
Сети телекоммуникаций
UDC 621.39
Algorithm for Computing Steady-State Probabilities of the
Queuing System with Hysteretic Congestion Control and

Working Vacations

P. O. Abaev
Telecommunication Systems Department
Peoples’ Friendship University of Russia

Miklukho-Maklaya str., 6, Moscow, Russia, 117198

This paper is devoted to investigation of a SIP congestion behavior under overload. The
hysteretic overload control mechanism is considered to avoid SIP server collapse and also
server working vacations was taken into account. In the paper a queuing model is introduced.
The algorithm for computing steady-state probabilities is derived.
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1. Introduction

With growth of deployment of IP based services and increasing use of SIP signaling
in NGN, necessitates providing mechanisms handling extreme traffic surges. Overload
occurs when the incoming request rate to a SIP server is beyond its processing ca-
pacity. If a SIP server becomes overloaded transaction delay increases. SIP requests
are retransmitted when adequate responses are not received in a predetermined in-
terval, in order to keep high reliable transmissions of SIP messages over UDP. The
retransmission further increases load and it can causes performance degradation of a
SIP server, that is, a significant reduce the server throughput, which causes the ma-
jority of calls to fail leading to a congestion collapse. At present, the SIP protocol
provides a basic limited mechanism for overload control through its 503 (Service Un-
available) response code, which stops the current session request. Unfortunately, this
mechanism is not effective and has numerous problems in actual deployment [1].

Various overload control mechanisms based on the basic one, which has different
rejection policies and metrics to predict overload condition are introduced in papers [2–
5]. For example, in the papers [2,3] queue length based algorithm using two thresholds
to detect server states was proposed. For the first time this mechanism was described
in [6]. It provides congestion control at the application layer.

The paper deals with a queuing model of the SIP server with working vacations and
hysteretic overload control mechanism. Major performance measures of the system can
be expressed in terms of the steady-state probabilities. To calculate the probabilities
the recursive algorithm is derived.

2. SIP Server Queuing Model

Let us consider a single-server queuing system, depicted in Fig. 1, with working va-
cations and hysteretic congestion control and denote it as𝑀 |𝑀2|1|0 < 𝐿 < 𝑅 <∞|𝑊𝑉
according to the modified Kendall classification. A Poisson customer flow arrives at
the system. Customers are queued and take service in accordance with congestion con-
trol algorithm. The server operates in two modes: normal and congestion. To detect
an overload we introduce two thresholds. When the queue becomes full the system
recognizes detecting a congestion and new arrived customers are discarded. So, when
the queue length becomes to be less than 𝐿, the system recognizes that the conges-
tion is removed and starts putting new customers into the queue. The server takes a
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working vacation at the times when the system is empty. During the vacation period
new arrived customers are stored in the buffer. The server takes another new vacation
if only there is no any new customer in the queue.

Figure 1. Queuing Model

We denote 𝑛1 (𝑡) ∈ {1, 2} as the server state in the instant 𝑡, where state “1” means
the server is busy serving a customer and state “2” the server takes a working vacation.
We need also to specify whether control is on or not. Thus we let 𝑛2 (𝑡) ∈ {0, 1} equals
0 or 1 to indicate the control is off or on respectively. The occupancy of the queue is
denoted by 𝑛3 (𝑡) = 0, 𝑅. Therefore the Markov process N (𝑡) = (𝑛1, 𝑛2, 𝑛3) describes
completely the system over the state space

𝒩 = 𝒩0 ∪𝒩1, 𝒩0 = {n : 𝑛1 = 1, 2; 𝑛2 = 0; 0 6 𝑛3 6 𝑅− 1} ,
𝒩1 = {n : (𝑛1 = 1, 2; 𝑛2 = 0; 0 6 𝑛3 6 𝑅− 1) ∨ (𝑛2 = 1; 𝑛3 = 𝑅)} .

The dependence of the intensity of customer arrivals on the system states is spec-
ified by the following relation

𝜆 (n) = 𝜆 · 𝑢 ((1− 𝑛2) · (𝑅− 𝑛3)) , n ∈ 𝒩 , (1)

where 𝑢 (·) is the Heaviside function. The qualitative interpretation of the dependence
is presented in Fig. 2.

Figure 2. Hysteretic Congestion Control Mechanism

We assume the customer service time and the vacation durations to be exponen-
tially distributed with parameters 𝜇1 and 𝜇2 respectively. We consider that station-
ary probabilities 𝑝𝑛1𝑛2𝑛3

= lim
𝑡→∞

𝑃 {N (𝑡) = n}, n ∈ 𝒩 exist, and satisfy the system of

equilibrium equations

𝜆𝑝200 = 𝜇1𝑝100, (2)

(𝜆+ 𝜇2) 𝑝20𝑖 = 𝜆𝑝20𝑖−1, 𝑖 = 1, 𝑅− 1, (3)
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𝜇2𝑝21𝑅 = 𝜆𝑝20𝑅−1, (4)

(𝜆+ 𝜇1) 𝑝10𝑖 = 𝜆𝑢 (𝑖) 𝑝10𝑖−1+𝜇1𝑝10𝑖+1+𝜇2𝑝20𝑖+1, 𝑖 = 0, 𝐿− 1, 𝑖 = 𝐿+ 1, 𝑅− 2, (5)

(𝜆+ 𝜇1) 𝑝10𝐿 = 𝜆𝑝10𝐿−1 + 𝜇1𝑝10𝐿+1 + 𝜇2𝑝20𝐿+1 + 𝜇1𝑝11𝐿+1, (6)

(𝜆+ 𝜇1) 𝑝10𝑅−1 = 𝜆𝑝10𝑅−2, (7)

𝜇1𝑝11𝑅 = 𝜆𝑝10𝑅−1, (8)

𝑝11𝑖 = 𝑝11𝑖+1, 𝑖 = 𝐿+ 1, 𝑅− 2, (9)

𝜇1𝑝11𝑅−1 = 𝜇1𝑝11𝑅 + 𝜇2𝑝21𝑅. (10)

In the next section we derive a recursive algorithm for efficient calculation of the
probabilities 𝑝𝑛1𝑛2𝑛3.

3. Algorithm for Computation of Steady-State Probabilities

In the real situation the number of states is so large that problem of performance
evaluation becomes intractable. Therefore we propose a method for calculation of the
state probabilities. We express 𝑝𝑛1𝑛2𝑛3 in terms of 𝑝200, i.e., 𝑝𝑛1𝑛2𝑛3 = 𝑥𝑛1𝑛2𝑛3𝑝200.
The coefficients 𝑥𝑛1𝑛2𝑛3 fulfill conditions formulated in the lemma bellow. In order to

find probability 𝑝200, we make use of the normalization condition
∑︁
n∈𝒩

𝑝𝑛1𝑛2𝑛3 = 1.

Lemma 1. The coefficients 𝑥𝑛1𝑛2𝑛3 obey the following relations

𝑥200 = 1, 𝑥20𝑖 =

(︂
𝜆

𝜆+ 𝜇2

)︂𝑖

, 𝑖 = 1, 𝑅− 1, 𝑥21𝑅 =
𝜆

𝜇2
·
(︂

𝜆

𝜆+ 𝜇2

)︂𝑅−1

, (11)

𝑥100 =
𝜆

𝜇1
,

𝑥10𝑖+1 = 𝜇−1
1 [(𝜆+ 𝜇1)𝑥10𝑖 − 𝜆𝑢 (𝑖)𝑥10𝑖−1 − 𝜇2𝑥20𝑖+1] , 𝑖 = 0, 𝐿− 1,

(12)

𝑥11𝐿+𝑖 =
𝜆𝐴𝑅−𝐿−2 + 𝜇2𝑥21𝑅

𝜇1 + 𝜆𝐵𝑅−𝐿−2
, 𝑖 = 1, 𝑅− 𝐿− 1, (13)

𝑥10𝐿+𝑖 = 𝐴𝑖−1 −𝐵𝑖−1𝑥11𝐿+1, 𝑖 = 1, 𝑅− 𝐿− 1, (14)

𝑥11𝑅 =
𝜆

𝜇1
𝑥10𝑅−1, (15)

where 𝐴𝑖 and 𝐵𝑖 are given by

𝐴0 = 𝜇−1
1 (𝜆𝑥20𝐿 + 𝜆𝑥10𝐿 − 𝜇2𝑥20𝐿+1) ,

𝐴𝑖 = 𝜇−1
1 (𝜆𝑥20𝐿+𝑖 + 𝜆𝐴𝑖−1 − 𝜇2𝑥20𝐿+𝑖+1) , 𝑖 = 1, 𝑅− 𝐿− 2,

(16)

𝐵0 = 1, 𝐵𝑖 = 1 +
𝜆

𝜇1
𝐵𝑖−1, 𝑖 = 1, 𝑅− 𝐿− 2. (17)

Proof. We can clearly see that expressions (11) and (12) are derived from equa-
tions (2)–(5). Let us consider the way of formulas derivation for the remaining coef-
ficients 𝑥11𝑖, 𝑖 = 𝐿+ 1, 𝑅 and 𝑥10𝑖, 𝑖 = 𝐿+ 1, 𝑅− 1. At first we obtain the auxiliary
equation by summing up the first 𝐿 equations from (5)

𝜇1𝑝10𝐿 − 𝜆𝑝10𝐿−1 = 𝜇1𝑝100 − 𝜇2

𝐿−1∑︁
𝑖=0

𝑝20𝑖+1. (18)
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Dividing both sides of (18) by 𝜇1 and substituting (11) we find

𝑝10𝐿 − 𝜆

𝜇1
𝑝10𝐿−1 =

𝜆

𝜇1

(︂
𝜆

𝜆+ 𝜇2

)︂𝐿

· 𝑝200 =
𝜆

𝜇1
𝑝20𝐿. (19)

We rewrite equation (6) as

𝑝10𝐿+1 =
𝜆

𝜇1
𝑝10𝐿 + 𝑝10𝐿 − 𝜆

𝜇1
𝑝10𝐿−1 −

𝜇2

𝜇1
𝑝20𝐿+1 − 𝑝11𝐿+1, (20)

and in view of (19) equation (20) takes the form

𝑝10𝐿+1 = 𝜇−1
1 (𝜆𝑥10𝐿 + 𝜆𝑥20𝐿 − 𝜇2𝑥20𝐿+1) 𝑝200 − 𝑝11𝐿+1 (21)

Then we rewrite expression (21) using formulas (16) and (17)

𝑝10𝐿+1 = 𝐴0𝑝200 −𝐵0𝑝11𝐿+1. (22)

Applying (22) into equation (5) when 𝑖 = 𝐿+ 1 yields

𝑝10𝐿+2 = 𝜇−1
1 (𝜆𝐴0𝑝200 + 𝜇1𝐴0𝑝200 − 𝜆𝑝10𝐿 − 𝜇2𝑝20𝐿+2)− 𝑝11𝐿+1

(︂
𝐵0 +

𝜆

𝜇1

)︂
. (23)

Then substituting the expression (16) for 𝐴0 in place of the coefficient of 𝜇1 in (23)
we find

𝑝10𝐿+2 = 𝜇−1
1 (𝜆𝐴0𝑝200 + 𝜆𝑝20𝐿 − 𝜇2𝑝20𝐿+1 − 𝜇2𝑝20𝐿+2)− 𝑝11𝐿+1

(︂
1 +

𝜆

𝜇1

)︂
. (24)

In view of the expression for 𝑝20𝑄 and 𝑝20𝑄+1 given by (11) equation (24) takes form

𝑝10𝐿+2 = 𝜇−1
1 (𝜆𝐴0𝑥200 + 𝜆𝑥20𝐿+1 − 𝜇2𝑥20𝐿+2) 𝑝200 − 𝑝11𝐿+1

(︂
1 +

𝜆

𝜇1

)︂
. (25)

Continuing this procedure, we finally arrive at recursive expressions

𝑝10𝐿+𝑖 = 𝐴𝑖−1𝑝200 −𝐵𝑖−1𝑝11𝐿+1, 𝑖 = 1, 𝑅− 𝐿− 1. (26)

Thereby, the probability 𝑝10𝐿+𝑖 depends on 𝑝200 and 𝑝11𝐿+1 only, so the aim is to
express 𝑝11𝐿+1 in terms of 𝑝200. Combining the equations (8)–(10) yields the following
formula

𝑝11𝐿+1 = . . . = 𝑝11𝑅−1 =
𝜆

𝜇1
𝑝10𝑅−1 +

𝜇2

𝜇1
𝑝21𝑅. (27)

Substituting the expression for 𝑝10𝑅−1 from (26) into (27) we obtain

𝑝11𝐿+1 = . . . = 𝑝11𝑅−1 =
𝜆

𝜇1
(𝐴𝑅−𝐿−2𝑝200 −𝐵𝑅−𝐿−2𝑝11𝐿+1) +

𝜇2

𝜇1
𝑝21𝑅. (28)

From equation (28) the probability 𝑝11𝐿+1 obeys the formula

𝑝11𝐿+1 =
𝜆𝐴𝑅−𝐿−2 + 𝜇2𝑥21𝑅

𝜇1 + 𝜆𝐵𝑅−𝐿−2
· 𝑝200.

Consequently, we have derived formulas (13)–(15), and the lemma is proved.
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4. Conclusion

In this paper the queuing model with the hysteretic overload control mechanism
is considered. The model also takes into account server working vacations. To make
the computation of the probability more simple the recursive algorithm was proposed.
The subject of future study is to specify SIP server model taking into account the
peculiarity of the arrival streams of SIP messages, service rates depending of the
message types and the hysteretic overload control.
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УДК 621.39
Алгоритм расчета стационарных вероятностей СМО с
гистерезисным управлением и прогулками прибора

П.О. Абаев
Кафедра систем телекоммуникаций

Российский университет дружбы народов
ул. Миклухо-Маклая, 6, г. Москва, Россия, 117198

В статье исследуется модель функционирования SIP сервера в условиях перегрузки.
Для контроля перегрузки сервера применяется механизм гистерезисного управления
нагрузкой. Разработана модель функционирования SIP сервера в условиях перегрузки
с прогулками прибора и гистерезисным управлением нагрузкой. Предложен алгоритм
расчета стационарных вероятностей функционирования системы.

Ключевые слова: SIP сервер, гистерзисное управление, прогулка прибора.




