH KPUCTAJLI,
BJIOXOBCKHE BOJIHBI.





