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The D’Alembert–Lagrange principle in general stands for all ideal holonomic and non-
holonomic constraints of arbitrary order. But in practice the application of the principle is
restricted to ideal holonomic and linear first order nonholonomic constraints. In recent years
the direct application of this famous principle is made to model dynamic equation of acceler-
ation level constrained systems. This paper uses the dynamic equation developed to establish
a theoretical framework for trajectory tracking control of programmed motion with accelera-
tion level constraints. The concept of dividing constraints based on their sources into natural
and programmed constraints is employed. The trajectory tracking control is accomplished
by two models called Reference Control Model constructed using both the programmed and
natural constraints and a Dynamic Control Model developed by considering the natural con-
straints only. The Reference control model is used to plan the required trajectory based on
a given acceleration or lower level programmed constraint. The Dynamic Control Model is
utilized to control and stabilize the trajectory tracking process. Finally, to verify the ef-
fectiveness of the framework developed in the paper, a practical example is provided and
simulation results are depicted.
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1. Introduction

The discovery of nonholonomic systems was made by Euler while studying rolling of
rigid bodies, whereas the term nonholonomic system was coined by Hertz in 1894 [1–3].
Hertz was the first person to make clear distinction between holonomic and nonholo-
nomic systems.

The classification of constraints into holonomic and nonholonomic doesn’t include
all the constraints in real world. Moreover many dynamic equations uses holonomic
and first order linear nonholonomic systems with the exception of Appell equation
that can be applied to systems with second order constraints [4].

In response to the above paragraph, recently [4,5] a dynamic division of constraints
based on their sources is made. Indeed, if conditions are imposed by nature or en-
vironment then the constraints are called Natural Constraints. Natural constraints
are based on the assumption that, nonholonomic constraints arise when two or more
bodies are in contact with each other and roll without slipping. A constraint may
be imposed on velocities, accelerations or any other feature of the system such as
performance and design. These restrictions are said to be Programmed Constraints.
Programmed constraints, like Natural constraints, can have forms including higher
derivatives of the coordinates. Imposing tasks to be performed by a dynamic system
are examples of Programmed constraint [4, 6].

Robots for instance, are designed to perform [4] many requirements that may be
described by programmed constraints. Programmed constraints that can be specified
by algebraic or higher order differential equations can be put as a task to be performed
by them. This is why studying programmed constraints of higher orders are of interest.

Motion tracking includes tracking of a planned motion described by algebraic or
differential equation of constraints. In nonlinear control theory, motion tracking is the
same [1] as trajectory tracking. There are two types [1] of models for accomplishment
of Trajectory tracking in nonlinear control: a kinematic model in which the control in-
put is velocity of the system and the dynamic model of the system in which the control
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inputs can be forces and torques. Kinematic models highly exploited for trajectory
tracking control of programmed constraints of lower levels. In this paper we focus on
the use of dynamic model for trajectory tracking control of programmed motion in
higher order constraints.

Trajectory tracking of first order nonholonomic systems is achieved using dynamic
models in a reduced state form [7]. Control objective other than trajectory tracking of
nonholonomic systems of first order constraints can’t be achieved using only dynamic
models in reduced state forms [2].

Motion tracking includes tracking of a planned motion described by algebraic or
differential equation of constraints. In nonlinear control theory, motion tracking is the
same [6] as trajectory tracking. There are two types of models for accomplishment of
Trajectory tracking in nonlinear control: a kinematic model in which the control input
is velocity of the system and the dynamic model of the system in which the control
inputs can be forces and torques.

Trajectory tracking of first order nonholonomic systems is achieved using dynamic
models in a reduced state form [8]. Control objective other than trajectory tracking of
nonholonomic systems of first order constraints can’t be achieved using only dynamic
models in reduced state forms [2, 6].

Trajectory Tracking Control of Programmed Motion in Higher Order Nonholo-
nomic Systems is a strategy for tracking control of programmed motion given by
equations of second order constraints is established in this paper.

The strategy uses a Reference Control model and a Dynamic Control model of
a system. A Reference Control model is developed based on both Natural and pro-
grammed constraints and is used for generating a dynamically possible trajectory of
a given programmed constraint. A Dynamic Control model is used for stabilization
and selection of an appropriate control input torque for the purpose of tracking the
planned trajectory obtained from the Reference Control model.

2. Dynamic Modeling of First and Second Order
Nonholonomic Systems

The state of [7, 9, 10] representative point (𝑞𝑗 , 𝑞𝑗) of a system with generalized
coordinates q = (𝑞1, 𝑞2, . . . , 𝑞𝑛), Lagrangian 𝐿 is given by the solution of:

d

d𝑡

𝜕𝐿

𝜕𝑞𝑗
− 𝜕𝐿

𝜕𝑞𝑗
= 𝑄𝑒𝑥𝑗 +𝑄𝑐𝑗 , 𝑗 = 1, 2, 3, . . . , 𝑛, (1)

where 𝑄𝑒𝑥𝑗 is an external force, 𝑄𝑐𝑗 is the unknown force which constrain the system.
In case 𝑄𝑐𝑗 is a constraint force of ideal constraint, then (1) reduces to the form:(︂

d

d𝑡

𝜕𝐿

𝜕𝑞𝑗
− 𝜕𝐿

𝜕𝑞𝑗
−𝑄𝑒𝑥𝑗

)︂
𝛿𝑞𝑗 = 𝑄𝑐𝑗𝛿𝑞𝑗 = 0, 𝑗 = 1, 2, 3, . . . , 𝑛. (2)

Equation (2) is the famous d’Alembert–Lagrange principle, a fundamental principle
of Analytical dynamics developed by Lagrange.

Although the principle is meant for all ideal holonomic and nonholonomic con-
straints, it is widely applied to linear first order velocity constraints for a long time.
But recently, application of d’Alembert–Lagrange to general nonholonomic systems of
higher orders is done by M.R. Flannery in 2011 [10]. The dynamic equations and trans-

position relations between 𝛿(𝑞𝑗) and
d

d𝑡

(︂
𝛿𝑞𝑗
d𝑡

)︂
for velocity constraints and between 𝛿𝑞𝑗

and
d

d𝑡
(𝛿𝑞𝑗) for acceleration constraints are established based on d’Alembert–Lagrange

principle (2). In this section the main results are revised without their proofs. For
further details refer to [10].
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1. For constraints of the form:

Φ𝑘(q, q̇, 𝑡) = 0. (3)

(a) The virtual work done by the constraints are given as:

𝜕Φ𝑘
𝜕𝑞𝑗

𝛿𝑞𝑗 = 0. (4)

(b) The dynamic equation is proved to be:

d

d𝑡

𝜕𝐿

𝜕𝑞𝑗
− 𝜕𝐿

𝜕𝑞𝑗
= 𝑄𝑒𝑥 + 𝜆𝑘

𝜕Φ

𝜕𝑞𝑗
. (5)

(c) The transposition relation is given by:

𝛿Φ𝑘 −
d

d𝑡

[︂
𝜕Φ

𝜕𝑞𝑗
𝛿𝑞𝑗

]︂
= 0. (6)

Indeed, from constraints of the form (3) we obtain:

Φ̇𝑘 =
𝜕Φ𝑘
𝜕𝑞𝑗

𝑞𝑗 +
𝜕Φ𝑘
𝜕𝑞𝑗

𝑞𝑗 +
𝜕Φ𝑘
𝜕𝑡

= 0 (7)

This directly leads to:

𝛿Φ𝑘 =
𝜕Φ𝑘
𝜕𝑞𝑗

𝛿𝑞𝑗 +
𝜕Φ𝑘
𝜕𝑞𝑗

𝛿𝑞𝑗 = 0 (8)

Denote the 𝑚-independent and the 𝑐-dependent coordinates in{𝑞𝑗} by 𝑞𝑖, 𝑖 ≤ 𝑚
and 𝑝𝑠 respectively.Then (7)(6a) decomposes into:

Φ̇𝑘 =𝑀𝑘𝑠𝑝𝑠 +

[︂
𝜕Φ𝑘
𝜕𝑞𝑖

𝑞𝑖 +
𝜕Φ𝑘
𝜕𝑞𝑗

𝑞𝑗 +
𝜕Φ𝑘
𝜕𝑡

= 0

]︂
, (9)

where 𝑀𝑘𝑠 = 𝑀𝑘𝑠(𝑞, 𝑞, 𝑝𝑠, �̇�𝑠, 𝑡) =
𝜕Φ𝑘

𝜕�̇�𝑠
are elements of matrix𝑀 = {𝑀𝑘𝑠} which

is assumed to be positive definite and 𝑞𝑗 = {𝑞𝑖, 𝑝𝑠}. The solution for the dependent
acceleration in (9) is given by:

𝑝𝑠 = −𝑀𝑠𝑟

[︂
𝜕Φ𝑘
𝜕𝑞𝑖

𝑞𝑖 +
𝜕Φ𝑘
𝜕𝑞𝑗

𝑞𝑗 +
𝜕Φ𝑘
𝜕𝑡

]︂
, (10)

where matrices 𝑀𝑠𝑟 and 𝑀𝑘𝑠 are inverses of each other. For the dependent
displacement we have:

𝛿𝑝𝑠 =

(︂
𝜕𝑝𝑠
𝜕𝑞𝑖

)︂
𝛿𝑞𝑖 =

(︂
𝜕�̇�𝑠
𝜕𝑞𝑗

)︂
𝛿𝑞𝑖 =

(︂
𝜕𝑝𝑠
𝜕𝑞𝑖

)︂
𝛿𝑞𝑖. (11)

This leads to(based on equation (9) )

𝛿𝑝𝑠 = −𝑀𝑠𝑟

(︂
𝜕Φ𝑘
𝜕𝑞𝑖

)︂
𝛿𝑞𝑖 (12)
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After multiplying (12) by 𝑀𝑘𝑠 we obtain:

𝜕Φ𝑘
𝜕𝑞𝑗

𝛿𝑞𝑗 =
𝜕Φ𝑘
𝜕�̇�𝑠

𝛿𝑝𝑠 +
𝜕Φ𝑘
𝜕𝑞𝑖

𝛿𝑞𝑖 = 0 (13)

Since (7) and (12) are each zero the quantity

𝛿Φ𝑘 −
d

d𝑡

[︂
𝜕Φ𝑘
𝜕𝑞𝑖

𝛿𝑞𝑗

]︂
= 0 (6g)

provides a transpositional relation given by equation (6) above.
2. For acceleration level constraints of the form:

Ψ𝑘(q, q̇, q̈, 𝑡) = 0, 𝑘 = 1, 2, . . . , 𝑑. (14)

(a) The virtual work done by the constraint force is given by:

𝜕Ψ𝑘
𝜕𝑞𝑗

𝛿𝑞𝑗 = 0. (15)

(b) The dynamic equation is proved to be:

d

d𝑡

𝜕𝐿

𝜕𝑞𝑗
− 𝜕𝐿

𝜕𝑞𝑗
= 𝑄𝑒𝑥 + 𝜆𝑘

𝜕Ψ

𝜕𝑞𝑗
, (16)

where 𝜆 = 𝜆𝑘 is Lagrangian multiplier.
(c) The transposition relation which can be found in the same way done for

equation (6) is given by:

𝛿Ψ𝑘 −
d2

d𝑡2

[︂
𝜕Ψ𝑘
𝜕𝑞𝑗

𝛿𝑞𝑗

]︂
= 0. (17)

3. Control Models for Trajectory Tracking of Programmed
Motion

In this section control models that are used for trajectory tracking of programmed
motion are constructed. The control models are developed based on the concept of
the null space and constrained dynamic model for higher level constraints discussed
in section 2. Particularly, we focus on acceleration level constraints of the form (14)
since it includes first order constraints of the form (3).

In this paper a programmed constraint is a non-material constraint and any
requirement put on a physical system motion specified by an algebraic or differential
equation of any order. A programmed motion is a system motion that satisfies
a programmed constraint. A natural constraint is the usual holonomic and non-
holonomic constraints that are not programmed.

Remark 1. a) Programmed constraints can also be holonomic or nonholonomic
having the form as the classical holonomic and nonholonomic constraints.

b) In this paper constraints of the form (14) are assumed to include both programmed
and natural constraints.

The constrained dynamic model (16) can be written in the form:{︃
𝑀(q)q̈+ 𝐶(q, q̇) +𝐷(q) = 𝐽𝑇 (q, q̇)𝜆+𝑄𝑒𝑥 ,

𝜓𝑘(q, q̇, q̈, 𝑡) = 0, (𝑘 = 1, 2, . . . , 𝑑).
(18)
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Where 𝑀(𝑞) is an (𝑛×𝑛) positive definite symmetric matrix, 𝜆 is a 𝑑-dimensional

vector of Lagrange’s multipliers, 𝐽𝑇 (q, q̇) = 𝜕Ψ𝑘

𝜕𝑞𝑗
is a full rank of size (𝑑× 𝑛) matrix,

𝐶(q, q̇) is an 𝑛× 1 matrix containing vectors of centripetal and Coriolis forces, 𝐷(q)
is an 𝑛-vector of gravitational force and 𝑄𝑒𝑥 is an external force.

For trajectory tracking control of programmed motion, the dynamic model needs to
be transformed to the reduced-state form. The Null space concept is used to eliminate
the Lagrange multiplier from (18).

Equation (15) can be written in the form:

𝐴(q, q̇)q̇ = 0, (19)

where 𝐴 = 𝜕Ψ𝑘

𝜕𝑞𝑗
, and q = (𝑞1, 𝑞2, . . . , 𝑞𝑛). Let 𝑆 be an 𝑛 × (𝑛 − 𝑑) full rank matrix

made from the basis vectors of the null space of 𝐴 in (19) such that:

𝑆(q) = [𝑔1(q), 𝑔2(q), . . . , 𝑔𝑛−𝑑(q)].

Where 𝑔1(q), 𝑔2(q), ..., 𝑔𝑛−𝑑(q) are column basis vectors of the null space of 𝐴.
Then there exists velocity vector v(𝑡) = [𝑣1, 𝑣2, ., ., .𝑣𝑛−𝑑]

𝑇 such that:

q̇ = 𝑆(q)v(𝑡). (20)

Substituting 𝑞 in the first equation of (18) and multiplying it by 𝑆𝑇 we obtain:

𝑀 v̇(𝑡) + 𝐹 (q, q̇) +𝐷(q) = 𝐸, (21)

where𝑀 = 𝑆𝑇 (q)𝑀(q)𝑆(q), 𝐹 (q, q̇) = 𝑆𝑇 (q)[𝑀(q)�̇�(q)v(𝑡)+𝐶(q, q̇)], 𝐸 = 𝑆𝑇 (q)𝑄𝑒𝑥

and 𝐷(q) = 𝑆𝑇 (q)𝐷(q).
The constrained dynamic equation (16) is now transformed toReference Control

Model for programmed motion given by:{︃
𝑀 v̇(𝑡) + 𝐹 (q, q̇) +𝐷(q) = 𝐸,

Ψ𝑘(q, q̇, q̈, 𝑡) = 0.
(22)

Note that, Ψ𝑘(q, q̇, q̈, 𝑡) = 0, (𝑘 = 1, . . . , 𝑑) in (22) includes both natural and
programmed constraints.

The advantage of (22) is that, it doesn’t include the constraint force and hence is
convenient for tracking control. Equation (22) is said to be Reference Control Model.
This is because it is used for planning a dynamically possible trajectory of a given
dynamic system based on a given programmed constraint. An example is provided to
make the concepts of reference control model clear.

Example 1. Consider a Differential Derive Mobile Robot (DDMR) shown in Fig. 1.

The mobile base is located with respect to the fixed reference frame denoted by
{𝑋𝑟, 𝑌𝑟} and by the body fixed frame at 𝐴 denoted by {𝑥𝑟, 𝑦𝑟}. The origin of the
Robot fixed frame is defined to be the mid-point 𝐴 on the axis between the wheels.
The center of mass of the DDMR is located at a distance of 𝑑 > 0 units form 𝐴 on
the axis of symmetry of the Robot. Let us fix the kinematic parameters and notation
used to describe the mobile base in Table 1.

The natural constraints of the system are given by:⎧⎪⎨⎪⎩
−�̇�𝑎 sin𝜗+ �̇�𝑎 cos 𝜃 = 0 ,

�̇�𝑎 cos𝜗+ �̇�𝑎 sin𝜗+ �̇�𝐿 = 𝑅�̇�𝑅 ,

�̇�𝑎 cos𝜗+ �̇�𝑎 sin𝜗− �̇�𝐿 = 𝑅�̇�𝑅 .

(23)
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Figure 1. Differential Derive Mobile Robot

Table 1
Parameters and Notation

Parameters Description

𝐿 Distance from a wheel to 𝐴
𝑑 Distance from wheel axis to center of mass
𝜗 Absolute rotation angle of the DDMR

(𝑥𝑐, 𝑦𝑐) Absolute position of center of mass
(𝑥𝑎, 𝑦𝑎) Absolute coordinates of 𝐴
𝜙𝐿, 𝜙𝑅 Angular positions of the left and right driving wheels respectively
𝑅 Wheel radius

Let us add a programmed constraint to the DDMR that we require it to move
along a plane curve whose curvature is 5. That is:

�̇�𝑎𝑦𝑎 − �̇�𝑎�̈�𝑎 − 5[�̇�2𝑎 + �̇�2𝑎]
3/2 = 0. (24)

Now the total constraints of the DDMR are both (23) and (24). Observe that
the programmed constraint has degree 2 and hence we have a higher order nonholo-
nomic system. The purpose of this example is to apply (22) in obtaining the required
trajectory of the DDMR, given the programmed constraint (24).

Using equation (22), the total constraints of the system given by (23) and (24),
the null space concept we used to develop equation (22) and the dynamic equation of
DDMR we obtain:

�̇�𝑎𝑦𝑎 + �̇�𝑎�̈�𝑎 = 0. (25)

We need to write equation (25) in terms of linear velocity 𝑢 and angular velocity
𝜔 of the DDMR given by �̇�𝑎 = 𝑢 cos𝜗 and �̇�𝑎 = 𝑢 sin𝜗. Substituting these values
into (25) we obtain: 𝑢 = 𝑏 where 𝑏 is a non-zero constant. As a result �̇�𝑎 = 𝑏 cos𝜗 and
�̇�𝑎 = 𝑏 sin𝜗. Moreover, these new results has to satisfy the programmed constraint and
this leads to 𝜗 = 5𝑏𝑡. Note that we have assumed 𝜗(0) = 𝑥𝑎(0) = 𝑦𝑎(0) = 0. Finally
the required trajectory(dynamically possible trajectory), denoted by x𝑓 = (𝑥𝑓 , 𝑦𝑓 , 𝜗)

𝑇 ,
is given by:

𝑥𝑓 =
1

5𝑏
sin(5𝑏𝑡), 𝑦𝑓 =

−1

5𝑏
cos(5𝑏𝑡), 𝜗 = 5𝑏𝑡. (26)
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The Dynamic Control Model is developed by considering only the natural con-
straints (without the programmed constraint) and has the following from:{︃

𝑀(q)q̈+ 𝐶(q, q̇) +𝐷(q) = 𝐵𝑇 (q, q̇)𝜆+𝑄𝑒𝑥,

𝐵q̇ = 0.
(27)

Where 𝐵 is the usual Jacobian matrix obtained from the natural constraints, given
by 𝐵 = 𝜕Ψ𝑘

𝜕q̇ .

Using the concept of Null space (27) can be written in the form:{︃̂︁𝑀�̇� + ̂︀𝐶𝑣 = ̂︀𝐸𝜏,
𝐵q̇ = 0,

(28)

where 𝜏 is the control input torque.
For the purpose of trajectory tracking control of programmed motion, we use both

equations (22) and (28). The planned trajectory is obtained from (22) based on the
given programmed constraint and the tracking control is performed by (28).

Moreover, for stabilization purpose we use the following method which is obtained
by improving Baugarte’s method of constraint stabilization.

A control input torque may be defined [6] as:

𝜏 = 𝜏(̂︁𝑀(q), ̂︀𝐶(q, q̇), ̂︀𝑁(q),q, q̇, q̈,x𝑓 , ẋ𝑓 , ẍ𝑓 ).

Where ̂︀𝑁(q) includes gravity terms. To cancel all nonlinearities and apply exactly the
torque needed to overcome the inertia of the actuator the input torque can be defined
as: ̂︁𝑀(q)ẍ𝑓 + ̂︀𝐶(q, q̇)ẋ𝑓 + ̂︀𝑁(q) = 𝜏. (29)

Substituting this control law into the first equation of (28), we obtain:

̂︁𝑀(q)�̈�𝑓 = ̂︁𝑀(q)�̇�. (30)

Since 𝑀(q) is positive definite in q, we have:

ẍ𝑓 = ẍ,

where
�̇� = ẍ.

Hence, if the initial position and velocity of the DDMRmatches the desired position
and velocity, the DDMR will follow the desired trajectory. But obviously this control
law will not correct for any initial condition errors which are present. This works in
fever of modification to a method that may correct any initial condition error. This
can be achieved by replacing ẍ with:

ẍ = ẍ𝑓 −K𝐷ė−K𝑃e.

Where, e = x− x𝑓 , and the corresponding control law becomes:

̂︁𝑀(q)[ẍ𝑓 −𝐾𝐷ė−𝐾𝑝e] + ̂︀𝐶(q, q̇)𝑣 + ̂︀𝑁(q) = 𝜏, (31)

where, e = x − x𝑓 , 𝐾𝐷, 𝐾𝑃 are (𝑛 − 𝑚) × (𝑛 − 𝑚) constant positive definite gain
matrices. Substitute (31) into equation (28), we obtain asymptotically stable error
dynamics:

ë+𝐾𝐷ė+𝐾𝑃e = 0. (32)
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Where 𝐾𝐷 and 𝐾𝑃 are constant, positive definite and symmetric matrices. Equa-
tion (32) is a linear differential equation which governs the error between the actual
and planned (desired) trajectories.

Equation (32) can be written in a state space form in terms of [Θ𝑇 , Θ̇𝑇 ] as:

d

d𝑡

(︂
Θ

Θ̇

)︂
=

(︃
Θ̇

−𝐾𝐷Θ̇−𝐾𝑃Θ

)︃
=

(︂
0 𝐼

−𝐾𝑃 −𝐾𝐷

)︂(︂
Θ

Θ̇

)︂
, (33)

where, 𝐼 is the identity matrix of size 𝑚.
Let us investigate the stability of the origin in (33): The immediate Lyapunaov

function candidate is:

𝑉 (Θ, Θ̇) =
1

2

(︂
Θ

Θ̇

)︂𝑇 (︂
𝐾𝑝 + 𝜖𝐾𝐷 𝜖𝐼

𝜖𝐼 𝐼

)︂(︂
Θ

Θ̇

)︂
=

=
1

2

(︀
Θ̇ + 𝜖Θ

)︀𝑇 (︀
Θ̇ + 𝜖Θ

)︀
+

1

2
Θ𝑇 [𝐾𝑃 + 𝜖𝐾𝐷 − 𝜖2𝐼]Θ.

(34)

Where the constant 𝜖 satisfies: 𝐾𝐷 − 𝜖𝐼 > 0, 𝐾𝑃 + 𝜖𝐾𝐷 − 𝜖2𝐼 > 0. Evaluating the
total time derivative of 𝑉 (Θ, Θ̇) we obtain:

�̇� (Θ, Θ̇) = −
[︂
Θ

Θ̇

]︂ [︂
𝜖𝐾𝑃 0

0 𝐾𝐷 − 𝜖𝐼

]︂ [︂
Θ

Θ̇

]︂
. (35)

Equation (35) is globally negative definite and as a result, we conclude that

(Θ, Θ̇) = (0, 0) is globally asymptotically stable by Lyapunov’s direct method of sta-
bilization.

In summary we develop an algorithm for a trajectory tracking control of a pro-
grammed motion.
1. Obtain a dynamically possible trajectory 𝑥𝑓 from the reference control model (22).
2. Obtain the first torque from equation (29).
3. Obtain actual trajectory 𝑥 using the torque obtained in (2) and equation (28).
4. Observe the error by comparing the result from (3) and (1).
5. Keep on improving the error by obtaining an improved torque from (31) using

different values for entries of the gain matrices 𝐾𝐷 and 𝐾𝑃 .
6. Substitute the torque obtained from (5) in (28) to get new actual trajectories.
7. Go to step 4.
8. Repeat these steps until you get sufficiently good input torque so that |𝑥−𝑥𝑓 | 6 𝜖

for a small positive number 𝜖.

Example 2. This example is a continuation of Example 1. The purpose of this
example is to find a torque that constrains the motion of the dynamics towards the
required trajectory x𝑓 (trajectory tracking). The result is described by simulation on
MATLAB 2012a.

Substituting 𝑏 = 1
10 in equation (26) the required trajectory becomes:

𝑥𝑓 = 2 sin(0.5𝑡), 𝑦𝑓 = −2 cos(0.5𝑡), 𝜗𝑓 = 0.5𝑡.

Simulation I. The algorithm developed above is used for simulation.
𝐾𝐷 and 𝐾𝑝 are taken diagonal matrices. Let us start with 𝐾𝑑 = 𝐾𝑝 = 0. The

new trajectory becomes: 𝑥 = sin(0.5𝑡), 𝑦 = − cos(0.5𝑡), 𝜗 = 0.5𝑡.
The simulation for the absolute value of the error in simulation I is shown in the

Fig. 2. Error in 𝑥 is denoted by 𝑒(𝑥) and error in 𝑦 is denoted by 𝑒(𝑦). The error in
𝜗 is zero and not included in the figures.
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Figure 2. Simulation I graph

The portraits of actual trajectory and the required trajectory in simulation I, are
shown in Fig. 3.

Figure 3. Simulation I portrait

Simulation II. After several experimentation on MATLAB, the torque obtained
with small diagonal entries of the gain matrices 𝑘𝑑1 = 0.0001, 𝑘𝑑2 = 0.0001, 𝑘𝑝1 =
0.0001, 𝑘𝑝2 = 0.0001, 𝑘𝑑3 = 0.0001, 𝑘𝑝3 = 0.0001 seem to give a good result on tracking
the programmed motion. In Fig. 4 the Error simulation is displayed.

Figure 4. Error graph for simulation II

In simulation II, the obtained actual trajectory is given by:

𝑥 = 1.99 sin(0.5𝑡)− 0.004 cos(0.5𝑡), 𝑦 = −0.008 cos(0.5.𝑡)− 1.99 cos(0.5𝑡).

The portrait of the actual and the required curves are shown in Fig. 5.

Remark 2. In the simulation of the above demonstration it was observed that
when the entries of the gain matrices increase (greater than 1) the trajectory track-
ing becomes highly violated. Taking the values smaller and smaller guarantees the
asymptotic stability of the tracking. The values can be taken to be equal or differ-
ent from each other. This simulation experiment is performed using symbolic maths
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Figure 5. Simulation II portrait

in MATLAB. The expressions for the torque, for instance are too long and it may be
too expensive to do it by paper and pencil work.

4. Conclusion

In this article trajectory tracking control of programmed acceleration level con-
straints are detailed. The underlying structure of the tracking control includes ref-
erence control model and dynamic control model used for planning and controlling
the tracking process respectively. Although the framework developed in this paper
is discussed in terms of higher order constraints, it can effectively be used for tra-
jectory tracking control of the usual holonomic and first order linear nonholonomic
constraints.
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УДК 531.3
Управление программным движением неголономной

системы второго порядка вдоль траектории
Ч. Т. Дересса

Кафедра теоретической физики и механики
Российский университет дружбы народов

ул. Миклухо-Маклая, д. 6, Москва, Россия, 117198

Принцип Даламбера–Лагранжа позволяет построить уравнения динамики голоном-
ных и неголономных систем произвольного порядка. На практике использование это-
го принципа ограничивается идеальными голономными и линейными неголономными
связями первого порядка. В последние годы этот известный принцип непосредственно
используется для построения уравнений динамики системы со связями, зависящими от
ускорений. В данной работе предлагается аналитическое решение задачи управления
программным движением по траектории, зависящей от ускорения. Связи в зависимости
от источника воздействия делятся на естественные и программируемые. Управление
траекторией слежения осуществляется посредством использования модели планирова-
ния управляемого движения, построенного с учетом программируемых и естественных
ограничений, и модели динамического управления, разработанной с учетом только есте-
ственных ограничений. Управление модели планирования движения по траектории ис-
пользуется для планирования траектории, определяемой ускорениями точек системы
или ограничениями, соответствующими программе движения. Для управления движе-
нием по траектории и стабилизации используется динамическая модель управления. На-
конец, для подтверждения эффективности предлагаемого в работе подхода приводится
пример. Результаты моделирования изображены на графике.

Ключевые слова: программные связи, естественные ограничения, связи, программ-
ное движение, управление, динамические модели управления, траектория, стабилизация
.
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