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In the paper we are presenting a heuristic approach to solve the problem of changing
network topology by minimally extending a digraph 𝐺′ through adding edges from a given
spanning supergraph 𝐺 of 𝐺′, such that the sum of the costs of the new edges is minimum,
and in the new graph the end-to-end delay between two distinguished vertices 𝑠 and 𝑡 meets
a predefined time constraint(ME problem). We develop a heuristic based upon the Genetic-
type algorithm technique. Moreover, the application of this heuristic is justified and is shown
that the solution of ME problem belongs to the NP-hard computational class.
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1. Introduction

A huge number of services offered by modern communication networks to the users
very often still cannot satisfy highly changeable requirements. A network topology and
natural restrictions related to it (such as delays) may prevent clients from implement-
ing new services and introducing new network functions. It is especially true when we
are talking about real-time networks. In this paper we are considering a problem of
changing network topology by adding additional edges to the network graph in such
a way that time constraints will be met and all added edges will have a minimum
possible cost. We are also going to assess the performance of the solution by using as
an example a specific class of weighted digraphs (which will be defined in 3). We chose
this example because of the following two reasons. First of all the structure of the
graphs in the class closely corresponds to the structure of a big class of applications
– real-time networks for distributed objects (such as communication and control sys-
tems of linear gas and oil pipelines). Second – it is easy to find an analytical optimal
solution that can be used to evaluate the performance of the algorithm developed in
the paper.

Let 𝐺 = (𝑉,𝐸) be a weighted digraph with vertex-set 𝑉 , and edge-set 𝐸. Edge-set
has weight functions 𝑇 : 𝐸 → 𝑅* and 𝐶 : 𝐸 → 𝑅* (where 𝑅* are non-negative real
numbers).

Let 𝑠 and 𝑡 be two distinguished vertices of 𝐺. A path 𝑃 = (𝑉 , �̂�)
is a digraph with vertex-set 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑘} ⊆ 𝑉, and edge-set �̂� =
{(𝑣1, 𝑣2), (𝑣2, 𝑣3), . . . , (𝑣𝑘−1, 𝑣𝑘)} ⊆ 𝐸. If 𝑠 = 𝑣1, and 𝑡 = 𝑣𝑘, then we call this path
a 𝑠, 𝑡-path. Moreover, given a path 𝑃 , let 𝜏(𝑃 ) and 𝜖(𝑃 ) represent the sum of the
weights of the edges of 𝑃 with regard to the weight functions 𝑇 and 𝐶, respectively.
Let 𝑃short(𝐺,𝑇 ) be the shortest path between 𝑠 and 𝑡 in 𝐺 with respect to the weight
function 𝑇 . Let 𝐺′ = (𝑉,𝐸′) be a spanning subgraph of 𝐺 = (𝑉,𝐸) and let 𝜆 be a
bound. We formulate the following optimization problem:

Θ : 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
∑︁

𝑒∈𝐸′′⊆(𝐸−𝐸′)
𝐶(𝑒) (1)
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Such that 𝜏(𝑃𝑠ℎ𝑜𝑟𝑡(𝐺*, 𝑇 )) 6 𝜆, where 𝐺* = (𝑉,𝐸′
⋃︀
𝐸′′).

Informally, this problem is to extend a digraph 𝐺′ with edges from its supergraph
G such that the sum of the costs of the new edges is minimum, and in the new graph
there exists a simple path between 𝑠 and 𝑡 that meets the 𝜆 – constraint. For future
references we are going to call this problem the Minimal Extension Graph Problem
or ME problem. One of the possible applications of the ME problem is an extension
of a real-time network. The problem arises, for example, when a node has to deliver
real-time data to another network destination node, and the transmission must meet
certain delay constraints. In the case that the delay constraints are not met, we want
to add additional edges such that the total cost of these edges is minimized, and the
transmission time is acceptable. This problem can be shown to be at least as hard as
the Constrained Shortest Path problem (CSP), known (see [1–3]) to belong to the NP-
hard computational class, as the CSP problem can be reduced to the ME problem: we
therefore propose an approximation algorithm using a Genetic Algorithm approach. In
Section 2 we present a Genetic-type approximation algorithm to solve the ME problem.
In Section 3 we evaluate this approximation technique for a class of weighted graphs
where the exact optimal solutions of the ME problem are known. Finally, in Appendix,
we formally prove that the ME problem is NP-hard, hence justifying the application
of an approximation technique; moreover we discuss the complexity of the algorithm
described in this paper.

2. A Generic-Type Algorithm for the Solution of
the ME Problem

2.1. General Description of the Algorithm

As we will show in Appendix, an exact solution of the ME problem requires, in the
worst-case, exponential computational time. In this section we develop a polynomial
iterative heuristic algorithm for the solution of the ME problem, using a Genetic
Algorithm approach.

Given a digraph 𝐺′ = (𝑉,𝐸′), with terminal vertices 𝑠 and 𝑡, and supergraph
𝐺 = (𝑉,𝐸) of 𝐺′. Since we are concerned only with the costs of the added edges, we
define the fitness of an edge 𝑒 = (𝑢, 𝑣) of 𝐺 as:

𝐹𝐼𝑇𝑁𝐸𝑆𝑆(𝑒) =

(︃
0 : 𝑒 ∈ 𝐸′

𝐶(𝑒) : 𝑒 ∈ 𝐸 − 𝐸′

)︃
. (2)

Moreover, the fitness function for a 𝑠, 𝑡-path 𝑃 = (𝑉 , �̂�) of 𝐺 is defined as:

𝐹𝐼𝑇𝑁𝐸𝑆𝑆(𝑃 ) =
∑︁
𝑒∈�̂�

𝐹𝐼𝑇𝑁𝐸𝑆𝑆(𝑒) (3)

Given the set of all 𝑠, 𝑡-paths of 𝐺, to find a 𝑠, 𝑡-path 𝑃 of 𝐺 with minimum
fitness, and with 𝜏(𝑃 ) 6 𝜆, is equivalent to solve the ME problem, as the digraph
𝐺* (see optimization problem in previous section) is obtained from 𝐺′ by adding the
edges of 𝑃 that do not belong to 𝐺′ i.e., 𝐺* = (𝑉, �̂�

⋃︀
𝐸′) . As we follow a GA

algorithmic technique, each individual in the population represents a 𝑠, 𝑡-path 𝑃 of 𝐺,
with 𝜏(𝑃 ) 6 𝜆. Its corresponding chromosome contains the list of the edges 𝑒 ∈ �̂�,
that makes up the path. Moreover, each edge 𝑒 of the path will also contain the
information of its associated weight 𝑇 (𝑒) and fitness 𝐹𝐼𝑇𝑁𝐸𝑆𝑆(𝑒).

For the Genetic Algorithm, the implementation follows the simple pseudo-code:
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𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 : 𝑀𝐸 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

𝐼𝑛𝑝𝑢𝑡 : 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑑𝑖𝑔𝑟𝑎𝑝ℎ 𝐺′ = (𝑉,𝐸′)

𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑠𝑢𝑝𝑒𝑟𝑔𝑟𝑎𝑝ℎ 𝐺 = (𝑉,𝐸);

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑆𝑖𝑧𝑒; 𝜆− 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡; 𝑁𝑢𝑚𝑏𝑒𝑟𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠;
𝑂𝑢𝑡𝑝𝑢𝑡 : 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑑𝑖𝑔𝑟𝑎𝑝ℎ 𝐺* 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑦𝑖𝑒𝑙𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑀𝐸 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚.

𝐵𝑒𝑔𝑖𝑛

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 1;

(1) 𝑃𝑜𝑝 = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝐺);

(2) 𝑊ℎ𝑖𝑙𝑒(𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 < 𝑁𝑢𝑚𝑏𝑒𝑟𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠)

(2.1) 𝑃𝑜𝑝 = 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑃𝑜𝑝);

(2.2) 𝑃𝑜𝑝 = 𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑃𝑜𝑝);

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛+ 1;

𝐸𝑛𝑑 𝑊ℎ𝑖𝑙𝑒

𝐿𝑒𝑡 𝑃 = 𝐵𝑒𝑠𝑡 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙(𝑃𝑜𝑝);

𝐿𝑒𝑡 𝐺* = (𝑉, (𝐸(𝑃 )
⋃︁
𝐸′));

𝑅𝑒𝑡𝑢𝑟𝑛 (𝐺*);

𝐸𝑛𝑑

3. Reproduction

Reproduction is accomplished by randomly selecting pairs of a population. Given
a pair of 𝑠, 𝑡-paths 𝑃1 and 𝑃2 of 𝐺 , two new offsprings 𝑃3 and 𝑃4 are generated. We
start with the strong assumption that the end-to-end delay between vertices 𝑠 and 𝑡
of both 𝑃1 and 𝑃2 meet the constraint 𝜆 i.e., 𝜏(𝑃1) 6 𝜆 and 𝜏(𝑃2) 6 𝜆. Moreover, the
offspring of 𝑃1 and 𝑃2, 𝑃3, will also meet this constraint (i.e.,𝜏(𝑃3) 6 𝜆).

The original population is created by application of the 𝑘-shortest paths algorithm
with respect to the weight function 𝑇 , and where 𝑘 = 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 (for further
references see for example [4–6]). If the 𝑖-path of the original population does not
meet the end-to-end constraint with respect to 𝜆 (i.e., 𝜏(𝑃𝑖) > 𝜆), then the solution
of the ME problem is obtained from one of the previous 𝑖− 1 paths of this population
with minimum fitness, thus we can assume that the original 𝑘-shortest paths meet the
𝜆 constraint.

Let 𝑃 = (𝑉 , �̂�) be a path of 𝐺 and 𝑢, 𝑣 ∈ 𝑉 ; the 𝑃𝑎𝑡ℎ(𝑃, 𝑢, 𝑣) is a subpath of 𝑃
with end-vertices 𝑢 and 𝑣.

Let 𝑃1 = (𝑉1, 𝐸1) and 𝑃2 = (𝑉2, 𝐸2) be two 𝑠, 𝑡-paths of a population. We assume
also that the vertex-set 𝑉1 = (𝑠 = 𝑣1, 𝑣2, 𝑣3, . . . , 𝑡 = 𝑣𝑛) is an ordered 𝑛-tuple such
that 𝑒 = (𝑣𝑖, 𝑣𝑖+1) is an edge of 𝐸1.

Let 𝑉2 = (𝑠 = 𝑢1, 𝑢2, 𝑢3, . . . , 𝑡 = 𝑢𝑚) be also a ordered 𝑚-tuple with respect to the
edges of 𝐸2. In addition let 𝑊 = 𝑉1

⋂︀
𝑉2 = (𝑠 = 𝑤1, 𝑤2, 𝑤3, . . . 𝑡 = 𝑤𝑝), where 𝑊 is

an ordered 𝑝-tuple such that if 𝑤𝑖 = 𝑣𝑐 and 𝑤𝑖+1 = 𝑣𝑟 then 𝑐 < 𝑟 (i.e., the vertices of
𝑊 are ordered with respect to the order of the vertices of 𝑉1).

Let 𝑃 ′ = 𝑃𝑎𝑡ℎ(𝑃2, 𝑢, 𝑣) such that 𝑢 = 𝑤𝑐 and 𝑣 = 𝑤𝑟 for 𝑐 < 𝑟, and 𝑃 ′ does
not include any other vertices from 𝑊 , then we call this subpath a forward-subpath
of 𝑃2. For example, in Fig. 1, 𝑃 ′′ = 𝑃𝑎𝑡ℎ(𝑃2, 𝑢1, 𝑢3) is a forward-subpath of 𝑃2, but
𝑃 ′′ = 𝑃𝑎𝑡ℎ(𝑃2, 𝑢3, 𝑢4) is not.

Let 𝑃3 be the path obtained from 𝑃1 by replacing the subpath 𝑃 ′ = 𝑃𝑎𝑡ℎ(𝑃1, 𝑣𝑖, 𝑣𝑗)
of 𝑃1 by the forward-subpath 𝑃 ′′ = 𝑃𝑎𝑡ℎ(𝑃2, 𝑣𝑖, 𝑣𝑗), for some nodes 𝑣𝑖, 𝑣𝑗 , and sup-
pose that 𝜏(𝑃3) 6 𝜆, then we called 𝑃 ′′ a permissible-forward-subpath. For example
in Fig. 1, there are two forward-subpaths, but 𝑃 ′′ = 𝑃𝑎𝑡ℎ(𝑃2, 𝑢1, 𝑢3) is the only
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permissible-forward-subpath. In Fig. 2, 𝑃3 is obtained by replacing the subpath 𝑃 ′ =
𝑃𝑎𝑡ℎ(𝑃1, 𝑣1, 𝑣3) in 𝑃1, by the permissible-forward-subpath 𝑃 ′′ = 𝑃𝑎𝑡ℎ(𝑃2, 𝑢1, 𝑢3)
of 𝑃2.

Figure 1. Two paths 𝑃1 and 𝑃2 and the corresponding 𝑇 -weights of their edges

Figure 2. 𝑃3 is the offspring of 𝑃1 and 𝑃2. Moreover, 𝜏(𝑃3) 6 𝜆

From all the permissible-forward-subpaths (if any) of 𝑃2, the reproduction algo-
rithm randomly chooses one, to generate 𝑃3. The second offspring, 𝑃4, is obtained in
the same manner, but by allowing 𝑃2 to be the first path in the pair (𝑃1, 𝑃2). Since
there are 𝑘/2 pairs of paths in a population and each pair produces two offsprings,
the reproduction procedure generates k new 𝑠, 𝑡-paths of 𝐺.

4. Selection

Given a population 𝑃𝑜𝑝 of 𝑘𝑠, 𝑡-paths, as we mentioned in the previous section,
we assume that each path 𝑃 of 𝑃𝑜𝑝 has 𝜏(𝑃 ) 6 𝜆. Recall from the Section 2.1 that
the fitness of a path 𝑃 is defined as in (2) and (3).

In the Selection process, we determine how many copies of a particular path will
be passed to the next generation by ranking each path by an index function, involving
the Fitness of a path.

The average fitness of a population 𝑃𝑜𝑝 composed of 𝑘 paths 𝑃1, 𝑃2, 𝑃3, . . . , 𝑃𝑘 is
defined as

𝐴𝑣𝑒𝑟𝑎𝑔𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑃𝑜𝑝) =
1
𝑘

(︃
𝑘∑︁
𝑖=1

𝐹𝐼𝑇𝑁𝐸𝑆𝑆(𝑃𝑖)

)︃
.

We also define the maximal fitness of a population 𝑃𝑜𝑝 as

𝑀𝑎𝑥𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑃𝑜𝑝) = max
𝑃∈𝑃𝑜𝑝

(𝐹𝐼𝑇𝑁𝐸𝑆𝑆(𝑃 )).

The numbers of copies of a path 𝑃 that will be passed to the next generation is
determined by the following index:

𝑁𝑢𝑚𝐶𝑜𝑝𝑖𝑒𝑠(𝑃 ) =
⃒⃒⃒⃒

𝑀𝑎𝑥𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑃𝑜𝑝)− 𝐹𝐼𝑇𝑁𝐸𝑆𝑆(𝑃 )
𝑀𝑎𝑥𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑃𝑜𝑝)−𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑃𝑜𝑝)

⃒⃒⃒⃒
.
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Since the solution of the ME problem is obtained by adding to 𝐺′ the edges
of the path with minimum 𝐹𝐼𝑇𝑁𝐸𝑆𝑆 in 𝐺, the larger the difference between
𝑀𝑎𝑥𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑃𝑜𝑝) and 𝐹𝐼𝑇𝑁𝐸𝑆𝑆(𝑃 ), the more copies of 𝑃 will be made. Also
the index 𝑢𝑚𝐶𝑜𝑝𝑖𝑒𝑠 is used to rank the paths of 𝑃𝑜𝑝 in a non-ascending order, and
the paths with higher priority will be included first. This procedure will continue until
the size of the next generation is 𝑘.

5. Empirical Results

In this section we will assess the performance of the ME algorithm by comparing
the solution given by the algorithm with the optimal solution analytically obtained
for a specific class of weighted digraphs.

Consider the following weighted-digraph 𝐺 = (𝑉,𝐸) with node-set 𝑉 = (𝑠 =
𝑣1, 𝑣2, 𝑣3, . . . , 𝑡 = 𝑣𝑛), with corresponding weight functions on the edges (𝑇 and 𝐶).
The edge-set 𝐸 is partitioned in three subsets 𝐸1, 𝐸2, and 𝐸3.

Let
𝐸1 = {(𝑢, 𝑧), where 𝑢 = 𝑣𝑖, 𝑧 = 𝑣(𝑖+1), 1 6 𝑖 6 𝑛− 1},
𝐸2 = {(𝑢, 𝑧), where 𝑢 = 𝑣𝑖, 𝑧 = 𝑣(𝑖+2), 1 6 𝑖 6 𝑛− 2},

and 𝐸3 = {(𝑢, 𝑧), where 𝑢 = 𝑣𝑖, 𝑧 = 𝑣(𝑖+3), 1 6 𝑖 6 𝑛− 3}.

Regarding the weight function 𝑇 , we have 𝑇 (𝑒) = 1, for 𝑒 ∈ 𝐸1, 𝑇 (𝑒) = 6, for
𝑒 ∈ 𝐸2, and 𝑇 (𝑒) = 12, for 𝑒 ∈ 𝐸3. With respect to the weight function 𝐶, we have
𝐶(𝑒) = 𝑖, for 𝑒 ∈ 𝐸1, 𝑒 = (𝑣𝑖, 𝑣(𝑖+1)), and 𝐶(𝑒) = 0, for 𝑒 ∈ 𝐸2, 𝑜𝑟 𝑒 ∈ 𝐸3 (see Fig. 3).
Let 𝐺′ = (𝑉,𝐸′ = 𝐸2

⋃︀
𝐸3), that is, another way to see this problem is that we extend

𝐺′ with edges from 𝐸1 thus that the sum of the costs of the new edges from 𝐸1 is
minimized and the new graph meet the end-to-end delay constrained between 𝑠 and 𝑡.
Equivalently, as we mentioned previously, the original population is composed of 𝑠, 𝑡-
paths of 𝐺 that meet the 𝜆-constraint, and, by the application of the ME algorithm,
we will try to minimize the fitness of the paths under consideration.

Figure 3. Class of weighted-digraphs 𝐺

For each edge, the ordered pair (𝑎, 𝑏) represents the 𝑡-weight and cost associated
with that edge. For this class of graphs, let 𝑛 be the number of nodes of 𝐺. If we let
𝜆 = 2𝑛, the analytical solution for the ME problem is represented by the path 𝑃 with
edge-set 𝐸(𝑃 ) = 𝐸*

⋃︀
𝐸**, where 𝐸* = {(𝑢, 𝑧) such as 𝑢 = 𝑣𝑖, 𝑧 = 𝑣(𝑖+1), 1 6 𝑖 6

𝑛/2− 1}, and 𝐸** = {(𝑢, 𝑧) such as 𝑢 = 𝑣𝑖, 𝑧 = 𝑣(𝑖+2), 𝑛/2 6 𝑖 6 𝑛− 2} (see Fig. 4).
The optimal solution is a path 𝑃 with 𝐹𝐼𝑇𝑁𝐸𝑆𝑆(𝑃 ) = (𝑛− 1)(𝑛+ 1)/8. In Table 1
we compare the optimal solution obtained analytically and the ones obtained by the
ME algorithm for the case where 𝜆 = 2𝑛, for different values of 𝑛. Moreover, we let
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 = 100, and 𝑁𝑢𝑚𝑏𝑒𝑟𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 100. As Table 1 shows, the error
deviation is within nine percent.
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Figure 4. Optimal solution for the ME problem for the class of weighted-graphs 𝐺, and
for 𝜆 = 2𝑛

Table 1
Experimental and Analytical Results

Number of Vertices Optimal Solution ME Algorithm Solution Deviation
13 21 21 0
25 78 78 0
37 171 180 2
49 300 312 4
61 465 480 4
73 666 694 4
85 903 937 4
97 1176 1231 4.5
109 1485 1527 2.8
121 1830 1874 2.4
241 7260 7863 7
361 16290 17334 6
481 28290 31254 7
601 45150 47107 4
721 64980 70988 9
841 88410 94413 6
961 115440 119215 6
1081 146070 155687 6.5

6. Appendix

First we would like to show that the minimal extension of a communication network
to meet an end-to-end delay constraint problem belongs to the NP-hard computational
class. As the ME problem, the Constrained Shortest Path problem (CSP) is to find
a minimum cost path 𝑃 of 𝐺 between 𝑠 and 𝑡 (see (1)) such that 𝜏(𝑃 ) > 𝜆 (i.e., find
among all 𝑠, 𝑡-paths of 𝐺 that meet the time constraint 𝜆, the one that has minimum
cost). If we restrict 𝐺′ = (𝑉,⊘) to be the subgraph of 𝐺 = (𝑉,𝐸) (i.e., 𝐺′ is an
spanning subgraph of 𝐺 with no edges), then to solve the ME problem for an instance
conformed of weighted digraphs 𝐺′ and 𝐺, is equivalent to solve the CSP for the
instance 𝐺. Thus the ME problem is at least as hard as the CSP problem. Since in [1]
it was shown that a CSP problem is NP-hard, then by restriction the ME problem
also belong to this computational class.

Let consider next the computational complexity of the heuristic presented in this
paper. Given a digraph 𝐺 = (𝑉,𝐸), an algorithm was introduced in [4] to find
the 𝑘-shortest path between two vertices 𝑠 and 𝑡 in a digraph 𝐺 = (𝑉,𝐸) in time
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𝑂(𝑘𝑛(𝑒 + 𝑛𝑙𝑜𝑔𝑛)), where 𝑛 number of nodes in 𝑉 and 𝑒 number of edges in 𝐸. Let
𝑘 = 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 and 𝑖 = 𝑁𝑢𝑚𝑏𝑒𝑟𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠. The original population 𝑃𝑜𝑝 (step
1 of the algorithm presented in Section 2.1) for the digraph 𝐺 = (𝑉,𝐸) was created
by using the 𝑘-shortest path Algorithm (see [4]) with respect to the weight function
𝑇 of 𝐺. Given two 𝑠, 𝑡-paths 𝑃1, 𝑃2, assuming both have lengths 𝑛, the complexity
of generating their offspring 𝑃3 is of order 𝑂(𝑛). For a population of size 𝑘, since
there are 𝑘/2 pairs of paths and since each pair produces two offsprings, 𝑃3 and
𝑃4, the reproduction (step 2.2) will take 𝑂(𝑘𝑛). In the Selection (step 2.1) to find
the MaxFitness of 𝑃𝑜𝑝, as well as to determine the AverageFitness of 𝑃𝑜𝑝 will take
𝑂(𝑘𝑛). Step 2 (while structure) will take 𝑂(𝑖𝑘𝑛), thus the complexity of the algorithm
is 𝑂(𝑖𝑘𝑛 + 𝑘𝑛(𝑒 + 𝑛𝑙𝑜𝑔𝑛)), thus the complexity of the ME algorithm is the same as
the one to generate the 𝑘-shortest paths of 𝐺.
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УДК 519.1
Эвристический подход к проблеме минимального
расширения коммуникационной сети и его оценка,

основанная на использовании специального класса графов

А. Гордонов, Л. Петинжи

Кафедра вычислительной техники
Колледж Стейтен Айленда, Нью-Йоркский городской университет

2800 Бульвар победы, Статен-Айленд, Нью-Йорк, США, 10314

В статье представлен эвристический подход к проблеме изменения топологии сети
путём минимального расширения ориентированного графа 𝐺’ с помощью добавления
рёбер из суперграфа 𝐺 графа 𝐺’ таким образом, что сумма стоимостей новых рёбер ми-
нимальна и общая задержка между двумя выделенными узлами 𝑠 и 𝑡 удовлетворяет
заранее определённым ограничениям. Для решения этой проблемы авторами разрабо-
тан алгоритм генетического типа. Более того, проведена оценка эвристического подхода
с использованием специального класса ориентированных графов, и показано, что реше-
ние проблемы минимального расширения коммуникационной сети с ограничениями на
задержку принадлежит к классу NP-полных вычислительных задач.




