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In this paper, a model of infinite Josephson layered structure is considered. The structure
consists of alternating superconducting and tunnel layers and it is assumed that (i) the
electrodynamics of the structure is nonlocal and (ii) the current-phase relation is presented
by sum of Fourier harmonics instead of one sinusoidal harmonic for the case of the sine-Gordon
equation. The governing equation is a nonlocal generalization of the nonlinear Klein-Gordon
equation with periodic nonlinearity that depends on external parameter of nonlocality .
The velocity of vortices (2m-kinks) in models of such kind are not arbitrary, but belong to
some discrete set. The paper presents a method for computation of these velocities (called
also “sliding velocities”) and the shapes of kinks. The estimation of error of the method
is given. The results of computations are the families of 2w-kinks parametrized by A. It is
observed that the 2m-kinks corresponding to different families for the same A have nearly the
same central part but differ in asymptotics of the tails. The numerical algorithm has been
incorporated into a program complex “Kink solutions” in MatLab environment. The complex
enables to compute the shapes and velocities of 2xw-kinks for nonlinearities represented by
sums of up to ten Fourier harmonics, as well as to model the propagation of these kinks.
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1. Introduction

In 90-es, in series of papers (see the survey [1]) it has been shown that in some sit-
uations the electrodynamics of distributed Josephson junction becomes nonlocal. The
basic equation to describe the vortex dynamics is no longer the sine-Gordon one, and
it should be replaced by its nonlocal generalization (nonlocal sine-Gordon equation,
NSGE). It was found [2] that contrary to the sine-Gordon equation NSGE, does not
support travelling simplest Josephson vortices (called also 2w-kinks or fluzons). At
the same time it describes fast 47-, 67- etc kinks and each of them can travel only
with its own velocity that depends on its shape.

Later, nonlocal Josephson electrodynamics of layered structures also was devel-
oped [3,4]. It was shown that the equation for vortex dynamics in this case is also
NSGE. In the recent paper [5] an extension of the approach of [3] to the case of non-
sinusoidal current-phase relation (CPR) was done. Complex CPRs are relevant to
many situations, in particular to SIS or SNINS and SFIFS junctions [6]. In [5] it was
assumed that CPR is described by two Fourier harmonics, therefore the governing
equation was the nonlocal double sine-Gordon equation (NDSGE). It was found that
NDSGE does support 27-kinks, however the velocity of 27-kink cannot be arbitrary,
contrary to the local case. There exists a discrete set of so-called sliding velocities and
each of them is associated with the shape of the corresponding vortex.

The study of sliding velocities for NSGE and related equations is quite complex
problem even from the numerical viewpoint. The difficulty is that the velocity and
the shape of the vortex should be found simultaneously. Therefore the methods that
are applicable in the local case (see e.g. [7]) hardly can be applied to the nonlocal
problems. So, special technique should be developed, see [8].
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In this paper I describe a numerical algorithm which allows to find numerically the
sliding velocities for nonlocal generalizations of the sine-Gordon equations. This algo-
rithm is a part of computer application “Kink solutions”. This computer application
allows to find the set of sliding velocities for the case of arbitrary CPR and then to
study the vortex propagation. The algorithm is based on statements from the dynam-
ical system theory (see [8]). Some numerical results and the estimation of numerical
error are presented.

2. The Model

Consider a Josephson structure consisting of alternating superconducting and tun-
nel layers (see Fig. 1) assuming that (a) superconducting layers S are identical; (b)
tunnel layers I are identical; (c) vortex formation is symmetric, i.e. the phase differ-
ence and the magnetic field in all the JJs are identical; (d) the superconducting layers
S are thin when compared with the penetration depth of magnetic field into super-
conductors; (e) the structure is assumed to include infinitely many layers, in order to
disregard boundary effects on the edges.

s )|
I 1 ]
s )
L | |
s I
/i | |
s I
Figure 1. Layered structure: S — superconducting layers, I — tunnel layers.

A vortex formation moves from left to right

Assume that the CPR is of the form
J(p) = Jesing + Josin2p + Jysin3p + .. ., (1)

where J. is the critical Josephson current. The straightforward generalization of the
model of [5] to infinitely many harmonics in CPR yields
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Here ¢ = ¢(x,t) is the phase difference of the order parameters across each tunnel
layer. The parameters are: wy is the Josephson plasma frequency and
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where \; is the Josephson length, A; is the London penetration depth, 2d is the
thickness of the each tunnel layer, 2L is the thickness of the each superconducting
layer. Nonlinearity in Eq. (2) comes from (1),

F(p) =sing+ Assin2¢p + Agsin3p +...,, (3)

where Ay = J3/J., A3 = J3/J, .... In dimensionless variables,
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Eq. (2) takes the form

1 8 ’
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where ¢ = ¢((, 7) and the parameter of nonlocality A is

/\:Aeff [ L+d VLA
DY )\L+d_)\J\/AL+d'

For the traveling wave solutions, ¢(z) = ¢(¢ — v7), Eq. (4) reads
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A single Josephson vortex of one flux quantum corresponds to the 27-kink solution of
Eq. (5). It obeys the boundary conditions

lim ¢(z) =0, lim ¢(z) = 2. (6)

Z——00 z—+400

Eq. (5) with the boundary conditions (6) is the main object of the study in this paper.

3. Numerical Method
3.1. The Idea of the Method and the Numerical Algorithm

In order to study 27-kink solutions of Eq. (5) the approach of [8] was adopted.
Following this approach Eq. (5) should be rewritten in the form of the system

U290zz = q. + F(y), _/\2(]zz t4q4=¢-. (7)
The first integral of (7) is

v? A2 1
I= 5802 + ?qg - 5(12 +U(p), (8)
where U(yp) is a primitive of F(¢). The system (7) has Hamiltonian structure [2].
Reduction of the nonlocal equation to a system of ODE drastically simplifies both
numerical and analytical studies of the problem.

Consider 4D phase space for the system (7) with coordinates ¢, ¢,,q,q,. Then
27-kink solutions of the system (7) correspond to heteroclinic orbits which connect
equilibrium states Og(0,0,0,0) and Oz, (27,0,0,0). Singular points Oy and O, are
equilibrium states of saddle-center type. This means that for Oy there exist a pair of
trajectories ’yff 5(Op) which approach Og as z — —oo (outgoing trajectories) and one

pair of trajectories v, ,(Op) which approach Oy as z — 400 (incoming trajectories).
The same situation takes place for Os,, the corresponding trajectories are 'yff 5(O2r)

(incoming) and v; 5(O2r) (outgoing). The existence of the heteroclinic orbit means
merging of the trajectories: one of the outgoing from Oy and one of incoming in Os;.
In the 4D phase space of the Hamiltonian system (7) this merging is not a general
case, but this may occur for some values v, when A is fixed. In this case heteroclinic
orbit has to pass through the plane of symmetry (¢ = m, ¢, = 0) (this follows from
the statement 4 in [8]).

Numerical algorithm for finding the values of sliding velocity v consists in “ad-
justing” the parameter v in such a way that one of the outgoing trajectories from Og
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(77 (Oy), for definiteness) passes through the plane (¢ = 7, ¢, = 0). Technically, it can
be implemented by finding zeroes of the function R(v, \), which for given parameters
A and v is defined as

R(’l), )\> - Qz(«zO; )\7 U),

where (o(z; A\, v), 0. (2; A\, v),q(2; A\, v), q-(z; A, v)) is an outgoing trajectory for Oy and
2o satisfies the condition ¢(zp; A,v) = 7. The zeroes can be found by means of di-
chotomy method.

Summarizing, the method can be algorithmized as follows.

1. Set initial conditions S = (¢(0; A, v),p.(0; A\, v),q(0; \,v),q.(0; A\,v)) using the
linearization of (7) in the vicinity of the point Oy (i.e. to find the point S with a
controllable accuracy on the trajectory ;" (Op) near the equilibrium point Op).

2. Solve numerically the Cauchy problem with initial conditions at the point S until
the moment when the component ¢ on the trajectory takes the value m. Fix
R(v,A\) = q.(z0; A\, v) at this point.

3. Changing the parameter v find the values of v at which R(v,\) = 0. The com-
ponent ¢ on the corresponding trajectory yields the 27-kink solution.

3.2. Error Estimation

There are two main sources of numerical error when calculating the values v with
this algorithm. They are: (a) the error of the numerical solution of the Cauchy
problem; (b) the error of choosing initial data S. Let us describe methods for control
the accuracy for the points (a) and (b) consecutively.

a. Error of the numerical solution of the Cauchy problem. The Cauchy problem
was solved numerically by 4-th order Runge-Kutta method. The error estimation in
this case can be done in a standard way using the Richardson rule, see [9]. Consider a
sequence of uniform grids with steps h, h/2, h/4, etc. The nodes of every grid coincide
with even nodes of the next grid. Let ¢1(2) be a solution for some of these grids and
let ¢2(2z) be a solution for the next, half-step grid. The estimation of the error at the
point z is defined as A(z) = [p2(z) — p1(2)]/(2P — 1), where p = 4 is theoretical order
of accuracy for a numerical method. Consider the norm of the error

1A[le = max |A(z,)], (9)

1<nN

where N is the total number of points in the grid for which the norm was calculated.
Fig. 2, panel A, shows the values of the norm for the error of the 4-th order Runge-
Kutta method versus a number of nodes N ~ 1/h. Since the asymptotics of the error
obeys power law, double logarithmic scale was used: log;, [NV along the axis of abscissa
and log,, ||A|| along the axis of ordinate. As N increases the value log, ||A|| follow
a straight line with a slope tana = —4, however, this takes place until the roundoff
errors become comparable with the error of the method. According to the calculations,
asymptotical estimation of error, ~ Ch?, is valid for values of h € [0.0004, 0.04].
b. Error of initial condition. Initial data

S = (p(0; X, v), 02 (0; X, v),q(0; X\, v), ¢-(0; A, v))

was found by linearization of the system (7) at the point Oy. The linearized system is

Ve = ¢ + Qo Mg +q= s,
where Q =), Ak and » = (v, \) is a single positive root of the equation

2
2. 2_ _ * 0
v 1_)\2%2—{— .
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Figure 2. Error behavior in logarithmic scale (all calculations were fulfilled
with parameters A = 0.5, v =0.5, A, =1/8, A,, =0, m = 3,4, ..., the points
corresponding to the calculated values are connected by bold lines, thin line
corresponds to the theoretical slope): (A) norm of the error for 4-th order
Runge-Kutta method versus a number of nodes N of the grid (p =4, § = 1073,
the length of the interval of integration is equal to =~ 13); (B) the value of O;
versus ¢ (a =10, p = 3)

Then for the outgoing trajectory the asymptotics takes the form

o(z3 A\, 0) ~ e L (z3 A\ v) ~ 3e™?,

» %2

Toma® 0 EEh)

Thereby, the point S = S(§) can be chosen as

20 )
1— 225271 —N252 )7

nz

q(z; A, ) ~ To52¢

S(6) = <5, 56,

where ¢ is sufficiently small. Consider the Cauchy problem with initial conditions
S(6). Introduce the function

Rs(v,\) = q.(20; A\, v),

where (o(z; X, v), .(2; A\, v), q(z; X, v), ¢.(2; A\, v)) is a trajectory with initial data S(9)
and zg is such that ¢(zo; A\,v) = 7. Due to the fact that the nonlinearity is odd, the
value ARs(v,\) = |Rs(v,\) — R(v,\)| depends on d not quadratically, but cubically,
i.e. ARs(v,\) = O(6%). This fact was verified numerically. For fixed values of v and
A the value Rs(v,)) was calculated for the set of 8, §/a, §/a?, etc with the highest
possible accuracy of the Runge-Kutta method (see the point a). Fig. 2, panel B, shows
the dependence of the value

0 (U,A):‘R ; (U,A)—Ra(v,)\)‘

& i &
on §/a™ in the double logarithmic scale, a = 10. It follows from Fig. 2 that this
dependence is well approximated by a straight line with the slope coefficient p = 3.
Therefore for § — 0 one has Rs(v,\) = R(v,\) + C§ + o (63), This implies the
estimation for the error

®é(v7 )‘)

‘ARg(v,A)’ ~ |

It turns out that for the majority of calculations it is sufficient to take A = 0.0004 and
§ = 1073, that ensures accuracy ~ 1077,
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4. Numerical Results

Numerical method described in Section 3 was implemented in the program complex
“Kink solutions” fulfilled in Matlab environment. This complex allows to calculate
the values of sliding velocities v,, n = 0,1,... for 2x-kinks if A is fixed. Also the
“Kink solutions” permits to simulate the propagation of the kink being found. The
nonlinearity (i.e. CPR law) should be set by the amplitudes of Fourier harmonics
Ag — Ay, see Eq. (3).

The typical result of the computations is presented in Fig. 3. If the parameter of
nonlocality A is fixed, each of found 27-kinks corresponds to its own sliding velocity
Up, n=1,2,.... The curves v, (\) corresponding to the three highest velocities vy, vy
and vy are shown in the left panel of Fig. 3. Two profiles of the 27-kinks corresponding
to points A and B (A = 0.2) are shown in the right panel of Fig. 3. All the curves v, ()
in the left panel of Fig. 3 are originated at the point A = 0, v = 1. The analysis in
vicinity of this point can be done using “weak nonlocality” limit, see [5]. One should
note that the kinks corresponding to different branches have nearly the same core but
differ in asymptotics of the tails.
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Figure 3. Kink solutions of Eq. (5) for A> =1/8, A,, =0, m = 3,4,.... Values of

v, versus A\ are shown for the first three solutions. Profiles of the first and third
kinks for A\ = 0.2 are shown in the inserts

5. Conclusion

In this paper, the numerical method for finding 27-kink solutions of problems of
nonlocal Josephson electrodynamics is presented. The model is described by nonlocal
equation (5). This equation depends on the parameters A,,, m = 2,3..., correspond-
ing to amplitudes of harmonics in current-phase-relation (3) and A (the “strength” of
nonlocality). The main difficulty is that the shape of 27-kink and its velocity v should
be computed simultaneously.

The method is based on the ideas of the theory of dynamical systems. In the
paper detailed description of the algorithm is presented. The estimation of error of
the algorithm is given.

The algorithm has been implemented as a part of the program complex “Kink
solutions”. The program complex is suitable for finding the set of parameters v,
n=0,1,..., when X is fixed. The results of numerical calculations with this complex
are reported.
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VIIK 519.642.2

YucyieHHbIT METO HAX0XKIEHUsI CKOPOCTEM CKOJIbXKEHUS
BUXPEl B HEJIOKAJIBHOMI J12K03€(PCOHOBCKOI 3JIEKTPOJINHAMUKE

9. B. MeaBeneBa

Kagedpa svicuweti mamemamury — 1
Hayuonarvroui uccaedosamenverkut yrusepcumem «MUIDT»
npoead 4806, dom 5, 2. 3enenoepad, Poccun, 124498

B crarpe paccmarpuBaeTcs Mojesb OECKOHEUHOM J3K03e(DCOHOBCKOM CJIOMCTOM CTPYKTY-
pol. CTPYKTypa COCTOUT W3 UEePEHYIOMMXCS CBEPXIIPOBOIMIINX M TYHHEJIBHBIX CJIOEB, TPU
TOM TpeIoIaraeTcst, 9ro (1) 3JEKTPOIMHAMUKA CTPYKTYDPBI SIBJISETCS HeJOKaubHON m (ii)
TOK-(hba30Bast 3aBUCUMOCTD IIPEJICTABJIEHA B BUJIE CyMMbI rapMOHUK Pypbe BMeCTO OIHOI cH-
HYyCOUIAJIbHON TAPMOHMKH TSI CJIydasi ypaBHeHusi cunyc-l'opgona. OCHOBHBIM ypaBHEHUEM
MOJIE/IH SIBJISIETCSI HEeJIOKaJIbHOe 0000IeHne HenHeitHoro ypasuenns Kieitna—Iopaona c me-
PUOINYECKON HEJMHERHOCTHIO, KOTOPOE 3aBUCUT OT BHEITHETO ITapaMeTpa HEJIOKAJIHLHOCTH .
Ckopocru Buxpeil (peleHusi TUMa 27T-KUHKOB) B MOJIEJISX TAKOTO POJA HE SBJSIOTCS IIPO-
M3BOJILHBIMY, & IIPUHAJIEXKAT HEKOTOPOMY JUCKPETHOMY MHOXKeCTBY. B paboTe mpesjozkeH
METOJL JIJIs BBIYUCJIEHUsI TAKAX CKOPOCTeil (HA3BIBAEMBIX TaK¥XKe «CKOPOCTSMH CKOJIbYKEHHUSI» )
u GopMbI KMHKOB. [IpUBOINTCS OIEHKA MOTPEITHOCTH TOTO MeToa. Pe3ymbraraMu BBITHC-
JICHUI SIBJIAIOTCS CEeMeiCTBa pellleHuil THna 27m-KUHKa, [1apaMeTpudyeMble 3HadeHueM A. U3
pPEe3yAbTATOB YHCJIEHHOTO CYETa BBITEKAET, YTO IEHTPAJbHbIE YacTH Hpoduieil 27-KUHKOB,
COOTBETCTBYIOIIUX PAJIUIHBIM CEMEUCTBAM MIPU OJHOM U TOM K€ 3HATEHUU A, CXOXKH MEXKTY
coboit. Ormune HabJ/IIOAETCS B ACUMIITOTHKE «XBOCTOB» ITUX pellneHuil. UMCIIeHHBIN aJj-
TOpUTM OBIJ WCIOJb30BaH B KoMmiiekce mporpamm «Kink solutionss, mammcanubiii B cpeje
MatLab. Kommtekc mo3BosisieT BBIMUCAATH (DOPMBI ¥ CKOPOCTH PEIIeHUH ThIa 27m-KUHKA JJTsT
HeJINHEWHOCTEM, IIPeJICTABIEHHBIX CYMMOM 10 mecatu rapMoHuK Pypbe, a TakkKe MOIEIHUPO-
BaTh PACIPOCTPAHEHUE ITUX KHUHKOB.

KuroueBrblie cioBa: 1:kK03eCOHOBCKUN TEPEXO, HEJTOKATbHAS I2K03e(DCOHOBCKAST IJIEK-
TPOJAUHAMUKA, BJIOYKEHHBIE COJIMTOHBI, CKOPOCTH CKOJIbXKEHUsI, HECUHYCOUIAJIbHAsT HEeJINHEeH-
HOCTb.
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