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We study localised attractors of the parametrically driven damped nonlinear Schrödinger
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1. Introduction

This paper deals with the parametrically driven damped nonlinear Schrödinger
equation,

𝑖𝜓𝑡 + 𝜓𝑥𝑥 + 2|𝜓|2𝜓 − 𝜓 = ℎ𝜓* − 𝑖𝛾𝜓. (1)

Here 𝛾 > 0 is the damping coefficient, and ℎ > 0 the amplitude of the parametric dri-
ver. Equation (1) describes the nonlinear Faraday resonance in a vertically oscillating
water trough [1, 2] and the effect of phase-sensitive amplifiers on solitons in optical
fibers [3,4]. The same equation controls the magnetization waves in an easy-plane fer-
romagnet placed in a combination of a static and microwave field [5] and the amplitude
of synchronized oscillations in vertically vibrated pendula lattices [6, 7].

Localised stationary or periodic solutions of Eq. (1) exist only if ℎ > 𝛾. When
ℎ > ℎc, where

ℎc =
√︀
1 + 𝛾2, (2)

any localised solution is unstable to spatially-extended perturbations. The evolution
of this instability leads to the spatiotemporal chaos. Two stationary soliton solutions
of Eq. (1) are well known [5]:

𝜓±(𝑥) = 𝐴±𝑒
−𝑖𝜗±sech(𝐴±𝑥), (3)

where

𝐴± =

√︁
1±

√︀
ℎ2 − 𝛾2, 𝜗+ =

1

2
arcsin

𝛾

ℎ
, 𝜗− =

𝜋

2
− 𝜗+.

The soliton 𝜓−(𝑥) exists for 𝛾 6 ℎ 6
√︀

1 + 𝛾2 and is unstable for all ℎ and 𝛾. The
soliton 𝜓+(𝑥) exists for all ℎ > 𝛾; its stability properties depend on 𝛾 and ℎ.

When 𝛾 > 0.356, the 𝜓+ soliton is stable for all ℎ in the range 𝛾 < ℎ < ℎc(𝛾). When
𝛾 < 0.356, on the other hand, the soliton (3) is only stable for 𝛾 < ℎ < ℎHopf(𝛾), where
the value ℎHopf(𝛾) lies between 𝛾 and ℎc(𝛾) (dashed curve in Fig. 1). As we increase
ℎ past ℎHopf(𝛾) keeping 𝛾 < 0.356 fixed, the stationary soliton loses its stability to
a time-periodic soliton [5, 8]. The transformation scenario arising as ℎ is increased
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further, depends on the value of 𝛾. According to the numerical simulations of [9], for
𝛾 smaller than approximately 0.26 the periodic soliton follows a period-doubling route
to temporal chaos. In a wide region of ℎ values above the chaotic domain, the equation
does not support any stable spatially-localised solutions. In this “desert” region, the
only attractor determined in direct numerical simulations was the trivial one, 𝜓 = 0.
Finally, for even larger values of ℎ, the unstable soliton seeds the spatio-temporal
chaos [9].

Figure 1. The existence and stability chart of the stationary two-soliton complexes. For
each 𝛾, the region of existence of the complexes extends in the direction of larger ℎ,

beyond the value ℎc

As ℎ is increased for the fixed 𝛾 larger than 0.275 (but smaller than 0.365), the
soliton follows a different transformation scenario. Here, the period-doubling cascade
does not arise and the soliton death does not occur. The periodic soliton remains
stable until it yields directly to a spatio-temporal chaotic state [9].

In a short intermediate range of 𝛾-values, 0.26 < 𝛾 < 0.275, we have a combi-
nation of the above two scenarios. The increase of ℎ for the fixed 𝛾 results in the
period-doubling of the soliton, followed by the temporal-chaotic and “desert” regions.
However, as we continue to raise ℎ, an inverse sequence of bifurcations is observed
which brings the stable single-periodic soliton back. On further increase of ℎ, it loses
its stability to a spatio-temporal chaotic state [9].

In the region 𝛾 > 0.356, where the stationary one-soliton solution 𝜓+ soliton is
stable for all ℎ in the range 𝛾 < ℎ < ℎc(𝛾) [5], no periodic solutions can detach from
this stationary branch. However, the stationary two-soliton solutions do undergo Hopf
bifurcations here [10]. The stability domain for the two-soliton complex (𝜓(++)) on
the (𝛾, ℎ)-plane is shown in Fig. 1. It is bounded by the curve ℎc(𝛾) on the top.
Another solid curve demarcates the Hopf bifurcation points of stationary two-soliton
solutions [11].

The purpose of our work is to follow the transformations of temporally periodic
solutions of Eq. (1) as its parameters are varied, identify the arising bifurcations
and eventually explain the attractor chart for this equation which was compiled using
direct numerical simulations in Ref. [9]. We will also add missing details to this chart
such as coexisting attractors in cases of bistability.

2. Periodic Solitons as Solutions of a 2D
Boundary-Value Problem

So far, the direct numerical simulation has been the only way to obtain periodic
solutions and study their stability. The shortcoming of this method is that simulations
capture only stable solutions. This means that the actual mechanisms and details
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of the transformations (which are bifurcations involving both stable and unstable
solutions) remain unaccessible. Neither can simulations be used to identify alternative
attractors in cases of bi- or multi-stability.

We propose a new approach to the analysis of these hidden mechanisms. Instead
of solving Eq. (1) with some initial condition and determining the resulting attractor
by running the computation for a sufficiently long time, we will be looking for periodic
solutions by solving Eq. (1) as a boundary-value problem on a two-dimensional domain
(−∞,∞)× (0, 𝑇 ). The boundary conditions will be set as

𝜓(𝑥, 𝑡) = 0 as 𝑥→ ±∞, and 𝜓(𝑥, 𝑡+ 𝑇 ) = 𝜓(𝑥, 𝑡). (4)

The period 𝑇 is regarded as an unknown, along with the solution 𝜓(𝑥, 𝑡). Letting

𝑡 = 𝑡/𝑇 (0 < 𝑡 < 1) and defining 𝜓(𝑥, 𝑡) = 𝜓(𝑥, 𝑡), the boundary-value problem (1),
(4) can be reformulated on a strip (−𝐿,𝐿)× (0, 1) (where 𝐿 is chosen to be sufficiently
large):

𝑖𝜓𝑡(𝑥, 𝑡) + 𝑇Φ(𝜓(𝑥, 𝑡), ℎ, 𝛾) = 0, 𝜓(±𝐿, 𝑡) = 0, 𝜓(𝑥, 0) = 𝜓(𝑥, 1). (5)

Here,
Φ(𝜓(𝑥, 𝑡), ℎ, 𝛾) = 𝜓𝑥𝑥 + 2|𝜓|2𝜓 − 𝜓 − ℎ𝜓* + 𝑖𝛾𝜓.

The periodic solutions are path-followed in ℎ for the fixed 𝛾, with the Hopf bi-
furcation points of the static solution used as starting points in the continuation pro-
cess (see Fig. 1). We employ a predictor-corrector algorithm [12] with a fourth-order
Newtonian iteration at each ℎ. Most calculations were performed on the domain
(−𝐿,𝐿) = (−50, 50)× (0, 1), with the stepsizes of the finite-difference approximation
being Δ𝑥 = 0.05 and Δ𝑡 = 0.01.

For the graphical representation of solutions, we use the average energy, defined
by

𝐸 =
1

𝑇

𝑇∫︁
0

𝐸d𝑡, 𝐸 =

∞∫︁
−∞

[︂
|𝜓𝑥|2 + |𝜓|2 − |𝜓|4 + ℎ

𝜓2 + 𝜓*2

2

]︂
d𝑥. (6)

Stability of solutions is classified by examining the Floquet multipliers of the corre-
sponding linearised equation. Details are in [11].

3. Results of Numerical Study

In [11, 13], we applied the above numerical approach to periodic solitons with
𝛾 = 0.3, 0.265, and 0.565 as representative sections of various parts of the attractor
chart. Here, we focus on the case 𝛾 = 0.35 for which the periodic one- and two-soliton
solutons coexist (see Fig. 1).

We start with the one-soliton solutions. Our numerical continuation shows that
in the case 𝛾 = 0.35, the transformation of the solution is similar to the one in the
case 𝛾 = 0.3; see Fig. 2. The left-end point of each of the two curves in that figure
corresponds to the stationary single-soliton solution 𝜓+. The corresponding value of
ℎ equals ℎ = 0.385 for 𝛾 = 0.30 and ℎ = 0.7500 for 𝛾 = 0.35. At this value of ℎ the
stationary 𝜓+ soliton undergoes the Hopf bifurcation and a stable periodic soliton is
born. At the turning point ℎsn, the periodic solution loses its stability. Numerically,
the turning-point value is ℎsn = 0.8761 for 𝛾 = 0.30 and ℎsn = 1.0186 for 𝛾 = 0.35.
The end point of the unstable branch (ℎ = 0.61 for 𝛾 = 0.30 and ℎ = 0.760 for
𝛾 = 0.35) corresponds to a stationary three-soliton complex 𝜓(−+−).

Solutions at representative points are shown in Fig. 3. Near the leftmost point
of the (𝛾 = 0.3)-curve in Fig. 2, the periodic solution looks like a single soliton with
a periodically oscillating amplitude and width (Fig. 3(a)). As we continue along
the curve, the oscillating solution evolves into a three-hump structure which may be
interpreted as a triplet of solitons. Near the end point of the curve, the amplitude of
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Figure 2. The average energy (a) and the period (b) of the periodic solutions with
𝛾 = 0.30 and 𝛾 = 0.35. The solid curves show the stable and the dashed one unstable

branches

oscillations decreases (Fig. 3(b)) and we arrive at the stationary three-soliton complex.

Figure 3. The absolute value of the periodic solution with 𝛾 = 0.3: (a) ℎ = 0.55, 𝑇 = 4.356;
(b) ℎ = 0.64, 𝑇 = 2.967. In each case several periods of oscillation are shown

We now turn to the two-soliton complexes. For 𝛾 in the range 0.34 < 𝛾 < 0.40
the stability domain of the stationary two-soliton complex is bounded by two Hopf
bifurcations (see Fig. 1). Each Hopf bifurcation gives rise to a temporally periodic
two-soliton solution. Let, for instance, 𝛾 = 0.35. Here, the “lower” Hopf bifurcation
occurs at ℎ𝐻1 = 0.806. This bifurcation is supercritical; for ℎ < ℎ𝐻1, the unstable
stationary two-soliton solution is replaced by a stable periodic two-soliton complex.
As we continue the periodic complex in the direction of smaller ℎ, at some point
(ℎ = 0.79) it loses its stability to a double-periodic complex of two solitons. As we
continue the unstable branch, it makes a number of turns (Fig. 4), the spatiotemporal
complexity of the solution increases (Fig. 5) but it never regains its stability. The
“upper” Hopf bifurcation occurs at ℎ𝐻2 = 0.832. This bifurcation is subcritical: the
emerging periodic branch is unstable and coexists with the stable stationary branch
(i.e. the periodic branch continues in the direction of lower ℎ, see Fig. 6). The entire
branch is unstable in the case 𝛾 = 0.35. However, the increase of 𝛾 results in the
stabilization of the periodic two-soliton solution. This is exemplified by 𝛾 = 0.38 —
see the second branch in Fig. 6 which features a stable interval ℎ1 < ℎ < ℎ2, with
ℎ1 = 0.9415 and ℎ2 = 1.015. At the bifurcation points ℎ1,2 the periodic two-soliton
solution loses stability to a quasi-periodic two-soliton complex.
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Figure 4. The first branch of the two-soliton periodic solution for 𝛾 = 0.35. (a): the
average energy; (b): the period of the solution. The solid curve shows the stable and

the dashed one unstable branch

Figure 5. (a) A two-soliton periodic solution with complex temporal behaviour arising
at the end point of the curve presented in Fig. 4. Here ℎ = 0.741, 𝑇 = 15.9; figure shows

the solution over one period. (b) The two-soliton periodic solution on the stable
branch shown in Fig. 6. Several periods of oscillation are shown. Here 𝛾 = 0.38,

ℎ = 0.95, 𝑇 = 2.476

Figure 6. The second branch of the periodic two-soliton solution with 𝛾 = 0.35 and
𝛾 = 0.38. The solid curve marks the stable and the dashed one unstable branch. The
circles indicate the starting point of the continuation (the point where the stationary

two-soliton complex undergoes the Hopf bifurcation)
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4. Conclusions

Our numerical approach allows to answer a number of questions raised by the one-
soliton attractor chart of Ref. [9]. One such question is of the existence of periodic
solutions with higher periods for 𝛾 in the interval 0.275 < 𝛾 < 0.365. According to
Fig. 2, the periodic one-soliton solution with 𝛾 in that region does not undergo any
period-doubling bifurcations; hence there cannot be any 2T, 4T etc solutions here,
neither stable nor unstable.

The absence of higher-periodic solutions should not be considered as a signature of
“reduced soliton complexity” though. We have discovered a number of stable periodic
two-soliton complexes in the region of large damping coefficients. These do undergo
period-doubling bifurcations, as a result of which there is wealth of stable higher-
periodic multisoliton solutions. The complete classification of the periodic solitons
and their complexes will be addressed in future publications.
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Периодические по времени солитоны в нелинейном
уравнении Шрёдингера с диссипацией и накачкой
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Изучаются локализованные аттракторы нелинейного уравнения Шрёдингера с дисси-
пацией и параметрической накачкой. Периодические по времени солитоны этого уравне-
ния получены как решение граничной задачи в двумерной области. Исследуются устой-
чивость и бифуркации периодических солитонов и их комплексов.

Ключевые слова: нелинейное уравнение Шрёдингера, периодические солитоны,
ньютоновские итерационные схемы, устойчивость, бифуркации.




