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During development of methods for stochastization of one-step processes the attention was
focused on obtaining the stochastic equations in the form of the Langevin, since this form of
stochastic equations is most usual in the construction and study of one-step processes mod-
els. When applying the method there is the problem of justifying the transition from master
equation to the Fokker—Planck equation for the different versions of the model. However,
the forms of partial differential equations (master equation and the Fokker—Planck equation)
wider description of the model to researchers. It is proposed to treat these equations with
the help of perturbation theory in the framework of quantum field theory. For this pur-
pose the methodology was described and the analytical software complex was constructed
to write down put the main kinetic equation in the operator form in the Fock representa-
tion. To solve the resulting equation the software complex generates Feynman diagrams for
the corresponding order of perturbation theory. The FORM system was applied as a sys-
tem of symbolic computation. Selecting FORM as the CAS is reasonable because that the
given computer algebra system allows for symbolic computation, using the resources of high-
performance computing. In particular, it is possible to use parallel computing technologies
such as OpenMP and MPI.

Key words and phrases: algebraic biology, stochastic differential equations; master
equation; Fokker—Planck equation; population models; computer algebra software; FORM
system.

1. Introduction

The process of stochastization of one-step processes results in three kinds of dif-
ferential equations: the master equation, the equation of the Fokker—Planck type and
the stochastic differential equation (the Langevin equation). The last two equations
are obtained as an approximate version of the master equation. And if the stochastic
differential equations solving methods are well known (e.g., stochastic Runge-Kutta
method), then the solution of partial differential equations is a certain problem.

It is proposed to use perturbation methods, namely the methods developed in
quantum field theory, for these equations solution.

The main aim of this work is to develop the software complex to obtain the an-
alytical form for all three types of differential equations describing the model. The
Feynman diagrams are calculated for the master equation for the corresponding per-
turbation theory order.

A well-known model of logistic population growth (model Verhulst) is used for
the presented system. The structure of the article is as follows. In the section 2
basic notation and conventions are introduced. The section 3 contains a summary of
the perturbation theory. The Section 4 contains a brief introduction to the method
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of stochastization of one-step processes and the technology of reducing the above
equations to the form of the Liouville equation. Further, in the section 5 the model
under study is described. The section 6 describes the ideology of software package
development.

2. Notations and Conventions

1. The abstract indices notation [1] is used in this work. Under this notation a
tensor as a whole object is denoted just as an index (e.g., %), components are
denoted by underlined index (e.g., 2%).

2. We will adhere to the following agreements. Latin indices from the middle of the
alphabet (i, j, k) will be applied to the space of the system state vectors. Latin
indices from the beginning of the alphabet (a) will be related to the Wiener
process space. Greek indices (a) will set a number of different interactions in
kinetic equations.

3. A Dot over a symbol denotes derivative with time.

3. Elements of Perturbation Theory

In perturbation theory, the Hamiltonian is written as the sum of H = Hy + Hiys,
where Hj is an unperturbed part and Hi, is a perturbed one [2]. We will use the
Heisenberg’s representation of unperturbed problem. Time-dependent eigenstates of
the unperturbed Hamiltonian H are used as the basis:

o) (8) = e”" |a) (1)
where F, is a spectrum of Hy. The form of Schrédinger equation written in this basis:

oY
Y How (D)0, P
2 Hu 1) )
where Hiy(t) = et Hyyefot) and 1 are given in the interaction representation. A
formal decision is written through the S—matrix, 1(t) = S(¢)¥(0), which is presented
by the chronological exponential:

t t1 th—1

S(t) =T exp /tHim(t’)dt’ —io// / Hing(t1) - .. Hing(t,)dt, ... dty, (3)
0 "=%0 0 0

where 0 < t, < ... < t; < tg. In multiparticle case we should use the i—operators,
then the terms of (3) becomes polynomials in the operators of creation and destruction.

Let’s introduce the chronological product of operators, also known as T—ordered
product. During operators T—ordering they are rearranged so that the time moments,
in which the operator is taken, increased from right to left. Let’s write the expression
(3) with T-ordering.

n

= 1 / ! /
S(t)zngﬂ:r 0/ Ha(t)dt' | (@)

The main object of the diagram technique is the Green’s function. It is defined by
1—operators, given in the interaction’s view:

bal@) = Ml (r)et, ¢ (x) = ety (r)e™?, (5)

where x is a set of variables —coordinates r and time ¢; « is a spin index.
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The causal Green’s function is the average of the chronological product of y—
operators:
Gop(z,2') = (Ta(z)i (), (6)

where the brackets (...) denote the matrix element (Sp) ™" (0| ...|0), which was taken
over the ground state of the system with the Hamiltonian Hy.

4. One-Step Processes

One-step processes and birth-death processes [3-5] are defined as Markov processes
with continuous time and integer state. The transitions are possible only between
adjacent states (see fig. 1).

A(0) A1) (i — 2))\ (1—1) A(¥) )\(7 :":1) )i(il,__ 1) ):(_n}
W) 5@ W3 w1 B0 4 DaGED ) )

Figure 1. One-step process

The coefficient A(n) is the probability that during unit time a transition from the
state of n into n+ 1 will occurs and the coefficient p(n) is the probability of transition
into the state of n — 1 during unit time.

The state of the system will be described by a state vector |nz> € R"™, where n is
the dimension of the system (under the state vector we mean the set of mathematical
values, which fully describe the system). The operator I tezn S0 X Z%, defines the

state of the system before the interaction, the operator F’ € Z%, x Z o defines the
state of the system after the interaction. As a result of mteractlon the transition to
another state of the system occurs.

There are s kinds of different interactions in the system, s € Z,. So, instead of
operators I} and F]? the operators I}a € Zgo X Zgo X 75 and Ff‘“ € Zgo X Zgo X 15
will be used.

The interaction of the system’s elements will be described by the schemes of inter-
action, similar to schemes of chemical kinetics [6,7]:

KXo .
) = 1 [w) ™

here the Greek indices specify the number of interactions and Latin indices specify the
dimension of the system.
The state change is set by the operator

R = F}* — I*. (8)

Consequently, the one-step interaction « in direct and reverse directions can be
written as: 4 ' ' ) '

') = [n') + B [n?) . [n) = ) = R} [n?). (9)

The expression (7) may be represented not in the form of vector equations but as

sums:
+

I;alnj>(5i,\€:‘iF;a|nj>(5i, (10)

@
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where 6; = (1,...,1).

We shall use the following notation:

[io=[iogd,  ple= Flegi R = RIS (11)

The transition probabilities per unit time from the state of |n®) into the state
|n’> =+ R;-g |n3> (into the state |nZ> — R;g |n3>) are proportional to the number of ways
to select a combination of I'“ taken |nl> (combination of F* taken |nl>) and are
given by:

(12)

Thus, the general form of the master equation for the state vector |n’>, changing
by steps of length R;'-anj , has the form:

% - Z { [ug(k‘;,ni)(ni + Rig7t)p(ni + Rig7t) _ )\g(k(;i-’ni)(ni)p(ni7t)] T

«

+ alkd,n)(n' = R, Op(n' = R, 1) = pua (b, n) (0 )p(n', 1)) b (13)

In order of notation reduction the operators of creation ' and operators of death
¢ are introduced. They are defined the following way:

S fn) = f(n+1), ef(n) = f(n—1). (14)

The commutation relations are defined as follows:

[E(n),aT(n')} =d(n—n"), [e(n),e(n)] =0, [ET(n),ET(n')] =0. (15)

With the help of the creation and death operators the basic kinetic equation for
the one-step processes can be written as:

(%)E?Tltl?t) =2 {(5; — Dpta (kg ') p (1) + (0 — DAa (K3, 0°) p(ni,t)} . (16)

«

In order to apply the operator method of perturbation theory we will use the
operators of creation—death in Fock representation (a' and a operators) [8]. Their
presentations are well known. For simplicity, for the one-dimensional case the ratio of
these operators has the form:

a'n) =|n+1),

aln) =nln—1),

alaln) =nn), (17)
[aT, a] =1,

(nlm) = dnm.
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Let’s introduce a state vector |v) as follows:

v) =) p(nt)In). (18)

Let’s assume that the operators of creation—death act only on the vector |n), but not
at p(n,t):
a'p(n,t) [n) = p(n,t)|n+1),
ap(n,t) [n) = np(n,t)[n—1), (19)
atap(n,t) |n) = np(n,t)|n) .
The following operator equation is obtained by multiplying the master equation
by |n) and by summing over n:
dfv)
dt

= L(aT, a)|v). (20)

The Liouville operator L(a',a) will be used in calculations under perturbation
theory.

5. Verhulst Model

In order to demonstrate the method, let’s consider the Verhulst model [9-11] which
describes limited growth !:

0
a—? = An — Bn —yn?. (21)
Next, we will construct a stochastic model for the system with the help of the
method described in the second chapter. At first the schemes of interaction are pre-
sented: .
N = 2N,
! (22)
N Zo.

The first ratio means the immediate reproduction of an individual who eats unit of
food, but it also means the competition between individuals. The second ratio means
death of an individual.

According to (12) the intensity of the transition is defined:

n!

Ai(n) = )\m = An,
) =9 gy =yl — 1) ~ (23)
n!
Ao(n) = 5m = pn.

Then the master equation takes the following form:

= —(An+ Bn+yn?)p(n,t) +

+ (Bn+1)+v(n+1)*pn+1,t) + AXn—Dp(n —1,t).  (24)

IThe attractiveness of this model is that it is one-dimensional and nonlinear.



Eferina E. G. et al. Quantum Field Theory Approach to the Analysis of . . . 35

By multiplying (24) by |n) and summing over n the next formula is obtained [12—
17]:

o) 5 Dty o, 0] = 3 [(Bn+ 1)+ 4t + 1) ol 1,00 )] +

n n

+) A= Dpn—1,8) [n)] = Y [(Bn+ An+n?) p(n,t) [n)] . (25)

n

The following substitutions are introduced in order to obtain the Fock representa-
tion (17):
np(n,t) [n) = alap(n,t)|n),
p(n,t)[n+1) = a¥p(n,t)[n), (26)
np(n,t) [n —1) = ap(n,t) n) .

By substituting (26) in (25) and leaving only the terms in |n) the following formula
is obtained:

> 2 o) pln, 1) =

n

= [Ba — Ba'a + yaa'a — yalaa'a + AaTala — Aa'a] Zp(n, t)|n). (27)

Similarly to (20) the Liouville operator is written:

L(a',a) = Ba — Ba'a + vyaa'a — vaTaala + MaTa'a — Na'a =
=A(a'—1)a’a+B(1—a")a+~(1—al)aa’a. (28)

6. Implementation of the Method

The FORM program [18-20] was selected as an environment for software system
implementation. Unlike others, this computer algebra system is focused not on in-
teractive work with user but on a batch processing. Due to this, it became possible
to remove such inherent disadvantages of conventional computer algebra systems as
restrictions on the volumes of computations, slowness. The FORM system supports
different technologies of parallel and distributed computing [21], such as multi-thread
approach, as well as MPI (multiple implementations) technology. The result of these
properties of the package is that it is often used as a back-end for the other (mostly
interactive) computer algebra systems [22].

We drew attention to this package also because it is being used for the calcula-
tion of Feynman diagrams in several large packages (both numerical and symbolic
computations) [23-27].

The program complex operates in a batch mode fully. The program accepts the
file with model description in the form of interaction equation (equations of chemical
kinetics). The output is a set of model equations and Feynman diagrams [28] needed
for basic kinetic equation solution.

The model equations are obtained by the developed technique [6,7,29,30]. On the
basis of interaction equation the intensities of forward and backward transitions are
calculated. From the expressions for the intensities three types of model equations
are constructed: the master equation, the Fokker—Planck equation, the stochastic
differential equation in the Langevin form. This fragment of program complex is
internally completed, because of the independent research may be carried out based
on the obtained model equations.
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Then the solution of master equation is obtained. For this purpose, the Liouville
operator is constructed with the help of some presented in the work substitutions. On
the basis of Liouville operator Feynman diagrams are derived [31-33].

7. Conclusions

Thus, the proposed program complex consists of two principal parts. The first
part implements the methodology of one-step processes stochastization. A structure
for the master equation solution within the operator perturbation theory approach is
realised by the second part.

It seems that the given approach will to be extremely productive in solution of
population dynamics problems, epidemiological models, models of network protocols
and telecommunication systems. However, the proposed approach is not limited within
one-step models. Its extension to other stochastic processes is quite possible.
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KBaHTOBO-110JI€BOI1 IO/IX0/] K aHAJIN3y OJ/IHOHMIATOBBIX MOJeJieil

E. I. Edepuna*, A. B. Kopoabkosa*, /1. C. Kynsa6os*,
JI. A. CeBacTbsHOB?

* Kagpedpa npuxsadnoti ungopmamuru u meopuy 6epoammocmet
Poccutickut ynusepcumem dpyoicbo. 1apodos
ya. Muxayxro-Maxaas, 0. 6, Mockea, Poccus, 117198

T JTa6opamopus ungopmaruormvis mexnorozud
06Bedunénnvit uncmumym A0epHuT Uccaedosarul
ya. HKoauo-Kropu, 0. 6, 2. /[yona, Mockosckas obaacmy, Poccus, 141980

 Jla6opamopusa meopemuueckoti usuru
063BeduHEHHIT UHCMUMYM A0EPHHIT UCCAeI08aHUT
ya. 2Koauo-Kiropu, 0. 6, 2. [ybra, Mockosckas obaacmsb, Poccus, 141980

IIpu paspaboTKe METOIUKYN CTOXaCTU3AIMH OJHOIIATOBBIX IIPOIECCOB OCHOBHOE BHUMAaHUE
OBLIO Y/IEJIEHO TIOJTY I€HUIO CTOXaCTUIECKUX yYpaBHeHmit B (hopme JlamKeBeHa, MOCKOIbKY JaH-
HBIHT BUJ HanboJjiee MPHUBLIYEH [IPU MOCTPOEHUN W WCCJIEIOBAHUU JAHHOTO KPYra MOJIEJIENt.
Ho B xone npumMmeHeHusI MeTOZa BO3HHKAET IIPOOJIEeMa OOOCHOBAHUS IIEPEXOa OT OCHOBHOI'O
KWHETUIeCKOro ypaBHeHusi K ypasHeruio Pokkepa—llianka misg pa3HbIX BapuaHTOB MOJe-
sma. Tlpu 3ToM HOpMBI ypaBHEHHI B 9aCTHBIX TIPOU3BOMHBLIX (OCHOBHOE KMHETHYIECKOE yPaB-
HeHue u ypasHenne Qokkepa-IliaHka) MOryT IpenoCTaBUTh HCCiIeAoBaTeNo Hosee GoraToe
ommcanne Mozeau. s 060CHOBaHMSA BO3MOYXKHOCTHU DA3JIOXKEHUSI OCHOBHOTO KHHETHIECKOTO
YPaBHEHUS U JUIA HCCIIEJOBAHUS MOJEJIbHBIX yPABHEHHUI IIpEJJIaraeTCs HCIOJIb30BaTh TEO-
puio BO3MYIIEHMIT B (pOpMe, Pean30BAHHON B PAMKaX KBAHTOBOI Teopuu mojs. [ljs sToro
ONHMCAHA METOJNKA U CO3/IaH AHAJUTUYECKUH MPOrPAMMHBIN KOMILJIEKC IIPHUBEIEHUST OCHOB-
HOT'O KMHETHYECKOI'O YPaBHEHU: K olepaTopHoit dbopme B pOKOBCKOM IpescraBieHun. Jljs
peIleHns] TOJTyIMUBIIEroCsl YPABHEHNSI B paMKaX MPOTPAMMHOIO KOMILJIEKCA ITPOBOIUTCS Te-
Heparus GeHHMaHOBCKUX AUArPAMM JJIs COOTBETCTBYIONIErO MOPsIKA TEOPUH BO3MYIIEHUI.
B kagecTBe cmcTEMBbI CHMBOJILHBIX BBIYUCIEHUi ObLia mpuMenena cucrema FORM. Boibop
FORM ob6ocnoBaH TeM, 9TO JaHHAS CHCTEMa KOMIBIOTEPHOM aareOphbl MO3BOISIET TPOBOIUTH
CHMBOJIbHBIE BBLIUNCJIEHU, UCIOIb3Ysl PECYPCHI BHICOKOIIPOU3BOIUTEIBHON BBIUUCIUTEILHON
TEXHUKHU. B 9aCTHOCTH, BO3MOYKHO MCIOJIb30BaTh TAKMe TEXHOJOTHH MapaslIeIbHBIX BBITUC-
nennit, kak OpenMP u MPI.

KuroueBbie cjioBa: CHMBOJIBHBIE METOMbI B OMOJIOTHHU: CTOXACTHYECKHe nuddepeHtim-
aJIbHbIE YPABHEHWUs; OCHOBHOE KHMHETHYIECKOe ypaBHeHus; ypaBuenne Poxkkepa—Ilianka; mo-
IYJISIIMOHHBIE MOJIEJIN; CUCTEMBI KOMIIBIOTEpHOI asrebpsl; cucrema FORM.
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